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Abstract 

 

 

Every process that executes in a digital system, has to run in memory at some point. 

Therefore, forensic analysis of memory is becoming increasingly important. The ability to 

detect memory images as benign or malicious immediately will enable analysts to prioritize 

their investigations. This will help to reduce the current backlog in forensic analysis caused 

by the current extraction procedures done on digital storage media. Despite numerous 

malware detectors being available to analyse digital storage media, they are often time 

consuming and not always efficient in detecting for obfuscation techniques used by 

malware or malicious activities. This project proposes a Machine Learning approach that 

applies to a memory forensics investigation procedure that utilizes an extracted log artefact 

from the memory image to classify memory. Different Machine Learning classification 

models were developed to identify the best performing classifier for the given dataset of 

psxview artefact log. Although there were project limitations and challenges, the proposed 

approach provided the initial results that show a proof of concept for a Machine Learning 

approach to resolve and reduce the need for additional processing, analsysing and 

investigating of memory images.  

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

 

 

 

 

 

 

Acknowledgement 

 

Alhumdulilah, I praise Almighty Allah for keeping me safe and in good health that was 

necessary to complete this project during the unprecedent time. I am grateful to my family 

and friends for their constant encouragement. support and prayers. 

 

I am grateful to my supervisor, Michael Daley, for his ongoing engagement, motivation, 

and invaluable support and to my co-supervisor, Amir Javed for his guidance and sincere 

advice. 

 

Thankful to both of my supervisors for keeping me in the right direction and for turning 

the initial concept I had into an exciting  project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

 

Contents 

 

Abstract 

Acknowledgement 

 

List of Figures 

List of Tables 

 

Chapter 1 : Introduction ................................................................................................................ 12 

1.1 Preface ............................................................................................................................ 12 

1.2 Project Aims and Scope ................................................................................................. 13 

1.3 Project Limitation and Constraints ................................................................................. 13 

1.4 Intended Audience.......................................................................................................... 14 

1.5 Document Layout ........................................................................................................... 14 

Chapter 2 : Background and Literature review ............................................................................. 15 

1. Introduction to Memory Forensics.................................................................................... 15 

1.1. Memory and its processing architecture......................................................................... 17 

1.2. Memory Capture and Acquisition .................................................................................. 20 

1.2.1. Types of Memory Acquisition .................................................................................... 21 

1.3. Memory Analysis Methodologies .................................................................................. 22 

1.4. The Volatility Framework .............................................................................................. 24 

1.5. Process and related main artefact logs ........................................................................... 24 

1.5.1. Process and Structure.................................................................................................. 24 

1.5.2 Critical System Processes ........................................................................................... 26 

1.6 Analsysing the Process using plugins ............................................................................ 26 

1.7  Limitation ........................................................................................................................... 27 



5 

 

2 Machine Learning ............................................................................................................. 27 

2.1 Machine Learning Techniques ............................................................................................ 28 

2.2.1 Supervised Machine Learning .......................................................................................... 29 

2.2.2 Unsupervised Machine Learning Model .......................................................................... 30 

2.3 Machine Learning Approach to Memory forensics investigation ....................................... 30 

2.3.1 Random Forest ................................................................................................................. 31 

2.3.2 Decision Tree ................................................................................................................... 31 

2.3.3 Support Vector Model ...................................................................................................... 32 

2.3.4 Naïve Bayes...................................................................................................................... 33 

2.3.5 Neural Networks Classification Model ............................................................................ 35 

2.4 Encounter possible outcomes of Machine Learning Models .............................................. 36 

2.5 Related Work.................................................................................................................. 39 

2.6 Programming Approaches ................................................................................................... 40 

2.7 Research Question ............................................................................................................... 41 

Chapter 3 :Investigation and Analysis .......................................................................................... 42 

3 Environmental Setup ......................................................................................................... 42 

3.1 Prerequisite .......................................................................................................................... 42 

3.2 Analysis Approach ......................................................................................................... 43 

3.2.1 Acquisition of  a compromised memory image.......................................................... 43 

3.2.2 Main Analysis .................................................................................................................. 44 

3.2.3  Analysis of uncompromised image ................................................................................. 57 

3.3 Analysis Findings ........................................................................................................... 59 

3.3.1 Feature Selection ........................................................................................................ 59 

3.4 Data Collection ............................................................................................................... 60 

3.5 Conclusion ...................................................................................................................... 64 



6 

 

Chapter 4 : Specification and Design............................................................................................ 65 

4 Tool Requirements ............................................................................................................ 65 

4.1 Functional Requirements................................................................................................ 65 

4.1.2 Data Collection and Pre-processing requirement specification : ............................ 65 

4.1.3   Machine Learning Classification requirement specification:......................................... 66 

4.2  Non-Functional Requirements ........................................................................................... 67 

4.3 System Implementation Architecture .................................................................................. 67 

4.3.1 System Design ............................................................................................................ 68 

4.3.2 Use Case  Diagram: .................................................................................................... 68 

4.4 Tool Development Methodology ........................................................................................ 69 

Chapter 5: Implementation ........................................................................................................... 71 

5.1 Overview ............................................................................................................................. 71 

5.2 Data Collection and Pre-processing Interface ..................................................................... 72 

5.2.1 Importing and Loading the Data ...................................................................................... 72 

5.2.2 Data Pre-processing.......................................................................................................... 74 

5.2.3 Machine Learning Classification Models ........................................................................ 77 

5.3 Machine Learning Classification Interface ......................................................................... 80 

Chapter 6: Testing ......................................................................................................................... 83 

Chapter 7 : Results and Evaluation ............................................................................................... 88 

7.1 Classification Models Performance .................................................................................... 88 

7.2 Predication results analysis ................................................................................................. 89 

Chapter 8: Future Work ................................................................................................................ 91 

Chapter 9 : Conclusion.................................................................................................................. 92 

9.1 Summary ............................................................................................................................. 92 

Chapter 10: Reflection .................................................................................................................. 93 



7 

 

References ................................................................................................................................. 95 

 

 

 

 

 

 

 

 

  



8 

 

List of Figures 

 

Figure 1 : the main methodologies of digital forensics from [28] ................................................ 16 

Figure 2 CPU internal architecture structure from [3] .................................................................. 17 

Figure 3 Illustration of multiple virtual address spaces sharing memory and secondary storage [3]

........................................................................................................................................... 19 

Figure 4 Virtual Address Paging  from [14] ................................................................................. 19 

Figure 5 Process Structure from [2] .............................................................................................. 25 

Figure 6 Process Organisation from [2] ........................................................................................ 25 

Figure 7 General Machine Learning Structure from [12 ] ............................................................ 28 

Figure 8 Machine Learning Classification ................................................................................... 29 

Figure 9 Unsupervised Learning Model ....................................................................................... 30 

Figure 10 Decision Tree................................................................................................................ 32 

Figure 11 Support Vector Classification....................................................................................... 33 

Figure 12 Bayes Theorem Equation from [35] ............................................................................. 34 

Figure 13 Bayes Theorem : instances from [35] ........................................................................... 34 

Figure 14 Human neuron cell from [37] ....................................................................................... 35 

Figure 15 Artificial neuron from [37] ........................................................................................... 35 

Figure 16 layers of Artificial neuron from [7] .............................................................................. 36 

Figure 17 Confusion Matrix from [7] ........................................................................................... 37 

Figure 18 Accuracy Equation from [7] ......................................................................................... 38 

Figure 19 Precision Equation ........................................................................................................ 38 

Figure 20 Recall Equation from [7] .............................................................................................. 38 

Figure 21 F-Measure Equation from [7] ....................................................................................... 39 

Figure 22 Decompressing memory image using Rekall ............................................................... 44 

Figure 23 md5sum hash for acquired memory image .................................................................. 44 

Figure 24 imageinfo output for compromised memory image ..................................................... 45 

Figure 25 pslist output of compromised memory image .............................................................. 46 

Figure 26 pstree output of compromised memory image ............................................................. 46 

Figure 27 psscan output of compromised memory image ............................................................ 47 

Figure 28 psxview output of compromised memory image ......................................................... 47 



9 

 

Figure 29 pslist output : System Protection and Anti-malware processes .................................... 50 

Figure 30 pstree output : System Protection and Anti-malware processes ................................... 50 

Figure 31 pstree output for  suspected process ............................................................................. 51 

Figure 32 cmdscan and consoles command output....................................................................... 51 

Figure 33 cmdline command output ............................................................................................. 52 

Figure 34 malfind output for compromised memory image ......................................................... 53 

Figure 35 Virus Total  scanning for malwares.............................................................................. 53 

Figure 36 scanning a clean memory dump from compromised memory image ........................... 54 

Figure 37 memory dump scan result of Virustotal ....................................................................... 54 

Figure 38 scanning other memory dumps from compromised memory image ............................ 55 

Figure 39 last memory dump scan result from Virustotal ............................................................ 55 

Figure 40 psxview output : initial suspected process from pslist ................................................. 56 

Figure 41 psxview output : reveal hidden process ........................................................................ 56 

Figure 42 Verified md5sum after analysis for compromised memory image .............................. 57 

Figure 43 pslist output of uncompromised memory image .......................................................... 58 

Figure 44 psxview output for uncompromised memory image .................................................... 58 

Figure 45 Use Case : Data collection and Pre-processing tool ..................................................... 68 

Figure 46 Use Case : Classification tool ....................................................................................... 69 

Figure 47 - Data Collection and Pre-processing Interface ............................................................ 72 

Figure 48 select_N_folder() .......................................................................................................... 73 

Figure 49 select_N_folder() .......................................................................................................... 73 

Figure 50 load_pos_data()  load_neg_data() ................................................................................ 74 

Figure 51 data_prep() .................................................................................................................... 75 

Figure 52 labelName() .................................................................................................................. 76 

Figure 53 save_data() .................................................................................................................... 77 

Figure 54 load_data() .................................................................................................................... 78 

Figure 55 set_features() ................................................................................................................ 78 

Figure 56 initialize machine learning model ................................................................................ 79 

Figure 57 evaluation metrics and output functions for Classifier Model ..................................... 80 

Figure 58 Classifier Prototype Tool Interface .............................................................................. 81 

Figure 59 getCSV () ...................................................................................................................... 81 



10 

 

Figure 60 classify () ...................................................................................................................... 82 

Figure 61 Visualizer ...................................................................................................................... 82 

Figure 63 Random Forest Confusion Matrix ................................................................................ 89 

Figure 64 Classification outcome of testing data against trained model ...................................... 90 

 

List of Tables 

 

Table 1 Downloaded Benign memory images .............................................................................. 62 

Table 2 Downloaded Malicious memory images ......................................................................... 63 

Table 3 Test Case ID:  A1 Creating Processed Dataset ................................................................ 84 

Table 4 Test Case ID:  A2 Support Vector Classifier ................................................................... 84 

Table 5 Test Case ID:  A3 Decision Tree Classifier ..................................................................... 85 

Table 6 Test Case ID:  A4 Naive Bayes Classifier ....................................................................... 85 

Table 7  Test Case ID :A5 Random Forest Classifier ................................................................... 86 

Table 8 Test Case ID :A6 Neural Networks Classifier ................................................................. 86 

Table 9 Test Case ID:  A7 Classifier Training and Testing .......................................................... 87 

Table 10 Performance of various algorithms ................................................................................ 88 

 

 

  



11 

 

This page intentionally left blank  



12 

 

Chapter 1 : Introduction 

 

1.1 Preface 
 

Nowadays, the field of digital forensic investigation is growing and advancing, as it plays 

a critical part in resolving cyber-crimes and tracing criminal’s digital activities. With the 

rapid pace of technological change has enabled the law enforcement and forensic 

investigators to take into consideration of digital evidence to be used as evidence in 

criminal proceedings or to present in the court. However, various suspected devices are 

regularly collected from almost every crime scene as a source of intrusion; this has resulted 

in a backlog of devices and evidence to be examined forensically [9]. According to 

Goldberg’s investigation news article, the police backlogs of numerous documented cases 

are being measured up to 12 months due to inconsistency delays of evidence examination 

and analysis with ongoing forensic workload [19]. In addition, obtaining evidences from 

the individual devices does not only require a lengthy process of both extraction and result 

analysis. But also, requires special knowledge and skills [28][19]. Hence, many forensic 

communities are nowadays more focused on prioritizing memory forensic analysis over 

the other forensics analysis areas. As memory dumps, or RAM, of the running system, 

preserves a significant number of volatile artefacts that provides relevant clues to 

investigators compare to non-volatile artefacts extracted from secondary storage devices 

[17]. Besides, many researchers are introducing new approaches to a digital forensic 

investigation that involves the use of machine learning (ML), a science branch of the 

artificial intelligence (AI) field, mainly to aid and assist investigators and analysts with 

advancing automation and detection for investigation procedures [20].  Therefore, to 

reduce the ongoing backlog of forensic investigation operations and avoid manual analysis 

and extraction process of unnecessary artefacts from memory images, there is a need to 

identify and classify acquired memory dumps and images as benign or malicious at the 

earlier examination and extraction stage. 
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1.2 Project Aims and Scope 
 

The main aims of this project are to investigate and analyse memory dump for valuable 

hidden artefacts and using these extracted artefacts from a memory dump that can be 

applied to different Machine Learning models to classify a given artefact log of a memory 

image against trained Machine Learning Classifier Model. Also, identify the best 

performing Machine Learning model that can be used as a Memory Classifier. 

