

Final Report

CM3203 – One Semester Individual Project – 40 Credits

A Machine Learning Approach for Memory Forensic Investigation

Author : Amna Mohd A Hameed

Supervisor : Michael Daley

Moderator : Luis Espinosa-Anke

Degree Programme: BSc Computer Science with Security and Forensics

School of Computer Science and Informatics

Cardiff University

2020

2

Abstract

Every process that executes in a digital system, has to run in memory at some point.

Therefore, forensic analysis of memory is becoming increasingly important. The ability to

detect memory images as benign or malicious immediately will enable analysts to prioritize

their investigations. This will help to reduce the current backlog in forensic analysis caused

by the current extraction procedures done on digital storage media. Despite numerous

malware detectors being available to analyse digital storage media, they are often time

consuming and not always efficient in detecting for obfuscation techniques used by

malware or malicious activities. This project proposes a Machine Learning approach that

applies to a memory forensics investigation procedure that utilizes an extracted log artefact

from the memory image to classify memory. Different Machine Learning classification

models were developed to identify the best performing classifier for the given dataset of

psxview artefact log. Although there were project limitations and challenges, the proposed

approach provided the initial results that show a proof of concept for a Machine Learning

approach to resolve and reduce the need for additional processing, analsysing and

investigating of memory images.

3

Acknowledgement

Alhumdulilah, I praise Almighty Allah for keeping me safe and in good health that was

necessary to complete this project during the unprecedent time. I am grateful to my family

and friends for their constant encouragement. support and prayers.

I am grateful to my supervisor, Michael Daley, for his ongoing engagement, motivation,

and invaluable support and to my co-supervisor, Amir Javed for his guidance and sincere

advice.

Thankful to both of my supervisors for keeping me in the right direction and for turning

the initial concept I had into an exciting project.

4

Contents

Abstract

Acknowledgement

List of Figures

List of Tables

Chapter 1 : Introduction .. 12

1.1 Preface .. 12

1.2 Project Aims and Scope ... 13

1.3 Project Limitation and Constraints ... 13

1.4 Intended Audience.. 14

1.5 Document Layout ... 14

Chapter 2 : Background and Literature review ... 15

1. Introduction to Memory Forensics.. 15

1.1. Memory and its processing architecture... 17

1.2. Memory Capture and Acquisition .. 20

1.2.1. Types of Memory Acquisition .. 21

1.3. Memory Analysis Methodologies .. 22

1.4. The Volatility Framework .. 24

1.5. Process and related main artefact logs ... 24

1.5.1. Process and Structure.. 24

1.5.2 Critical System Processes ... 26

1.6 Analsysing the Process using plugins .. 26

1.7 Limitation ... 27

5

2 Machine Learning ... 27

2.1 Machine Learning Techniques .. 28

2.2.1 Supervised Machine Learning .. 29

2.2.2 Unsupervised Machine Learning Model .. 30

2.3 Machine Learning Approach to Memory forensics investigation 30

2.3.1 Random Forest ... 31

2.3.2 Decision Tree ... 31

2.3.3 Support Vector Model .. 32

2.3.4 Naïve Bayes.. 33

2.3.5 Neural Networks Classification Model .. 35

2.4 Encounter possible outcomes of Machine Learning Models .. 36

2.5 Related Work.. 39

2.6 Programming Approaches ... 40

2.7 Research Question ... 41

Chapter 3 :Investigation and Analysis .. 42

3 Environmental Setup ... 42

3.1 Prerequisite .. 42

3.2 Analysis Approach ... 43

3.2.1 Acquisition of a compromised memory image.. 43

3.2.2 Main Analysis .. 44

3.2.3 Analysis of uncompromised image ... 57

3.3 Analysis Findings ... 59

3.3.1 Feature Selection .. 59

3.4 Data Collection ... 60

3.5 Conclusion .. 64

6

Chapter 4 : Specification and Design.. 65

4 Tool Requirements .. 65

4.1 Functional Requirements.. 65

4.1.2 Data Collection and Pre-processing requirement specification : 65

4.1.3 Machine Learning Classification requirement specification:... 66

4.2 Non-Functional Requirements ... 67

4.3 System Implementation Architecture .. 67

4.3.1 System Design .. 68

4.3.2 Use Case Diagram: .. 68

4.4 Tool Development Methodology .. 69

Chapter 5: Implementation ... 71

5.1 Overview ... 71

5.2 Data Collection and Pre-processing Interface ... 72

5.2.1 Importing and Loading the Data .. 72

5.2.2 Data Pre-processing.. 74

5.2.3 Machine Learning Classification Models .. 77

5.3 Machine Learning Classification Interface ... 80

Chapter 6: Testing ... 83

Chapter 7 : Results and Evaluation ... 88

7.1 Classification Models Performance .. 88

7.2 Predication results analysis ... 89

Chapter 8: Future Work .. 91

Chapter 9 : Conclusion.. 92

9.1 Summary ... 92

Chapter 10: Reflection .. 93

7

References ... 95

8

List of Figures

Figure 1 : the main methodologies of digital forensics from [28] .. 16

Figure 2 CPU internal architecture structure from [3] .. 17

Figure 3 Illustration of multiple virtual address spaces sharing memory and secondary storage [3]

... 19

Figure 4 Virtual Address Paging from [14] ... 19

Figure 5 Process Structure from [2] .. 25

Figure 6 Process Organisation from [2] .. 25

Figure 7 General Machine Learning Structure from [12] .. 28

Figure 8 Machine Learning Classification ... 29

Figure 9 Unsupervised Learning Model ... 30

Figure 10 Decision Tree.. 32

Figure 11 Support Vector Classification... 33

Figure 12 Bayes Theorem Equation from [35] ... 34

Figure 13 Bayes Theorem : instances from [35] ... 34

Figure 14 Human neuron cell from [37] ... 35

Figure 15 Artificial neuron from [37] ... 35

Figure 16 layers of Artificial neuron from [7] .. 36

Figure 17 Confusion Matrix from [7] ... 37

Figure 18 Accuracy Equation from [7] ... 38

Figure 19 Precision Equation .. 38

Figure 20 Recall Equation from [7] .. 38

Figure 21 F-Measure Equation from [7] ... 39

Figure 22 Decompressing memory image using Rekall ... 44

Figure 23 md5sum hash for acquired memory image .. 44

Figure 24 imageinfo output for compromised memory image ... 45

Figure 25 pslist output of compromised memory image .. 46

Figure 26 pstree output of compromised memory image ... 46

Figure 27 psscan output of compromised memory image .. 47

Figure 28 psxview output of compromised memory image ... 47

9

Figure 29 pslist output : System Protection and Anti-malware processes 50

Figure 30 pstree output : System Protection and Anti-malware processes 50

Figure 31 pstree output for suspected process ... 51

Figure 32 cmdscan and consoles command output... 51

Figure 33 cmdline command output ... 52

Figure 34 malfind output for compromised memory image ... 53

Figure 35 Virus Total scanning for malwares.. 53

Figure 36 scanning a clean memory dump from compromised memory image 54

Figure 37 memory dump scan result of Virustotal ... 54

Figure 38 scanning other memory dumps from compromised memory image 55

Figure 39 last memory dump scan result from Virustotal .. 55

Figure 40 psxview output : initial suspected process from pslist ... 56

Figure 41 psxview output : reveal hidden process .. 56

Figure 42 Verified md5sum after analysis for compromised memory image 57

Figure 43 pslist output of uncompromised memory image .. 58

Figure 44 psxview output for uncompromised memory image .. 58

Figure 45 Use Case : Data collection and Pre-processing tool ... 68

Figure 46 Use Case : Classification tool ... 69

Figure 47 - Data Collection and Pre-processing Interface .. 72

Figure 48 select_N_folder() .. 73

Figure 49 select_N_folder() .. 73

Figure 50 load_pos_data() load_neg_data() .. 74

Figure 51 data_prep() .. 75

Figure 52 labelName() .. 76

Figure 53 save_data() .. 77

Figure 54 load_data() .. 78

Figure 55 set_features() .. 78

Figure 56 initialize machine learning model .. 79

Figure 57 evaluation metrics and output functions for Classifier Model 80

Figure 58 Classifier Prototype Tool Interface .. 81

Figure 59 getCSV () .. 81

10

Figure 60 classify () .. 82

Figure 61 Visualizer .. 82

Figure 63 Random Forest Confusion Matrix .. 89

Figure 64 Classification outcome of testing data against trained model 90

List of Tables

Table 1 Downloaded Benign memory images .. 62

Table 2 Downloaded Malicious memory images ... 63

Table 3 Test Case ID: A1 Creating Processed Dataset .. 84

Table 4 Test Case ID: A2 Support Vector Classifier ... 84

Table 5 Test Case ID: A3 Decision Tree Classifier ... 85

Table 6 Test Case ID: A4 Naive Bayes Classifier ... 85

Table 7 Test Case ID :A5 Random Forest Classifier ... 86

Table 8 Test Case ID :A6 Neural Networks Classifier ... 86

Table 9 Test Case ID: A7 Classifier Training and Testing .. 87

Table 10 Performance of various algorithms .. 88

11

This page intentionally left blank

12

Chapter 1 : Introduction

1.1 Preface

Nowadays, the field of digital forensic investigation is growing and advancing, as it plays

a critical part in resolving cyber-crimes and tracing criminal’s digital activities. With the

rapid pace of technological change has enabled the law enforcement and forensic

investigators to take into consideration of digital evidence to be used as evidence in

criminal proceedings or to present in the court. However, various suspected devices are

regularly collected from almost every crime scene as a source of intrusion; this has resulted

in a backlog of devices and evidence to be examined forensically [9]. According to

Goldberg’s investigation news article, the police backlogs of numerous documented cases

are being measured up to 12 months due to inconsistency delays of evidence examination

and analysis with ongoing forensic workload [19]. In addition, obtaining evidences from

the individual devices does not only require a lengthy process of both extraction and result

analysis. But also, requires special knowledge and skills [28][19]. Hence, many forensic

communities are nowadays more focused on prioritizing memory forensic analysis over

the other forensics analysis areas. As memory dumps, or RAM, of the running system,

preserves a significant number of volatile artefacts that provides relevant clues to

investigators compare to non-volatile artefacts extracted from secondary storage devices

[17]. Besides, many researchers are introducing new approaches to a digital forensic

investigation that involves the use of machine learning (ML), a science branch of the

artificial intelligence (AI) field, mainly to aid and assist investigators and analysts with

advancing automation and detection for investigation procedures [20]. Therefore, to

reduce the ongoing backlog of forensic investigation operations and avoid manual analysis

and extraction process of unnecessary artefacts from memory images, there is a need to

identify and classify acquired memory dumps and images as benign or malicious at the

earlier examination and extraction stage.

13

1.2 Project Aims and Scope

The main aims of this project are to investigate and analyse memory dump for valuable

hidden artefacts and using these extracted artefacts from a memory dump that can be

applied to different Machine Learning models to classify a given artefact log of a memory

image against trained Machine Learning Classifier Model. Also, identify the best

performing Machine Learning model that can be used as a Memory Classifier.

The project scope mainly focuses on creating an automated assistant classification tool to

examine and classify a memory artefact and investigate the performance of different

classification Machine Learning Models acting as a Classifier for a memory artefact log.

In addition, the expected outcome of this project is to have a set of results that shows a

proof of concept of applying Machine Learning approaches to memory forensics

investigation for classifying memory images. The main focus area of memory forensic

investigation and analysis is investigating the system running process with sign detection

of malicious activities using process-related logs and plugins.

1.3 Project Limitation and Constraints

As this project requires the digital forensics analysis it is important to consider a standard

forensic workstation but due to limited resources an environment setup of Virtual Machine

will be utilized as a suitable approach to conduct the investigation and analysis of a memory

image. Also, it is important to maintain the data integrity of the evidence used to analyse

as a forensic requirement to avoid any alteration and modification to original evidence

during the analysis. Therefore, a cryptographic hash md5sum method will be used to ensure

that the originality of the evidence data is not changed when memory image is analysed.

Furthermore, the considerable encountering challenges from applying the Machine

Learning approaches are data collection and pre-processing for Machine Learning

Classification Models. As the necessity requirement of a medium-large sized dataset to

pre-processed and used to train the Machine Learning models in order to retain effective

results and useful insights. As this project will require creating a dataset utilizing extracted

14

log artefacts from memory images dataset, the dataset scale is expected to be limited size

due to limited storage resources to store memory images dataset.

Considering all these limitation and constraints to the fixed timeframe of the project may

have a medium impact on completing all the project stated aims and expected outcomes.

As this project will be conducted as a university project and the initial results will be

presented as a basis for further research.

1.4 Intended Audience

The intended audience and beneficiaries from this project are the researchers, analysts and

investigators and individuals who are interested in developing an automate applications

utilizing Machine Learning approaches for Memory classification and malware detection.

1.5 Document Layout

The rest of the document is structured as follows, Chapter 2 outlines the background

search and literature review of Memory forensics and related technical aspects of memory

and analysis methodologies, Machine Learning basics and approaches, evaluation

measures of Machine learning models as classifiers and related work. Chapter 3 defines

the approaches of the memory analysis methodologies with main artefact findings and data

collection. Chapter 4 layouts design and system specification requirements of the

developing tool. Chapter 5 details in programming level of the implementation of the

developing tool and Machine Learning Models. Chapter 6 features testcases that were

performed for the developed tool , Chapter 7 presents the initial results of the Classifier

Models, Chapter 8 addresses arising future work for the project ,Chapter 9 : concludes

the project main results and findings and Chapter 10 details the learning experiences from

undertaking this project.

