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Abstract 

Project Description 

HIV is one of the deadliest infections affecting almost 40 million people in the world. It is estimated 

that 20.4% of South African Women have been infected. As HIV causes neuroinflammation and 

neuronal death, it should be detectable in neuroimaging data. A neuroimaging dataset has been 

provided by Stellenbosch University, South Africa with 124 participants involved. This project will use 

data analysis and machine learning techniques in the python programming language to help 

understand the brain tissue and cognitive variables for HIV positive women in South Africa. 

Methods 

Pre-processing occurred on the dataset of HIV-positive (1, n=62) and HIV-negative (0, n=62) 

participant neuroimaging data to standardise the regional MRI values. Then data analysis techniques 

were applied to identify the descriptive statistical characteristics to find the count, mean, quartiles 

(25/50/75%) and range (min/max) and an independent t-test performed to find which brain regions 

had statistical significance.  

Supervised machine learning models were then created to predict the HIV status of participants 

using a train/test (75/25%) data split. These predictive models explored a range of classification 

methods to obtain a reliable result. They were then tuned using cross-validation and a 

hyperparameter grid search to obtain the best classification performance when predicting the HIV 

status from the test data. To achieve a superior performance, feature selection was then 

implemented for these machine learning models by creating a train/test data split that only used the 

HIV significant brain regions. 

Results 

From the statistical analysis, four significant brain regions were identified with their magnitude (t-

value) and probability of occurrence by chance (p-value). These MRI regions are the left hemisphere 

Frontal-lobe (t=2.220, p=0.0283), the total Corpus-callosum (t=2.425, p=0.0168), the left hemisphere 

Putamen (t=2.414, p=0.0173) and the right hemisphere Putamen (t=2.034, p=0.0442). 

The supervised machine learning models were not capable of reliably predicting HIV status from the 

neuroimaging data. Classification accuracy on average was 54.27% with high variance F(4,45)=14.12, 

p=1.527e-07 and the ŵodel’s ROC AUC performance at differentiating HIV status was only +1.29% 

from an undistinguished model (with unsubstantiated variation). When applying feature selection to 

the models, an average accuracy of 53.03% was obtained with high variation between the classifiers 

F(4,45)=14.951, p=4.202e-08. The feature selection models had a surprisingly worse accuracy but 

were able to differentiate the HIV status on average by +6.03% (5.03% higher than the initial 

models). The ROC AUC score only had slight variance between the models but was not significant 

enough statistically F(4,45)=2.4854, p=0.05528. 
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Introduction 

Human Immunodeficiency Virus (HIV) is one of the deadliest infections in the world, with almost 40 

million people being affected. [1] HIV is a virus that damages the immune systems’ cells and 

weakens aŶ iŶdiǀidual’s capability to combat most infections & diseases. Currently, there is no 

known cure for HIV. Individuals usually take drug treatments that facilitates them to live a prolonged 

and healthy life while still being infected with the virus. [2] The main form of testing for HIV is 

through the use of a blood test. A sample of blood is extracted from an individual by obtaining 

intravenous access to a vein using a medical needle. This is then sent for testing in a laboratory 

ǁheƌe the pƌeseŶĐe of the Viƌus’ RNA paƌtiĐles is tested. [3] 

Although detecting HIV using blood tests is often accurate, reliable, and cost-effective, it is not easy 

to understand the full effect of HIV on the brain. HIV positive individuals often have cognitive deficits 

known as HIV-associated neurocognitive disorders (HANDs). HANDs have been found to occur in 

many forms like psychomotor skills, verbal and visual memory and information processing speed. 

This is evidenced in HIV-infected women who scored poorly during testing for HANDs. We know that 

HIV penetrates the blood-brain barrier early in the course of infection and infects nerve cells, 

resulting in neuroinflammation and neuronal death. [4] Cognitive impairment, lower grey matter 

volume and white matter microstructural abnormalities are evident in HIV-positive individuals even 

with fully suppressive antiretroviral therapy. [5] So, we should expect to see changes within the grey 

matter volume for HIV infected individuals when separated by brain region. 

HIV has been especially prevalent in South Africa which has the largest and most extreme HIV 

epidemic in the world. The UNAIDS organisation estimate that there are around 7.7 million people 

living with HIV in 2018 in this region of the world. [6] A third of all new HIV infections are contracted 

in South Africa, with 240,000 new infections and 71,000 deaths from AIDS-related illnesses in just 

2018 alone. HIV prevalence persists across many regions of South Africa with over one in five 

(20.4%) people known to be enduring a life with HIV in 2018. [6]  

 

Figure 1: Global prevalence of HIV in 2018 [6] 



In this report I will be discussing my final year research project, detailing the outcomes of my 

investigation; to apply supervised machine-learning models and data analysis techniques on a HIV 

neuroimaging dataset. 

This project acquired a HIV neuroimaging dataset from Stellenbosch University, Tygerberg. 

Therefore, any results can help contribute to their own university projects by identifying strong 

inferences between the neuroimaging data and the HIV disease. MRI neuroimages are the most 

reliable form of brain imaging as it allows us to see the size and quantity of grey-matter and white-

matter within the different areas of the brain. With a more advanced HIV disease stage and greater 

immunocompromise there is often more neuroimaging abnormalities and neurocognitive 

impairments. [7] This project will offer thoughtful insight towards understanding the brain tissue and 

cognitive variables for HIV positive women in South Africa. 

The main aims of this project were to develop and further technical knowledge of data science 

techniques such as data analysis and supervised machine learning. This was done through the 

statistical analysis and visualisation of a neuroimaging dataset to help identify which key areas of the 

brain signify HIV infection. Methods such as descriptive analysis (averages, frequencies, quartiles) 

and statistical analysis (T-test, ANOVA) were employed to find correlations, associations, and 

variance between the neuroimaging data.  

Several classical machine-learning predictive models were then developed and used to closely 

predict if participants are HIV positive or HIV negative as-well as if a positive participant has a 

detectable viral load, purely based on the supplied neuroimaging data. The use of supervised 

machine learning techniques was the focus for predicting HIV status & viral load detectability in this 

project. The main predictive models applied to the dataset used classification to best predict and 

visualise the results. 

The next objective in this project is to evaluate the different models’ top classification performance 

to determine if HIV & viral load detectability can be accurately predicted using the given dataset. 

Any tangible results that were identified would then be sent to Stellenbosch University and 

contribute to any of their relevant research projects that examines this dataset. To conclude the 

project, extensive evaluation and reflection on the overall processes and results were performed. 

This helped identify some of the limitations that were present and areas of the project that require 

more work in future.  

This project was not able to create an accurate model that could differentiate between HIV negative 

and positive participants. This became apparent because of the limitations identified in the given 

dataset. Following these results, other hypotheses were investigated within the neuroimaging 

dataset to explore other areas for inference. These results also showed no significance, but the 

processes and data science methodologies learned was invaluable. Some statistically significant 

brain regions were also identified and then isolated to improve performance using feature selection 

methodology. The approach, implementation, and results are mentioned in the subsequent sections 

of this report, continue reading to find out more. 