  

The project scope mainly focuses on creating an automated assistant classification tool to 

examine and classify a memory artefact and investigate the performance of different 

classification Machine Learning Models acting as a Classifier for a memory artefact log. 

In addition, the expected outcome of this project is to have a set of results that shows a 

proof of concept of applying Machine Learning approaches to memory forensics 

investigation for classifying memory images. The main focus area of memory forensic 

investigation and analysis is investigating the system running process with sign detection 

of malicious activities using process-related logs and plugins. 

 

1.3 Project Limitation and Constraints 
 

As this project requires the digital forensics analysis it is important to consider a standard  

forensic workstation but due to limited resources an environment setup of  Virtual Machine 

will be utilized as a suitable approach to conduct the investigation and analysis of a memory 

image. Also, it is important to maintain the data integrity of the evidence used to analyse 

as a forensic requirement to avoid any alteration and modification to original evidence 

during the analysis. Therefore, a cryptographic hash md5sum method will be used to ensure 

that the originality of the evidence data is not changed when memory image is analysed. 

Furthermore, the considerable encountering challenges from applying the Machine 

Learning approaches are data collection and pre-processing for Machine Learning 

Classification Models. As the necessity requirement of a medium-large sized dataset to 

pre-processed and used to train the Machine Learning models in order to retain effective 

results and useful insights. As this project will require creating a dataset utilizing extracted 
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log artefacts from memory images dataset, the dataset scale is expected to be limited size 

due to limited storage resources to store memory images dataset.   

 

Considering all these limitation and constraints to the fixed timeframe of the project may 

have a medium impact on completing all the project stated aims and expected outcomes. 

As this project will be conducted as a university project and the initial results will be 

presented as a basis for further research.  

 

1.4 Intended Audience 
 

The intended audience and beneficiaries from this project are the researchers, analysts and 

investigators and individuals who are interested in developing an automate applications 

utilizing Machine Learning approaches for Memory classification and malware detection. 

 

1.5 Document Layout 
 

The rest of the document is structured as follows, Chapter 2  outlines the background 

search and literature review of  Memory forensics and related technical aspects of memory 

and analysis methodologies, Machine Learning basics and approaches, evaluation 

measures of Machine learning models as classifiers and related work. Chapter 3 defines 

the approaches of the memory analysis methodologies with main artefact findings and data 

collection. Chapter 4 layouts design and system specification requirements of the 

developing tool. Chapter 5 details in programming level of the implementation of the 

developing tool and Machine Learning Models. Chapter 6  features testcases that were 

performed for the developed tool , Chapter 7  presents the initial results of the Classifier 

Models, Chapter 8 addresses arising future work for the project  ,Chapter 9 : concludes 

the project main results and findings and Chapter 10 details the learning experiences from 

undertaking this project. 
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Chapter 2 : Background and Literature review 

 

This chapter provides an overview of technical concepts and the background context of the 

problem and approaches in more depth with reference to related literature. The chapter firstly 

introduces the principles and technical aspects related to memory forensics and outline memory’s 

architecture and its processing including memory acquisition, analysis methodologies and main 

artefact. Furthermore, the chapter provides contexts and theory associated with Machine Learning, 

Machine Learning classification algorithms and address as an approach to memory forensics 

investigation with the awareness of related work. Finally, the chapter concludes with the approach 

to be adopted for the project and the research questions. 

 

 The theories and terminology reviewed in this chapter are referred to frequently throughout the 

remainder of the document. 

 

 

1. Introduction to Memory Forensics  
 

Over 15 years ago, the need of memory analysis in digital forensics world was primarily 

highlighted during the Digital Forensic Research Workshop (DFRWS) conference in 2005 as 

a challenge and the main objective was to motivate research of new techniques and advance 

tool developments in the field of memory forensic [16]. Subsequently,  the constant researches 

on the topic provided a critical consideration of memory forensics and useful insights regarding 

the available volatile artefacts that are found in memory for the forensics investigation and 

analysis process [16][31]. 

 

Nowadays, memory forensics is arguably becoming one of the major areas focused for any 

forensic investigation. The main memory or RAM are used as primary storage to store the 

running system’s executed programs, recent open files, threads and  logs and the processed 

data [17]. These memory’s volatile content is highly considered, as it provides valuable 

insights for forensics investigators and analysts of a compromised system to determine for any 

suspicious activities as malware or network intrusion [23][22].  In general, memory forensics 

is a domain of digital forensics and the process of memory forensic is mostly adapted and based 
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on the fundamental methodologies of digital forensics [11]. The process involves six main 

stages of identification ,collection and preservation, examination, analysis, documenting and 

recovery of evidential artefacts from any electronic devices that stores data that is relevant to 

an investigation. The sequence of the digital forensics’ methodology is shown in the figure 

[29]. 

 

 

 

 

Figure 1 : the main methodologies of digital forensics from [28] 

 

In terms of memory forensics, the set of digital forensic methodologies are relatively applied 

on the system’s volatile physical  memory with the consideration of the system state at time of 

identification and acquisition [1]. The main reason of the system state matters as it is the only 

accessible way to collect and acquire memory capture when system is powered on . As in the 

past, capturing  memory images and memory dumps were often easily manageable as to limited 

size range of physical memory. However, the recent increase in size of physical memory of 

modern computers has impacted inefficiently for entire manual acquisition, examination and 

analysis of memory image as it requires specialized understanding knowledge of contextual 

information of memory and data structures and use of the associated tools that are compatible 

[22]. Most of the memory’s  artefacts are based on memory processes with virtual addressing  

associated to  physical addressing. The basic principles related to memory data structure and 

how its function processes will be reviewed in the following sections. 
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1.1. Memory and its processing architecture  
 

Basically, each computational device is composed with two principle components that 

performs computational processing and basic instructions of a system that are the physical 

memory and the processor [3]. These components are considered to hold forensic value, as the 

processor includes programs executions and the processes of central processing unit (CPU) of 

the whole computer system. Whereas the volatile physical memory, it consists of temporarily 

stored data related to the processor and executed programs of the active system. In term of the 

modern computer system architecture, CPU is often stated as a processor, that is indirectly 

accesses and requests the main memory (RAM) via Memory Controller Hub for instructional 

commands to execute and process the data. The following diagram Figure 2 shows the basic 

internal architecture of a computer system and how the system’s controllers and processors are 

relatively interconnected to the main memory [3] 

 

 
 

Figure 2 CPU internal architecture structure from [3] 
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Moreover, Memory is commonly known as random-access memory (RAM), particularly for 

its characteristic of random-access time in any order for the storage and location of the data. 

Memory also characterized as the most volatile data in a computer system, as its data and the 

content are lost when system state is off [ 22]. In addition, memory has the capability to collect, 

access and transfer data between the input/output (I/O) controllers and processor as shown in 

Figure 2 via the connected units of Northbridge and Southbridge. This indicates that the 

information regarding external connected devices and storage media resident in the main 

memory and can be acknowledged theses information for forensic investigation and 

analysis[3].  

 

Besides, to manage processes and threads of the main memory are mainly performed by 

memory management unit (MMU) , virtual address translation and the memory data structures 

[26].The memory management is mainly the organization of the physical memory (RAM) for 

the allocation of the system’s multitasking processes and operations. A special addressing 

scheme is used between the main memory and CPU for accessing the data and instruction to 

be executed. Virtual address is used, and it refers to address space in virtual memory for a 

process. Whereas the main memory has corresponding address for the virtual address which 

are addresses that the processor requests for accessing physical memory known as physical 

address space. The MMU is constantly used along with the memory manager for the translation 

of the processor’s virtual address to the  physical address using the  translation lookaside buffer 

(TLB ), also known as the MMU translation table for a given translation [3]. 

 

Each of the running processes is mapped with a private section of the virtual memory, that 

appears to provide more memory access than the actual physical memory space for the process 

[23]. Basically, virtual memory is used as allocation scheme for the process or the application 

when system is running short of the memory. The memory manager is responsible for 

transferring regions of memory to secondary storage to free up space in physical memory to 

allow the data to be exchanged between primary and secondary storage. If a thread accesses a 

virtual address that has been moved to secondary storage, that data is then brought back into 

physical memory [23]. This interaction is represented by the diagram Figure 3 that shows how 
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the virtual address are randomly mapped between the virtual memory, the main memory and 

secondary storage [3]. 

 

 
 

 
Figure 3 Illustration of multiple virtual address spaces sharing memory and secondary 

storage [3] 

 

In terms of physical memory address data structure , it is consist of pages and table page that 

stored in main memory. In general, a  memory page (page) is a fixed-length contiguous block 

of virtual memory, described by a single entry in the page table, that maps virtual pages to 

physical pages[27] Figure 4. [3][14]. 

 

 

 

Figure 4 Virtual Address Paging  from [14] 

 

Paging often performed by the operating system for temporarily swapping memory contents 

out to secondary storage to free up the required space in physical memory.  The page file or 

swap file store pages from the memory that have been swapped as not needed or set another 
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page [21]  By default, the page file is stored in the operating system installation root, in a file 

called pagefile.sys is the pages once were in physical memory and might be active. This 

internal process of each application shows that all systematic operations are carried in main 

memory. With regards to forensics point of view, the list of memory addresses associated with 

the process are useful to reconstruct the whole memory space and get the data out that is missed 

[21]. This section has provided an overview of the main elements of memory management unit 

and how memory address is processed within Windows operating systems. 

 

1.2. Memory Capture and Acquisition  
 

The need for the memory acquisition has increased as more information are being stored on 

computer’s memory that involves in cybercrimes and network attacks [11]. Memory 

acquisitions is highly prioritized for any identified live compromised computers as it contains 

extremely volatile data in memory which is ranked as top in order of the data volatility. The 

memory images and snapshots are only captured from a running system as once the system is 

turned off completely or rebooted the memory’s content fades away [22][23]. Therefore, the 

first responders are trained and instructed by following the guidelines of the  ‘Association of 

Chief Police Officers (APCO)’ to securely collect and handle evidences upon investigation. 

The four APCO guidelines [15] are listed as following : 

 

✓ Principle 1: No action taken by law enforcement agencies or their agents should change 

data held on a computer or storage media which may subsequently be relied upon in court. 

 

✓ Principle 2: In exceptional circumstances, where a person finds it necessary to access 

original data held on a computer or on storage media, that person must be competent to 

do so and be able to give evidence explaining the relevance and the implications of their 

actions. 

 

✓ Principle 3: An audit trail or other record of all processes applied to computer based 

electronic evidence should be created and preserved. An independent third party should 

be able to examine those processes and achieve the same result. 
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✓ Principle 4: The person in charge of the investigation (the case officer) has overall 

responsibility 

 

These guidelines are essential to the first responders to carefully deal when acquiring memory 

images from the live compromised systems as any action performed as by clicking mouse or 

keyboard might activate any malicious code or malware that could erase the system 

automatically [15]. Therefore, it is essential requirement for first responders to secure the crime 

scene completely and conduct memory acquisition process initially before any other forensics 

collection and acquisition process[17]. In addition, avoid unnecessary interaction while 

acquiring memory image as the acquisition process is performed on live system in timely 

manner and any interruption would result in a corrupt version acquired image. Memory 

acquisition be performed based on two methodologies either Hardware-based or Software-

Based. The main principle considered when acquiring the image is to use the least invasive 

approach possible as to less footprints on the running memory[1] [15]. 

 

1.2.1. Types of Memory Acquisition  
 

Hardware based involves direct physical connection to the memory using hardware as write 

blocker and cable connections. These provide physical memory backup instead of logical. 

Whereas Software-based involves use of verified and tested toolkit to acquire memory bit-to-

bit images and snapshots. Often these commercial and open-source tools are risky as it can 

alter the memory and affect its integrity [11]. As whatever actions performed by the 

investigator at the time of acquisition is firstly executed in the memory and can alter the 

system’s current running processes that are likely pointed be forensically important [1] 

 

In addition, one of the main advantages of memory acquisition of memory images are fairly 

smaller in size compared to the acquired images from non-volatile secondary storage and other 

storage devices as it requires less time for extracting and taking snapshot captures, whereas 

non-volatile devices require lengthy process only for acquiring the image as there size 

measures up to 16 GBs to 2TBs and more [1]. After acquiring and capturing the memory, a 

raw bit-to-bit memory image copy is produced and there are many acquired memory images 

formats. The main formats of acquired memory image are as dd file (.dd) , memory image 
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(.img ) or as memory dump (.memdump). In addition, there are different  types of memory 

dumps are executed by the operating system as Windows Crash Dump, which is created when 

system crashes and it is used to identify cause of the system crash e.g. blue screen crash and 

kernel crash. Another memory dump that is executed by system is Windows Hibernation File, 

which is created during the hibernation process and it stores as (hiberfil.sys) where copy of 

memory that the system dumps to disk and often these types of the memory dump images are 

considered for analysis [1]. As to commonly used memory acquisition tool for Windows 

operating systems is WinPmem, which is one and only open-source available  to date. In 

addition, few analysis tools and frameworks that only supports memory images and dumps 

formats as common used raw formats are dd, img that are widely supported and there often 

several to acquisition tools that can be used to convert raw memory image format into another 

as The Volatility Framework  [1][ 26]. 