15

Chapter 2 : Background and Literature review

This chapter provides an overview of technical concepts and the background context of the

problem and approaches in more depth with reference to related literature. The chapter firstly

introduces the principles and technical aspects related to memory forensics and outline memory’s

architecture and its processing including memory acquisition, analysis methodologies and main

artefact. Furthermore, the chapter provides contexts and theory associated with Machine Learning,

Machine Learning classification algorithms and address as an approach to memory forensics

investigation with the awareness of related work. Finally, the chapter concludes with the approach

to be adopted for the project and the research questions.

 The theories and terminology reviewed in this chapter are referred to frequently throughout the

remainder of the document.

1. Introduction to Memory Forensics

Over 15 years ago, the need of memory analysis in digital forensics world was primarily

highlighted during the Digital Forensic Research Workshop (DFRWS) conference in 2005 as

a challenge and the main objective was to motivate research of new techniques and advance

tool developments in the field of memory forensic [16]. Subsequently, the constant researches

on the topic provided a critical consideration of memory forensics and useful insights regarding

the available volatile artefacts that are found in memory for the forensics investigation and

analysis process [16][31].

Nowadays, memory forensics is arguably becoming one of the major areas focused for any

forensic investigation. The main memory or RAM are used as primary storage to store the

running system’s executed programs, recent open files, threads and logs and the processed

data [17]. These memory’s volatile content is highly considered, as it provides valuable

insights for forensics investigators and analysts of a compromised system to determine for any

suspicious activities as malware or network intrusion [23][22]. In general, memory forensics

is a domain of digital forensics and the process of memory forensic is mostly adapted and based

16

on the fundamental methodologies of digital forensics [11]. The process involves six main

stages of identification ,collection and preservation, examination, analysis, documenting and

recovery of evidential artefacts from any electronic devices that stores data that is relevant to

an investigation. The sequence of the digital forensics’ methodology is shown in the figure

[29].

Figure 1 : the main methodologies of digital forensics from [28]

In terms of memory forensics, the set of digital forensic methodologies are relatively applied

on the system’s volatile physical memory with the consideration of the system state at time of

identification and acquisition [1]. The main reason of the system state matters as it is the only

accessible way to collect and acquire memory capture when system is powered on . As in the

past, capturing memory images and memory dumps were often easily manageable as to limited

size range of physical memory. However, the recent increase in size of physical memory of

modern computers has impacted inefficiently for entire manual acquisition, examination and

analysis of memory image as it requires specialized understanding knowledge of contextual

information of memory and data structures and use of the associated tools that are compatible

[22]. Most of the memory’s artefacts are based on memory processes with virtual addressing

associated to physical addressing. The basic principles related to memory data structure and

how its function processes will be reviewed in the following sections.

17

1.1. Memory and its processing architecture

Basically, each computational device is composed with two principle components that

performs computational processing and basic instructions of a system that are the physical

memory and the processor [3]. These components are considered to hold forensic value, as the

processor includes programs executions and the processes of central processing unit (CPU) of

the whole computer system. Whereas the volatile physical memory, it consists of temporarily

stored data related to the processor and executed programs of the active system. In term of the

modern computer system architecture, CPU is often stated as a processor, that is indirectly

accesses and requests the main memory (RAM) via Memory Controller Hub for instructional

commands to execute and process the data. The following diagram Figure 2 shows the basic

internal architecture of a computer system and how the system’s controllers and processors are

relatively interconnected to the main memory [3]

Figure 2 CPU internal architecture structure from [3]

18

Moreover, Memory is commonly known as random-access memory (RAM), particularly for

its characteristic of random-access time in any order for the storage and location of the data.

Memory also characterized as the most volatile data in a computer system, as its data and the

content are lost when system state is off [22]. In addition, memory has the capability to collect,

access and transfer data between the input/output (I/O) controllers and processor as shown in

Figure 2 via the connected units of Northbridge and Southbridge. This indicates that the

information regarding external connected devices and storage media resident in the main

memory and can be acknowledged theses information for forensic investigation and

analysis[3].

Besides, to manage processes and threads of the main memory are mainly performed by

memory management unit (MMU) , virtual address translation and the memory data structures

[26].The memory management is mainly the organization of the physical memory (RAM) for

the allocation of the system’s multitasking processes and operations. A special addressing

scheme is used between the main memory and CPU for accessing the data and instruction to

be executed. Virtual address is used, and it refers to address space in virtual memory for a

process. Whereas the main memory has corresponding address for the virtual address which

are addresses that the processor requests for accessing physical memory known as physical

address space. The MMU is constantly used along with the memory manager for the translation

of the processor’s virtual address to the physical address using the translation lookaside buffer

(TLB), also known as the MMU translation table for a given translation [3].

Each of the running processes is mapped with a private section of the virtual memory, that

appears to provide more memory access than the actual physical memory space for the process

[23]. Basically, virtual memory is used as allocation scheme for the process or the application

when system is running short of the memory. The memory manager is responsible for

transferring regions of memory to secondary storage to free up space in physical memory to

allow the data to be exchanged between primary and secondary storage. If a thread accesses a

virtual address that has been moved to secondary storage, that data is then brought back into

physical memory [23]. This interaction is represented by the diagram Figure 3 that shows how

19

the virtual address are randomly mapped between the virtual memory, the main memory and

secondary storage [3].

Figure 3 Illustration of multiple virtual address spaces sharing memory and secondary

storage [3]

In terms of physical memory address data structure , it is consist of pages and table page that

stored in main memory. In general, a memory page (page) is a fixed-length contiguous block

of virtual memory, described by a single entry in the page table, that maps virtual pages to

physical pages[27] Figure 4. [3][14].

Figure 4 Virtual Address Paging from [14]

Paging often performed by the operating system for temporarily swapping memory contents

out to secondary storage to free up the required space in physical memory. The page file or

swap file store pages from the memory that have been swapped as not needed or set another

20

page [21] By default, the page file is stored in the operating system installation root, in a file

called pagefile.sys is the pages once were in physical memory and might be active. This

internal process of each application shows that all systematic operations are carried in main

memory. With regards to forensics point of view, the list of memory addresses associated with

the process are useful to reconstruct the whole memory space and get the data out that is missed

[21]. This section has provided an overview of the main elements of memory management unit

and how memory address is processed within Windows operating systems.

1.2. Memory Capture and Acquisition

The need for the memory acquisition has increased as more information are being stored on

computer’s memory that involves in cybercrimes and network attacks [11]. Memory

acquisitions is highly prioritized for any identified live compromised computers as it contains

extremely volatile data in memory which is ranked as top in order of the data volatility. The

memory images and snapshots are only captured from a running system as once the system is

turned off completely or rebooted the memory’s content fades away [22][23]. Therefore, the

first responders are trained and instructed by following the guidelines of the ‘Association of

Chief Police Officers (APCO)’ to securely collect and handle evidences upon investigation.

The four APCO guidelines [15] are listed as following :

✓ Principle 1: No action taken by law enforcement agencies or their agents should change

data held on a computer or storage media which may subsequently be relied upon in court.

✓ Principle 2: In exceptional circumstances, where a person finds it necessary to access

original data held on a computer or on storage media, that person must be competent to

do so and be able to give evidence explaining the relevance and the implications of their

actions.

✓ Principle 3: An audit trail or other record of all processes applied to computer based

electronic evidence should be created and preserved. An independent third party should

be able to examine those processes and achieve the same result.

21

✓ Principle 4: The person in charge of the investigation (the case officer) has overall

responsibility

These guidelines are essential to the first responders to carefully deal when acquiring memory

images from the live compromised systems as any action performed as by clicking mouse or

keyboard might activate any malicious code or malware that could erase the system

automatically [15]. Therefore, it is essential requirement for first responders to secure the crime

scene completely and conduct memory acquisition process initially before any other forensics

collection and acquisition process[17]. In addition, avoid unnecessary interaction while

acquiring memory image as the acquisition process is performed on live system in timely

manner and any interruption would result in a corrupt version acquired image. Memory

acquisition be performed based on two methodologies either Hardware-based or Software-

Based. The main principle considered when acquiring the image is to use the least invasive

approach possible as to less footprints on the running memory[1] [15].

1.2.1. Types of Memory Acquisition

Hardware based involves direct physical connection to the memory using hardware as write

blocker and cable connections. These provide physical memory backup instead of logical.

Whereas Software-based involves use of verified and tested toolkit to acquire memory bit-to-

bit images and snapshots. Often these commercial and open-source tools are risky as it can

alter the memory and affect its integrity [11]. As whatever actions performed by the

investigator at the time of acquisition is firstly executed in the memory and can alter the

system’s current running processes that are likely pointed be forensically important [1]

In addition, one of the main advantages of memory acquisition of memory images are fairly

smaller in size compared to the acquired images from non-volatile secondary storage and other

storage devices as it requires less time for extracting and taking snapshot captures, whereas

non-volatile devices require lengthy process only for acquiring the image as there size

measures up to 16 GBs to 2TBs and more [1]. After acquiring and capturing the memory, a

raw bit-to-bit memory image copy is produced and there are many acquired memory images

formats. The main formats of acquired memory image are as dd file (.dd) , memory image

22

(.img) or as memory dump (.memdump). In addition, there are different types of memory

dumps are executed by the operating system as Windows Crash Dump, which is created when

system crashes and it is used to identify cause of the system crash e.g. blue screen crash and

kernel crash. Another memory dump that is executed by system is Windows Hibernation File,

which is created during the hibernation process and it stores as (hiberfil.sys) where copy of

memory that the system dumps to disk and often these types of the memory dump images are

considered for analysis [1]. As to commonly used memory acquisition tool for Windows

operating systems is WinPmem, which is one and only open-source available to date. In

addition, few analysis tools and frameworks that only supports memory images and dumps

formats as common used raw formats are dd, img that are widely supported and there often

several to acquisition tools that can be used to convert raw memory image format into another

as The Volatility Framework [1][26].

When the memory captures are being collected and acquired, they are assigned with a fixed

cryptographic hash code as MD5 hash for the integrity and data validation of the original

evidences [17][22]. There are various hash calculating tools and most used is md5sum. It is a

Linux sum tool that is used to create a checksum hash value based upon the content of the

entire memory image using traditional algorithms. The hash is used before and after the

analysis of memory images to identify for any alteration and modification to original memory

image. If hash checksum returned same as before conducting the analysis, then integrity is

maintained and validated through the analysis otherwise getting invalid MD5 which indicates

that some alteration occurred to the original memory image during the analysis [22].Therefore

,it is important when investigating and analsysing the evidence without alternating the original

content of the evidence and maintain perform the checks as the principles of the APCO[15].

1.3. Memory Analysis Methodologies

There are several ways to conduct the analysis of a memory dump as it consists range of

different artefacts. But it is recommend for examiners and analysts to follow the basic

methodology procedures when conducting memory examination and analysis in order ensure

that all potential suspected artefacts and evidences are revealed for an incident investigation [

11][17]. Most of the analysis and investigation procedures are conduct in specialized digital

23

forensics labs utilizing the forensics workstation and memory analysis tools. Besides, each

analyst applies different analysis techniques depending on the investigation scenario [22].

Despite following a specific methodology, it is also important to consider covering different

areas of memory analysis which ranges from System Process, Registry logs, Networking,

Services, Kernel and Rootkits[6]. According to the SANS Computer and Incident response

Institute guide cheatsheet [34] for the pure analysis of compromised memory is generally

accomplished using the different plugins of Volatility Framework in following six steps that

cover the major areas of for the analysis are listed in the following list :

A. Identify rouge process

a. This area is mainly focuses to listing the system running process in the memory

at time image was acquired .

B. Analyze process dlls and handles

a. This area of analysis consists of revealing a list of related dlls, process security

identifiers and handles for a selected running process

C. Review network artefacts

a. This area presents the network related artefact as open and closed TCP

connections, ports, and sockets as well as source and destination IP address

D. Look up Evidence of code Injection

a. This area looks up for the areas in low level for signs of the code injection for

specified process and offset address and dumps the infected areas to be analysed

further

E. Check for signs of rootkits

a. Looks up for hidden process and checks the memory process in cross validation

view as well as looks up for the API dlls for specified process

F. Extract Processes, Drivers and Objects

a. This area mainly used for extracting different artefacts as memory dumps for

the specified process , driver, and objects that considered for further analysis.

In addition, Memory Forensics Practical guide from the Computing science and Mathematics

of University of Sterling, where the main areas of the initial analysis of a compromised

memory image includes inspecting the operating system versions, viewing process and

24

network connections, searching through memory process that can be performed using the

Volatility Framework [13].

1.4. The Volatility Framework

The most widely used memory forensics platform for memory acquisition and analysis is

known to be Volatility Framework. This tool is beneficial to analysis captured and imaged

volatile memory for valuable information about the runtime state of the system, provides the

ability to link artefacts from traditional forensic analysis [6][23] . Also, the tool provides range

of plugins to analyse the memory artefacts of main 6 areas as mentioned earlier. In addition,

this tool framework is python based and is also used as python library [4].

At the initial analysis of a memory image, it is important to distinguish the system running

process. The following section will describe briefly about the system process as artefact along

with process-related artefacts logs that are used for the analysis using the Volatility Framework

plugins.