 

  



Background 

Context: HIV and Neuroimaging 

The HIV Disease 

HIV is often a sexually transmitted infection and occurs when blood, pre-ejaculate, semen, and 

vaginal fluids is transferred between individuals. Research shows that HIV is un-transmittable 

through condom-less sexual intercourse, if a HIV-positive individual has a reliably undetectable viral 

load. [8] Non-sexual transmission can also occur from an infected mother to her infant during 

pregnancy, during childbirth by exposure to her blood or vaginal fluid, and through breast milk. 

Within these bodily fluids, HIV is present as both free virus particles and virus within infected 

immune cells. [9] 

HIV attacks the immune system by destroying specific white blood cells called CD4 positive (CD4+) T 

cells that are vital to fighting off infection. The resulting shortage of these cells leaves people 

infected with HIV vulnerable to other infections, diseases, and additional complications. [10] CD4 

cells are a type of white blood cell that are specific to the immune system and destroyed by HIV. 

Generally, the higher aŶ iŶdiǀidual’s CD4 cell count, the stronger their immune system. So, analysing 

the CD4 count is a good indicator of how their immune system is performing. Treatment using 

antiretroviral therapy (ART) and medications that help control HIV is essential for HIV positive 

individuals as it prevents the risk of developing acquired immunodeficiency syndrome (AIDS), which 

is fatal. [3] After infection with HIV it is estimated to be 9 to 11 years without treatment to cause 

AIDS, a condition in which progressive failure of the immune system allows life-threatening 

opportunistic infections and cancers to thrive. 

HIV viral load is the amount of HIV detectable in a sample of a person's blood. It is calculated by 

testing for the HIV Ribonucleic acid (RNA) and tracking how many HIV particles are in a sample of 

blood. The amount of detectable HIV RNA determines aŶ iŶdiǀidual’s viral load score. HIV treatment 

aims to supress the viral load to a point where the virus cannot be detected by a viral load test, 

categorizing that individual as HIV positive with an undetectable viral load. 

Current Status of HIV in South Africa 

South Africa has made impressive progress in recent years in getting more people to test for HIV. In 

2017, South Africa reached one of their core targets, with 90% of people living with HIV aware of 

their status, up from 85% in 2015. [6] Of the 90% aware, 68% are on HIV treatment, which still 

equates to 62% of all individuals living with HIV. And 54% of all HIV positive South Africans have 

successfully got the disease virally suppressed.  

Figure 2: HIV Key Statistics in South Africa [49] 



For South Africa there are subgroups of the population that are disproportionately affected by HIV. 

Specifically, South African Women suffer the highest frequency of HIV with an estimated 26% of all 

South African Women having the virus. Comparatively, this is in contrast to the 15% of the male 

population who are estimated to have HIV. [11] Aspects such as poverty, discrimination against 

women, and violence centred on gender are recognised as the main reasons for the HIV prevalence 

inequality. [12] This project will focus on HIV positive women in South Africa as they are currently 

one of the most severe subgroups affected and have prior research and data available to exploit. 

Magnetic Resonance Imaging (MRI) 

MRI scans use a powerful magnetic field and radio waves to generate detailed images of organs and 

tissues within the human body. Doctors and researchers use MRI practices to support medical 

research and operations. Doctors can use MRI scan on the brain (neuroimaging) to look for Blood 

vessel damage, brain injury, cancer, multiple sclerosis, spinal cord injuries, and stroke. [13]  

The detection of physical matter (e.g. grey matter) in the neuroimages can then be measured and 

converted into a subsequent dataset through the use of MRI scans. This is done by applying 

structural magnetic resonance imaging (sMRI). This technique is a non-invasive method for 

examining the anatomy and pathology of the brain which produces images which can be used for 

clinical radiological reporting as well as for detailed analysis. This is a different technique from using 

functional magnetic resonance imaging (fMRI), which is applied to examine brain activity. 

In this project, the neuroimaging dataset acquired, is from sMRI with values of grey matter volume 

(mm3) in 13 brain regions as-well as the intercranial volume per participant. The analysed brain 

regions in the supplied dataset are: 

• Intracranial volume (ICV) 

• Left & Right hemisphere Frontal-lobe (LH_Frontal, RH_Frontal) 

• Left & Right hemisphere Anterior Cingulate Cortex (LH_ACC, RH_ACC) 

• Left & Right hemisphere Hippocampus (LH_Hippo, RH_Hippo) 

• Total Corpus-callosum (CC_Total) 

• Left & Right hemisphere Amygdala (LH_Amygdala, RH_Amygdala) 

• Left & Right hemisphere Caudate (LH_Caudata, RH_Caudata) 

• Left & Right hemisphere Putamen (LH_Putamen, RH_Putamen) 

 

HIV’s Effect oŶ Neuroanatomy 

Research into the effects on HIV on the brain has previously been studied in great detail. In-order to 

understand the outcomes expected from this project it is important to look at previous studies and 

see how they compare. Individuals' with HIV-infected brains are structurally different in comparison 

to equivalent healthy control brains. A considerable range of neuroimaging studies have assessed 

this with standard structural MRI showing subtle but significant relationships in people with HIV. [14] 



 

 

Figure 3 shows a study of cortical grey matter volume thickness using MRI for a group of HIV positive 

individuals, compared to a group of similar controls. The HIV positive group is shown to have a 

thinner cortex in the sensorimotor regions and some motor regions of the frontal lobes. The degree 

of grey matter deterioration also related to the neurocognitive performance of said patients. This 

research paper also shows that the intensity of grey matter reduction corresponded with a 

decreased CD4 count/detectable viral load in those participants. [15] 

In a study published by Oxford University Press for the Infectious Diseases Society of America [5] we 

see that HIV infection was associated with lower grey matter volume and cognitive impairment. 

Overall grey matter volume was found to be lower in HIV positive individuals with deterioration 

taking place predominantly in the intracalcarine and supracalcarine cortices (within the Optical-

lobe). This was present in approximately 20% of cases and is evidently associated with white matter 

abnormalities too. 

Project Data 

In this project, I analysed neuroimaging data acquired using a 3T Magnetom MRI scanner. Even with 

effective therapy, individuals who are HIV-infected continue to demonstrate ongoing aberrations in 

white and grey matter. An increase in brain white matter and subcortical grey matter abnormalities 

Figure 3: Cortical grey matter thinning shown in HIV+ individuals [15] 



are also linked to immunodeficiency recovery among infected individuals. [7] The HIV disease in 

South Africa has also had a population increase of 0.3% from 2014, when the participants MRI data 

was originally collected. [6] This makes finding details and inferences more important than ever, as 

there may be an ever increasing number of HIV positive women who suffer in South Africa. 

Other projects have also performed analyses into the supplied dataset. [7] Where an investigation 

into ͞EffeĐts of HIV aŶd Đhildhood tƌauŵa oŶ ďƌaiŶ ŵoƌphoŵetƌǇ aŶd ŶeuƌoĐogŶitiǀe fuŶĐtioŶ͟ ǁas 
carried out to see if the neuroimaging data collected showed any significant inference. This study 

proved inconclusive from their research data. 

Although machine learning has been applied on neuroimaging in earlier projects, no clear 

investigation has been carried out for HIV participants in this sample dataset. And there are not 

many other HIV datasets that have been applied to machine learning within neurology research. A 

similar project applied machine learning to predict brain age deterioration as a result of HIV. [16] 

This example of HIV neurology allow me to shape my project to fit the scientific standard required of 

neurology research. 