 

When the memory captures are being collected and acquired, they are assigned with a fixed 

cryptographic hash code as MD5 hash for the integrity and data validation of the original 

evidences [17][22]. There are various hash calculating tools and most used is md5sum. It is a 

Linux sum tool that is used to create a checksum hash value based upon the content of the 

entire memory image using traditional algorithms. The hash is used before and after the 

analysis of memory images to identify for any alteration and modification to original memory 

image. If hash checksum returned same as before conducting the analysis, then integrity is 

maintained and validated through the analysis otherwise getting invalid MD5 which indicates 

that some alteration occurred to the original memory image during the analysis [22].Therefore 

,it is important when investigating and analsysing the evidence without alternating the original 

content of the evidence and maintain perform the checks as the principles of the APCO[15]. 

 

1.3. Memory Analysis Methodologies  
 

There are several ways to conduct the analysis of a memory dump as it consists range of 

different artefacts. But it is recommend for examiners and analysts to follow the basic 

methodology procedures when conducting memory examination and analysis in order ensure 

that all potential suspected artefacts and evidences are revealed for an incident investigation [ 

11][17]. Most of the analysis and investigation procedures are conduct in specialized digital 
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forensics labs utilizing the forensics workstation and  memory analysis tools. Besides, each 

analyst applies different analysis techniques depending on the investigation scenario [22]. 

Despite following a specific methodology, it is also important to consider covering different 

areas of memory analysis which ranges from System Process, Registry logs, Networking, 

Services, Kernel and Rootkits[6]. According to the SANS Computer and Incident response 

Institute guide cheatsheet [34] for the pure analysis of  compromised memory is generally 

accomplished using the different plugins of Volatility Framework  in following six steps that 

cover the major areas of for the analysis are listed in the following list : 

 

A. Identify rouge process 

a. This area is mainly focuses  to listing the system running process in the memory 

at time image was acquired . 

B. Analyze process dlls and handles  

a. This area of analysis consists of revealing a list of  related dlls, process security 

identifiers and handles for a selected running process 

C. Review network artefacts 

a. This area presents the network related artefact as open and closed TCP 

connections, ports, and sockets as well as source and destination IP address 

D. Look up Evidence of code Injection 

a. This area looks up for the areas in low level for signs of the code injection for 

specified process and offset address and dumps the infected areas to be analysed 

further 

E. Check for signs of rootkits 

a.  Looks up for hidden process and checks the memory process in cross validation 

view as well as looks up for the API dlls  for specified process 

F. Extract Processes, Drivers and Objects 

a. This area mainly used for extracting different artefacts as memory dumps for 

the specified process , driver, and objects that considered for further analysis. 

 

In addition, Memory Forensics Practical guide from the Computing science and Mathematics 

of University of Sterling,  where the main areas of the initial analysis of a compromised 

memory image includes inspecting the operating system versions, viewing process and 
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network connections, searching through memory process that can be performed using the 

Volatility Framework [13]. 

 

1.4. The Volatility Framework 
   

The most widely used memory forensics platform for memory acquisition and analysis is 

known to be Volatility Framework. This tool is beneficial to analysis captured and imaged 

volatile memory for valuable information about the runtime state of the system, provides the 

ability to link artefacts from traditional forensic analysis [6][23] . Also, the  tool provides range 

of plugins to analyse the memory artefacts of  main 6 areas as mentioned earlier. In addition, 

this tool framework is python based and is also used as python library [4].   

 

At the initial analysis of  a memory image, it is important to distinguish the system running 

process. The following section will describe briefly about the system process as artefact along 

with process-related artefacts logs that are used for the analysis using the Volatility Framework 

plugins.  

 

 

1.5. Process and related main artefact logs  
 

1.5.1. Process and Structure  
 

As to basic analysis methodology, it is important to acknowledge all the existed artefacts that 

can be found in a memory dump. All the artefacts and running processes in the system share a 

common origin that they all consist EPROCESS, which is the structure that Windows 

Operating System uses to represent or to call a process [2]. As each EPROCESS is consist of 

a main attribute that represent the allocation of the process in the memory region by the virtual 

memory space, that is unlinked from other system running processes. Additionally, the 

memory space is also consists of input actions performed by the system user for a process and 

it  includes list of process executable, loaded modules and SIDs and user privileges and threads 

that Windows system organizes and distributes through Virtual Address Descriptors VAD, 

which is a paging method to load pages  in memory [2]. The following diagram Figure 5 shows 

a basic process with associated attributes 
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Figure 5 Process Structure from [2] 

Generally, the process is organised with single linked which creates a double linked lists of 

processes structure. Where the a _LIST_ENTRY structure called ActiveProcessLinks  

(header), which contains two main elements: a Flink, forward link, that points to the header of 

the following process, and the Blink ,backward link, that points to the header of the former  

process. All Together, these linked structures build a double linking chain of processes as 

shown in Figure 6 [2]. 

 

 
 

Figure 6 Process Organisation from [2] 
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1.5.2 Critical System Processes 
 

Besides, it is important to distinguish the actual system running process with the applications 

running on the system memory RAM. Therefore, the following lists the essential system 

processes that runs normally in clean system memory: 

 

• System – represents the default system process which includes threads that run-in 

kernel mode and it is usually represented as PID 4 [2]. 

• csrss.exe - The Client/Server Runtime Subsystem for creating and deleting processes 

and threads [2]. 

• service.exe – represents The Service Control Manager(SCM) process, manages 

Windows services and maintains a list of system services in a private reserved memory 

space [2]. 

• svchost.exe: represents a multiple shared host processes provides a space for DLLs that 

implement services [2] . 

•  lsass.exe: represents The Local Security Authority Subsystem process mainly 

responsible for  security policy and verifying passwords  and creating tokens [2]. 

•  winlogon.exe: represents the interactive logon prompt process [2]. 

• explorer.exe:  represents the Windows Explorer process and  which represents a range 

of user interactions such as folder [2] . 

• smss.exe: represents   session manager process that is mainly  responsible for managing 

and creating the sessions [2] . 

 

There are more background system services and application processes other than the 

mentioned system process and it mainly differs from different versions of Windows Operating 

Systems. 

 

1.6 Analsysing the Process using plugins 
 

The main artefacts of process-related logs that are utilized to identify the system running 

processes are extracted using the Volatility Framework tool’s plugins [2][4]. These plugins 

commands are listed below:  
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• Pslist, lists the processes and prints a summary which includes only active process and 

does not any terminated or hidden processes[2].  

• Pstree, lists the pslist in a tree view, which reveals process relationships as the parent 

process and child processes [2]. 

• Psscan, lists terminated and hidden processes [2].  

• Psxview, locates processes using alternate process listings, using the cross-reference 

different sources of information and reveal malicious discrepancies.[2] 

 

Further context and details of each of these plugins and logs will be detailed in Chapter 3. 

 

1.7  Limitation 
 

Some of the considerable challenges of conducting the Memory forensic analysis is that it 

requires a standard forensic workstation for acquiring, analysing  and extracting artefacts from 

memory images. Also, when conducting acquisition and analysis ,if any incorrect process of 

extraction occurred while acquiring a memory image due multiple command runs or technical 

errors mapping of the binary representation data then inaccurate reading of the memory dump’s 

data results in to incorrect extraction and processing of the outcome results [22][11].  

 

 

2 Machine Learning 
 

In recent years, the Machine Learning approaches are significantly becoming a high demand in 

many industries and businesses for the purpose of obtaining meaningful data insights and 

automation analysis [8]. Machine Learning (ML) is one of the emerging domains that is highly 

associated with the research field of Artificial Intelligence (AI). The concept of Machine Learning 

in conjunction with AI, is referred as  field of study that gives computers the ability to learn without 

being explicitly programmed [33] and according to definition of  Tom M. Mitchell for ML is refers 

as “A computer program is said to learn from experience E with respect to some class of tasks T 

and performance measure P, if its performance at tasks in T, as measured by P, improves with 

experience E .”[ 39][7]. 

 



28 

 

Clearly, Machine Learning can be defined as the ability of a computer program based on 

computational algorithms that can automatically learns the underlaying patterns from given 

information and data to provide useful insights [8]. Besides, Data  Knowledge Discovery processes 

which includes Data Mining is crucial in Machine Learning programs, as the knowledge extraction 

of known and unknown data from the large-scale data source are utilized  as basis of data insights 

and further exploration for key decisions from the given data. Numerous applications are widely 

adapting Machine Learning techniques such as stock prediction, credit scoring, smart medical 

checks, malware detection, and many more as the applications are beneficial in delivering useful 

predictive analysis [7]. The following diagram shows as a general scheme for Machine Learning 

as classification approach  Figure 7   

 

 
 

Figure 7 General Machine Learning Structure from [12 ] 

 

 

 

2.1 Machine Learning Techniques 
 

 

Machine Learning provides various approaches as classification, regression ,pattern recognition 

and many more that are constructed based on mathematical and statistical algorithms which 

processes the outcome knowledge from a given data of a sample dataset [8] .In general ,there are 

several types of Machine Learning models that ranges from Supervised Learning, Unsupervised 

Learning, Semi-supervised Learning, Reinforcement Learning and Deep Learning [7]. Theses 

Machine Learning models are used for different purposes and each type of learning model is used 

to perform either descriptive or predictive analysis depending on the chosen algorithm, type of 
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analysis required to solve the problem with consideration of type of dataset used for the analysis. 

But the most popular Machine Learning models that are used commonly : Supervised learning 

model and Unsupervised learning models. In the following section will discuss the two main 

categories of machine learning models with their uses [ 5][8]. 

 

2.2.1 Supervised Machine Learning  
 

Supervised model refers to an algorithmic learning model that infers the underlaying patterns and 

insights relationship between the labelled data and target values of unlabelled data  that is subject 

to predication outcome [7]. Considering a malware detection example based on the Machine 

Learning classification approach as shown in the Figure 8 , Where a labelled training dataset of 

the files is used with labels of benign and malicious for learning and training task of the model. 

The labels are used to identify each data of the dataset. As model is trained and adapted the 

generalized pattern and feature knowledge from the given dataset’s data. The model applies 

classification function on the test unseen data, which is unlabelled data, where it classifies and 

predicts according to the supplied labels and trained dataset and produce possible outcome 

prediction [7][25]  

 

 

 

Figure 8 Machine Learning Classification 
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2.2.2 Unsupervised Machine Learning Model 
 

In terms of the Unsupervised learning model,  it is only requiring unlabelled input dataset. This 

learning model utilizes clustering and grouping algorithms that can automatically find regularity 

from the unlabelled data without human interference and it filters and groups the unlabelled data 

into small clusters of similar features and provides each cluster with a suitable label based on the 

acknowledge similarity patterns from the dataset as shown in Figure 9 [5]. Clearly, The 

Unsupervised learning model is considered to be useful when labelling large dataset [7] Some uses 

of the Unsupervised model are found in the areas of data compression, outlier detection, 

classification, and human learning [ 7]. 

 

 

 

 

Figure 9 Unsupervised Learning Model 

 

 
2.3 Machine Learning Approach to Memory forensics investigation 

 

 

With the consideration of the project’s aim to identify and classify a memory image using extracted 

artefact log instances as benign or malicious is clearly requires a classification approach. 

Therefore, Supervised Machine Learning models based on the classification algorithms are  been 

appointed to address the problem stated. In addition, several  researchers and recent studies have 

adapted the Machine Learning classification approaches for unknown malware detection and 
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malware related classification problems [21][25]. The most commonly used classification 

algorithms of Machine Learning models for detection purposes are Random Forest (RF) , Decision 

Tress (DT) ,Support Vector (SV) . Naïve Bayes (NB) , and Neural Networks (NN) . The following 

sections will briefly disuses about each of the classifiers mentioned above . 

 

2.3.1 Random Forest 
 

Random Forests (RF) model is one the popular machine learning predicative classification 

algorithm that is commonly used in detection and filtering applications [21]. This model is an 

ensemble learning model for classification , where model constructs a strong learner by employing 

a collection of decision trees that are formed by weak decorrelated decision tree classifiers [7]. In 

general, the model applies a bootstrap sample for the given dataset, and it creates individual 

classification trees for each sample randomly, where each decision tree outputs the classification 

class based on most frequently occurred values and feature in the class of given sample. The 

bagging approach applied by the model to aggregate individual decision trees and outputs average 

estimation of the classification class [7].As example of input data given to be classified , the model 

will classify based on the majority estimation of all the decision tress subtrees [7 ]. The main reason 

is that it takes the average of all the decision tree estimations that it explicitly estimate relative 

importance of a variable of classification for given data without biases [5]. In terms of  the model 

properties, it runs efficiently on large datasets and provides a good accuracy as well as effective 

method for estimating missing data [7] . 

 

 

2.3.2 Decision Tree 
 

Decision Tree is also consider as the most popular Machine Learning classifiers. This model is 

based on the ensemble learning method of divide-and-conquer [7]. The model is constructed as a 

hierarchical structure in the form of a tree structure , where it  intakes dataset and gradually trains 

and splits into smaller subsets to a certain limit is reached. This results in tree’s internal decision 

nodes and leaves, and each decision node represents possible features labeling as branch outcomes 

and each leaf represent output classification class for a depending branch decision node [7] [5]. 