1.5. Process and related main artefact logs

1.5.1. Process and Structure

As to basic analysis methodology, it is important to acknowledge all the existed artefacts that

can be found in a memory dump. All the artefacts and running processes in the system share a

common origin that they all consist EPROCESS, which is the structure that Windows

Operating System uses to represent or to call a process [2]. As each EPROCESS is consist of

a main attribute that represent the allocation of the process in the memory region by the virtual

memory space, that is unlinked from other system running processes. Additionally, the

memory space is also consists of input actions performed by the system user for a process and

it includes list of process executable, loaded modules and SIDs and user privileges and threads

that Windows system organizes and distributes through Virtual Address Descriptors VAD,

which is a paging method to load pages in memory [2]. The following diagram Figure 5 shows

a basic process with associated attributes

25

Figure 5 Process Structure from [2]

Generally, the process is organised with single linked which creates a double linked lists of

processes structure. Where the a _LIST_ENTRY structure called ActiveProcessLinks

(header), which contains two main elements: a Flink, forward link, that points to the header of

the following process, and the Blink ,backward link, that points to the header of the former

process. All Together, these linked structures build a double linking chain of processes as

shown in Figure 6 [2].

Figure 6 Process Organisation from [2]

26

1.5.2 Critical System Processes

Besides, it is important to distinguish the actual system running process with the applications

running on the system memory RAM. Therefore, the following lists the essential system

processes that runs normally in clean system memory:

• System – represents the default system process which includes threads that run-in

kernel mode and it is usually represented as PID 4 [2].

• csrss.exe - The Client/Server Runtime Subsystem for creating and deleting processes

and threads [2].

• service.exe – represents The Service Control Manager(SCM) process, manages

Windows services and maintains a list of system services in a private reserved memory

space [2].

• svchost.exe: represents a multiple shared host processes provides a space for DLLs that

implement services [2] .

• lsass.exe: represents The Local Security Authority Subsystem process mainly

responsible for security policy and verifying passwords and creating tokens [2].

• winlogon.exe: represents the interactive logon prompt process [2].

• explorer.exe: represents the Windows Explorer process and which represents a range

of user interactions such as folder [2] .

• smss.exe: represents session manager process that is mainly responsible for managing

and creating the sessions [2] .

There are more background system services and application processes other than the

mentioned system process and it mainly differs from different versions of Windows Operating

Systems.

1.6 Analsysing the Process using plugins

The main artefacts of process-related logs that are utilized to identify the system running

processes are extracted using the Volatility Framework tool’s plugins [2][4]. These plugins

commands are listed below:

27

• Pslist, lists the processes and prints a summary which includes only active process and

does not any terminated or hidden processes[2].

• Pstree, lists the pslist in a tree view, which reveals process relationships as the parent

process and child processes [2].

• Psscan, lists terminated and hidden processes [2].

• Psxview, locates processes using alternate process listings, using the cross-reference

different sources of information and reveal malicious discrepancies.[2]

Further context and details of each of these plugins and logs will be detailed in Chapter 3.

1.7 Limitation

Some of the considerable challenges of conducting the Memory forensic analysis is that it

requires a standard forensic workstation for acquiring, analysing and extracting artefacts from

memory images. Also, when conducting acquisition and analysis ,if any incorrect process of

extraction occurred while acquiring a memory image due multiple command runs or technical

errors mapping of the binary representation data then inaccurate reading of the memory dump’s

data results in to incorrect extraction and processing of the outcome results [22][11].

2 Machine Learning

In recent years, the Machine Learning approaches are significantly becoming a high demand in

many industries and businesses for the purpose of obtaining meaningful data insights and

automation analysis [8]. Machine Learning (ML) is one of the emerging domains that is highly

associated with the research field of Artificial Intelligence (AI). The concept of Machine Learning

in conjunction with AI, is referred as field of study that gives computers the ability to learn without

being explicitly programmed [33] and according to definition of Tom M. Mitchell for ML is refers

as “A computer program is said to learn from experience E with respect to some class of tasks T

and performance measure P, if its performance at tasks in T, as measured by P, improves with

experience E .”[39][7].

28

Clearly, Machine Learning can be defined as the ability of a computer program based on

computational algorithms that can automatically learns the underlaying patterns from given

information and data to provide useful insights [8]. Besides, Data Knowledge Discovery processes

which includes Data Mining is crucial in Machine Learning programs, as the knowledge extraction

of known and unknown data from the large-scale data source are utilized as basis of data insights

and further exploration for key decisions from the given data. Numerous applications are widely

adapting Machine Learning techniques such as stock prediction, credit scoring, smart medical

checks, malware detection, and many more as the applications are beneficial in delivering useful

predictive analysis [7]. The following diagram shows as a general scheme for Machine Learning

as classification approach Figure 7

Figure 7 General Machine Learning Structure from [12]

2.1 Machine Learning Techniques

Machine Learning provides various approaches as classification, regression ,pattern recognition

and many more that are constructed based on mathematical and statistical algorithms which

processes the outcome knowledge from a given data of a sample dataset [8] .In general ,there are

several types of Machine Learning models that ranges from Supervised Learning, Unsupervised

Learning, Semi-supervised Learning, Reinforcement Learning and Deep Learning [7]. Theses

Machine Learning models are used for different purposes and each type of learning model is used

to perform either descriptive or predictive analysis depending on the chosen algorithm, type of

29

analysis required to solve the problem with consideration of type of dataset used for the analysis.

But the most popular Machine Learning models that are used commonly : Supervised learning

model and Unsupervised learning models. In the following section will discuss the two main

categories of machine learning models with their uses [5][8].

2.2.1 Supervised Machine Learning

Supervised model refers to an algorithmic learning model that infers the underlaying patterns and

insights relationship between the labelled data and target values of unlabelled data that is subject

to predication outcome [7]. Considering a malware detection example based on the Machine

Learning classification approach as shown in the Figure 8 , Where a labelled training dataset of

the files is used with labels of benign and malicious for learning and training task of the model.

The labels are used to identify each data of the dataset. As model is trained and adapted the

generalized pattern and feature knowledge from the given dataset’s data. The model applies

classification function on the test unseen data, which is unlabelled data, where it classifies and

predicts according to the supplied labels and trained dataset and produce possible outcome

prediction [7][25]

Figure 8 Machine Learning Classification

30

2.2.2 Unsupervised Machine Learning Model

In terms of the Unsupervised learning model, it is only requiring unlabelled input dataset. This

learning model utilizes clustering and grouping algorithms that can automatically find regularity

from the unlabelled data without human interference and it filters and groups the unlabelled data

into small clusters of similar features and provides each cluster with a suitable label based on the

acknowledge similarity patterns from the dataset as shown in Figure 9 [5]. Clearly, The

Unsupervised learning model is considered to be useful when labelling large dataset [7] Some uses

of the Unsupervised model are found in the areas of data compression, outlier detection,

classification, and human learning [7].

Figure 9 Unsupervised Learning Model

2.3 Machine Learning Approach to Memory forensics investigation

With the consideration of the project’s aim to identify and classify a memory image using extracted

artefact log instances as benign or malicious is clearly requires a classification approach.

Therefore, Supervised Machine Learning models based on the classification algorithms are been

appointed to address the problem stated. In addition, several researchers and recent studies have

adapted the Machine Learning classification approaches for unknown malware detection and

31

malware related classification problems [21][25]. The most commonly used classification

algorithms of Machine Learning models for detection purposes are Random Forest (RF) , Decision

Tress (DT) ,Support Vector (SV) . Naïve Bayes (NB) , and Neural Networks (NN) . The following

sections will briefly disuses about each of the classifiers mentioned above .

2.3.1 Random Forest

Random Forests (RF) model is one the popular machine learning predicative classification

algorithm that is commonly used in detection and filtering applications [21]. This model is an

ensemble learning model for classification , where model constructs a strong learner by employing

a collection of decision trees that are formed by weak decorrelated decision tree classifiers [7]. In

general, the model applies a bootstrap sample for the given dataset, and it creates individual

classification trees for each sample randomly, where each decision tree outputs the classification

class based on most frequently occurred values and feature in the class of given sample. The

bagging approach applied by the model to aggregate individual decision trees and outputs average

estimation of the classification class [7].As example of input data given to be classified , the model

will classify based on the majority estimation of all the decision tress subtrees [7]. The main reason

is that it takes the average of all the decision tree estimations that it explicitly estimate relative

importance of a variable of classification for given data without biases [5]. In terms of the model

properties, it runs efficiently on large datasets and provides a good accuracy as well as effective

method for estimating missing data [7] .

2.3.2 Decision Tree

Decision Tree is also consider as the most popular Machine Learning classifiers. This model is

based on the ensemble learning method of divide-and-conquer [7]. The model is constructed as a

hierarchical structure in the form of a tree structure , where it intakes dataset and gradually trains

and splits into smaller subsets to a certain limit is reached. This results in tree’s internal decision

nodes and leaves, and each decision node represents possible features labeling as branch outcomes

and each leaf represent output classification class for a depending branch decision node [7] [5].

The model process starts at root node to split in sequence-manner and classifies with corresponding

32

branches that represents values connecting to given data features until a decision leaf is identified

and points the output value to label unseen data [7]. The following Figure 11, shows an example

of the decision tree for known and unknow files types, where an unseen data unknow file given to

the model as input, the model will determine the classification of unknown file by locating the path

of nodes and branches that matches to given data features as Unknown -> Application -> and then

identifies class leaf of benign or malicious based on whether the unknown file is hidden or

unhidden [7][5].

Figure 10 Decision Tree

 The Decision tree classifier allows interpretability and fast allocation for the classification as its

method of divide and conquer that efficiently reduces half of the unnecessary features . In addition,

decision tree classifier is also known as C4.5[5].

2.3.3 Support Vector Model

Support Vector Model (SVM), is supervised learning model that is used mainly as linear

classification and regression model for data analysis, pattern recognition and detection [7]. The

model is based on linear and kernel methods [5], where given input (training data) is split into

two-class learning task that are called support vectors. The SVM algorithm structures a

classification model method that classifies unseen data to one of the two support class vectors on

either side of an optimal hyper plane which splits two-classes and making it a simple binary linear

classifier [7] . The model represents the training data as points when classifying and it creates a

33

partition of data into two-classes which is divided by the major distance to the adjacent training

data point of any class. Any unseen data given will be predicted and classified either of the two-

classes as shown in Figure [7]. In terms of the main properties of this model , it provides higher

accuracy in detection and classification outcomes with minimal true error rate. The model yields

a hyperplane margin that is useful for any small and large sample as it handles complexity of given

data [7][35] Besides, the model’s kernel function is highly correlated to Neural Networks, as it is

able to function as a non-linear model as well [25].

Figure 11 Support Vector Classification

2.3.4 Naïve Bayes

Another popular predication classification model is called the Naïve Bayes [25]. It is a simple

supervised learning model based on Bayesian algorithms and theorem for predicting the

conditionally independent possibility of classes of various features for a given data sample [7

]. The principle of the Naïve Bayes classifier is a probabilistic and assumption method, where it

calculates input training data with the assumption of conditionally independent of each other for a

given class label [7] . For given unseen data to Naïve Bayes classifier, it will calculate the

predication outcome based on the maximum likelihood probability of feature instances of training

34

data sample [35]. The algorithmic equation of Naïve Bayes calculating the conditional possibility

is shown in Figure 12

Figure 12 Bayes Theorem Equation from [35]

The P (l/f) represents the Naïve Bayes posterior probability and it includes main elements that are

P(l) , P(f) and P(f/l) [35].

• Both P(l) and P(f) represent the prior probabilities without regard to each other

o P(l) is the previous likelihood of class label.

o P(f) is the previous possibility that a given feature set appeared.

• P(f/l) is the previous likelihood and predicator prior possibility.

Additionally, Naïve Bayes stated that individual feature instances are not dependent as shown in

Figure 13 [35].

Figure 13 Bayes Theorem : instances from [35]

Obviously, Naïve Bayes classifier is based on a simple equation that does not require complex

parameters and functions. It is appealing that the model is relatively easy to create and use as to

its properties of simplicity and robustness. Some of the popular application of Naïve Bayes

algorithm are used in text classification and spam filtering [7].

35

2.3.5 Neural Networks Classification Model

Numerous Deep Learning approaches are being utilized nowadays in detection and classification

for malwares and one of these popular approaches is Neural Network as Classification model [

25].This model is based on artificial neural network algorithms, which consist of multiple artificial

neurons connected in a neural network layers similarly to human’s neural cell [7][25].The

following diagrams illustrates a human neuron cell and artificial neuron Figure 14 and Figure 15.

Figure 14 Human neuron cell from [37]

Figure 15 Artificial neuron from [37]

 The NN model intakes the inputs of training data as a layer of given neurons set , and each neuron

represents a single input of data. The input neuron is associated with cascaded layers of artificial

36

neuron which consist of weight, transfer, bias, and activation functional layers[35][7]. The model

obtains each neuron and it passes through the functional layers to provide an output classification,

which is formed by the individual outputs of neurons as presented in following diagram 16 [37]

Figure 16 layers of Artificial neuron from [7]

In nutshell, a deep learning neural network classifier model utilizes a range of algorithms that

endeavors to identify underlying interactions and patterns of a dataset through a method layers that

mimics the actions of the human neural network functionality [7][37]. In addition, one of the

major issues that effects the model outcome is the inefficacy to process Big data to provide a

subsequent outcome. Also, it provides data nonlinearity in which it does not function classification

properly as it output the predication based on high classification value [7].