Concepts: Data Analysis and Supervised Machine Learning 

Data Pre-processing 

Scaling, or rescaling, means to add or subtract a constant and then multiply or divide by a constant, 

in-order to change the units of measurement of the data, for example, to convert a temperature 

from Celsius to Fahrenheit. 

Normalising most often means dividing by a norm of the vector. It also often refers to rescaling by 

the minimum and range of the vector, to make all the elements lie between 0 and 1 thus bringing all 

the values of numeric columns in the dataset to a common scale. 

Standardising usually means subtracting a measure of location and dividing by a measure of scale. 

For example, if the vector contains random values with a Gaussian distribution, you might subtract 

the mean and divide by the standard deviation, thereby obtainiŶg a ͞staŶdaƌd Ŷoƌŵal͟ ƌaŶdoŵ 
variable with mean 0 and standard deviation 1. [17] 

A technique used in this project is Min-Max normalisation, which performs a linear transformation 

on original data. It does this by changing the min and max boundaries of the data attributes and 

normalising them to a new scale of [0,1]. This technique is useful because it preserves the 

relationship between the original data values of the dataset. So that no input values can go out-of-

bounds and beyond the limit of normalisation which would cause the data to skew. [18] 

T-tests 

A t-test is used to compare the mean of two given samples where the samples are assumed to be a 

normal distribution. When the population parameters such as mean and standard deviation are not 

easily known it is best to use a t-test. T-tests are best used for hypothesis testing in medical data 

such that we compare a null hypothesis with an alternate hypothesis using the difference in means.  

The t-test used in this project is an independent t-test which compares the mean of two groups of 

independent variables. 

The statistic for this hypothesis testing is called the t-value. This statistic shows the relationship of 

the difference between the two groups and the difference within the groups. Therefore, a greater t-

value suggests that there is more variance between the groups and supports an alternate 

hypothesis. 



T-tests also have a p-value associated with each t-statistic. This p-value indicates the probability that 

the t-statistic occurred by chance due to the sample data. A p-value of less than 5% (< 0.05) is 

statistically significant. As it indicates strong evidence for the alternate hypothesis as there is less 

than a 5% probability that the results from the data are randomly against the null hypothesis. [19] 

Analysis of Variance (ANOVA) 

In this project a one-way ANOVA ǁas peƌfoƌŵed to test the sigŶifiĐaŶĐe of the ĐlassifiĐatioŶ ŵodels’ 
results. The one-way ANOVA tests the null hypothesis that two or more groups have the same 

population mean. The test is applied to samples from two or more groups, possibly with differing 

sizes. It calculates the F-values by assessing the magnitude of variance between the groups against 

the variance within each group of samples, as seen in figure 4. 

 

Figure 4: ANOVA Variance Between and Within Groups [20] 

 

ANOVA notation depiction: �ሺ�, ሻݓ = �    ,ݔ =  ݕ

Where b represents the degrees of freedom between the groups, w signifies degrees of freedom 

within the groups. Whereas x represents the f-value and y signifies the p-value. [21] 



Machine Learning 

͞Machine learning is the idea that there are generic algorithms that can tell you something 

interesting about a set of data without you having to write any custom code specific to the problem. 

Instead of writing code, you feed data to the generic algorithm and it builds its own logic based on 

the data.͟ [22] 

As a discipline in Artificial Intelligence, machine learning provides systems with the ability to 

understand and develop experience from given data without the need to be programmed in a 

precise manner. Machine Learning algorithms can be one of three separate categories: 

reinforcement learning, unsupervised learning & supervised learning. 

Unsupervised Learning 

Unsupervised learning uses neither labelled nor categorized data. This type of machine learning 

looks for previously undetected patterns in a data set without any pre-existing labels and with 

minimum human supervision. The goal in such unsupervised learning problems may be to discover 

groups of similar examples within the data, where it is called clustering, or to determine how the 

data is distributed in the space, known as density estimation. Therefore, it is self-organising which 

allows for density probability modelling. Although useful in certain circumstances, this project wants 

to find inferences for more in-depth analysis between the brain data of patients. Therefore, we want 

to look into supervised machine learning where we have influence over the results and more 

methodologies to employ. 

Reinforcement Learning 

͞Reinforcement Learning (RL) is a type of machine learning technique that enables an agent to learn 

in an interactive environment by trial and error using feedback from its own actions and 

experiences.͟ [23] Reinforcement learning uses mapping between input and output by employing 

rewards and punishments as signals for positive and negative behaviour within their models. 

Similarly to unsupervised learning, this project does not exercise reinforcement learning in its 

approach and implementation. 

Supervised Learning 

Supervised machine learning algorithms take what has been learned from experience with labelled 

data to make predictions about future data or events. When training a supervised learning 

algorithm, the training data of inputs and their corresponding correct outputs are given. The 

algorithm will investigate the data for patterns that indicate the desired output and then remembers 

to look for these patterns when testing. This trained model can then take in a new set of inputs and 

will attempt to determine which label the new inputs would be classified as by using the examples 

learned from the established training data. Supervised learning models are intended to predict the 

correct variable (class) for any new testing data using the experience gained from the training data. 

There are also different types of supervised machine learning. Classification and Regression 

together form supervised learning. This project will implement a supervised learning approach that 

focuses on classification techniques and methodologies. 

Regression 

Although not employed in this project, regression is a valuable form of machine learning. Regression 

algorithms aim at predicting input training data with a numerical output. A regression model 

attempts to find the important relationship between dependent and independent variables using a 

predictive statistical process. Regression algorithms can be used to predict a continuous number 



such as sales, income, and test scores. Some regression models that can be used are: Linear 

Regression, Support Vector Regression and Random Forest Regressor. 

Classification 

Classification is the process of predicting the status of given data points. In this project we are trying 

to predict if a participant has HIV and if a HIV positive participant has a detectable viral load. During 

the training phase of a supervised learning model, the classification algorithm will look at the dataset 

of each category (class) and learn what trends and structure of the data apply for each class. The 

classification algorithm will then be able to take an input value and assign it to the class that it thinks 

the testing value fits into. It does this based on the tendencies identified in the training data. [24] 

Classification models can use various different algorithms to help classify the data. The focal 

classification algorithms highlighted in the project are: Linear Discriminant Analysis, Support Vector 

Machines, K-Nearest Neighbour, Logistic Regression and Random Forest.  

Classes 

In this project classes are the categorical variable that we are attempting to predict. This 

encompasses multiple variables over the course of the project. The main class in this project is the 

HIV status of participants (whether they are HIV negative or positive).  

Features 

This project uses various different variables from the obtained dataset and many of these variables 

will be used in the program as features. Features are the sets of variables that are used to make the 

prediction. For this project, the features are the MRI brain regions of participants, where we 

examine these values and learn their qualities. Then we attempt to predict the HIV status of other 

participants based on their MRI region values and qualities. 

Classifiers 

The classifier is an algorithm that maps from features to class. The classifiers in this project are 

classification functions imported from Scikit Learn. These classifiers attempt to make a prediction of 

class based on the feature data per participant. Each classifier uses a unique procedure to calculate 

the predicted class which will then be assessed against the actual class resulting in accuracy and 

performance metrics. 