The model process starts at root node to split in sequence-manner and classifies with corresponding 
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branches that represents values connecting to given data features until a decision leaf is identified 

and points the output value to label unseen data [7 ].  The following Figure 11, shows an example 

of the decision tree for known and unknow files types, where an unseen data unknow file given  to 

the model as input, the model will determine the classification of unknown file by locating the path 

of nodes and branches that matches to given data features as Unknown -> Application -> and then 

identifies class leaf of benign or malicious based on whether the unknown file is hidden or 

unhidden  [7][5]. 

 

 
 

Figure 10 Decision Tree 

 

 The Decision tree classifier allows interpretability and fast allocation for the classification as its 

method of divide and conquer that efficiently reduces half of the unnecessary features . In addition, 

decision tree classifier is also known as C4.5[5]. 

 

 

2.3.3 Support Vector Model 
 

Support Vector Model (SVM), is supervised learning model that is used mainly as linear 

classification and regression model for data analysis, pattern recognition and detection [7]. The 

model is based on linear and kernel methods [5], where given input ( training data ) is split into 

two-class learning task that are called support vectors. The SVM algorithm  structures a 

classification model method that classifies unseen data to one of the two support class vectors on 

either side of an optimal hyper plane which splits two-classes and making it a simple binary linear 

classifier [7] . The model  represents the training data as points when classifying and it creates a 
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partition of data into two-classes which is divided by the major distance to the adjacent training 

data point of any class. Any unseen data given will be predicted and classified either of the two-

classes as shown in Figure [7]. In terms of the main properties of this model , it provides higher 

accuracy in detection and classification outcomes with minimal true error rate. The model yields 

a hyperplane margin that is useful for any small and large sample as it handles complexity of  given 

data [7][35] Besides, the model’s kernel function is highly correlated to Neural Networks, as it is 

able to function as a non-linear model as well [25 ]. 

 

 

Figure 11 Support Vector Classification  

 

2.3.4 Naïve Bayes 
 

Another popular predication classification model is called the Naïve Bayes [25]. It is a simple 

supervised learning model based on Bayesian algorithms and theorem for predicting the 

conditionally independent possibility of classes of various features for a given data sample [7 

].  The principle of the Naïve Bayes classifier is a probabilistic and assumption method, where it 

calculates input training data with the assumption of conditionally independent of each other for a 

given class label [7] . For given unseen data to Naïve Bayes classifier, it will calculate the 

predication outcome based on the maximum likelihood probability of feature instances of training 
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data sample [35]. The algorithmic equation  of  Naïve Bayes calculating the conditional possibility 

is shown in Figure 12 

 

Figure 12 Bayes Theorem Equation from [35] 

The P (l/f) represents the Naïve Bayes posterior probability and it includes main elements that are 

P(l) , P(f) and P(f/l) [35].  

• Both P(l) and P(f) represent the prior probabilities without regard to each other 

o P(l)  is the previous likelihood of class label.  

o P(f) is the previous possibility that a given feature set appeared.  

• P(f/l) is the previous likelihood and predicator prior possibility. 

 

Additionally, Naïve Bayes stated that  individual feature instances are not dependent as shown  in  

Figure 13 [35].  

 

Figure 13 Bayes Theorem : instances from [35] 

 

Obviously, Naïve Bayes classifier is based on a simple equation that does not require complex 

parameters and functions. It  is appealing that the model is relatively easy to create and use as to 

its properties of simplicity and robustness. Some of the popular application of Naïve Bayes 

algorithm  are used  in text classification and spam filtering [ 7]. 
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2.3.5 Neural Networks Classification Model  
 

Numerous Deep Learning approaches are being utilized nowadays in detection and classification  

for malwares and one of these popular approaches is Neural Network as Classification model [ 

25].This model is based on artificial neural network algorithms, which consist of  multiple artificial 

neurons connected in a neural network layers similarly to human’s neural cell [7][25].The 

following diagrams illustrates a human neuron cell and artificial neuron Figure 14 and Figure 15. 

 

 

 

Figure 14 Human neuron cell from [37] 

 

 

 

Figure 15 Artificial neuron from [37] 

 

 The NN model intakes the inputs of training data as a layer of given neurons set , and each neuron 

represents a single input of data. The input neuron is associated with cascaded layers of artificial 
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neuron which consist of weight, transfer, bias, and activation functional layers[35][7]. The model 

obtains each neuron and it passes through the functional layers to provide an output classification, 

which is formed by the individual outputs of neurons as presented in following diagram 16 [37] 

 

Figure 16 layers of Artificial neuron from [7] 

 

In nutshell, a deep learning neural network classifier model utilizes a range of algorithms that 

endeavors to identify underlying interactions and patterns of a dataset through a method layers that 

mimics the actions of the human  neural network functionality [7][37]. In addition,  one of the 

major issues that effects the model outcome is the inefficacy to process Big data to provide a 

subsequent outcome. Also, it provides data nonlinearity in which it does not function classification 

properly as it output the predication based on high classification value [7]. 

 

2.4 Encounter possible outcomes of Machine Learning Models  
 

It is essential to determine a proper classification machine learning algorithm for the proposed 

binary classification problem. There several performance measures that are utilized to evaluate the 
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machine learning algorithms in term of how well is the learning capacity of a model in achieving 

a correct difference between classification classes and how well classifier model constructs 

properly to process classification task for testing data [10] .In addition, to ensure that obtaining 

results from models represents accurate insights, these measures help to avoid modelling error or 

Overfitting, which represents poor generalization and inaccurate classification of the outcome 

predication [7]. Hence, it is crucial to evaluate the learning algorithms of Machine Learning models 

for assessing and expressing the success of a binary classification study [10]. 

 

 In general, there are four main types of binary classification outcome of Machine Learning models 

that are : 

1. True Positive (TP),  means predication is correctly identified as positive. 

2. True Negative(TN), means predication is correctly identified as negative. 

3. False Positive (FP), means predication is incorrectly identified as positive. 

4.  False Negative (FN), means predication is incorrectly identified as negative. 

 

These direct outputs of classification predication are represented in 2-dimensions as ‘Confusion 

Matrix’ table as shown in Figure 17.  

 

 

 

Figure 17 Confusion Matrix from [7] 

The Confusion Matrix is a representation of  Machine Learning performance for a classification 

algorithm based on the given test data in matrix. The matrix contains two classification against 

each other that are the predicted classification and the actual classification in form of four types of 
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predication outcomes as mentioned earlier [7]. If Confusion matrix had higher number of 

predication values for both TP and TN, it indicates for good performing learning algorithm and 

relative to the total correctly classified for the testing set [25][10]. Overall, the Confusion matrix 

is useful as accuracy indicator for the model’s outcome classification results. Also, there are other 

performing measures that are used as performance comparison metrics for the learning model with 

testing dataset which includes Accuracy, Precision, Recall and F-measure [5][7].  

 

− Accuracy represent the rate of the true and false predication made by the model and it 

calculated using the true values ( TP & TN ) by the total number of predications  [7] as 

shown in Figure 18.  

 

 

Figure 18 Accuracy Equation from [7] 

 

− Precision also known as Predicative value represent the rate of true positive predicted 

cases and positive samples that are correctly classified [25][5] 

 

 

 

Figure 19 Precision Equation 

 

− Recall represent the rate of actual positive cases which are correctly identified [25][5] 

 

 

 

Figure 20 Recall Equation from [7] 
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− F-measure or F score represent the rate of overall accuracy performance and it is 

calculated via precision and recall with equal weights [10]. 

 

 

 

Figure 21 F-Measure Equation from [7] 

 

All these measures have the accurate performance rate 1 and the least worst performance rate is 0 

[5][25]. 

 
 

2.5 Related Work  
 

The need for a reducing the consistent backlog of memory data and analysis  of digital evidence is 

crucial as it can provide useful hidden artefacts and links that can be used to proof claims of  

innocent victims [22][44]. Tool as volatility framework can be used for the memory inspection 

and indeed, it provides investigators with useful artefacts to be analysed for anomalies ,malware 

or string search that are obtained using the traditional manual procedure.  Recently, an automation 

approach was proposed called Quincy:  Detecting Host-Based Code Injection Attacks in Memory 

Dumps [44] –, where a tool employed a machine learning approach to detect and filter memory 

dumps from the compromised machine for the malware attacks that are either as injected code or 

sent over the network [44]. The tool  functioned to classify the infected memory region and  predict 

the possible damage that can malware cause with malware classification. Possibly an approach to 

prioritize malware analysis from the volatile memory data to overcome the manual analysis.  

Although Quincy machine learning algorithms focus more utilizing Malfind and Hollowfind 

artefacts for detection of malware injections, but these plugins require considerable time to scan 

the memory image and extraction the dumps for the suspected areas which is not yet efficient [44]. 

With a similar motivation of automation approach for memory forensics investigation, aiming to 

develop a classification tool that is specifically fast detection and classify memory dump’s  by 
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utilizing process-related artefact log that help forensic analysts and investigator  for memory 

investigation procedures prior analysis. 

 

 
2.6 Programming Approaches  

 

Python programming language is being considered for the projects tool implementation. There are 

many python libraries and modules available that commonly supports the programming of 

Machine Learning models and algorithms. Scikit-learn library is the most popular library that 

supports to develop different Machine learning models. Scikit-learn consist of two basic libraries 

of Python, NumPy and SciPy, which adds a set of algorithms for common machine learning and 

data mining tasks, including clustering, regression, and classification. Even tasks like encoding 

and labelling data, feature selection and ensemble methods can be implemented, and a 

comprehensive documentation is available with tutorials and code examples [36][24]. In addition, 

Scikit-learn library provides functionality of evaluating the classifier models by the supported 

evaluation metrics utilities. The reason of considering the Scikit-learn library as it has previously 

used in developing Machine Learning approaches and it enables for quicker implementation of the 

prototype programs [24. In terms of memory analysis, open-source Volatility library [4] that can 

be utilized as its python-based tool and most commonly used for analysing memory raw images 

and dumps and extracting artefacts. Some complexity expected from the utilizing the Volatility as 

library as not all plugin is fully supported, and it is important to consider the python build version 

when developing the tool as Volatility library is supported by python 2.7 version [41]. Another 

useful tool for memory acquisition and analysis is Rekall Forensic and Incident Response 

Framework which is also considerable for the project as it is python-based tool. In terms of the 

tool interface [30], python provides a built-in GUI library Tkinter that can be utilized for the tool 

interface implementation to have a better user graphical interface compare to traditional command 

line interface [38 ]. 
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2.7 Research Question 
 

What are the useful artefacts can be extracted from a compromised memory dump for any memory 

forensics investigation ? 

 

How does the Machine Learning approach would help in classifying extracted artefact log from 

memory dump and how does the approach resolve the problem of forensic backlog ? 
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Chapter 3 :Investigation and Analysis  

 

 

This chapter of the document details the prerequisite and environment setup, analysis techniques 

used to investigate and analyse a memory image for process-related artefacts that are likely to be 

hidden in a memory with consideration of other memory artefacts. In addition, the data collection 

approach for the Machine Learning models. 

 

3 Environmental Setup 
 

Prior to conducting the analysis and investigation procedure of the memory snapshots for artefacts, 

a Linux environment based Virtual Machine was prepared and installed as a forensics analysis 

platform to perform fair investigation and analysis of memory snapshots. The following section 

will detail the equipment and tool resources as well as the defined dataset of memory images that 

were utilized for conducting the investigation and analysis of memory image. 

 

3.1 Prerequisite 
 

Equipment and Setup: 

1. Lenovo G50-70 (15 inches, 2016)  

2. Host Operating System (Version: Windows 8.1, 64-bit, Build 9600 ,6.3.9600)  

3. Hardware Processing CPU Intel i7 -4510U @ 2.00GHz 2.60.GHz , RAM 12 GB 

4. VMware Workstation 15 Player (Version: 15.5.2 Build-15785246)  

1. Installed latest version of LinuxMint Mate (19.3) Operating system as Virtual 

Machine VM  

2. VM Specifications : 

▪ RAM Size = 2 GB 

▪ Internal Hard Disk 64 GB of free available space used  

3. Two most commonly used open-source Memory Forensics analysis and acquisition 

Toolkits were installed in VM: 

▪ Rekall-core 1.6 [30] utilized as decompressor for memory snapshots from .aff4 

format into memory images standard format .img.  
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▪ Volatility Framework with Windows 10 Memory Compression Version 2.6 

[40] is utilized to perform analysis and investigation of decompressed memory 

snapshots to retrieve useful artefacts and information and to execute outputs of 

memory artefact logs . 

 

Memory image dataset :  a research dataset was utilised for this project experimental study of 

analysing the process-related artefacts of memory image. The dataset consists of (4300 positive 

and 300 negatives) acquired realistic memory snapshots of an uncompromised and compromised 

Windows 10 virtual machines. Memory images were acquired using Rekall's WinPmem 

acquisition tool and were stored as compressed images in Advanced Forensics Format (AFF4). 

Briefly, The memory images were compromised using several malware based on obfuscation 

evasion techniques. All the datasets were collected between 2017 and 2019 at ST Engineering 

Electronics-SUTD Cyber Security Laboratory, Singapore University of Technology and Design in 

Singapore [32]. 