2.4 Encounter possible outcomes of Machine Learning Models

It is essential to determine a proper classification machine learning algorithm for the proposed

binary classification problem. There several performance measures that are utilized to evaluate the

37

machine learning algorithms in term of how well is the learning capacity of a model in achieving

a correct difference between classification classes and how well classifier model constructs

properly to process classification task for testing data [10] .In addition, to ensure that obtaining

results from models represents accurate insights, these measures help to avoid modelling error or

Overfitting, which represents poor generalization and inaccurate classification of the outcome

predication [7]. Hence, it is crucial to evaluate the learning algorithms of Machine Learning models

for assessing and expressing the success of a binary classification study [10].

 In general, there are four main types of binary classification outcome of Machine Learning models

that are :

1. True Positive (TP), means predication is correctly identified as positive.

2. True Negative(TN), means predication is correctly identified as negative.

3. False Positive (FP), means predication is incorrectly identified as positive.

4. False Negative (FN), means predication is incorrectly identified as negative.

These direct outputs of classification predication are represented in 2-dimensions as ‘Confusion

Matrix’ table as shown in Figure 17.

Figure 17 Confusion Matrix from [7]

The Confusion Matrix is a representation of Machine Learning performance for a classification

algorithm based on the given test data in matrix. The matrix contains two classification against

each other that are the predicted classification and the actual classification in form of four types of

38

predication outcomes as mentioned earlier [7]. If Confusion matrix had higher number of

predication values for both TP and TN, it indicates for good performing learning algorithm and

relative to the total correctly classified for the testing set [25][10]. Overall, the Confusion matrix

is useful as accuracy indicator for the model’s outcome classification results. Also, there are other

performing measures that are used as performance comparison metrics for the learning model with

testing dataset which includes Accuracy, Precision, Recall and F-measure [5][7].

− Accuracy represent the rate of the true and false predication made by the model and it

calculated using the true values (TP & TN) by the total number of predications [7] as

shown in Figure 18.

Figure 18 Accuracy Equation from [7]

− Precision also known as Predicative value represent the rate of true positive predicted

cases and positive samples that are correctly classified [25][5]

Figure 19 Precision Equation

− Recall represent the rate of actual positive cases which are correctly identified [25][5]

Figure 20 Recall Equation from [7]

39

− F-measure or F score represent the rate of overall accuracy performance and it is

calculated via precision and recall with equal weights [10].

Figure 21 F-Measure Equation from [7]

All these measures have the accurate performance rate 1 and the least worst performance rate is 0

[5][25].

2.5 Related Work

The need for a reducing the consistent backlog of memory data and analysis of digital evidence is

crucial as it can provide useful hidden artefacts and links that can be used to proof claims of

innocent victims [22][44]. Tool as volatility framework can be used for the memory inspection

and indeed, it provides investigators with useful artefacts to be analysed for anomalies ,malware

or string search that are obtained using the traditional manual procedure. Recently, an automation

approach was proposed called Quincy: Detecting Host-Based Code Injection Attacks in Memory

Dumps [44] –, where a tool employed a machine learning approach to detect and filter memory

dumps from the compromised machine for the malware attacks that are either as injected code or

sent over the network [44]. The tool functioned to classify the infected memory region and predict

the possible damage that can malware cause with malware classification. Possibly an approach to

prioritize malware analysis from the volatile memory data to overcome the manual analysis.

Although Quincy machine learning algorithms focus more utilizing Malfind and Hollowfind

artefacts for detection of malware injections, but these plugins require considerable time to scan

the memory image and extraction the dumps for the suspected areas which is not yet efficient [44].

With a similar motivation of automation approach for memory forensics investigation, aiming to

develop a classification tool that is specifically fast detection and classify memory dump’s by

40

utilizing process-related artefact log that help forensic analysts and investigator for memory

investigation procedures prior analysis.

2.6 Programming Approaches

Python programming language is being considered for the projects tool implementation. There are

many python libraries and modules available that commonly supports the programming of

Machine Learning models and algorithms. Scikit-learn library is the most popular library that

supports to develop different Machine learning models. Scikit-learn consist of two basic libraries

of Python, NumPy and SciPy, which adds a set of algorithms for common machine learning and

data mining tasks, including clustering, regression, and classification. Even tasks like encoding

and labelling data, feature selection and ensemble methods can be implemented, and a

comprehensive documentation is available with tutorials and code examples [36][24]. In addition,

Scikit-learn library provides functionality of evaluating the classifier models by the supported

evaluation metrics utilities. The reason of considering the Scikit-learn library as it has previously

used in developing Machine Learning approaches and it enables for quicker implementation of the

prototype programs [24. In terms of memory analysis, open-source Volatility library [4] that can

be utilized as its python-based tool and most commonly used for analysing memory raw images

and dumps and extracting artefacts. Some complexity expected from the utilizing the Volatility as

library as not all plugin is fully supported, and it is important to consider the python build version

when developing the tool as Volatility library is supported by python 2.7 version [41]. Another

useful tool for memory acquisition and analysis is Rekall Forensic and Incident Response

Framework which is also considerable for the project as it is python-based tool. In terms of the

tool interface [30], python provides a built-in GUI library Tkinter that can be utilized for the tool

interface implementation to have a better user graphical interface compare to traditional command

line interface [38].

41

2.7 Research Question

What are the useful artefacts can be extracted from a compromised memory dump for any memory

forensics investigation ?

How does the Machine Learning approach would help in classifying extracted artefact log from

memory dump and how does the approach resolve the problem of forensic backlog ?

42

Chapter 3 :Investigation and Analysis

This chapter of the document details the prerequisite and environment setup, analysis techniques

used to investigate and analyse a memory image for process-related artefacts that are likely to be

hidden in a memory with consideration of other memory artefacts. In addition, the data collection

approach for the Machine Learning models.

3 Environmental Setup

Prior to conducting the analysis and investigation procedure of the memory snapshots for artefacts,

a Linux environment based Virtual Machine was prepared and installed as a forensics analysis

platform to perform fair investigation and analysis of memory snapshots. The following section

will detail the equipment and tool resources as well as the defined dataset of memory images that

were utilized for conducting the investigation and analysis of memory image.

3.1 Prerequisite

Equipment and Setup:

1. Lenovo G50-70 (15 inches, 2016)

2. Host Operating System (Version: Windows 8.1, 64-bit, Build 9600 ,6.3.9600)

3. Hardware Processing CPU Intel i7 -4510U @ 2.00GHz 2.60.GHz , RAM 12 GB

4. VMware Workstation 15 Player (Version: 15.5.2 Build-15785246)

1. Installed latest version of LinuxMint Mate (19.3) Operating system as Virtual

Machine VM

2. VM Specifications :

▪ RAM Size = 2 GB

▪ Internal Hard Disk 64 GB of free available space used

3. Two most commonly used open-source Memory Forensics analysis and acquisition

Toolkits were installed in VM:

▪ Rekall-core 1.6 [30] utilized as decompressor for memory snapshots from .aff4

format into memory images standard format .img.

43

▪ Volatility Framework with Windows 10 Memory Compression Version 2.6

[40] is utilized to perform analysis and investigation of decompressed memory

snapshots to retrieve useful artefacts and information and to execute outputs of

memory artefact logs .

Memory image dataset : a research dataset was utilised for this project experimental study of

analysing the process-related artefacts of memory image. The dataset consists of (4300 positive

and 300 negatives) acquired realistic memory snapshots of an uncompromised and compromised

Windows 10 virtual machines. Memory images were acquired using Rekall's WinPmem

acquisition tool and were stored as compressed images in Advanced Forensics Format (AFF4).

Briefly, The memory images were compromised using several malware based on obfuscation

evasion techniques. All the datasets were collected between 2017 and 2019 at ST Engineering

Electronics-SUTD Cyber Security Laboratory, Singapore University of Technology and Design in

Singapore [32].

3.2 Analysis Approach

Investigating a compromised memory image requires deep understanding of different memory

forensics investigation and analysis techniques in order to uncover intrusion source with all

associated artefacts. Despite the limited timeframe of the project, some areas of the investigation

and analysis of a compromised memory will be limited and will mainly focuses on the process

related artefacts that could be found in a memory in order to identify memory’s process activities

and behaviours as benign or malicious. Yet, the basic memory analysis methodology will be

adapted as mentioned in the Background Search Chapter 2 as well as from the practical guide for

conducting the analysis of a compromised memory image [13] .

3.2.1 Acquisition of a compromised memory image

After a successful installation of compatible analysis resources of VM and memory analysis

software Rekall and Volatility , a compromised sample of memory image from malicious dataset

was downloaded then was decompressed using Rekall to acquire image (.img) format of the

memory as shown in Figure 22.

44

Figure 22 Decompressing memory image using Rekall

Once memory image was decompressed ,an md5 hash code is generated and associated with

acquired memory image. Then, utilized Volatility tool to process, analyse, and extract meta-

features and artefact logs from the volatile memory image. The further detailed analysis of

compromised image and extracted artefacts will be presented in the following section as guided

steps.The compromised memory from positive/malicious dataset was randomly selected and

utilized for the analysis .The memory image file that was used for the main analysis is snapshot-

alpha_mixed-1-meterpreter-reverse-tcp-2019-01-02_09-53-57.aff4 .

 3.2.2 Main Analysis

The main areas of analysis and investigation of compromised memory image is accomplished

using Volatility Framework Tool and is summarised as follows:

1. Create a data integrity hash code

Initially to ensure that original memory is not altered during the analysis a md5sum hash

file is created once the memory file is decompressed as acquired memory image and ready

to be analysed as show in the in Figure 23

Figure 23 md5sum hash for acquired memory image

45

2. Ensure to identify the raw memory OS profile prior the analysis of the artefacts [13].

As initial step of memory investigation and analysis, the command imageinfo is utilized

to determine the memory OS (operating system) and the profile system from which

memory image was acquired with additional high level details of hardware architecture

type and format of the memory system service pack. It is considered very important for

memory analysts to select correct profile upon the analysis to determine if it was correctly

acquired or is corrupted memory image [13].

(NOTE: It is important to correctly input the memory profile as commands are case

sensitive and may issue error. Additionally, specify the file location as the command will

only work with files that are located in the appropriate directory as mentioned in the

command and be Patience for the process to display the output) [13]

Figure 24 imageinfo output for compromised memory image

3. Identify rouge and running process

Number of plugins can be applied with Volatility command when examining memory

process related artefacts and one of the main plugins is pslist, which is used to list running

process and identify for any unusual and rouge running process [2] .

46

Figure 25 pslist output of compromised memory image

As to Figure 25, it presents the high level of the running process of both system and non-

system application with memory Virtual Address offset (also in Physical Address Offset

with parameter when using command), Process ID and name, handles and threads, session

and start time. PID is important to consider during the analysis to suspect any suspicious

process. As further analysis can be investigated related to a suspicious process in terms of

related running process, dlls and other artefacts are linked mostly with PID and their offset

processing locations in the memory. One of the disadvantages of pslist plugin is that it does

not provide any details of any hidden or previously terminated processes [13][2].

In addition, the process can be either inactive or active as certain processes can be hidden

and are not always presented in pslist or pstree , theses can be revealed using psscan to

display previously terminated (inactive) processes and hidden or unlinked by a rootkit

running processes as well as using psxview [18][2]

Figure 26 pstree output of compromised memory image

47

pstree log, does provides useful insights about the processes hierarchy to determine and

reveal related processes and their relationships [2] as Figure 26.

Figure 27 psscan output of compromised memory image

psscan log, lists processes (PID) with parent process ID and scans for additional processes

in the system that might to hidden or terminated [2] as shown in Figure 27.

psxview log, also list processes that can be hidden while running on the memory where it

displays as cross-view for running process and hidden process which includes pslist and

psscan [2] .

Figure 28 psxview output of compromised memory image

48

psxview is consist of following useful attributes related to running process in the system

as cross-validation view :

• pslist

• psscan

• thrdproc, Thread scanning and it essential for every process to have at least one active

thread. As if process manipulated with a rootkit and process tries to be hidden it is

process’ pool scans the for the process threads [2].

• CSRSS handle table, it is a critical system process description and represents the

creation of every process and thread [2] .

• Pspcid table: This is a special handle table located in kernel memory that stores a

reference to all active process and thread objects [2]

• Session processes: represents associates all processes that belong to a particular user’s

logon session [2].

• Desktop threads: represents the threads attached to each desktop process [2].

4. Analyse suspected process and related process artefacts

From an analyst’s point of view any process noticed as suspicious would require further

analysis. The following plugins were used for further analysis of a suspected process using

PID to reveal different artefacts as network artefacts, code injections, rootkits . Almost all

process-related plugins perform with a –OFFSET and -p/--PID parameter that allow to

track and uncover hidden and malicious suspected processes locations.

After the reviewing the pslist, psscan, pstree plugin output, the following lists created was

of running process in memory that are divided in order to distinguish process as

Application process and related System process.