Fitting Data (Underfitting & Overfitting) 

Overfitting and underfitting are problems often encountered by data scientists and can lead to a 

machine learning model with inadequate performance. Underfitting happens when a model is 

unable to model the training data, and unable to generalise new data. Whereas overfitting occurs 

when the model has studied the training data too much and learned every relationship to the point 

it decreases the performance. In-order to create a classification model with notable performance, it 

needs to be able to learn the relationships between the features and the patterns within the dataset 

to a significant intensity that is not too weighted towards the training data.  

Performance Metrics 

In-oƌdeƌ to gauge a ŵodel’s effeĐtiǀeŶess, ǁe Ŷeed to eǀaluate its peƌfoƌŵaŶĐe. Judging the top 

classification performance of any given model will differ depending on the problem being solved. 

Different metrics can be contrasted against other models to discover which of the classifiers are best 

at solving the problem. This project focuses on 5 key performance metrics: 

• Performance Accuracy, the number of correct predictions divided by the total number of 

predictions (and multiplied by 100 to get percentage). 



• Precision, the amount of predictions that were labelled as positive being predicted as 

positive. 

• Recall, the predicted amount that were positive being actually positive. 

• F1 score, a mean value from the precision and recall metrics. 

• ROC AUC score, is how well the model is capable of distinguishing between classes, which is 

a more significant metric to use than accuracy alone. 

Confusion Matrix 

Confusion Matrix is another method to evaluate the performance of a given classifier. It can be used 

to find the correctness and accuracy of a model. It is visualised as a table with actual classifications 

as columns and predicted ones as rows. In a binary class confusion matrix using HIV status as the 

predictor, there are: 

• True positives –number of correctly predicted samples that are HIV positive  

• True negatives –number of correctly predicted samples that are HIV negative  

• False positives –number of samples that are HIV negative but predicted as HIV positive 

• False negatives –number of samples that are HIV positive but predicted as HIV negative 

 

Figure 5: Confusion Matrix Example [25] 

The 4 key values that can be determined from the 4 confusion matrix HIV categories are: 

• Accuracy, in classification problems is the number of correct predictions made by the model 

over all predictions made 

Accuracy = (TP+TN)/(TP+FP+TN+FN) 

• Precision measures what proportion of patients that we diagnosed as having HIV, have HIV 

Precision = TP/(TP+FP) 

• Recall measures what proportion of patients that had HIV were predicted as having HIV 

Recall = TP/(TP+FN) 

• F1 Score is a single score that represents both Precision and Recall 

F1 Score = Mean(Precision, Recall) 



ROC AUC 

Receiver Operating Characteristics (ROC) is the probability curve for our models and Area Under the 

Curve (AUC) represents the degree/measure of separability, detailing how well a model is at 

distinguishing the classes. A higher AUC means that the model is better at predicting HIV negative 

participants as negative and HIV positive participants as positive.  

͞An excellent model has AUC near to the 100 which means it has good measure of separability. A 

poor model has AUC near to the 0 which means it has worst measure of separability. In fact, it 

means it is reciprocating the result (predicting 0s as 1s and 1s as 0s). And when AUC is 50, it means 

model has no class separation capacity whatsoever.͟ [26] 

Therefore, we want our predictive classification models to have a score as far away from 50 as 

possible. If a score near 50 occurs, then it means the model has no discrimination ability to 

differentiate between HIV positive and HIV negative classes. In this project the ROC AUC scores are 

displayed on a scale of 0 to 100 rather than 0 to 1, with a corresponding value in parentheses 

adjacent to the ROC AUC score that depicts the value’s distance from the inconclusive value of 50. 

Python Programming 

This project will be written in the programming language python. This project requires the utilisation 

of many core data science Python libraries, including: Anaconda, Jupyter Notebook, Scikit Learn, 

NumPy, pandas, Matplotlib, Seaborn & SciPy. More details can be found in the Implementation 

section: Python. 

Cross-Validation 

Overall, cross-validation facilitates better use of the MRI data, and it provides additional information 

foƌ eaĐh of the iŵpleŵeŶted ŵodels’ peƌfoƌŵaŶĐe. This ŵethod helps us use the appƌopƌiate data iŶ 
the different steps of the classification program. Allowing for real performance and helps mitigate 

the prospect of unsolicited side effects. Cross-Validation helps the project by giving assurance for the 

program in regard to challenges faced by many Data Science projects. [37] 

Hyperparameters 

All the classification algorithms used in this project have hyperparameters that allowed the 

behaviour of the algorithm to be tailored for the specific dataset. Hyperparameters are different 

from parameters, which are the internal coefficients or weights for a model found by the learning 

algorithm. Unlike parameters, hyperparameters are specified by the practitioner when configuring 

the model. [27] Implementing an exhaustive hyperparameter grid search allowed the sub-program 

to create the best model based on the training data and used cross-validation to prevent overfitting.  



Approach 

The initial aim for this project was to use data analysis and machine learning to help detect HIV in a 

neuroimaging dataset from south Africa. It was also decided to apply the same methods for viral 

load detectability. In this section of the report we will discuss the methodology, deliverables, 

assumptions, and hypothesis that took place before implementing a solution. 

Project Methodology and Management 

Data Science 

The development process for data science projects will take a different approach to a standard 

software development lifecycle. This not only involves different techniques being implemented, but 

the use of a distinct design methodology as-well. When planning for this project I followed 8 steps 

that are commonly outlined in the of majority data science approaches. [28] [29] [30] 

1. Problem understanding: Looking for a successful resolution of the problem. Provide an 

analytic solution by defining the problem, objectives, and requirements. Usually this is 

business focussed but for this project it focusses on more of a humanitarian project research 

perspective. 

2. Analytic approach: After clearly establishing the problem, an analytic approach to solving it 

is created. Then a statistical and machine learning approach is designed to identify results 

and methods that achieve a desired outcome. 

3. Data requirements: Depending on the approach, the data requirements are defined from 

the analytic methods required. 

4. Data collection/sanitisation: Once identified the data is structured to be relevant for 

creating a solution to said problem. 

5. Data understanding: basic statistics and visualisation techniques are used to better facilitate 

an understanding of the dataset. These results can then be assessed to determine the 

quality of the particular dataset.  

6. Data processing: Here the data is prepared to be applied in the modelling phase. This can 

include processes such as data cleaning, data fusion, data transforming, feature engineering 

predictor enhancing, as-well as many other steps to prepare the data for detailed analysis 

and machine learning. 

7. Modelling data: Using the processed data to train and test predictive and descriptive 

qualities for whichever analytical model is being applied. 

8. Evaluation of data: Most importantly, the different ŵodel’s ƋualitǇ is appraised against how 

well it solves the initial problem. These results can take the form of statistical metrics, 

inferences and examples using tables, graphs and other visualisations generated from the 

predictive model. 

Workshops 

Before this project commenced there were a couple of useful workshop tutorials that went through 

the key approaches and implementation processes. Facilitated by the project supervisor, these 

workshops helped significantly with understanding basic key processes and methods needed for a 

successful project. This allowed for the project to be approached with pre-existing knowledge of the 

functionality desired in the program. 