 

3.2 Analysis Approach 
 

Investigating a compromised memory image requires deep understanding of different memory 

forensics investigation and analysis techniques in order to uncover intrusion source with all 

associated artefacts. Despite the limited timeframe of the project, some areas of the investigation 

and analysis  of  a compromised  memory will be limited and will mainly focuses on the process 

related artefacts that could be found in a memory in order to identify memory’s process activities 

and behaviours as benign or malicious. Yet, the basic memory analysis methodology will be 

adapted as mentioned in the Background Search Chapter 2 as well as from the practical guide for 

conducting the analysis of a compromised memory image [13] . 

 

3.2.1 Acquisition of  a compromised memory image 
 

After a successful installation of compatible analysis resources of VM and memory analysis 

software Rekall and Volatility , a compromised sample of memory image from malicious dataset 

was downloaded then was decompressed using Rekall to acquire image (.img) format of the 

memory as shown in Figure 22. 
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Figure 22 Decompressing memory image using Rekall 

 

Once memory image was decompressed ,an md5 hash code is generated and associated with 

acquired memory image. Then, utilized  Volatility tool to process, analyse, and extract meta-

features and artefact logs from the volatile memory image. The further detailed analysis of 

compromised image and extracted artefacts will be presented in the following section as guided 

steps.The compromised  memory from positive/malicious dataset was randomly selected and 

utilized for the  analysis .The memory image file that was used  for the main analysis is snapshot-

alpha_mixed-1-meterpreter-reverse-tcp-2019-01-02_09-53-57.aff4  . 

 

 

 3.2.2 Main Analysis  
 

The main areas of analysis and investigation of compromised memory image is accomplished 

using Volatility Framework Tool and is summarised as follows: 

 

1. Create a data integrity hash code 

Initially to ensure that original memory is not altered during the analysis a md5sum hash 

file is created once the memory file is decompressed as acquired memory image and ready 

to be analysed as show in the in Figure 23 

 

 

 

Figure 23 md5sum hash for acquired memory image 
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2. Ensure to identify the raw memory OS profile prior the analysis of the artefacts [13].  

 

As initial step of memory investigation and analysis, the command imageinfo is utilized 

to determine the memory OS (operating system) and the profile system from which 

memory image was acquired with additional high level details of hardware architecture 

type and format of the memory system service pack. It is considered very important for 

memory analysts to select correct profile upon the analysis to determine if it was correctly 

acquired or is corrupted memory image [13].  

 

(NOTE: It is important to correctly input the memory profile as commands are case 

sensitive and may issue error. Additionally, specify the file location as the command will 

only work with files that are located in the appropriate directory as mentioned in the 

command and be Patience for the process to display the output ) [13]  

 

 
 

Figure 24 imageinfo output for compromised memory image 

 

3. Identify rouge and running process  

 

Number of plugins can be applied with Volatility command when examining memory 

process related artefacts and one of the main plugins is pslist, which is used to list running 

process and identify for any unusual and rouge running process [2] . 
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Figure 25 pslist output of compromised memory image 

 

As to Figure 25, it presents the high level of the running process of both system and non-

system application with memory Virtual Address offset (also in Physical Address Offset  

with parameter when using command ), Process ID and name, handles and threads, session 

and start time. PID is important to consider during the analysis to suspect any suspicious 

process.  As further analysis can be investigated related to a suspicious process in terms of 

related running process, dlls and other artefacts are linked mostly with PID and their offset 

processing locations in the memory. One of the disadvantages of pslist plugin is that it does 

not provide any details of any hidden or previously terminated processes [13][2].  

 

In addition, the process can be either inactive or active as certain processes can be hidden 

and are not always presented in pslist or pstree , theses can be revealed using psscan to 

display previously terminated (inactive) processes and hidden or unlinked by a rootkit 

running processes as well as using psxview [18][2] 

 

 
 

Figure 26 pstree output of compromised memory image 
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pstree log,  does provides useful insights about the processes hierarchy to determine and 

reveal related processes and their relationships [2] as Figure 26. 

  

 
 

Figure 27 psscan output of compromised memory image 

 

psscan log, lists processes (PID) with parent process ID and scans for additional processes 

in the system that might to hidden or terminated [2] as shown in Figure 27. 

 

psxview log, also list processes that can be hidden while running on the memory where it 

displays as cross-view for running process and hidden process which includes pslist and 

psscan [2] . 

 

 
 

Figure 28 psxview output of compromised memory image 
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psxview is consist of  following useful attributes related to running process in the system 

as cross-validation view : 

• pslist 

• psscan  

• thrdproc, Thread scanning and it essential for every process to have at least one active 

thread. As if process manipulated with a rootkit and process tries to be hidden it is 

process’ pool scans the for the process threads [2]. 

• CSRSS handle table, it is a critical system process description and represents the 

creation of every process and thread [2] . 

• Pspcid table: This is a special handle table located in kernel memory that stores a 

reference to all active process and thread objects [2] 

• Session processes: represents associates all processes that belong to a particular user’s 

logon session [2].  

• Desktop threads: represents the threads attached to each desktop process [2]. 

 

4. Analyse suspected process and related process artefacts 

 

From an analyst’s point of view any process noticed as suspicious would require further 

analysis. The following plugins were used for further analysis of a suspected process using 

PID to reveal different artefacts as network artefacts, code injections, rootkits . Almost all 

process-related plugins perform with a –OFFSET and -p/--PID parameter that allow to 

track and uncover hidden and malicious suspected processes locations.  

 

After the reviewing the pslist, psscan, pstree plugin output, the following lists created was 

of running process in memory that are divided in order to distinguish process as 

Application process and related System process.  

 

Application process  

 

▪ OneDrive.exe, 

▪ winpmem-2.1.po – memory acquisition tool 

▪ cmd.exe – command line prompt 

▪ SkypeBackgroun 
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▪ SkypeApp.exe 

▪ VBoxService.ex 

▪ OfficeHubTaskH 

▪ Payload-x86-al – unknown 

 

System Services, Processes and Applications  [42][43] 

 

▪ Critical System Process [2] 

o System,svchost.exe,services.exe,lsass.exe ,explorer.exe ,winlogon.exe 

▪ smss.exe - Session Manager Subsystem, System file 

▪ Registry - System file 

▪ winint.exe - Windows Initialize , System file 

▪ fontdrvhost.exe -  Usermode Font Driver Host , System file 

▪ dwm.exe - Desktop Windows Manager, System file 

▪ spoolsv.exe - Spooler Service, System files 

▪ SecurityHealth - Windows Security System file 

▪ MemCompression - Memory Compression, System file 

▪ MsMpEng.exe - Microsoft Malware Protection Engine, System protection file 

▪ dasHost.exe - Device Association Host, System file 

▪ sihost.exe - Shell Infrastructure Host, System file 

▪ userint.exe - User Initialization, System file 

▪ ctfmon.exe - Text input service support, System file 

▪ taskhostw.exe - Tasks Host for Windows, System file 

▪ SearchIndexer - Indexeur Microsoft Windows Search, System file 

▪ cohost.exe -Console Application Host, System file 

▪ audiodg.exe - Windows Audio Device Graph Isolation, System file 

▪ WmiPrvSE.exe -Windows Management Instrumentation Provider Host Service, 

System file 

▪ NisSrv.exe - Network Realtime Inspection Service, System protection file 

▪ MSASCuiL.exe, Microsoft Antivirus Security Centre User Interface Logo, 

system protection file 
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▪ RuntimeBroker - Permissions manager for the Windows Store, System file 

▪ SgrmBroker.exe - System Guard Runtime Monitor Broker Service , System file 

▪ Shellexperience - Application Frame Host, System file 

▪ dllhost.exe - Dynamic Link Library Host, System file 

▪ SerachUI.exe - Search User Interface , System file 

▪ smartscreen.exe - Antimalware and anti-phishing , System file 

▪ sedsvc.exe - Windows Remediation Service,System update file 

▪ wuauclt.exe - Windows Update AutoUpdate Client ,System update file 

▪ SearchFilterHo - Windows Search Indexer, System file 

▪ SearchProtocol - Windows Search Protocol Host, System file 

▪ AM_DELTA_Patch - Anti-Malware Signature Delta Update Package , System 

file 

▪ MpSigStub.exe - Microsoft Protection Signature Stub , System Update file 

 

The initial indication of a compromised memory image is expected to be infected with a 

malware is that the System Protection and Anti-malware files are appeared to be disabled 

or terminated in the system as of the Exit Time as well the attributes as shown in Figure 

29. 

  

 

 

Figure 29 pslist output : System Protection and Anti-malware processes 

 

 

 

Figure 30 pstree output : System Protection and Anti-malware processes 
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5. Suspected process to be analysed are the following process as to the pstree plugin : 

  

After acknowledging the system protection files ,considerably cmd .exe process is noticed 

as a suspected process to look at in memory image along with other unknow processes  as 

payload-x86-al . cmd.exe is commonly observed as a starter point for initializing malicious 

activities or suspicious activation commands  

 

 

Figure 31 pstree output for  suspected process 

pstree was used to display the parent process related to suspicious processes, to identify 

the suspicious source . In our case, explorer.exe represents the main parent process PPID 

of the suspected processes of cmd.exe and payload-x86-al. Therefore, to suspect these 

related processes the cmdscan and consoles plugins were used to reveal for any last 

commands and  command history of cmd.exe process. The following displayed figure 

shows that these commands are not supported for the memory image OS profile without 

executing any error message Figure 32.  

 

 
 

Figure 32 cmdscan and consoles command output 

 

Another command-line related plugin cmdline was available to be utilized that displays 

process command-line arguments and it did provide interesting information of the 

suspected processes as details of where is process is running from with PID as shown in 
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Figure 33. Notice the process ( PID  48888 ) with a directory named malware fat rat and it 

consists of executable file. This clearly shows that the memory is compromised with a 

malware through the executable payload-x86-al file. Two further plugins were used to 

detect signs of a malicious activities in the compromised memory with regards to the 

suspected process 4888. 

 

 
 

Figure 33 cmdline command output 

 

6. Sign of Code injection  

 

As we have identified malware executable file, the following malfind plugin is used to 

lookup for infected areas and dumps out areas for signs of code injection for the given PID 

of the suspected process ,the plugin executed 18 memory dump sections. Later the 

extracted dumps were scanned using the virus total in order to reveal information about the 

code injection and malwares and the whole process of  plugin scan for memory , dumping 

and scanning against the  malware detector took about more than 1 hour , all the steps are 

presented by Figure 34-39.  
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Figure 34 malfind output for compromised memory image 

 

 
 

Figure 35 Virus Total  scanning for malwares 
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Figure 36 scanning a clean memory dump from compromised memory image 

 

 
 

Figure 37 memory dump scan result of Virustotal 
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Figure 38 scanning other memory dumps from compromised memory image 

 

 
 

Figure 39 last memory dump scan result from Virustotal 

 

7. Sign of Rootkits 

 

In addition, psxview plugin used as to detect for sign of rootkits and for other hidden 

processes. It showed the suspected process as normal running process but the psxview log 

reveals some additional processes are that hidden and existed process compare to pslist. 
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Figure 40 psxview output : initial suspected process from pslist 

 

 
 

Figure 41 psxview output : reveal hidden process 

It appears that some system security services as AM_DELTA_Patch and SmartScreen are  

being terminated and being as hidden process as previously acknowledged about certain 

system protection processes were disabled. In addition, some more suspected processes are 

revealed that appears to be hidden but in active state running the memory. These additional 

processes indicate as suspicious and malicious as their behavior of hiding themselves  

through the false values across the attributes while being active. This would require more 

memory dumps extraction for each of the hidden process for deep analysis and malware 

detection . 

 

The further extraction of the suspected processes and hidden active artefacts existed in the 

physical memory is achievable by given the PID though utilizing the following Extraction 

of Process, driver, and objects plugin: 

 

• procdumps checks for the executable dumps that can be extracted 

• dlldumps for suspected dlls to be extracted 

• moddump for the suspected kernel drivers 
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• memdump for extracting the physical memory section  with mapping of 

physical and virtual addresses of areas where the suspected processes 

running 

 

The area of extraction plugins was not utilized as part of the analysis as it requires deep 

analysis and malware scan for each extracted memory dump artefact and space to store 

extraction. Hence, it is considered as further analysis of section once the memory is 

identified as malicious. 

 

Once the analysis of compromised memory was completed a Md5um is checked to ensure 

the data integrity as shown in Figure 42. 

 

 

 

Figure 42 Verified md5sum after analysis for compromised memory image 

 

 

3.2.3  Analysis of uncompromised image  
 

In addition, another analysis was carried out for uncompromised memory image in order 

understand the behaviors of process in a clean normal memory image. A negative image file was 

utilized was snapshot-2017-12-11_21-38-20.aff4 , with similar analysis steps were followed but 

mainly centered analyse the pslist and psxview artefact logs as presented in Figure 43-44. 
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Figure 43 pslist output of uncompromised memory image 

 

 
 

Figure 44 psxview output for uncompromised memory image 

 

In comparison to the compromised image that the uncompromised image has normal system 

running application and service process and only one terminated and unlinked process which is 

considered to be as clean process as memory image is already labeled benign and does not required 

for further analysis. 
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3.3 Analysis Findings  
 

Hence, to avoid the reaching to the conclusion of dumping all the considerable infected areas of 

physical memory dumps using the suspected hidden process PIDs and scanning against the 

Virustotal or any Malware Detector to reveal whether these memory processes are malicious and 

consist of malwares or code injections is time consuming as these steps require a scanning all 

extracted dumps in which some dumps are resulted as cleaned dumps. Also, it requires additional 

space to store all extracted dumps of the suspected processes in which some of cleaned dump 

sections are ineffective to be stored. 