Application process

▪ OneDrive.exe,

▪ winpmem-2.1.po – memory acquisition tool

▪ cmd.exe – command line prompt

▪ SkypeBackgroun

49

▪ SkypeApp.exe

▪ VBoxService.ex

▪ OfficeHubTaskH

▪ Payload-x86-al – unknown

System Services, Processes and Applications [42][43]

▪ Critical System Process [2]

o System,svchost.exe,services.exe,lsass.exe ,explorer.exe ,winlogon.exe

▪ smss.exe - Session Manager Subsystem, System file

▪ Registry - System file

▪ winint.exe - Windows Initialize , System file

▪ fontdrvhost.exe - Usermode Font Driver Host , System file

▪ dwm.exe - Desktop Windows Manager, System file

▪ spoolsv.exe - Spooler Service, System files

▪ SecurityHealth - Windows Security System file

▪ MemCompression - Memory Compression, System file

▪ MsMpEng.exe - Microsoft Malware Protection Engine, System protection file

▪ dasHost.exe - Device Association Host, System file

▪ sihost.exe - Shell Infrastructure Host, System file

▪ userint.exe - User Initialization, System file

▪ ctfmon.exe - Text input service support, System file

▪ taskhostw.exe - Tasks Host for Windows, System file

▪ SearchIndexer - Indexeur Microsoft Windows Search, System file

▪ cohost.exe -Console Application Host, System file

▪ audiodg.exe - Windows Audio Device Graph Isolation, System file

▪ WmiPrvSE.exe -Windows Management Instrumentation Provider Host Service,

System file

▪ NisSrv.exe - Network Realtime Inspection Service, System protection file

▪ MSASCuiL.exe, Microsoft Antivirus Security Centre User Interface Logo,

system protection file

50

▪ RuntimeBroker - Permissions manager for the Windows Store, System file

▪ SgrmBroker.exe - System Guard Runtime Monitor Broker Service , System file

▪ Shellexperience - Application Frame Host, System file

▪ dllhost.exe - Dynamic Link Library Host, System file

▪ SerachUI.exe - Search User Interface , System file

▪ smartscreen.exe - Antimalware and anti-phishing , System file

▪ sedsvc.exe - Windows Remediation Service,System update file

▪ wuauclt.exe - Windows Update AutoUpdate Client ,System update file

▪ SearchFilterHo - Windows Search Indexer, System file

▪ SearchProtocol - Windows Search Protocol Host, System file

▪ AM_DELTA_Patch - Anti-Malware Signature Delta Update Package , System

file

▪ MpSigStub.exe - Microsoft Protection Signature Stub , System Update file

The initial indication of a compromised memory image is expected to be infected with a

malware is that the System Protection and Anti-malware files are appeared to be disabled

or terminated in the system as of the Exit Time as well the attributes as shown in Figure

29.

Figure 29 pslist output : System Protection and Anti-malware processes

Figure 30 pstree output : System Protection and Anti-malware processes

51

5. Suspected process to be analysed are the following process as to the pstree plugin :

After acknowledging the system protection files ,considerably cmd .exe process is noticed

as a suspected process to look at in memory image along with other unknow processes as

payload-x86-al . cmd.exe is commonly observed as a starter point for initializing malicious

activities or suspicious activation commands

Figure 31 pstree output for suspected process

pstree was used to display the parent process related to suspicious processes, to identify

the suspicious source . In our case, explorer.exe represents the main parent process PPID

of the suspected processes of cmd.exe and payload-x86-al. Therefore, to suspect these

related processes the cmdscan and consoles plugins were used to reveal for any last

commands and command history of cmd.exe process. The following displayed figure

shows that these commands are not supported for the memory image OS profile without

executing any error message Figure 32.

Figure 32 cmdscan and consoles command output

Another command-line related plugin cmdline was available to be utilized that displays

process command-line arguments and it did provide interesting information of the

suspected processes as details of where is process is running from with PID as shown in

52

Figure 33. Notice the process (PID 48888) with a directory named malware fat rat and it

consists of executable file. This clearly shows that the memory is compromised with a

malware through the executable payload-x86-al file. Two further plugins were used to

detect signs of a malicious activities in the compromised memory with regards to the

suspected process 4888.

Figure 33 cmdline command output

6. Sign of Code injection

As we have identified malware executable file, the following malfind plugin is used to

lookup for infected areas and dumps out areas for signs of code injection for the given PID

of the suspected process ,the plugin executed 18 memory dump sections. Later the

extracted dumps were scanned using the virus total in order to reveal information about the

code injection and malwares and the whole process of plugin scan for memory , dumping

and scanning against the malware detector took about more than 1 hour , all the steps are

presented by Figure 34-39.

53

Figure 34 malfind output for compromised memory image

Figure 35 Virus Total scanning for malwares

54

Figure 36 scanning a clean memory dump from compromised memory image

Figure 37 memory dump scan result of Virustotal

55

Figure 38 scanning other memory dumps from compromised memory image

Figure 39 last memory dump scan result from Virustotal

7. Sign of Rootkits

In addition, psxview plugin used as to detect for sign of rootkits and for other hidden

processes. It showed the suspected process as normal running process but the psxview log

reveals some additional processes are that hidden and existed process compare to pslist.

56

Figure 40 psxview output : initial suspected process from pslist

Figure 41 psxview output : reveal hidden process

It appears that some system security services as AM_DELTA_Patch and SmartScreen are

being terminated and being as hidden process as previously acknowledged about certain

system protection processes were disabled. In addition, some more suspected processes are

revealed that appears to be hidden but in active state running the memory. These additional

processes indicate as suspicious and malicious as their behavior of hiding themselves

through the false values across the attributes while being active. This would require more

memory dumps extraction for each of the hidden process for deep analysis and malware

detection .

The further extraction of the suspected processes and hidden active artefacts existed in the

physical memory is achievable by given the PID though utilizing the following Extraction

of Process, driver, and objects plugin:

• procdumps checks for the executable dumps that can be extracted

• dlldumps for suspected dlls to be extracted

• moddump for the suspected kernel drivers

57

• memdump for extracting the physical memory section with mapping of

physical and virtual addresses of areas where the suspected processes

running

The area of extraction plugins was not utilized as part of the analysis as it requires deep

analysis and malware scan for each extracted memory dump artefact and space to store

extraction. Hence, it is considered as further analysis of section once the memory is

identified as malicious.

Once the analysis of compromised memory was completed a Md5um is checked to ensure

the data integrity as shown in Figure 42.

Figure 42 Verified md5sum after analysis for compromised memory image

3.2.3 Analysis of uncompromised image

In addition, another analysis was carried out for uncompromised memory image in order

understand the behaviors of process in a clean normal memory image. A negative image file was

utilized was snapshot-2017-12-11_21-38-20.aff4 , with similar analysis steps were followed but

mainly centered analyse the pslist and psxview artefact logs as presented in Figure 43-44.

58

Figure 43 pslist output of uncompromised memory image

Figure 44 psxview output for uncompromised memory image

In comparison to the compromised image that the uncompromised image has normal system

running application and service process and only one terminated and unlinked process which is

considered to be as clean process as memory image is already labeled benign and does not required

for further analysis.

59

3.3 Analysis Findings

Hence, to avoid the reaching to the conclusion of dumping all the considerable infected areas of

physical memory dumps using the suspected hidden process PIDs and scanning against the

Virustotal or any Malware Detector to reveal whether these memory processes are malicious and

consist of malwares or code injections is time consuming as these steps require a scanning all

extracted dumps in which some dumps are resulted as cleaned dumps. Also, it requires additional

space to store all extracted dumps of the suspected processes in which some of cleaned dump

sections are ineffective to be stored.

3.3.1 Feature Selection

Although malfind and psxview are two main plugins that can be used to detect signs of malicious

activities from simple analysis of a compromised image other than the pslist and psscan that are

used to identify the unknow processes for the initial analysis. Hence, that malfind is a useful for

the extraction of the code injection signs but not the main source of the code injection dump output

as one dump and also malfind artefact log requires understanding of the low-level memory

structure compare to psxview log artefact which is high level.

1. Psxview can give some hints of any process trying to duplicate system files when running

as process as it reveals all process including system related process is that trying to be

appeared as hidden while being an active process. As some artefacts can disguise a system

process in number of ways; but it is important to distinguish essential system processes of

actual machine and consider their reserved area of processing that should not be involved

with other non-systemic processing files. As certain system files run as one process but

with multiple services as process, dlls, threads and handles.

2. With consideration of psxview artefact log to be utilized for applying the machine learning

approach. As the Volatility Framework plugin does provides outputs for artefacts in some

formats that are xlxs, text , html and json but not all plugins support all of the formats. But,

in terms of psxview log is obtainable and as machine learning approaches the .xlsx format

is easily readable and manageable format. Additionally, the obtainable logs psxview is

60

considered to require less pre-processing as most of its attribute features are categorical

and numerical that can be prepared and preprocessed to be used for machine learning.

3. Psxview log is useful as it has a high-level cross validation data that helps to understand

and identify for the hidden process behaviours.

4. All attribute features of the psxview artefact log excluding the Exit time attribute are

considered as often terminated process still remains in the system. In addition, the defined

attributes are considered for identifying a process as hidden or unhidden as if any attribute

showed false indicates that the process is missing. Besides, comparing the pattern of the

system process behavior from the psxview , that is distinguished and revealed from analysis

of both malicious and begin memory image that the clean memory image of benign

processes are consist of false values for the deskthrd attribute comparing to the

compromised memory image processes which consist of both false and true in deskthrd .

3.4 Data Collection

As the requirement of the Machine learning of the training and testing data a dataset will be created

using a collection of extracted psxview logs from the memory image dataset. Number of the

memory images were downloaded from the defined dataset and each of the malicious and benign

memory images were stored in separate folder to distinguish prior creating the dataset for labelling

them as positive and negative. There was no automation process for the extracting logs from all

memory image dataset at once it required manual process which includes downloading,

decompressing each image using Rekall, and then extracting directly the psxview log pull-outs

and storing as .xlxs using the Volatility Framework. After all pull-out were extracted an archived

folder was created with md5sum to ensure the originality of psxview logs dataset.

In order to have useful insights and results about 20 positive memory images were randomly

download from the dataset which consist of 3 different groups of compromised images with

different techniques and 20 negative memory images were download randomly from the benign

dataset. Despite 40 images were used as each of downloaded memory image sized around 698MB

to 1.3 GB and decompressed acquired memory image sized around 4.2-5 GB.

61

3.4.1 Creating Dataset

In order to create the pre-processed dataset using the extracted psxview logs , a programming

approach will be utilized using the python programming language to implement a specialized tool

that will allow importing and creating dataset for the raw psxview logs. The further details will be

described in the next Chapter 4 Design and Specification.

The tables Table 1 and Table 2, presents the downloaded images of both negative and positive

memory images with their extracted psxview logs that were utilized to create the dataset with.

Original Filename Extracted image filename Log output as xlxs

snapshot-2017-12-11_21-38-20.aff4 neg1 psx_neg1

snapshot-2017-12-13_11-44-49.aff4 neg2 psx_neg2

snapshot-2017-12-13_10-45-52.aff4 neg3 psx_neg3

snapshot-2017-12-12_15-23-26.aff4 neg4 psx_neg4

snapshot-2017-12-12_15-39-17.aff4 neg5 psx_neg5

snapshot-2017-12-12_15-43-44.aff4 neg6 psx_neg6

snapshot-2017-12-13_14-15-4.aff4 neg7 psx_neg7

snapshot-2017-12-13_15-33-14.aff4 neg8 psx_neg8

snapshot-2017-12-13_16-7-32.aff4 neg9 psx_neg9

snapshot-2017-12-13_11-21-50.aff4 neg10 psx_neg10

snapshot-2017-12-13_12-35-7.aff4 neg11 psx_neg11

snapshot-2017-12-13_14-31-2.aff4 neg12 psx_neg12

snapshot-2017-12-13_14-33-39.aff4 neg13 psx_neg13

snapshot-2017-12-13_15-51-27.aff4 neg14 psx_neg14

snapshot-2017-12-13_15-56-1.aff4 neg15 psx_neg15

snapshot-2017-12-12_17-38-2.aff4 neg16 psx_neg16

snapshot-2017-12-13_11-28-37.aff4 neg17 psx_neg17

snapshot-2017-12-13_13-31-10.aff4 neg18 psx_neg18

62

snapshot-2017-12-14_12-42-41.aff4 neg19 psx_neg19

snapshot-2017-12-14_14-49-33.aff4 neg20 psx_neg20

Table 1 Downloaded Benign memory images

Original Filename
Extracted image filename

(.img)
Log output (.xlsx)