 



Agile Development Lifecycle 

This project used and practiced an Agile approach to development and execution. Agile 

development is an adaptable framework, which is implemented by adhering to established methods 

and practices. [31] In-order to sustain the agile lifecycle, the project had to adhere to the agile core 

values: 

• Individuals and interactions over processes and tools 

• Working program over comprehensive documentation 

• Customer collaboration over contract negotiation 

• Responding to change over following a plan  

These principles were upheld through the use of several processes, including weekly supervisor 

meetings. During these meetings it was possible to report any findings by sharing the program and 

tangible results that were identified over the week. These interactions allowed for supervisor 

collaboration and assessment where they could identify any changes needed in the demonstrated 

program. The processes would then adapt to address the criticism and advance the project to the 

next phase. These meetings were the primary measure of progress when assessing the program as it 

also helped maintain a constant tempo of work. Having this continuous consideration about the 

technical quality of the program made for progressive project alterations and allowed for changes in 

requirements, even late in development. An example of this happened after meeting with 

representatives from Stellenbosch University over a Skype conference call. Discussions to help 

understand any customer requirements, areas to explore and validation of work already performed 

took place with the representatives. One of the new emerging requirements was to investigate the 

viral load detectability using the MRI data rather than focussing solely on the HIV Status of the 

participants. 

These meetings conveyed information through face-to-face conversations to begin with, however 

due to the situation of the Covid-19 pandemic [32] we had to adapt and harness changes to the 

weekly meetings using advantageous software like Skype and Microsoft Teams. By allowing a self-

organizing approach, the agile process was able to promote a more sustainable implementation over 

the course of the project. This meant that program and developer behaviours could be tuned 

accordingly at the regular intervals. 

 

Figure 6: Agile Development Process [33] 



In figure 6 we see the different phases involved in an agile development cycle. This project adhered 

to a similar approach, keeping the core values in mind. As outlined in the next sub-section, the 

project focussed on several key phases: Plan, Explore/Model data, Implement Program, Develop 

Program, Evaluate & Document. 

It started by defining a model as simple as possible that carried out classification on the dataset. 

Next, a solution is developed to meets all minimum requirements for classification which was then 

tested. Finally, the performance of the program was evaluated, and reflection undertaken to identify 

areas to enhance. This software development lifecycle then starts again, with each new iteration of 

the cycle building upon the results of the last iteration. This agile approach allowed the project to 

avoid unnecessary work and focus on the critical priorities needed to meet the requirements in 

each iteration of the agile lifecycle. 

Timeline 

The initial plan for this project went over the predicted timescale, with a few changes needing to be 

applied later in the project. The main stages of this project consisted of 6 key phases adapted from 

the data science and agile methodology previously mentioned. These objectives are: 

1. Plan Project: Here the HIV problem was identified and research into the disease and 

neuroimaging took place. The dataset was obtained, and an ethical consideration check took 

place. Objectives & milestones were also approved by the supervisor at this stage. 

2. Explore/Initialise Data: This step involved looking through the sample dataset of 

participants and checking the demographics, size, and clinical characteristics (such as 

percentages, averages, frequency, standard deviation). The dataset was also sanitized to be 

relevant for the verdicts needed in the project. 

3. Initially Analyse Data: data analysis and statistical techniques (IŶdepeŶdeŶt “tudeŶts’ T-test) 

used to find correlations, associations, and variance between the neuroimaging data. The 

preliminary data visualisations were then created from the data analysis using applications 

such as matplotlib & seaborn. 

4. Implement Predictive Learning: Classification and regression machine learning models were 

then designed to handle the neuroimaging data. The predictive model was created, and a 

train/test split was applied from the HIV dataset. 

5. Develop Predictive Models: In this phase the machine learning model is developed with 

applied hyperparameter tuning and cross validation to minimise error such as 

under/overfitting. 

6. Evaluate & Model Results: This step was used for judging the model’s peak classification 

performance and then compared with different classifiers (models) that have also 

undergone the same treatment. Findings are then evaluated and assessed as appropriate, 

using visualisations libraries like seaborn. 

7. Document: The final step is to gather all the knowledge and significant discoveries to write 

up in this final report. 

Deliverables 

The initial deliverables for my project were: 

• Initial Plan 

• Data Visualisations and Analytics from HIV Dataset 

• Functional Convolutional Neural Network Trained on the Neuroimaging Data 



• Results Identified from the Analysis and Predictive Learning 

• Final Report 

Some of these have since changed to efficiently streamline the project and focus in areas that are of 

more significance now that better requirements were established from the customer (Stellenbosch 

University research team). Excluding the initial plan that was already submitted and the final report 

that is currently being written, the updated deliverables are: 

• Initial Data Visualisations and Analytics from HIV Dataset: 

Here we fulfilled the objective of initially analysing the data and produced the base analysis 

that progressed the project to the next stage. This was due to be completed by week 4 in the 

initial plan and remained the same in the final approach. 

 

• Functional Supervised Learning Classification Models Trained on the Neuroimaging Data: 

As stated in the project title, we used supervised machine learning techniques to investigate 

neuroimaging data for HIV participants. This deliverable fulfils the requirement to 

implement multiple predictive learning models and develop them to best solve the 

classification problem. This deliverable was initially due for the start of Easter but ended-up 

moving due to the Covid-19 situation. 

 

• Results Identified, Visualized and Evaluated from the Analysis and Predictive Learning: 

In this step of the approach the evaluation & modelling of results was completed. 

Accomplishing this objective is vital to the overall project as it is the foundation for 

communicating a solution to the problem. This objective was scheduled to be completed by 

week 10, however it was also pushed back as-well, due to further developments. 

Assumptions 

In this project many assumptions have been made including customer strategy, where it was 

assumed that the Stellenbosch university research team wanted a predictive learning model applied 

to the HIV data. This assumption was predominantly correct however other hypotheses to explore 

were established as extra functionality too. Technology-based assumptions such as access to 

hardware (laptop), software (Jupyter, Google colab) and the internet were also considered to be 

available over the course of this project and will not be restricted at any time. This proved to be the 

case and no adjustments were needed in this regard. It was also assumed that location and 

environmental factors were accessible over the course of this project and no impact to usual life 

would be present. However, due to the Covid-19 situation there have been many blocks to the 

regular scheduled management of this project. Further details can be found in the last section: 

Obstacles to Project. 

The focal assumption of this project is that the dataset is an accurate reflection of previously proven 

theories. Therefore, this dataset will be able to show there is a clear difference in the neuroanatomy 

of HIV positive individuals by looking for neuronal inflammation and neuronal death. Inference from 

the data is assumed to be sufficiently clear enough to prove the hypotheses using machine learning 

models and data analysis. 

The Dataset 

In this project, there were two CSV files that contained the neuroimaging datasets. The main file is a 

baseline neuroimaging dataset with 124 participants, with an even split of HIV-positive (1, n=62) 

and HIV-negative (0, n=62) sample size. The second dataset contains the follow-up neuroimaging 



data for 60 of the original 124 participants with an uneven split of HIV-positive (1, n=26) and HIV-

negative (0, n=34) sample size. This comma-separated values (CSV) file contains both the original 

values and the follow-up values for their current condition. The majority of the fields in these files 

were redundant, for example gender and marital status. Therefore, when the data is implemented 

iŶto the pƌogƌaŵ’s datafƌaŵes, oŶlǇ the relevant features and classes are selected. These focal fields 

included, are displayed in table 1. 