 

3.3.1 Feature Selection 
 

 

Although malfind and psxview are two main plugins that can be used to detect signs of malicious 

activities from simple analysis of a compromised image other than the pslist and psscan that are 

used to identify the unknow processes for the initial analysis. Hence, that malfind is a useful for 

the extraction of the code injection signs but not the main source of the code injection dump output 

as one dump and also malfind artefact log requires understanding of the low-level memory 

structure compare to psxview log artefact which is high level.  

 

1. Psxview can give some hints of any process trying to duplicate system files when running 

as process as it reveals all process including system related process is that trying to be 

appeared as hidden while being an active process. As some artefacts can disguise a system 

process in number of ways; but it is important to distinguish essential system processes of 

actual machine and consider their reserved area of processing that should not be involved 

with other non-systemic processing files. As certain system files run as one process but 

with multiple services as process, dlls, threads and handles.  

 

2. With consideration of psxview artefact log to be utilized for applying the machine learning 

approach. As the Volatility Framework plugin does provides outputs for artefacts in some 

formats that are xlxs, text , html and json but not all plugins support all of the formats. But, 

in terms of psxview log is obtainable and as machine learning approaches the .xlsx format 

is easily readable and manageable format.  Additionally, the obtainable logs psxview is 
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considered to require less pre-processing as most of its attribute features are categorical 

and numerical that can be prepared and preprocessed to be used for machine learning. 

 

3. Psxview log is useful as it has a high-level cross validation data that helps to understand 

and identify for the hidden process behaviours. 

 

4. All attribute features of the psxview artefact log excluding the Exit time attribute are 

considered as often terminated process still remains in the system. In addition, the defined 

attributes are considered for identifying a process as hidden or unhidden as if any attribute 

showed false indicates that the process is  missing. Besides, comparing the pattern of the 

system process behavior from the psxview , that is distinguished and revealed from analysis 

of both malicious and begin memory image  that  the clean memory image of benign 

processes are consist of false values for the deskthrd attribute comparing to the 

compromised memory image processes which consist of both false and true in deskthrd . 

 

3.4 Data Collection  
 

As the requirement of the Machine learning of the training and testing data a dataset will be created 

using a collection of extracted psxview logs from the memory image dataset. Number of the 

memory images were downloaded from the defined dataset and each of the malicious and benign 

memory images were stored in separate folder to distinguish prior creating the dataset for labelling 

them as positive and negative. There was no automation process for the extracting logs from all 

memory image dataset at once it required manual process which includes downloading, 

decompressing each image using Rekall, and then extracting directly the psxview log pull-outs 

and storing as .xlxs using the Volatility Framework. After all pull-out were extracted an archived 

folder was created with md5sum to ensure the originality of psxview logs dataset. 

 

In order to have useful insights and results about 20 positive memory images were randomly 

download from the dataset which consist of 3 different groups of compromised images with 

different techniques and 20 negative  memory images were download randomly from the benign 

dataset. Despite 40 images were used as each of downloaded memory image sized around 698MB 

to 1.3 GB and decompressed acquired memory image sized around 4.2-5 GB. 
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3.4.1 Creating Dataset  

 

In order to create the pre-processed dataset using the extracted psxview logs , a programming 

approach will be utilized using the python programming language to implement a specialized tool 

that will allow importing and creating dataset for the raw psxview logs. The further details will be 

described in the next Chapter  4 Design and Specification. 

 

 

The tables Table 1 and Table 2, presents the downloaded images of both negative and positive 

memory images  with their extracted psxview logs that were utilized to create the dataset with. 

 

Original Filename Extracted image filename Log output as xlxs 

snapshot-2017-12-11_21-38-20.aff4 neg1 psx_neg1 

snapshot-2017-12-13_11-44-49.aff4 neg2 psx_neg2 

snapshot-2017-12-13_10-45-52.aff4 neg3 psx_neg3 

snapshot-2017-12-12_15-23-26.aff4 neg4 psx_neg4 

snapshot-2017-12-12_15-39-17.aff4 neg5 psx_neg5 

snapshot-2017-12-12_15-43-44.aff4 neg6 psx_neg6 

snapshot-2017-12-13_14-15-4.aff4 neg7 psx_neg7 

snapshot-2017-12-13_15-33-14.aff4 neg8 psx_neg8 

snapshot-2017-12-13_16-7-32.aff4 neg9 psx_neg9 

snapshot-2017-12-13_11-21-50.aff4 neg10 psx_neg10 

snapshot-2017-12-13_12-35-7.aff4 neg11 psx_neg11 

snapshot-2017-12-13_14-31-2.aff4 neg12 psx_neg12 

snapshot-2017-12-13_14-33-39.aff4 neg13 psx_neg13 

snapshot-2017-12-13_15-51-27.aff4 neg14 psx_neg14 

snapshot-2017-12-13_15-56-1.aff4 neg15 psx_neg15 

snapshot-2017-12-12_17-38-2.aff4 neg16 psx_neg16 

snapshot-2017-12-13_11-28-37.aff4 neg17 psx_neg17 

snapshot-2017-12-13_13-31-10.aff4 neg18 psx_neg18 
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snapshot-2017-12-14_12-42-41.aff4 neg19 psx_neg19 

snapshot-2017-12-14_14-49-33.aff4 neg20 psx_neg20 

 

Table 1 Downloaded Benign memory images 

 

Original Filename 
Extracted image filename 

(.img) 
Log output (.xlsx) 

snapshot-alpha_mixed-1-meterpreter-

reverse-tcp-2019-01-02_09-53-57.aff4 
pos1 psx_pos1 

snapshot-alpha_mixed-1-meterpreter-

reverse-tcp-2019-01-02_09-55-37.aff4 
pos2 psx_pos2 

snapshot-alpha_mixed-6-meterpreter-

reverse-tcp-2019-01-02_12-10-56.aff4 
pos3 psx_pos3 

snapshot-alpha_upper-3-meterpreter-

reverse-tcp-2019-01-03_10-14-33.aff4 
pos4 psx_pos4 

snapshot-alpha_upper-4-meterpreter-

reverse-tcp-2019-01-03_10-41-34.aff4 
pos5 psx_pos5 

snapshot-hyperionPesScrmbler-

alpha_mixed-1-meterpreter-reverse-tcp-

2019-02-25_09-27-58.aff4 

pos6 psx_pos6 

snapshot-hyperionPesScrmbler-

alpha_mixed-1-meterpreter-reverse-tcp-

2019-02-25_09-29-25.aff4 

pos7 psx_pos7 

snapshot-hyperionPesScrmbler-

alpha_mixed-4-meterpreter-reverse-tcp-

2019-02-25_10-15-33.aff4 

pos8 psx_pos8 

snapshot-hyperionPesScrmbler-

alpha_upper-2-meterpreter-reverse-tcp-

2019-02-25_13-23-6.aff4 

pos9 psx_pos9 

snapshot-hyperionPesScrmbler-bloxor-1-

meterpreter-reverse-tcp-2019-02-26_09-

36-5.aff4 

pos10 psx_pos10 
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snapshot-shellter-payload-alpha_mixed-1-

meterpreter-reverse-tcp-2019-01-29_16-0-

16.aff4 

pos11 psx_pos11 

snapshot-shellter-payload-alpha_mixed-1-

meterpreter-reverse-tcp-2019-01-29_16-2-

35.aff4 

pos12 psx_pos12 

snapshot-shellter-payload-alpha_mixed-5-

meterpreter-reverse-tcp-2019-01-30_12-

27-0.aff4 

pos13 psx_pos13 

snapshot-shellter-payload-alpha_mixed-8-

meterpreter-reverse-tcp-2019-01-30_14-8-

40.aff4 

pos14 psx_pos14 

snapshot-shellter-payload-cmd-brace-3-

meterpreter-reverse-tcp-2019-01-15_09-

50-28.aff4 

pos15 psx_pos15 

snapshot-alpha_upper-1-meterpreter-

reverse-tcp-2019-01-02_15-55-2.aff4 
pos16 psx_pos16 

snapshot-hyperionPesScrmbler-

alpha_upper-3-meterpreter-reverse-tcp-

2019-02-25_13-45-22.aff4 

pos17 psx_pos17 

snapshot-shellter-payload-alpha_upper-3-

meterpreter-reverse-tcp-2019-01-30_15-

23-9.aff4 

pos18 psx_pos18 

snapshot-call4_dword_xor-2-meterpreter-

reverse-tcp-2019-01-07_10-37-34.aff4 
pos19 psx_pos19 

snapshot-cmd-generic_sh-1-meterpreter-

reverse-tcp-2018-12-13_12-31-17.aff4 
pos20 psx_pos20 

 

Table 2 Downloaded Malicious memory images 
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3.5 Conclusion 
 

 

Overall, the analysis was focused on more process related artefacts that can be used to identify 

suspicious process and use plugins that can reveal some signs of malicious activities in a 

compromised images. Despite there are other areas of  where artefacts of the process-related logs 

are obtainable through the extraction, but it is best to extract artefacts when a memory identified 

as malicious. The Volatility Framework does allow extraction and inspection using main 

parameters of the malicious process which are PID and offset address as these allow to locate any 

infected source that resident in physical memory sections with executables for the identified 

suspicious process. In terms of the artefact log that can be utilized to apply the machine learning 

approach is the psxview.as it provide more context of the running process as active and inactive 

state with sign of  process behaviors including behavior detection of rootkits that includes signs of 

malwares behavior. Therefore, the main finding of this analysis was to reveal an artefact that can 

be used to identify memory as benign and malicious and used to apply in machine learning model.  
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Chapter 4 : Specification and Design  

 

This chapter of the document outlines an implementation and design structure of the classifier tool 

to be developed, including initial design specification, system requirements and development 

strategy.  

 

4 Tool Requirements  
 

As a basic principle of any development of a software or tool a set of functional and non-functional 

requirements are produced prior the programming and implementation of the software. These 

specified requirements are beneficial to develop the tool in a proper direction and flow to produce 

a tangible working product.  

 

 

4.1 Functional Requirements  
 

The main functional specifications and sub requirement components of the developing tool are 

described as the following list: 

 

4.1.2 Data Collection and Pre-processing requirement specification : 

The tool system must have a feature that allows the importing and loading data from the raw 

artefact log files from user input with their labels to create a preprocessed dataset to be used for 

training and testing the classification models. 

 

1. The system must be able to obtain all raw logs files data directly from user input for 

the specified labeled directories 

2. The system selects the required features and labels the raw data based on their obtained 

and specified labeled directories   

3. The system creates a dataset by merging and preprocessing the labelled raw data  

4. The system outputs a preprocessed dataset in an appropriate format to be used for the 

Machine Learning Classification models. 
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4.1.3   Machine Learning Classification requirement specification: 
 

The tool system must have a feature to import and load processed data from the preprocessed 

dataset file that is provided by user input for training and testing the Machine Learning 

Classification models. 

 

1. The system must be able to load and read processed data from the dataset file from user 

input by providing the dataset location directory path 

2. The system should define and set the features and labels of the imported dataset 

3. The system should have the best performing Machine Learning classification model  

3.2 Develop and create Machine learning models using different classification 

algorithms which are Random Forest , Decision trees, Neural Network , Naïve 

Bayes, Support Vector Machines. 

3.3 Train, test and evaluate each model and select best performing classification 

model 

4. The system is able to train the selected classification model with provided dataset 

5. The system is able to test the selected classification model to predict and classify 

unseen data  

6. The system should be able to provide an output of a classification document of trained 

and tested model with prediction outcomes. 

 

Some additional functional requirements for the tool if time permitted: 

 

1. Provide a feature that allow a system to output a short summary that categories and sort 

memory dump for investigation  via weighting number of benign and malicious process 

existed in a memory log artefact. 

2. Provide a feature that allows to import and load data directly from the raw memory 

dump from the user input with their label to extract a preprocessed log file to test against 

trained Machine Leaning classification model. 

3. Provide a feature that allows system to save and load the trained classification models 

for testing model with unseen log. 
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4.2  Non-Functional Requirements  
 

The non-functional specifications of the developing tool are described in the following list: 

 

✓ Usability  

• A Graphical User Interface will be developed that will allow ease for user 

interaction with the system. 

✓ Reusability 

• The tool will be implemented as simple program that can be reusable in another 

system. 

✓ Reliability 

• The tool will be performing the system functions without any expected failures or 

errors. 

✓ Speed and Performance  

• the process of data collection, preprocessing  and outputting dataset should be fairly 

quick as well as training and testing the model should be fast with results output 

and files 

 

4.3 System Implementation Architecture  
 

The system will be implemented as two separate program interface prototypes. The main reason 

of dividing the system implementation is mainly to avoid the complexity and allow handlining any 

modification easily for performing a direct specified task. In addition, this implementation 

architecture considered to be as suitable approach with consideration of the project time frame. 