snapshot-alpha_mixed-1-meterpreter-

reverse-tcp-2019-01-02_09-53-57.aff4
pos1 psx_pos1

snapshot-alpha_mixed-1-meterpreter-

reverse-tcp-2019-01-02_09-55-37.aff4
pos2 psx_pos2

snapshot-alpha_mixed-6-meterpreter-

reverse-tcp-2019-01-02_12-10-56.aff4
pos3 psx_pos3

snapshot-alpha_upper-3-meterpreter-

reverse-tcp-2019-01-03_10-14-33.aff4
pos4 psx_pos4

snapshot-alpha_upper-4-meterpreter-

reverse-tcp-2019-01-03_10-41-34.aff4
pos5 psx_pos5

snapshot-hyperionPesScrmbler-

alpha_mixed-1-meterpreter-reverse-tcp-

2019-02-25_09-27-58.aff4

pos6 psx_pos6

snapshot-hyperionPesScrmbler-

alpha_mixed-1-meterpreter-reverse-tcp-

2019-02-25_09-29-25.aff4

pos7 psx_pos7

snapshot-hyperionPesScrmbler-

alpha_mixed-4-meterpreter-reverse-tcp-

2019-02-25_10-15-33.aff4

pos8 psx_pos8

snapshot-hyperionPesScrmbler-

alpha_upper-2-meterpreter-reverse-tcp-

2019-02-25_13-23-6.aff4

pos9 psx_pos9

snapshot-hyperionPesScrmbler-bloxor-1-

meterpreter-reverse-tcp-2019-02-26_09-

36-5.aff4

pos10 psx_pos10

63

snapshot-shellter-payload-alpha_mixed-1-

meterpreter-reverse-tcp-2019-01-29_16-0-

16.aff4

pos11 psx_pos11

snapshot-shellter-payload-alpha_mixed-1-

meterpreter-reverse-tcp-2019-01-29_16-2-

35.aff4

pos12 psx_pos12

snapshot-shellter-payload-alpha_mixed-5-

meterpreter-reverse-tcp-2019-01-30_12-

27-0.aff4

pos13 psx_pos13

snapshot-shellter-payload-alpha_mixed-8-

meterpreter-reverse-tcp-2019-01-30_14-8-

40.aff4

pos14 psx_pos14

snapshot-shellter-payload-cmd-brace-3-

meterpreter-reverse-tcp-2019-01-15_09-

50-28.aff4

pos15 psx_pos15

snapshot-alpha_upper-1-meterpreter-

reverse-tcp-2019-01-02_15-55-2.aff4
pos16 psx_pos16

snapshot-hyperionPesScrmbler-

alpha_upper-3-meterpreter-reverse-tcp-

2019-02-25_13-45-22.aff4

pos17 psx_pos17

snapshot-shellter-payload-alpha_upper-3-

meterpreter-reverse-tcp-2019-01-30_15-

23-9.aff4

pos18 psx_pos18

snapshot-call4_dword_xor-2-meterpreter-

reverse-tcp-2019-01-07_10-37-34.aff4
pos19 psx_pos19

snapshot-cmd-generic_sh-1-meterpreter-

reverse-tcp-2018-12-13_12-31-17.aff4
pos20 psx_pos20

Table 2 Downloaded Malicious memory images

64

3.5 Conclusion

Overall, the analysis was focused on more process related artefacts that can be used to identify

suspicious process and use plugins that can reveal some signs of malicious activities in a

compromised images. Despite there are other areas of where artefacts of the process-related logs

are obtainable through the extraction, but it is best to extract artefacts when a memory identified

as malicious. The Volatility Framework does allow extraction and inspection using main

parameters of the malicious process which are PID and offset address as these allow to locate any

infected source that resident in physical memory sections with executables for the identified

suspicious process. In terms of the artefact log that can be utilized to apply the machine learning

approach is the psxview.as it provide more context of the running process as active and inactive

state with sign of process behaviors including behavior detection of rootkits that includes signs of

malwares behavior. Therefore, the main finding of this analysis was to reveal an artefact that can

be used to identify memory as benign and malicious and used to apply in machine learning model.

65

Chapter 4 : Specification and Design

This chapter of the document outlines an implementation and design structure of the classifier tool

to be developed, including initial design specification, system requirements and development

strategy.

4 Tool Requirements

As a basic principle of any development of a software or tool a set of functional and non-functional

requirements are produced prior the programming and implementation of the software. These

specified requirements are beneficial to develop the tool in a proper direction and flow to produce

a tangible working product.

4.1 Functional Requirements

The main functional specifications and sub requirement components of the developing tool are

described as the following list:

4.1.2 Data Collection and Pre-processing requirement specification :

The tool system must have a feature that allows the importing and loading data from the raw

artefact log files from user input with their labels to create a preprocessed dataset to be used for

training and testing the classification models.

1. The system must be able to obtain all raw logs files data directly from user input for

the specified labeled directories

2. The system selects the required features and labels the raw data based on their obtained

and specified labeled directories

3. The system creates a dataset by merging and preprocessing the labelled raw data

4. The system outputs a preprocessed dataset in an appropriate format to be used for the

Machine Learning Classification models.

66

4.1.3 Machine Learning Classification requirement specification:

The tool system must have a feature to import and load processed data from the preprocessed

dataset file that is provided by user input for training and testing the Machine Learning

Classification models.

1. The system must be able to load and read processed data from the dataset file from user

input by providing the dataset location directory path

2. The system should define and set the features and labels of the imported dataset

3. The system should have the best performing Machine Learning classification model

3.2 Develop and create Machine learning models using different classification

algorithms which are Random Forest , Decision trees, Neural Network , Naïve

Bayes, Support Vector Machines.

3.3 Train, test and evaluate each model and select best performing classification

model

4. The system is able to train the selected classification model with provided dataset

5. The system is able to test the selected classification model to predict and classify

unseen data

6. The system should be able to provide an output of a classification document of trained

and tested model with prediction outcomes.

Some additional functional requirements for the tool if time permitted:

1. Provide a feature that allow a system to output a short summary that categories and sort

memory dump for investigation via weighting number of benign and malicious process

existed in a memory log artefact.

2. Provide a feature that allows to import and load data directly from the raw memory

dump from the user input with their label to extract a preprocessed log file to test against

trained Machine Leaning classification model.

3. Provide a feature that allows system to save and load the trained classification models

for testing model with unseen log.

67

4.2 Non-Functional Requirements

The non-functional specifications of the developing tool are described in the following list:

✓ Usability

• A Graphical User Interface will be developed that will allow ease for user

interaction with the system.

✓ Reusability

• The tool will be implemented as simple program that can be reusable in another

system.

✓ Reliability

• The tool will be performing the system functions without any expected failures or

errors.

✓ Speed and Performance

• the process of data collection, preprocessing and outputting dataset should be fairly

quick as well as training and testing the model should be fast with results output

and files

4.3 System Implementation Architecture

The system will be implemented as two separate program interface prototypes. The main reason

of dividing the system implementation is mainly to avoid the complexity and allow handlining any

modification easily for performing a direct specified task. In addition, this implementation

architecture considered to be as suitable approach with consideration of the project time frame.

Therefore, as the requirement of the dataset to train and test the ML model a Data Collection and

Pre-processing tool will be developed. This tool will be used in order to automate the process of

the data collection and preprocessing to provide a preprocessed dataset with labels. The second

tool that will be developed as Classifier, where best performing classification Machine Learning

model will be implemented, and tool classification model will be supplied with processed dataset

to train the model and test model for the classification document outcome .

68

System Structure will be based on following two separate units:

1. Data collection and Preprocessing - mainly responsible to create a preprocessed

dataset with labels

2. Machine Learning Classifier – mainly responsible to train the model with selected

features and training dataset and test unseen data with classification trained model.

4.3.1 System Design

In order to understand the implementation structure and behavior of the developing system, a

software design modelling solution Unified Modelling Language (UML) diagram is used. This

approach helps developers to visualise the design architecture of the program prototype and

understand the context of the program functionality. In addition, UML diagrams drive the

implementation and assist developers in implementing the system requirements. Therefore , an

Use case Diagram is created for the Classifier tool to understand the behavior interaction between

the user and system as well as system actions that holds the functional requirements and is shown

below Figure 45 -46.

4.3.2 Use Case Diagram:

Figure 45 Use Case : Data collection and Pre-processing tool

69

Figure 46 Use Case : Classification tool

4.4 Tool Development Methodology

To deliver a working prototype program of the tools, a development strategy has been set out for

the implementation and testing of the tools with consideration of timeframe of the project. The

tools will be developed following the Agile Software Development Methodology. This strategy

allows dividing the project tasks into smaller increments to deliver a tool feature iteratively. Once

each of the project increments or iterations are completed then easily combined and presented to

the customer as a working product. The main reasons of adapting this development strategy for

the project is that Agile methodology allows continues milestone deliverables of the tool

requirements as well as easy to handle any changes to the tool requirements at the start or during

the implementation phase and even later stage of the development without effecting other

operating functions of the tool. As this project initial tools, the functional specifications are

expected for alteration and modification as it depended on the analysis and data collection phase

before the implementation phase. Also, this methodology allows flexibility to the development

70

process as it allows to prioritize in delivering tool functional requirements to have at least a

working prototype that provides initial results if not fully functional. Besides, presenting a working

prototype to the customer allows to receive feedback for improvement to achieve optimal project

results. Therefore, this project will have three main four iterations to develop the prototype tools

as following:

• 1st iteration: the implementation of tool for the data collection and preprocessing

functions which includes loading memory dump’s log artefacts and executing preprocessed

log file.

o Deliverable :Labeled processed dataset and logs files with Name encoded labels

• 2nd iteration: pre-modelling of the different Machine Leaning Classifiers using the

different classification algorithms of Machine Leaning .

o Deliverable : pre-processed dataset and at least 5 models to be developed

• 3rd iteration: train, test and evaluate the Machine Learning Classifiers with preprocessed

dataset

o Deliverable :Evaluation and predication outcome documents of each Machine

Learning Classifier

• 4th iteration: developing Classifier Interface with best performing Machine Learning

Classifier

o Deliverable : Desired functional requirements and improve tool usability and

improve user interaction

71

Chapter 5: Implementation

This section of the document will details the implementation of the tools including the main

implementation code of data collection and preprocessing, Machine Learning models and

Classifier with regards to used programming tools.

Constraints

The time constraint and challenges of this university project has impacted and limited the

implementation of the tool desired functional requirements and specification. The initial

requirements of the tool are prioritized for the implementation and the tool will be developed as a

working prototype following a simple implementation method.

5.1 Overview

The main implementation of the prototype tool is divided into two separate interface

implementation and development and are presented in the list below :

1. Data Collection and Preprocessing Graphical User Interface implementation, mainly

responsible for importing, loading, and preprocessing the raw data of psxview logs and

creating a validated preprocessed labeled dataset file as csv. In addition, all the input raw

logs are collected from the user input specified labeled directories "data-input" .Also, the

output dataset is saved and stored within a directory called "data-output" that is held in

Data Collection and Preprocessing directory.

2. Different Machine Learning Classification Models were implemented and developed as

simple python scripts in order to train, test and evaluate for best performing model for the

classification of the given dataset. Classification models that were developed :Random

Forest , Decision trees, Neural Network , Naïve Bayes, Support Vector Machines. Each of

these models provides a report as text file which includes the evaluation and performance

metrics and prediction outcomes of the model for given dataset.

72

3. Classifier Graphical User Interface implementation, mainly responsible for importing

processed dataset, training the model, testing, and classifying unseen data. In addition, this

implementation includes the development of the best performing Machine Learning

classification model that is used as memory classifier.

5.2 Data Collection and Pre-processing Interface

The initial approaches towards the development of machine learning models is collecting and

importing the data with their labels. Thus, a prototype tool is implemented to load the raw psxview

log data from two specified directories from user input. Each importing data directory is a label

for the data obtained.

5.2.1 Importing and Loading the Data

Data Collection and Preprocessing module is initialized as GUI interface userwindow.mainloop(),

using the python built in library tkinter .The interface is consist of main functions of taking user

input for importing malicious and benign of raw psxview artefact data .

Figure 47 - Data Collection and Pre-processing Interface

The library tkinter provides useful function of asking user for the selecting the directories. Once

the user selects the directories of where labeled raw artefact logs are located, the paths for each of

these directories are collected as global variable by two functions select_N_folder() and

select_N_folder().

73

Figure 48 select_N_folder()

Figure 49 select_N_folder()

Next, functions load_pos_data(pos_dir_path) is called. This function takes the directory path of

that holds the positive/malicious raw psxview log and uses python built-in function oslistdir(),

returns a list of all the excel files of .xlxs extension in selected directory and append these files

with their path into listfile_in_dir[] .To ensure that data read as excel file structure, the required

libraries pandas and xlrd were imported. Once all files paths are loaded and stored in listfile_in_dir,

an empty dataframe is initialized and created to load, read, and store the data from each of these

imported files and then added to dataframe by loop as shown in Figure 50.

 As to cleanse the raw dataset from unnecessary data and useless features that are not be utilized

for modelling are eliminated. In our case, the last column is dropped (Exit Time) and added a

new label column for the raw data classification (Class). For malicious imported files are labeled

with as 1 as they imported from positive directory. A similar function is implemented called

load_neg_data (neg_dir_path), for the benign files as they are labeled with 0 as they are imported

from the negative directory. Each of these functions return a positive dataframe called pdf and

negative dataframe called ndf .

74

Figure 50 load_pos_data() load_neg_data()

5.2.2 Data Pre-processing

In order to process data for machine learning model for the training, testing and the classifier

operations, the raw data should be in a numerical values and formats as strings and categorical

data are useless to Machine Learning models.

Function data_pre(pos_dir_path, neg_dir_path) is implemented to merge using the function

concat() for both benign and malicious log dataframe as one dataset and return a pre-partial

processed dataset as data. The dataframe rows are randomized using shuffle() from sklearn.utils

75

and rest index to create a standard format of dataset for Machine Learning models without the

order pattern of classification labels. For the accessibility of the column names of dataframe,

(Offset (P)) column is renamed to (Physical_Offset) and the values of this column are converted

using python built in function of converting hex values in decimal values using lambda and int.,

In addition, as most of the dataset features contain categorical data, the dataframe columns of

categorical data of True and False are mapped as 1 and 0 Boolean values. Additionally, PID

numerical column, is also transferred as Boolean values as this feature is used to identify whether

there is any null values or values less than 1 for the process ID.