 

Class/Feature Name Description Variable Values 

HIV_Status HIV class condition 0 = HIV-negative, 

1 = HIV-positive 

ICV Intracranial volume (ICV) mm3 

LH_Frontal_vol Left hemisphere Frontal-lobe (LH_Frontal) grey matter mm3 

RH_Frontal_vol Right hemisphere Frontal-lobe (RH_Frontal) grey matter mm3 

LH_ACC Left hemisphere Anterior Cingulate Cortex (LH_ACC) grey matter mm3 

RH_ACC Right hemisphere Anterior Cingulate Cortex 

(RH_ACC) 

grey matter mm3 

LH_Hippo_vol Left hemisphere Hippocampus (LH_Hippo) grey matter mm3 

RH_Hippo_vol Right hemisphere Hippocampus (RH_Hippo) grey matter mm3 

CC_Total Total Corpus-callosum (CC_Total) grey matter mm mm3 

LH_Amygdala_vol Left hemisphere Amygdala (LH_Amygdala) grey matter mm3 

RH_Amygdala_vol Right hemisphere Amygdala (RH_Amygdala) grey matter mm3 

LH_Caudata_vol Left hemisphere Caudate (LH_Caudata) grey matter mm3 

RH_Caudata_vol Right hemisphere Caudate (RH_Caudata) grey matter mm3 

LH_Putamen_vol Left hemisphere Putamen (LH_Putamen) grey matter mm3 

RH_Putamen_vol Right hemisphere Putamen (RH_Putamen) grey matter mm3 

ARV_Treatment Is the participant on ARV treatment (ART) 1 = Yes, 

2 = No 

CD4_Count Number of CD4 cells detectable in participant blood CD4/ml3 

Viral_Load Detectability of participants HIV viral load 1 = Lower than the 

detectable, 

1 = Slightly detectable 

(< 40 cps/ ml3), 

Other values in cps/ ml3 

Table 1: Main Classes and Features in Dataset 

Hypothesis 

In this project the hypothesis is represented as a speculative statement regarding the relationship 

between several key variables. In this project we want to see if areas of the brain (neuroanatomy) 

signify HIV infection and if neuroanatomy can indicate viral load detectability. These statements 

attempt to predict an anticipated outcome that can be tested and revealed when evaluating the 

results. The hypothesis should directly correlate to the aims, therefore there are 2 core hypotheses 

declared in this project. In-order to maintain excellence in this research endeavour, the project must 

make sure that the hypotheses adhere to 4 essential details, as defined by Amy Morin. [34] 

i. ͞Does Ǉouƌ hǇpothesis foĐus oŶ soŵethiŶg that Ǉou ĐaŶ aĐtuallǇ test?͟ 

ii. ͞Does Ǉouƌ hǇpothesis iŶĐlude ďoth aŶ iŶdepeŶdeŶt aŶd depeŶdeŶt ǀaƌiaďle?͟ 



iii. ͞CaŶ Ǉou ŵaŶipulate the ǀaƌiaďles?͟ 

iv. ͞CaŶ Ǉouƌ hǇpothesis ďe tested ǁithout ǀiolatiŶg ethiĐal staŶdaƌds?͟ 

HIV Status Hypotheses 

The null HIV hypothesis is that: neuroimaging grey matter provided by the dataset is the same 

between HIV positive and negative participants. 

The alternate HIV hypothesis is that: neuroimaging grey matter provided by the dataset is different 

between HIV positive and negative participants. 

Viral Load Hypotheses 

The null viral load hypothesis is that: neuroimaging grey matter provided by the dataset is the same 

between the undetectable and highly detectable viral loads of HIV positive participants. 

The alternate viral load hypothesis is that: neuroimaging grey matter provided by the dataset is 

different between the undetectable and highly detectable viral loads of HIV positive participants. 

In this project we are looking to prove the alternate hypothesis in both instances using the HIV 

dataset provided by Stellenbosch University. Considering the 4 essential details, we know that both 

hypotheses can be tested using data analysis and supervised learning techniques. The independent 

variables are the MRI grey matter regions (the features), and the dependant variables are either the 

HIV status or the viral load of the participant (the class) respectably. We can manipulate which 

variables are used by adjusting the data-frames for feature selection to choose which predictor we 

are looking for. Finally, both hypotheses have gone through ethical consideration and do not breach 

any ethical standards in this project. 

Other Hypotheses Investigated 

In this project there were 2 datasets that could be used: baseline MRI data & follow-up MRI data. 

After discussion with supervisors and clients, the main focus of this project would be on predicting 

the HIV status & viral load detectability from the baseline data due to its sample size. However, 

given time and significant enough reason, several other theories could be investigated using the 

follow-up dataset. These queries are: 

• Can participants' whose viral load detectability changed between the base and follow-up 

acquisition be predicted from the difference in their grey matter? 

• Are there enough changes in grey matter to predict participants' that changed antiviral 

treatment (ART) from the follow-up data? 

If significant enough, testing these questions would allow us to use supervised machine learning and 

data analysis to see which brain regions altered as a result of their condition changing.  

  



Implementation 

In this section of the report I will be discussing the processes taken to implement several workable 

solutions that analyse and predict desirable results that prove/disprove the hypotheses. This project 

involves creating a python-based program that uses data analysis and supervised machine learning 

techniques to investigate if there are inferences of HIV status and viral load detectability in the 

neuroimages of South African women. 

Program Architecture 

The program implemented is designed using several popular methods that are utilized by data 

scientists from around the world. 

Python 

The program created during this project was written in the programming language Python. 

Specifically python version 3.6.9. The decision to use python as the language of choice was due to 3 

main points: 

1. The project proposal was established as being undertaken in python. This is because the 

project supervisor has an extensive knowledge of the python programming language and 

was able to deliver detailed workshops in the field of data science regarding python. This 

significantly helped to kickstart the project in the right direction. 

2. Another reason python was chosen was due to the pre-existing knowledge that the project 

implementer already had regarding this programming language. This meant that extensive 

learning and research was not required before and during the project. Or at-least not as 

much as there would be if a new, unknown language had to be used for the project such as 

R.  

3. The final justification as to why python was used for this project is because of its reputation 

in the data science community. Python is renowned by data scientists as it is known to be 

one of the easiest learn and develop when getting started as a data scientist. Python also 

has many substantially useful packages and support within the community that are free to 

use. This facilitated the project, as it can utilise detailed data analysis techniques, 

comprehensive supervised learning models and aesthetic graph visualisations. 

On the other hand, python also has its own disadvantages. One of which is the fact that it does 

not have great documentation. This is especially the case when you compare it to other 

programming languages like PHP and Java. However, the advantages of using python in this 

project outweigh any disadvantages that it may have. 

Anaconda 

When initially implementing the python code, Anaconda was used to install and manage the 

majority of desirable packages that are being used in the project program. Installing anaconda 

allowed access to a multitude of useful packages. Using the Anaconda command prompt shell, the 

project could run Jupyter notebooks and the essential packages that were installed along with it. 

Some of the more obscure packages had to be manually installed (e.g. Seaborn) as they are not 

installed by default using Anaconda. However, all the other required packages were already setup 

thanks to the assistance of Anaconda. 



Initially, Anaconda was chosen because it was recommended by the project supervisor. It is also well 

known as an industry standard tool in data science that has been used to implement previous 

coursework projects. 