Therefore, as the requirement of the dataset to train and test the ML model a Data Collection and 

Pre-processing tool will be developed. This tool will be used in order to automate the process of 

the data collection and preprocessing to provide a preprocessed dataset with labels. The second 

tool that will be developed as Classifier, where best performing classification Machine Learning 

model will be implemented, and tool classification model will be supplied with processed dataset 

to train the model and test model for the classification document outcome .  
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System Structure will be based on following two separate units:  

 

1. Data collection and Preprocessing  - mainly responsible to create a preprocessed 

dataset with labels 

2. Machine Learning Classifier – mainly responsible to train the model with selected 

features and training dataset and test unseen data with classification trained model. 

 

4.3.1 System Design  
 

In order to understand the implementation structure and behavior of the developing system, a 

software design modelling solution Unified Modelling Language (UML) diagram is used. This 

approach helps developers to visualise the design architecture of the program prototype and 

understand the context of the program functionality. In addition, UML diagrams drive the 

implementation and assist developers in implementing the system requirements. Therefore , an 

Use case Diagram is created  for the Classifier tool to understand the behavior interaction between 

the user and system as well as system actions that holds the functional requirements and is shown 

below Figure 45 -46. 

 

4.3.2 Use Case  Diagram: 
 

 

 

Figure 45 Use Case : Data collection and Pre-processing tool 
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Figure 46 Use Case : Classification tool 

 

 
4.4 Tool Development Methodology  
 

To deliver a working prototype program of the tools, a development strategy has been set out for 

the implementation and testing of the tools with consideration of timeframe of the project. The 

tools will be developed following the Agile Software Development Methodology. This strategy 

allows dividing the project tasks into smaller increments to deliver a tool feature iteratively. Once 

each of the project increments or iterations are completed then easily combined and presented to 

the customer as a working product. The main reasons of adapting this development strategy for 

the project is that Agile methodology allows continues milestone deliverables of the tool 

requirements as well as easy to handle any changes to the tool requirements at the start or during 

the implementation phase and even later stage of the development without effecting other 

operating functions of the tool. As this project initial tools, the functional specifications are 

expected for alteration and modification as it depended on the analysis and data collection phase 

before the implementation phase. Also, this methodology allows flexibility to the development 
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process as it allows to prioritize in delivering tool functional requirements to have at least a 

working prototype that provides initial results if not fully functional. Besides, presenting a working 

prototype to the customer allows to receive feedback for improvement to achieve optimal project 

results. Therefore, this project will have three main four iterations to develop the prototype tools 

as following:  

 

• 1st iteration:  the implementation of tool for the data collection and preprocessing  

functions which includes loading memory dump’s log artefacts and executing preprocessed 

log file.  

 

o Deliverable :Labeled processed dataset and logs files with Name encoded labels 

 

• 2nd iteration: pre-modelling of the different Machine Leaning Classifiers using the 

different classification algorithms of  Machine Leaning .  

 

o Deliverable : pre-processed dataset and at least 5 models to be developed  

 

• 3rd iteration: train, test and evaluate the Machine Learning Classifiers with preprocessed 

dataset 

o Deliverable :Evaluation and predication outcome documents of each Machine 

Learning Classifier  

 

• 4th iteration:  developing Classifier Interface with best performing Machine Learning 

Classifier 

o Deliverable : Desired functional requirements and improve tool usability and 

improve user interaction 
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Chapter 5: Implementation 

 

This section of the document will details the implementation of the tools including the main 

implementation code of data collection and preprocessing, Machine Learning models and 

Classifier with regards to used programming tools. 

 

Constraints 

 

The time constraint and challenges of this university project has impacted and limited the 

implementation of the tool desired functional requirements and specification. The initial 

requirements of the tool are prioritized for the implementation and the tool will be developed as a 

working prototype following a simple implementation method. 

 

 

5.1 Overview 
 

The main implementation of the prototype tool is divided into two separate interface 

implementation and development and are presented in the list below :  

 

1. Data Collection and Preprocessing Graphical User Interface implementation, mainly 

responsible for importing, loading, and preprocessing the raw data of psxview logs and 

creating a validated preprocessed labeled dataset file as csv. In addition, all the input raw 

logs are collected from the user input specified labeled directories "data-input"  .Also, the 

output dataset is saved and stored within a directory called "data-output" that is held in 

Data Collection and Preprocessing directory. 

 

2. Different Machine Learning Classification Models were implemented and developed as 

simple python scripts in order to train, test and evaluate for best performing model for the 

classification of the given dataset. Classification models that were developed :Random 

Forest , Decision trees, Neural Network , Naïve Bayes, Support Vector Machines. Each of 

these models provides a report as text file which includes the evaluation and performance 

metrics and prediction outcomes of the model for given dataset. 
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3. Classifier Graphical User Interface implementation, mainly responsible for importing 

processed dataset, training the model, testing, and classifying unseen data. In addition, this 

implementation includes the development of the best performing Machine Learning 

classification model that is used as memory classifier. 

 

5.2 Data Collection and Pre-processing Interface 
 

The initial approaches towards the development of machine learning models is collecting and 

importing the data with their labels. Thus, a prototype tool is implemented to load the raw psxview 

log data from two specified directories from user input. Each importing data directory is a label 

for the data obtained. 

 

5.2.1 Importing and Loading the Data  
 

Data Collection and Preprocessing module is initialized as GUI interface userwindow.mainloop(), 

using the python built in library tkinter .The interface is consist of main functions of taking user 

input for importing malicious and benign of raw psxview artefact data . 

  

 
 

Figure 47 - Data Collection and Pre-processing Interface 

 

The library tkinter provides useful function of asking user for the selecting the directories. Once 

the user selects the directories of where labeled raw artefact logs are located, the paths for each of 

these directories are collected as global variable by two functions select_N_folder() and 

select_N_folder(). 
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Figure 48 select_N_folder() 

 

 
 

Figure 49 select_N_folder() 

 

Next, functions load_pos_data(pos_dir_path)  is called. This function takes the directory path of 

that holds the positive/malicious raw psxview log and uses python built-in function oslistdir(), 

returns a list of all the excel files of .xlxs extension in selected directory and append these files 

with their path into listfile_in_dir[] .To ensure that data read as excel file structure, the required 

libraries pandas and xlrd were imported. Once all files paths are loaded and stored in listfile_in_dir, 

an empty dataframe is initialized and created to load, read, and store the data from each of these 

imported files and then added to dataframe by loop as shown in Figure 50. 

 

 As to cleanse the raw dataset from unnecessary data and useless features that are not be utilized 

for modelling are eliminated. In our case, the last column is dropped ( Exit Time ) and added a 

new label column for the raw data classification ( Class ). For malicious imported files are labeled 

with as 1 as they imported from positive directory. A similar function is implemented called 

load_neg_data (neg_dir_path), for the benign files as they are labeled with 0 as they are imported 

from the negative directory. Each of these functions return a positive dataframe called pdf  and 

negative dataframe called ndf . 
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Figure 50 load_pos_data()  load_neg_data() 

 

 

5.2.2 Data Pre-processing  
 

In order to process data for machine learning model for the training, testing and the classifier 

operations, the raw data should be in a numerical values and formats as strings and categorical 

data are useless to Machine Learning models. 

 

Function data_pre(pos_dir_path, neg_dir_path) is implemented to merge using the function 

concat() for both benign and malicious log dataframe as one dataset and return a pre-partial 

processed dataset as data. The dataframe rows are randomized using shuffle() from sklearn.utils 
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and  rest index to create a standard format of dataset for Machine Learning models without the 

order pattern of classification labels. For the accessibility of the column names of dataframe, 

(Offset (P) ) column is renamed to (Physical_Offset) and the values of this column are converted 

using python built in function of converting hex values in decimal values using lambda and int., 

In addition, as most of the dataset features contain categorical data, the dataframe columns of 

categorical data of True and False are mapped as 1 and 0 Boolean values. Additionally, PID 

numerical column, is also transferred as Boolean values as this feature is used to identify whether 

there is any null values or values less than 1 for the process ID.  

 

 

Figure 51 data_prep() 
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labelName(pos_dir_path,neg_dir_path), function used to fill null values as null string and encode 

the strings of the ( Name ) column into numerical labels, which is Process Name string that are 

encoded with number labels. The preprocessing function Label Encode() and fit.transform is 

utilized from sklearn library .In addition, the function also fills null values as null string using 

fillna method and at the end the function returns a fully processed dataset with encoded process 

name labels. 

 

 

 

Figure 52 labelName() 

 

The last function is the save_data(pos_dir_path,neg_dir_path) , which execute two csv output 

files that are the preprocessed dataset and the other file is consist of the encodings of the Name 

column and the encoded numerical values to be used later for identify Process Name. Once the 

function save_data(pos_dir_path,neg_dir_path) is called after the user selects directories it run all 

the functions and save the outputs of the dataframe as .csv file in the “test folder” via the absolute 

path for the directory. 
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Figure 53 save_data() 

5.2.3 Machine Learning Classification Models 
 

Five different types of machine learning classifier models were developed using classification 

algorithms imported from Scikitlearn classifier library which includes Random Forest , Decision 

trees, Neural Network , Naïve Bayes, Support Vector Machines. Each of these models are 

constructed as simple python program and as initial development for the classifier models. The 

main aim of these models to be developed is to evaluate the performance of the machine learning 

classification models against the dataset.  

 

Each of the models, have a similar implementation pattern that consist of a main function 

load_data(filename), that intakes user input to import a processed dataset using dataset location 

path via the function input() .The program only accepts csv file as the program will read the 

imported file as csv using the pandas and creates a dataframe called dataset with assigned column 

names and return dataset. 
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Figure 54 load_data() 

The dataset passed is to following function which is the set_feature(filename). This function sets 

the dataset as array and sets the features and the target selection of the dataset. All of the first 

features ['Physical_Offset', 'Name', 'PID', 'pslist',' psscan', 'thrdproc', 'pspcid', 'csrss', 'session', 

'deskthrd' ] from  dataset are considered and the last column of the [Class] is used as target to 

classify features against it. As function set_feature(filename) is called it will execute two variables 

that are the features and labels of the dataset. 

 

 
 

Figure 55 set_features() 

 

As one of the machine learning model requirements is to fit model with training and testing dataset. 

Therefore, a common method of data splitting is utilized from the Scikit-learn library which is 

train_test_split() to split dataset features and labels into two subsets that are training, and testing 

dataset. The portion of the dataset split is based on the test size parameter of the function which is 

set as 70% for training and 30% for testing and this split is used as standard split of machine 

learning models to avoid the overfitting and modelling error.  

 

The training subset of features are used to train the model with their labels  and the testing subset 

features are used to test against trained model for model prediction outcomes for the labels. Once 
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the dataset is split , the model is initialized as function for classification algorithms as SVC() and 

then assigned variables of the training set are passed to fit and train the model and predication 

outcomes of unseen testing set against the trained model predict() is used with the testing set the 

assigned variables are passed as parameter to fit model. 

 

 

 
 

Figure 56 initialize machine learning model 

And this part of the program implementation consists of executing an output of document .text file 

using the open() with text parameter. The executed .text document includes the evaluation results 

of the training model and evaluation of testing unseen set against trained model with evaluation 

metrics of the Machine Learning models as mentioned in background. Scikit-learn metric library 

was utilized to import the evaluation metrics function s which includes  Accuracy, Precision, and 

Recall ,Confusion Matrix, classification report. The list below shows the evaluation metric with 

the function used from Scikit-learn and Figure 57 shows how they called in the code 
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Figure 57 evaluation metrics and output functions for Classifier Model 

Other classification models are based on similar implementation, but they consist of different 

classification algorithm function as  MLPClassifier(), RandomForesetClassifier(), 

DecisionTreeClassifier() and GaussianNB(). 

 

5.3 Machine Learning Classification Interface 
 

After the implementation and evaluation of the different Machine learning models for the best 

performing classification model the following Interface is developed as Classifier. The evaluation 

and results outcome of the different models as classifiers are discussed in the Chapter 7 Results 

of this document. 
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This interface consists of the implementation of the main functions of importing processed dataset 

and provides classification outcomes of the training dataset and prediction outcome of unseen 

dataset against the trained model as document text file and a visual diagram of the classification. 

 

 

 

 

Figure 58 Classifier Prototype Tool Interface 

 

The Classifier interface is initialized with userwindow.mainloop(), The main function of this 

Classifier is the importing the dataset using the getCSV (), where a small prompt will be displayed 

to the user to select the preprocessed .csv file.  

 

 

Figure 59 getCSV () 
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Once the preprocessed dataset is imported the tool will run through the functions set_feature() for 

setting the features and target. Then function classify(), split dataset into train and test sets as 80 

% for training and 20%  testing and fit to the Random Forest Model to output the document of the 

classification. The Classier tool implementation is based on the Machine Learning Random Forest 

Classier Algorithm with similar implementation pattern as shown in Figure 60.  

 

 
 

Figure 60 classify () 

Once the output document text file is created a notification will be displayed and a visual diagram 

is also displayed a function visualizer () was utilized from the yellowbrick.classifier library. 