Figure 51 data_prep()

76

labelName(pos_dir_path,neg_dir_path), function used to fill null values as null string and encode

the strings of the (Name) column into numerical labels, which is Process Name string that are

encoded with number labels. The preprocessing function Label Encode() and fit.transform is

utilized from sklearn library .In addition, the function also fills null values as null string using

fillna method and at the end the function returns a fully processed dataset with encoded process

name labels.

Figure 52 labelName()

The last function is the save_data(pos_dir_path,neg_dir_path) , which execute two csv output

files that are the preprocessed dataset and the other file is consist of the encodings of the Name

column and the encoded numerical values to be used later for identify Process Name. Once the

function save_data(pos_dir_path,neg_dir_path) is called after the user selects directories it run all

the functions and save the outputs of the dataframe as .csv file in the “test folder” via the absolute

path for the directory.

77

Figure 53 save_data()

5.2.3 Machine Learning Classification Models

Five different types of machine learning classifier models were developed using classification

algorithms imported from Scikitlearn classifier library which includes Random Forest , Decision

trees, Neural Network , Naïve Bayes, Support Vector Machines. Each of these models are

constructed as simple python program and as initial development for the classifier models. The

main aim of these models to be developed is to evaluate the performance of the machine learning

classification models against the dataset.

Each of the models, have a similar implementation pattern that consist of a main function

load_data(filename), that intakes user input to import a processed dataset using dataset location

path via the function input() .The program only accepts csv file as the program will read the

imported file as csv using the pandas and creates a dataframe called dataset with assigned column

names and return dataset.

78

Figure 54 load_data()

The dataset passed is to following function which is the set_feature(filename). This function sets

the dataset as array and sets the features and the target selection of the dataset. All of the first

features ['Physical_Offset', 'Name', 'PID', 'pslist',' psscan', 'thrdproc', 'pspcid', 'csrss', 'session',

'deskthrd'] from dataset are considered and the last column of the [Class] is used as target to

classify features against it. As function set_feature(filename) is called it will execute two variables

that are the features and labels of the dataset.

Figure 55 set_features()

As one of the machine learning model requirements is to fit model with training and testing dataset.

Therefore, a common method of data splitting is utilized from the Scikit-learn library which is

train_test_split() to split dataset features and labels into two subsets that are training, and testing

dataset. The portion of the dataset split is based on the test size parameter of the function which is

set as 70% for training and 30% for testing and this split is used as standard split of machine

learning models to avoid the overfitting and modelling error.

The training subset of features are used to train the model with their labels and the testing subset

features are used to test against trained model for model prediction outcomes for the labels. Once

79

the dataset is split , the model is initialized as function for classification algorithms as SVC() and

then assigned variables of the training set are passed to fit and train the model and predication

outcomes of unseen testing set against the trained model predict() is used with the testing set the

assigned variables are passed as parameter to fit model.

Figure 56 initialize machine learning model

And this part of the program implementation consists of executing an output of document .text file

using the open() with text parameter. The executed .text document includes the evaluation results

of the training model and evaluation of testing unseen set against trained model with evaluation

metrics of the Machine Learning models as mentioned in background. Scikit-learn metric library

was utilized to import the evaluation metrics function s which includes Accuracy, Precision, and

Recall ,Confusion Matrix, classification report. The list below shows the evaluation metric with

the function used from Scikit-learn and Figure 57 shows how they called in the code

80

Figure 57 evaluation metrics and output functions for Classifier Model

Other classification models are based on similar implementation, but they consist of different

classification algorithm function as MLPClassifier(), RandomForesetClassifier(),

DecisionTreeClassifier() and GaussianNB().

5.3 Machine Learning Classification Interface

After the implementation and evaluation of the different Machine learning models for the best

performing classification model the following Interface is developed as Classifier. The evaluation

and results outcome of the different models as classifiers are discussed in the Chapter 7 Results

of this document.

81

This interface consists of the implementation of the main functions of importing processed dataset

and provides classification outcomes of the training dataset and prediction outcome of unseen

dataset against the trained model as document text file and a visual diagram of the classification.

Figure 58 Classifier Prototype Tool Interface

The Classifier interface is initialized with userwindow.mainloop(), The main function of this

Classifier is the importing the dataset using the getCSV (), where a small prompt will be displayed

to the user to select the preprocessed .csv file.

Figure 59 getCSV ()

82

Once the preprocessed dataset is imported the tool will run through the functions set_feature() for

setting the features and target. Then function classify(), split dataset into train and test sets as 80

% for training and 20% testing and fit to the Random Forest Model to output the document of the

classification. The Classier tool implementation is based on the Machine Learning Random Forest

Classier Algorithm with similar implementation pattern as shown in Figure 60.

Figure 60 classify ()

Once the output document text file is created a notification will be displayed and a visual diagram

is also displayed a function visualizer () was utilized from the yellowbrick.classifier library.

Figure 61 Visualizer

83

Chapter 6: Testing

This section of the document consists of the testcases that were used to test the prototype tools in

order to test if they consist the main functional requirements as mentioned in design and

specification. Each testcase is tested on Host Machine Windows 8.1 Operating System and using

the command line prompt to run the prototype tools and for the initial machine learning scripts.

Test Case Id: A1

Test Case

Tittle
Create Processed Dataset

Precondition Extracted psxview raw logs from malicious and benign memory images are

placed in separate directories as positive and negative directories

Test Case

Description

Importing, loading raw psxview logs and output a preprocessed dataset as

Testdataset.csv file

Test Case

Steps:

1. User need to select a malicious/positive directory that consist of

malicious/positive psxview logs to be imported

2. A small prompt will open that allow user to navigate and browse to

select the desired directory

3. User need to select a benign/negative directory that consist of

benign/negative psxview logs to be imported

4. A small prompt will open that allow user to navigate and browse to

select the desired directory

5. Once the correct directories inputted the user need to exit the interface

6. The output file is saved locally in predefined directory.

Test Case Outcome: Preprocessed Dataset

Test Case Passed with mentioned sequenced steps

Related Test : -

84

Table 3 Test Case ID: A1 Creating Processed Dataset

Test Case Id: A2

Test Case

Tittle
Support Vector Classifier

Precondition Must have a previously created preprocessed dataset

Test Case

Description

Importing a preprocessed dataset and provide classification document and

predication outcome of the training and testing data

Test Case

Steps:

1. User need to provide a preprocessed dataset csv file path to be imported

2. Once the correct csv file is imported the program appends evaluation

and classification results to a text file

3. The output file is saved in the directory

Test Case Outcome : Classification and predication outcome document

Related Test : Test Case Id: A1

Table 4 Test Case ID: A2 Support Vector Classifier

Test Case Id: A3

Test Case

Tittle
Decision Tree Classifier

Precondition Must have a previously created preprocessed dataset

Test Case

Description

Importing a preprocessed dataset and provide classification document and

predication outcome of the training and testing data

Test Case

Steps:

1. User need to provide a preprocessed dataset csv file path to be imported

2. Once the correct csv file is imported the program appends evaluation

and classification results to a text file

3. The output file is saved in the directory

85

Test Case Outcome : Classification and predication outcome document

Related Test : Test Case Id: A1

Table 5 Test Case ID: A3 Decision Tree Classifier

Test Case Id: A4

Test Case

Tittle
Naïve Bayes Classifier

Precondition Must have a previously created preprocessed dataset

Test Case

Description

Importing a preprocessed dataset and provide classification document and

predication outcome of the training and testing data

Test Case

Steps:

1. User need to provide a preprocessed dataset csv file path to be imported

2. Once the correct csv file is imported the program appends evaluation

and classification results to a text file

3. The output file is saved in the directory

Test Case Outcome : Classification and predication outcome document

Related Test : Test Case Id: A1

Table 6 Test Case ID: A4 Naive Bayes Classifier

Test Case Id: A5

Test Case

Tittle
Random Forest Classifier

Precondition Must have a previously created preprocessed dataset

Test Case

Description

Importing a preprocessed dataset and provide classification document and

predication outcome of the training and testing data

Test Case

Steps:

1. User need to provide a preprocessed dataset csv file path to be imported

86

2. Once the correct csv file is imported the program appends evaluation

and classification results to a text file

3. The output file is saved in the directory

Test Case Outcome : Classification and predication outcome document

Related Test : Test Case Id: A1

Table 7 Test Case ID :A5 Random Forest Classifier

Test Case Id: A6

Test Case

Tittle
Neural Networks Classifier

Precondition Must have a previously created preprocessed dataset

Test Case

Description

Importing a preprocessed dataset and provide classification document and

predication outcome of the training and testing data

Test Case

Steps:

1. User need to provide a preprocessed dataset csv file path to be imported

2. Once the correct csv file is imported the program appends evaluation

and classification results to a text file

3. The output file is saved in the directory

Test Case Outcome : Classification and predication outcome document

Related Test : Test Case Id: A1

Table 8 Test Case ID :A6 Neural Networks Classifier

Test Case Id: A7

Test Case Tittle Classifier Training and Testing

Precondition Must have a previously created preprocessed dataset

87

Test Case

Description

Importing a preprocessed dataset and provide classification document and

predication outcome of the testing data

Test Case

Steps:

1. User need to select a csv file of the preprocessed dataset to be imported

2. A small prompt will open that allow user to navigate and browse to

select the desired csv file

3. Once the correct csv file is imported the program executes a text file

and a visual diagram of the prediction classification of the unseen data

4. A notification message displayed once the outcome is executed

5. The output file is saved in the directory

Test Case Outcome : Classification and predication outcome document and Visual Diagram

Related Test : Test Case Id: A1

Table 9 Test Case ID: A7 Classifier Training and Testing

88

Chapter 7 : Results and Evaluation

This chapter of the document evaluates the different Machine Learning classification models to

identify the best performing Machine learning model as classifier against the given dataset.

7.1 Classification Models Performance

Evaluating the performances of the Machine learning classifier model is crucial to for ensuring

that the selected model is working optimally and outputting effective insights and results as

intended classifier. Therefore, after each of the 5 machine learning classification models (Random

Forest , Decision trees, Neural Network , Naïve Bayes, Support Vector Machines) were

implemented. The models were trained with 70 % of training dataset and were tested with 30% of

unseen testing dataset and tested models were evaluated for their performances and effectiveness.

The following comparison table of model evaluation was created to compare and evaluate the

performances of the different classifier models for the classification task. The tables consist of the

evaluation results that are based on utilizing the main classification metrics focused on Accuracy,

Precision ,Recall and F1 with execution time for the results outcome of the Machine Learning

classification models.

Table 10 Performance of various algorithms

 Testing

Models/Metric Scores

Accuracy Precision Recall F1 Time /s

Support Vector 89.0 100.0 84.0 91.0 0.0013

Naïve Bayes 67.0 68.0 70.0 69.0 3.9

Decision Tree 89.0 87.0 92.0 90.0 4.2

Random Forest 93.19 95.27 91.85 93.53 3.9

Neural Networks 78.0 76.0 82.0 79.0 0.00135

89

According to the evaluation results obtained of testing dataset against the trained model is

presented in the Table 10, The Random Forest Classifier model ranked higher in the overall

accuracy, precision and F-measure with 93.19 %, 95.27% and 93.53 with in 3.9 seconds compare

Naïve Bayes and other models. Besides, Random Forest Classifier model is the only model that

achieved and scored high for the majority of evaluation metrics and considerably represent the

best performing classifier model to be for the psxview log dataset comparing to other Machine

Learning classification models in the Table 10.

7.2 Predication results analysis

Since we are interested on how the best performing model is classifying the benign and malicious

process behaviour with consideration of all the features against the target selection. Further

evaluation metric of confusion matrix was applied to get better insights of the model predication

performance relative to the baseline of the dataset.

Figure 62 Random Forest Confusion Matrix

0 = Benign

1 = Malicious

90

In terms of the confusion matrix table which represents the classification prediction of the 20%

testing data against trained model with 80 % training data. Coherently, the accuracy of the model

as classifier is satisfiable as to the predication outcome results as indicating high for TP and TN

and low for the FP and FN . Overall, it is clear from the results that the Random Forest classifier

model has adapted the patterns of the both malicious and benign of active and inactive processes

behaviour and had proven to be best performing classifier model to be considered for the

classification tool.

Figure 63 Classification outcome of testing data against trained model

91

Chapter 8: Future Work

This chapter defines some sustainable work and assumptions that can might addressed in further

research for the project.

Some of the project remaining sub-cores aims of implementation, tests and experiments have been

left for the future work due to limitations and time constraint of the project . In addition, this project

requires further analysis and extraction of other artefacts data from memory image which is

considerable and very time consuming .

Some of the sub aims and functional requirements that could developed as future work are listed

below :

• Testing and improving the results of the Random forest classifier model with better

understanding and validating the feature attributes as prioritizing features of pslist and

psscan over the other features when classifying.

• Implementing the desired functional requirements mentioned in Design and Specification

Chapter 4, of the classifier tool that could show more results to the initial outcomes of the

project.

• It would be interesting for constructing an automate predicator using volatility plugins for

importing memory images directly and looking up for the vital artefact that can retrieved

easily and utilized to distinguish memory as benign or malicious .

• Improving the data collection and preprocessing tool to include options of preprocessing

multiple process related artefacts and testing against the classifier.

• Considerably important for the future research to include other investigation and analysis

areas of memory forensics including dlls, handles and threads.

92

Chapter 9 : Conclusion

This chapter of the document summarises the main findings and outcomes of the project’s stated

aims.