Jupyter 

The most notable package that is installed with Anaconda is Jupyter notebook. The program 

associated with this project is written exclusively inside of a Jupyter notebook as it has many 

advantageous functionalities. Jupyter notebook was initially developed for data science applications 

written in Python and is useful in variety of different projects. It allows for easy data visualisations as 

Jupyter notebook developers often publish their techniques and share their code and datasets. One 

of the most advantageous uses with the Jupyter notebooks is its live code interactions. The 

Ŷoteďook’s code is not just static due to the fact that it can be modified and then re-processed with 

the program returning the outcome instantly and directly into the notebook tab. 

These processes are all very useful for implementing a program but when it comes to creating a 

project program, Jupyter notebooks allow for embedded documenting. In this project the code often 

has titles and comments that explains areas that were being investigated and their functions. This all 

happens while the user gets to see dynamic feedback of results and visualisations. 

Google Colab 

After the project started, the project supervisor wanted to use Google Colab as the main form of file 

shaƌiŶg aŶd ǀeƌsioŶ ĐoŶtƌol iŶ this pƌojeĐt. This is due to Google Colaď’s fuŶĐtioŶalitǇ iŶ Đode sharing 

capabilities, as they allow users with access to the repository to view code, execute it, and display 

the results directly in their web browser of choice. As suggested in the product name, it also 

supports collaboration between teams of developers working on Jupyter notebooks. This means 

that Google Colab could, in future, expand implementation to a wider team if necessary, in a later 

project. 

Google Colab also has free inbuilt functionality that link the Jupyter notebook to a Google drive 

account where it will have back-ups and version control methodologies employed to a professional 

standard. One of the most practical characteristics that makes Google Colab a professional industry 

standard in the data scientist community, is that it has dedicated GPU (Graphics processing unit). 

This makes Google Colab especially useful to projects that require a significant enough chunk of 

processing power that may not be available on a useƌ’s own computer or restrict the user when 

processing a program. This is why Google Colab is especially useful when running programs that 

have machine learning and/or other exhaustive functions like deep learning. 

I suggest that anyone who runs this projeĐt’s prograŵ to use Google Colaď for optimal results as it 

will ignore update errors and will not burden their own computer. 

Program Design 

In this project, the program was setup in a Jupyter notebook following the methodology that was 

decided in the approach. The structure of the program goes as follows: 

• Program Head: import packages 

• Data Initialisation: upload, characterise, normalize, define dataframes 

• Data Exploration and Analysis: demographics, descriptive analysis (averages, frequency, 

range), neuroimaging data distribution, independent t-test (t-value, p-value), feature 

selection plot, pair-plot 



• Supervised Machine Learning: train/test split & cross validation, linear discriminant analysis, 

support vector machine, k-nearest neighbour, logistic regression, random forest, 

classification accuracy (performance metrics) 

• MRI Feature Selection Supervised Machine Learning: train/test split & cross validation, 

linear discriminant analysis, support vector machine, k-nearest neighbour, logistic 

regression, random forest, classification accuracy (performance metrics) 

The sections Data Exploration and Analysis, Supervised Machine Learning are also duplicated for the 

viral load class in-order to determine the other core hypothesis. The first series of these sections 

investigate if HIV status can be predicted while the second series investigates if the viral load 

detectability can be predicted using the neuroimaging dataset. Full details, explanations, 

illustrations, and clarifications about the implementation can be found in the subsequent sections of 

this report. 

Style and Formatting 

When implementing diagrams, the program used the python library Seaborn in-order to adhere to 

presentation standards and maintain interpretability. Areas that were addressed when designing 

and creating the visualisation included: colour palettes, font size, font weight, labels, titles, subplots, 

regression lines, axis lines, error bar/confidence intervals and plot orientation (vertical/horizontal).  

Changes from Initial Plan 

The program adapted over the course of the project to fit a more suitable structure for the required 

results. The data science methodology of the newly designed program tied nicely with the proposed 

format that was originally mentioned within the initial plan. [35] the original format was to 

Explore/Initialise data which was performed in the first sections of the program. Then it was planned 

to model data visualisation which was performed in the data explorations and analysis section as-

Figure 7: Project Timescale Gantt Chart [35] 



well. The next stage of the plan involved implementing predictive learning using classical machine 

learning models and identifying the top classification performance. This objective was addressed in 

the supervised machine learning segment of the program where the different models were 

implemented and tested for their performance.  

Each section had its own part in the program until the development phase of the plan. The 

development objectives and deliverables did change once the requirements needed in the program 

became clearer. The deliverable in this section changed from the creation of a neural network to the 

development of the pre-existing predictive classifiers. They were instead developed through the 

implementation of hyperparameter tuning, nested cross-validation, and feature selection. This new 

development process occurred within the supervised machine learning segment of the program 

over-riding the previous code that was used. And then a new part of the prograŵ ͞MRI Feature 

Selection Supervised Machine Learning͟ ǁas added to investigate feature selection of the MRI data. 

This update to the deliverables was ill-fated but still aligned with the core aims of the project and 

aĐĐoŵplish the aiŵ ͞Develop the predictive model to closely predict if a participant has HIV based 

on neuroimaging data͟. 

Program Head 

In the head section of the program, the required python libraries and packages are imported and 

defined for use throughout the program. Python is very advantageous, having large standard 

libraries that encompass many beneficial programming operations. Unlike other programming 

languages, the procedures coded into Python are already scripted. Python’s simplicity is appealing 

for many data scientists who build machine learning libraries or develop existing ones. As a result of 

Python’s eǆteŶsiǀe aŶd effeĐtiǀe liďƌaƌǇ ĐolleĐtioŶs, it has become one of the best gateways for a 

data scientist to develop their machine learning skills. 

These libraries are proven to be useful tools to any data scientist looking to use python programming 

in their projects. Most notably, Pandas, Seaborn and Scikit Learn (sklearn) are core packages that 

have been heavily integrated into this program.  

Scikit Learn has many beneficial uses for data scientists due to its free usage, ease of use. Since 

scikit-learn is distributed under BSD license, it is free to use without any legal limitations for the 

program. Many industries and data science research projects use scikit-learn in their programs due 

to its easy use and lack of issues when performing complex processes. 

Scikit Learn has also shown great versatility, support, and useful documentation from the data 

science community. The tool helps solve a variety of problems including classifying diseases and 

analysing neuroimages. The ďest featuƌe aǀailaďle ǁith sĐikit leaƌŶ is it’s detailed doĐuŵeŶtatioŶ, 
which is accessible on their website [36] and assists users in integrating scikit-learn with their own 

Figure 8: Python libraries used in program [50] 



datasets, programs and platforms. The tool also has a global community that are often able to help 

users if they happen to encounter any issues or errors with the tool. 

Python alone is not convenient when it comes to investigating data analysis. However, Pandas offers 

many beneficial features and is the most common used library in this project as it enables data 

analysis techniques with collaboration from other tools. By combining pandas with libraries in this 

project an environment is created that supports analysis ďǇ eŶhaŶĐiŶg the pƌogƌaŵ’s productivity 

and performance. Pandas has some of the most proficient data manipulation functions which allow 

the project to use dataframe structures for storing and displaying datasets. Pandas is also able to 

help solves regression and classification problems using statsmodels and scikit-learn by applying a 

dimensional data structures to the dataset. Pandas can also read and write data from formats 

including plain text, Comma Separated Values (CSV) and Relational Databases, making it the best 

data structure library for this project. 