 

 
 

Figure 61 Visualizer 
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Chapter 6: Testing  

 

 

This section of the document consists of the testcases that were used to test the prototype tools in 

order to test if they consist the main functional requirements as mentioned in design and 

specification. Each testcase is tested on Host Machine Windows 8.1 Operating System and using 

the command line prompt to run the prototype tools and  for the initial machine learning scripts. 

 

Test Case Id: A1 

Test Case 

Tittle 
Create Processed Dataset 

Precondition  Extracted psxview raw logs from malicious and benign memory images are 

placed in separate directories as positive and negative directories 

Test Case 

Description 

Importing, loading raw psxview logs and output a preprocessed dataset as 

Testdataset.csv file 

Test Case  

Steps:  

 
 

1. User need to select a malicious/positive directory that consist of 

malicious/positive psxview logs to be imported   

2. A small prompt will open that allow user to navigate and browse to 

select the desired directory 

3. User need to select a benign/negative directory that consist of 

benign/negative psxview logs to be imported   

4. A small prompt will open that allow user to navigate and browse to 

select the desired directory 

5. Once the correct directories inputted the user need to exit the interface 

6. The output file is saved locally in predefined directory. 

Test Case Outcome: Preprocessed Dataset 

Test Case Passed with mentioned sequenced steps 

Related Test : - 
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Table 3 Test Case ID:  A1 Creating Processed Dataset 

 

Test Case Id: A2 

Test Case 

Tittle 
Support Vector Classifier 

Precondition  Must have a previously created preprocessed dataset 

Test Case 

Description 

Importing a preprocessed dataset and provide classification document and 

predication outcome of the training and testing data 

Test Case  

Steps:  

 

 

  

1. User need to provide a preprocessed dataset csv file path to be imported  

2. Once the correct csv file is imported the program appends evaluation 

and classification results to a text file  

3. The output file is saved in the directory 

Test Case Outcome : Classification and predication outcome document  

Related Test : Test Case Id: A1 

 

Table 4 Test Case ID:  A2 Support Vector Classifier 

 

Test Case Id: A3 

Test Case 

Tittle 
Decision Tree Classifier 

Precondition  Must have a previously created preprocessed dataset 

Test Case 

Description 

Importing a preprocessed dataset and provide classification document and 

predication outcome of the training and testing data 

Test Case  

Steps:  

 

 

  

1. User need to provide a preprocessed dataset csv file path to be imported  

2. Once the correct csv file is imported the program appends evaluation 

and classification results to a text file  

3. The output file is saved in the directory 
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Test Case Outcome : Classification and predication outcome document  

Related Test : Test Case Id: A1 

 

Table 5 Test Case ID:  A3 Decision Tree Classifier 

 

Test Case Id: A4 

Test Case 

Tittle 
Naïve Bayes Classifier 

Precondition  Must have a previously created preprocessed dataset 

Test Case 

Description 

Importing a preprocessed dataset and provide classification document and 

predication outcome of the training and testing data 

Test Case  

Steps:  

 

 

  

1. User need to provide a preprocessed dataset csv file path to be imported  

2. Once the correct csv file is imported the program appends evaluation 

and classification results to a text file  

3. The output file is saved in the directory 

Test Case Outcome : Classification and predication outcome document  

Related Test : Test Case Id: A1 

 

Table 6 Test Case ID:  A4 Naive Bayes Classifier 

Test Case Id: A5 

Test Case 

Tittle 
Random Forest Classifier 

Precondition  Must have a previously created preprocessed dataset 

Test Case 

Description 

Importing a preprocessed dataset and provide classification document and 

predication outcome of the training and testing data 

Test Case  

Steps:  

1. User need to provide a preprocessed dataset csv file path to be imported  
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2. Once the correct csv file is imported the program appends evaluation 

and classification results to a text file  

3. The output file is saved in the directory 

Test Case Outcome : Classification and predication outcome document  

Related Test : Test Case Id: A1 

 

Table 7  Test Case ID :A5 Random Forest Classifier 

 

Test Case Id: A6 

Test Case 

Tittle 
Neural Networks Classifier 

Precondition  Must have a previously created preprocessed dataset 

Test Case 

Description 

Importing a preprocessed dataset and provide classification document and 

predication outcome of the training and testing data 

Test Case  

Steps:  

 

 

  

1. User need to provide a preprocessed dataset csv file path to be imported  

2. Once the correct csv file is imported the program appends evaluation 

and classification results to a text file  

3. The output file is saved in the directory 

Test Case Outcome : Classification and predication outcome document  

Related Test : Test Case Id: A1 

 

Table 8 Test Case ID :A6 Neural Networks Classifier 

 

Test Case Id: A7 

Test Case Tittle Classifier Training and Testing 

Precondition  Must have a previously created preprocessed dataset 
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Test Case 

Description 

Importing a preprocessed dataset and provide classification document and 

predication outcome of the testing data 

Test Case  

Steps:  

 

 

  

1. User need to select a csv file of the preprocessed dataset to be imported  

2. A small prompt will open that allow user to navigate and browse to 

select the desired csv  file  

3. Once the correct csv file is imported the program executes a text file 

and a visual diagram of the prediction classification of the unseen data 

4. A notification message displayed once the outcome is executed 

5. The output file is saved in the directory 

Test Case Outcome : Classification and predication outcome document and Visual Diagram 

Related Test : Test Case Id: A1 

 

Table 9 Test Case ID:  A7 Classifier Training and Testing 
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Chapter 7 : Results and Evaluation 

 

This chapter of the document evaluates the different Machine Learning classification models to 

identify the best performing Machine learning model as classifier against the given dataset. 

 

 
7.1 Classification Models Performance  

 

Evaluating the performances of the Machine learning classifier model is crucial to for ensuring 

that the selected model is working optimally and outputting effective insights and results as 

intended classifier. Therefore, after each of the 5 machine learning classification models ( Random 

Forest , Decision trees, Neural Network , Naïve Bayes, Support Vector Machines)  were 

implemented. The models were trained with 70 % of training dataset and were tested with 30% of 

unseen testing dataset and tested models were evaluated for their performances and effectiveness. 

The following comparison table of model evaluation was created to compare and evaluate the 

performances of the different classifier models for the classification task. The tables consist of the 

evaluation results that are based on utilizing the main classification metrics focused on  Accuracy, 

Precision ,Recall and F1 with execution time for the results outcome of the Machine Learning 

classification models. 

 

 

Table 10 Performance of various algorithms 

 

 

 Testing 

Models/Metric Scores 

Accuracy Precision Recall F1 Time /s 

Support Vector 89.0 100.0 84.0 91.0 0.0013 

Naïve Bayes 67.0 68.0 70.0 69.0 3.9 

Decision Tree 89.0 87.0 92.0 90.0 4.2 

Random Forest 93.19 95.27 91.85 93.53 3.9 

Neural Networks 78.0 76.0 82.0 79.0 0.00135 
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According to the evaluation results obtained of testing dataset against the trained model is 

presented in the Table 10, The Random Forest Classifier model ranked higher in the overall 

accuracy, precision and F-measure with 93.19 %, 95.27% and 93.53 with in 3.9 seconds compare 

Naïve Bayes and other models. Besides,  Random Forest Classifier model is the only model that 

achieved and scored high for the majority of evaluation metrics and considerably represent the 

best performing classifier model to be for the psxview log dataset comparing to other Machine 

Learning classification models in the Table 10. 

 

7.2 Predication results analysis 
 

Since we are interested on how the best performing model is classifying the benign and malicious  

process behaviour with consideration of all the features against the target selection. Further 

evaluation metric of confusion matrix was applied to get better insights of the model predication 

performance relative to the baseline of the dataset. 

 

 
 

Figure 62 Random Forest Confusion Matrix 

 

0 = Benign 

1 = Malicious 
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In terms of the confusion matrix table which represents the classification prediction of the 20%  

testing data against trained model with 80 % training data. Coherently, the accuracy of the model 

as classifier is satisfiable as to the predication outcome results as indicating high for TP and TN 

and low for the FP and FN . Overall, it is clear from the results that the Random Forest classifier 

model has adapted the patterns of the both malicious and benign of active and inactive  processes 

behaviour and had proven to be best performing classifier model to be considered for the 

classification tool. 

 

 
 

 

Figure 63 Classification outcome of testing data against trained model 
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Chapter 8: Future Work 

 

This chapter defines some sustainable work and assumptions that can might addressed in further 

research for the project. 

 

Some of the project remaining sub-cores aims of  implementation, tests and experiments have been 

left for the future work due to limitations and time constraint of the project . In addition, this project 

requires further analysis and extraction of other artefacts data from memory image which is 

considerable and very time consuming .  

 

Some of the sub aims and functional requirements that could developed as future work are listed 

below : 

• Testing and improving the results of the Random forest classifier model with better 

understanding and validating the feature attributes as prioritizing features of pslist and 

psscan over the other features when classifying. 

 

• Implementing the desired functional requirements mentioned in Design and Specification 

Chapter 4, of the classifier tool that could show more results to the initial outcomes of the 

project. 

 

• It would be interesting for constructing an automate predicator using volatility plugins for 

importing memory images directly and looking up for the vital artefact that can retrieved 

easily and  utilized to distinguish memory as benign or malicious . 

 

• Improving the data collection and preprocessing tool to include options of preprocessing 

multiple process related artefacts and testing against the classifier.  

 

• Considerably important for the future research to include other investigation and analysis 

areas of memory forensics including dlls, handles and threads. 
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Chapter 9 : Conclusion 

 

This chapter of the document summarises the main findings and outcomes of the project’s stated 

aims.  

 

 

9.1 Summary 
 

Overall, this project was aimed at investigating and utilizing a Machine Learning approach for 

memory forensics investigation in order to assist and automate investigation procedures using an 

artefact to reduce the ongoing  backlog problem. 

 

From the experimental point of view, the new approach based on ML is beneficial for the 

automation of memory forensic investigation procedures. One of the main findings of this project 

demonstrates that psxview is a useful artefact to discover malicious behavior of both active and 

inactive  running process in memory image and it can be applied to ML in order to classify a 

memory image as either benign or malicious. 

 

Unfortunately, there was not enough time for the implementation of the desired functional 

requirements of the classification tool that could show more results to the initial results. As some 

of desired outcomes of this project have not fully achieved due to the technical challenges of setting 

a forensic analysis environment which includes installation and version clashes of open source 

analysis tools of both Rekall and Volatility in VMware. In addition, time constraint and patience 

to conduct the analysis of memory image and obtain the pull-out the logs for the data collection. 

The project was accessible to limited resources for dataset storage of memory images which has 

impacted on data collection for machine learning models and with consideration of time limitation 

of the project the remaining sub-core aims considered as part of the future work and for further 

research. Despite the faced challenges and limitations during the project’s fixed timeframe, the 

concept of the applying machine learning approach has been proven by the initial result and 

findings of this project, where the best performing Machine Learning Classification model is 

utilized to be modelled as classifier tool that can applied to automate in assisting and identifying a 

memory image as malicious or benign using a psxview log artefact prior dumping memory sections 

and malware detection that can reduce manual analysis of memory and extraction.  
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Chapter 10: Reflection 

 

 

“You learn something valuable from all of the significant events and people, but you never touch 

your true potential until you challenge yourself to go beyond imposed limitations.”  

― Roy T. Bennett 

 

Throughout this project, I have learned and gained more insights about memory forensics analysis 

and investigations as a learner in the field. In general ,I had an interest in digital forensics, I 

proposed the initial project concept to have a learning opportunity to explore new artefacts that I 

have not analysed before and adapt to new forensics analysis and investigation techniques. I 

believe that I started to understand more of the memory forensics to a standard but still need to 

learn more to understand the lower-level  behaviors of memory artefacts as APIs and malfind. 

Also, through setting up the Virtual machine as forensics platform which was new to me as I had 

no prior experience but I have learned it and its uses on how it isolates analysis platform from the 

host machine as well as familiarised myself with the different versions of Linux operating system 

as it was challenging to get the correct version and resources for the analysis tool due to their 

compatibility to certain Linux environment. In addition ,discovered how VM manages the drag 

and drop of the files from the host machine as I discovered that  it saves duplicates of each dragged 

files in separate hidden folder which utilized by the VM , which impacted the specified hardware 

storage for the data collection when acquiring the memory images. In terms of Machine Learning, 

I had very minimal understanding of the concept and through background research, I learned useful 

knowledge about different techniques and algorithms  of  Machine Learning as classifier and it 

was fascinating to learn and understand its benefits to resolve different problems including 

memory forensics investigation and malware detection . Another lesson I learned is managing the 

project with ongoing challenges to deliver achievable results despite of going through 

unprecedented times and experiencing new changes I kept myself determined to prove the concept 

even through the project limitations. Although it was challenging to combine two fields to fit into 

a single approach in a limited timeframe but utilizing the basic implementation approach to 

automate data collection and developing classifier was beneficial for this project as it can be 

utilized in future and for further research. Finally, documenting and writing the final document  
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was another challenge for me as I wrote my report close to deadline along faced challenges, I had 

to go back and refresh myself with uncompleted document draft sections and rewrite properly for 

the report. Overall, learning experience from undertaking this project, I have developed valuable 

skills in different aspects of analysis, problem-solving, utilizing new approaches and handling 

technical challenges as well as I have gained researching skills that are necessary to prove a 

concept and all these developed skills will beneficial for myself and for the future projects . 
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