9.1 Summary

Overall, this project was aimed at investigating and utilizing a Machine Learning approach for

memory forensics investigation in order to assist and automate investigation procedures using an

artefact to reduce the ongoing backlog problem.

From the experimental point of view, the new approach based on ML is beneficial for the

automation of memory forensic investigation procedures. One of the main findings of this project

demonstrates that psxview is a useful artefact to discover malicious behavior of both active and

inactive running process in memory image and it can be applied to ML in order to classify a

memory image as either benign or malicious.

Unfortunately, there was not enough time for the implementation of the desired functional

requirements of the classification tool that could show more results to the initial results. As some

of desired outcomes of this project have not fully achieved due to the technical challenges of setting

a forensic analysis environment which includes installation and version clashes of open source

analysis tools of both Rekall and Volatility in VMware. In addition, time constraint and patience

to conduct the analysis of memory image and obtain the pull-out the logs for the data collection.

The project was accessible to limited resources for dataset storage of memory images which has

impacted on data collection for machine learning models and with consideration of time limitation

of the project the remaining sub-core aims considered as part of the future work and for further

research. Despite the faced challenges and limitations during the project’s fixed timeframe, the

concept of the applying machine learning approach has been proven by the initial result and

findings of this project, where the best performing Machine Learning Classification model is

utilized to be modelled as classifier tool that can applied to automate in assisting and identifying a

memory image as malicious or benign using a psxview log artefact prior dumping memory sections

and malware detection that can reduce manual analysis of memory and extraction.

93

Chapter 10: Reflection

“You learn something valuable from all of the significant events and people, but you never touch

your true potential until you challenge yourself to go beyond imposed limitations.”

― Roy T. Bennett

Throughout this project, I have learned and gained more insights about memory forensics analysis

and investigations as a learner in the field. In general ,I had an interest in digital forensics, I

proposed the initial project concept to have a learning opportunity to explore new artefacts that I

have not analysed before and adapt to new forensics analysis and investigation techniques. I

believe that I started to understand more of the memory forensics to a standard but still need to

learn more to understand the lower-level behaviors of memory artefacts as APIs and malfind.

Also, through setting up the Virtual machine as forensics platform which was new to me as I had

no prior experience but I have learned it and its uses on how it isolates analysis platform from the

host machine as well as familiarised myself with the different versions of Linux operating system

as it was challenging to get the correct version and resources for the analysis tool due to their

compatibility to certain Linux environment. In addition ,discovered how VM manages the drag

and drop of the files from the host machine as I discovered that it saves duplicates of each dragged

files in separate hidden folder which utilized by the VM , which impacted the specified hardware

storage for the data collection when acquiring the memory images. In terms of Machine Learning,

I had very minimal understanding of the concept and through background research, I learned useful

knowledge about different techniques and algorithms of Machine Learning as classifier and it

was fascinating to learn and understand its benefits to resolve different problems including

memory forensics investigation and malware detection . Another lesson I learned is managing the

project with ongoing challenges to deliver achievable results despite of going through

unprecedented times and experiencing new changes I kept myself determined to prove the concept

even through the project limitations. Although it was challenging to combine two fields to fit into

a single approach in a limited timeframe but utilizing the basic implementation approach to

automate data collection and developing classifier was beneficial for this project as it can be

utilized in future and for further research. Finally, documenting and writing the final document

94

was another challenge for me as I wrote my report close to deadline along faced challenges, I had

to go back and refresh myself with uncompleted document draft sections and rewrite properly for

the report. Overall, learning experience from undertaking this project, I have developed valuable

skills in different aspects of analysis, problem-solving, utilizing new approaches and handling

technical challenges as well as I have gained researching skills that are necessary to prove a

concept and all these developed skills will beneficial for myself and for the future projects .

95

References

1. (2014) 'Memory Acquisition ', in Ligh, M.H., Case, A., Levy, J. and Walters, A., (ed.)

The Art of Memory Forensics: Detecting Malware and Threats in Windows, Linux, and

Mac Memory. Indianapolis, Indiana: John Wiley & Sons, pp. 69-114.

2. (2014) 'Process, Handles and Tokens ', in Ligh, M.H., Case, A., Levy, J. and Walters, A.,

(ed.) The Art of Memory Forensics: Detecting Malware and Threats in Windows, Linux,

and Mac Memory. Indianapolis, Indiana: John Wiley & Sons, pp. 149-187.

3. (2014) 'Systems Overview ', in Ligh, M.H., Case, A., Levy, J. and Walters, A., (ed.) The

Art of Memory Forensics: Detecting Malware and Threats in Windows, Linux, and Mac

Memory. Indianapolis, Indiana: John Wiley & Sons, pp.1-26.

4. (2014) 'The Volatility ', in Ligh, M.H., Case, A., Levy, J. and Walters, A., (ed.) The Art

of Memory Forensics: Detecting Malware and Threats in Windows, Linux, and Mac

Memory. Indianapolis, Indiana: John Wiley & Sons, pp. 45-67.

5. Alpaydin, E. (2014), Introduction to Machine Learning . [Online]. Available at:

http://dl.matlabyar.com/siavash/ML/Book/Ethem%20Alpaydin-

Introduction%20to%20Machine%20Learning-The%20MIT%20Press%20(2014).pdf

[Accessed: 07-03-2020].

6. Amari, K . (2009). Techniques and Tools for Recovering and Analyzing Data from

Volatile Memory.[ONLINE]. Available at: https://www.sans.org/reading-

room/whitepapers/forensics/paper/33049 [Accessed 3 February 2020].

7. Awad, M. and Khanna, R.(2015). Efficient learning machines: theories, concepts, and

applications for engineers and system designers. [Online]. Available at:

https://link.springer.com/content/pdf/10.1007%2F978-1-4302-5990-9.pdf [Accessed:

07-03-2020].

8. Bhatnagar, R., (2018). February. Machine Learning and Big Data processing: a

technological perspective and review. In International Conference on Advanced Machine

Learning Technologies and Applications (pp. 468-478). Springer, Cham. DOI:

10.1007/978-3-319-74690-6_46

9. Boast, K. and Harriss, L. (2016). Digital Forensics and Crime – POSTNOTE Number

520 March 2016 - UK Parliament. [online] Available at:

96

https://researchbriefings.parliament.uk/?ContentType=&Topic=Science+and+technolog

y&SubTopic=Internet+and+cybercrime&Year=2016&SortByAscending=false

[Accessed 30 Jan. 2020].

10. Canbek, G., Sagiroglu, S., Temizel, T.T. and Baykal, N.(2017). Binary classification

performance measures/metrics: A comprehensive visualized roadmap to gain new

insights. In 2017 International Conference on Computer Science and Engineering

(UBMK).pp. 821-826. IEEE.

11. Case, A. and Richard III, G.G.(2017). Memory forensics: The path forward. Digital

Investigation, 20, pp.23-33.

12. Ciortuz, L .(2017), MACHINE LEARNING .[PDF] .Available at

https://profs.info.uaic.ro/~ciortuz/SLIDES/2017s/ml0.pdf [Accessed : 1 March 2020].

13. Computing Science and Mathematics (2014), ITNP2A Computer Security & Forensics,

Forensics Practical Two : Volatility, University of Stirling, Stirling, Scotland

14. CS 241 Staff University of Illinois.(2014) ‘Virtual Memory and Paging’ [PDF]. CM3111

:Forensics Available at https://courses.engr.illinois.edu/cs241/sp2014/lecture/09-

VirtualMemory_II_sol.pdf [Accessed : 1 March 2020].

15. Daley,M.(2019) ‘ACPO Guidlines ’ [PowerPoint presentation]. CM3111 :Forensics

Available at

https://learningcentral.cf.ac.uk/webapps/blackboard/execute/content/file?cmd=view&co

ntent_id=_5252938_1&course_id=_393280_1&framesetWrapped=true[Accessed : 1

March 2020].

16. DFRWS.(2006).DFRWS 2005 Forensics Challenge. [ONLINE] Available at:

http://old.dfrws.org/2005/challenge/. [Accessed 3 February 2020].

17. Fichera, J. and Bolt, S. (2013). Volatile Data Analysis. Network Intrusion Analysis,

pp.71-117.

18. Fortuna, A . (2017). Volatility, my own cheatsheet (Part 2): Processes and DLLs. .

[ONLINE]. Available at: https://www.andreafortuna.org/2017/07/03/volatility-my-

own-cheatsheet-part-2-processes-and-dlls/ [Accessed : 1 March 2020].

97

19. Goldberg, A. (2015). Child Abuse Cases Delayed by Police Backlog. BBC News.

[online] Available at: http://www.bbc.co.uk/news/uk-34713745 [Accessed 29 Jan.

2020].

20. Iqbal, S. and Abed Alharbi, S. (2019). Advancing Automation in Digital Forensic

Investigations Using Machine Learning Forensics. Digital Forensic Science [Working

Title]. [online] Available at: https://www.intechopen.com/online-first/advancing-

automation-in-digital-forensic-investigations-using-machine-learning-forensics

[Accessed 29 Jan. 2020].

21. Kumara, M.A. and Jaidhar, C.D., 2017. Leveraging virtual machine introspection with

memory forensics to detect and characterize unknown malware using machine learning

techniques at hypervisor. Digital Investigation, 23, pp.99-123.

22. Malin, C.H., Casey, E. and Aquilina, J.M., (2012). Malware forensics field guide for

Windows Systems: Digital Forensics Field Guides. Waltham ,MA, Syngress

23. Messier, R,(2016). ‘Memory Forensics’ Operating system forensics. Waltham ,MA,

Syngress,pp 95-127

24. Müller, A.C. and Guido, S.(2016). Introduction to machine learning with Python: a guide

for data scientists. O'Reilly Media, Inc.

25. O. Olowoyo and P. A. Owolawi.(2019).Detection of Malware using Artificial Neural

Networks," 2019 International Multidisciplinary Information Technology and

Engineering Conference (IMITEC),pp. 1-6. IEEE.

26. Osbourne, G.,(2013). Memory forensics: review of acquisition and analysis techniques

(No. DSTO GD 0770). DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

EDINBURGH (AUSTRALIA) CYBER AND ELECTRONIC WARFARE DIV.

27. Page.(2020).Wikipedia.[Online].Available at

https://en.wikipedia.org/wiki/Page_(computer_memory) [Accessed : 07-03-2020].

28. Quick, D. and Choo, K. (2014). Impacts of increasing volume of digital forensic data: A

survey and future research challenges. Digital Investigation, 11(4), pp.273-294.

29. Raghavan, S.(2013). Digital forensic research: current state of the art. CSI Transactions

on ICT, 1(1), pp.91-114.

98

30. Rekall Forensic (2017). [Online].Available at: http://www.rekall-forensic.com/releases

[Accessed : 07-03-2020].

31. Reust, J. and Friedburg, S.(2006). DFRWS 2005 Workshop Report. [ONLINE]

Available at: http://www. dfrws. org/2005/download/2005final. pdf. [Accessed 3

February 2020].

32. Sadek, I., Chong, P., Rehman, S. U., Elovici, Y., & Binder, A. (2019). Memory snapshot

dataset of a compromised host with malware using obfuscation evasion techniques. Data

in brief, 26, 104437. https://doi.org/10.1016/j.dib.2019.104437 [Accessed 25-02-2020]

33. Samuel, A.L.(1959). Some Studies in Machine Learning Using the Game of Checkers.

IBM Journal of research and development, 3(3), pp.210-229.

34. SANS Institute. (2020). Memory Forensics Cheat Sheet v2.0. [ONLINE]. Available at:

https://digital-forensics.sans.org/media/volatility-memory-forensics-cheat-sheet.pdf [

Accessed : 16-04 2020].

35. Saravanan, R. and Sujatha, P.(2018). A State of Art Techniques on Machine Learning

Algorithms: A Perspective of Supervised Learning Approaches in Data Classification.

2018 Second International Conference on Intelligent Computing and Control Systems

(ICICCS),pp. 945-949. IEEE.

36. Scikit-learn (2017). [Online]. Available at: http://scikit-learn.org/stable/index.html

[Accessed: 27-04-2020].

37. Sun,X .(2020), Computer Vision with Deep Learning,.[PowerPoint presentation]

.CM3202: Emerging Technologies .Available at

https://learningcentral.cf.ac.uk/bbcswebdav/pid-5308222-dt-content-rid-

14272389_2/xid-14272389_2 [Accessed : 07-04-2020].

38. Tkinter(2020). [Online].Available at: https://docs.python.org/3/library/tkinter.html

[Accessed : 15-05-2020].

39. TURING, I.B.A., 1950. Computing machinery and intelligence-AM Turing. Mind,

59(236), p.433.

40. Volatility Framework with Windows 10 Memory Compression(2020).

[Online].Available at: https://github.com/fireeye/win10_volatility [Accessed : 12-03-

2020].

99

41. Volatility2.6(2020).[Online].Available at:

https://github.com/volatilityfoundation/volatility/wiki [Accessed : 5-03-2020].

42. Windows File Information. (2005 [Online].Available at

https://www.file.net/process/[Accessed : 28-05-2020].

43. Windows process and task list. (1993) [Online].Available at

https://www.neuber.com/taskmanager/process/ [Accessed : 28-05-2020].

44. Barabosch, T., Bergmann, N., Dombeck, A. and Padilla, E.(2017). Quincy: Detecting

host-based code injection attacks in memory dumps. In International Conference on

Detection of Intrusions and Malware, and Vulnerability Assessment. pp. 209-229.

Springer, Cham.

100