Seaborn is also one of the most important libraries used in the program, as it is used in the main 

visualisation code. The main advantage of using seaborn is its ease of use regarding graph plots and 

aesthetics. The aesthetics are much more visually appealing than matplotlib as it provides a wide 

library of easily customizable styles and pallets. This includes styles that differentiate qualitative, 

diverging, and sequential colour palettes for the satisfying visuals. It has plenty of valuable 

documentation that can be found on their website with many other useful tutorials and examples. 

[37] 

Initializing Data 

In the initializing section of the program, the neuroimaging data is uploaded from its source format 

type (CSV) and placed in Google Colab’s teŵpoƌaƌǇ memory store (using Google Drive). Once placed 

iŶ ŵeŵoƌǇ, the pƌogƌaŵ ĐaŶ theŶ ƌead the ŶeuƌoiŵagiŶg dataset usiŶg paŶdas’ read_csv function. 

This allows the program to save the uploaded data a variable that we can manipulate and store as 

the best structure. 

Characteristics 

The data characteristics can now be examined to make sure that it contains all data that is relevant 

to this project. Extracted is the number of participants, the amount of HIV positive participants and 

the columns/features (clinical characterises) that are available in the dataset. 

This cell in the Jupyter notebook is useful for 2 main reasons. Firstly, it gives vital information about 

what data was contained in the uploaded file and which fields/columns of the data is being analysed 

in the program. The second useful note is that this tests the data to make sure it has all the 

necessary size, features and diversity to implement into the program. This includes knowing that 

there are 62 HIV positive participants as iŶdiĐated ďut the ͞HIV_“tatus͟ ĐoluŵŶ aŶd also that theƌe 
are 13 MRI brain regions we can use as features in this project.  

Normalisation and Standardisation 

When discussing the data with the project supervisor it remained important that the data be 

properly standardised for the participants when looking through the values that were present. In 

neuroanatomy there are many differences between brains, as this project is trying to prove with 

HIV. And it is important that the program addresses the fact that there is great deviation between 

the grey matter volume of each participant. 

Because the variation between participants intracranial volume (ICV) was significant, a meeting 

was setup with the supervisors of the project to clear up any issues identified from the dataset. After 

discussion, it was determined that the ICV variable deviated significantly because the value is 



derived from not only the grey and white matter volume, but from all the excess neuronal volume, 

fatty volume, plasma volume and other volume factors. However, they still recommended 

standardising the dataset using the ICV because the methodology and process of obtaining the ICV 

values remained constant for all participants and was reliable for regulating the data. 

Therefore, it was decided that the program would implement a standardisation function that would 

assist in normalizing the dataset. This was done by dividing the 13 core brain regions for each 

participant by their corresponding intracranial volume, which was one of the key values stored in a 

ĐoluŵŶ Ŷaŵed ͞ICV͟. This was the first step to normalising the data, however, each of the 13 brain 

regions values were comparatively small when looking at the size of a participants ICV. This meant 

that the standardised variable for each of the brain regions in the dataset became uninterpretable 

due to how small the value was. The value for each brain region went from, for example 911 to 

0.000940932 when divided by an ICV of 968189.35. Because the variables calculated from this 

standardisation were indistinct, the data values needed to be scaled as appropriate. 

Scaling 

Initially, the variables were scaled by converting the values to base 10 using a logarithmic function. 

This was attempted because one of the fields in dataset had scaled the ICV values to base 10 using 

the same methodology. This would mean that a value such as 0.000940932 would then become -

3.03 (rounded) which is considerably more interpretable than it was previously, therefore it can be 

used to visualize the brain region distribution more appropriately. This was soon dismissed as a 

viable method of scaling when looking at the brain region distribution using the base 10 scale. This 

was because the scaled data had become inaccurate as a result of scaling to base 10. Scaling using 

this methodology caused the data to skew and become unbalanced. 

Consequently, another method had to be employed. The data had already been standardized but 

now needed a new scaler instead of using logarithmic scaling. Fortunately, scikit learn have a pre-

processing module that can use various normalisation techniques on the dataset. In this module 

there is a function called MinMaxScaler which scaled the brain regions (features) to lie between a 

minimum and maximum value, so that the maximum absolute value of each feature is scaled to unit 

size. [38] Here, the features were scaled to between the values 0 and 1 for each brain region using a 

for loop over the indexed rows. 

Dataframes 

The final step when initialising the data was to define the features and store then in separate pandas 

dataframes, so that they are easily accessible when called later in the program. Although there are 

many more dataframes that are present throughout the program, these particular dataframes 

contain universal features that are not only relevant for many sections of the project but would need 

to be continuously redefined due to their excessive use. The main dataframe defined in this program 

is the mriDF which contained the HIV status and MRI regions for each of the 124 participants. This 

beginning of the focal dataframe was then displayed using the pandas head function. 

Data Exploration & Analysis 

In this stage of the program, the participants neuroimaging data was examined for key associations. 

This analysis was carried out for both HIV status inference as-well as viral load detectability, with 

initial investigations into the viability of the follow-up data. 

Descriptive Statistical Characteristics 

During this step of implementation, the program analysed the dataframes to calculate the statistical 

values that could show correlations, associations, and variance between the neuroimaging data. 



First, the data is set into a pandas dataframe where the program extracts the core numerical data 

values for each feature, using the pandas describe function. In this function, a summary of the 

central tendencies, dispersion, and shape of distribution is displayed in a tabular format. This 

function also ignores not a number (NaN) values that would have been placed in fields like the 

participation ID. As a result, a table of useful values are displayed that depict the count, mean, 

standard deviation, quartiles (0.25, 0.5, 0.75 percentiles) and range (min/max) for each feature of 

the dataset. 

Next, the program split the data by HIV Status (using pandas groupby function) and the mean values 

are calculated for each feature in the dataset. This will allow the user to see the fundamental 

difference for each brain region between the HIV positive and negative participants. 

In-order to make the data more interpretable, the values from the descriptive tabular format were 

visualised in a boxplot graph. This was performed through the use of the visualisation library 

Seaborn, using the boxplot function. This plot describes the distribution of normalised MRI regions, 

therefore testing to see how much of a normal distribution is present and compares the 

standardised grey matter volume per brain region. After this step in the implementation, the brain 

region distribution was verified as normal by the project supervisors and researchers in South Africa. 

This was through the use of a Skype meeting, where discussions on the data characteristics allowed 

us to move ahead with the next stages of the data analysis. 

Initial Investigations of Other Hypotheses 

Along with predicting HIV, this project wants to see if there is a probability to predict viral load and 

changes in viral load/ART from the follow-up data. In this step of the implementation, the program 

counts the relevant variables (classes) that would be used for classification to determine whether 

those hypotheses are significant enough to be investigated in their entirety. This assessment was 

performed using a simplistic seaborn graph function called countplot. These visualisations will 

describe the quantity of participants that can be used in the train/test split for the classifier models. 

From here, if there are enough participants to use, the program will apply the data analysis and 

supervised learning techniques to test those hypotheses. After this investigation, the data limitations 

were made clear for several of the hypothesis. At this stage, any investigation into the follow-up 

data was deemed insignificant and therefore was not used in the rest of the implementation. 

However, even though the viral load baseline data had large variation between the sample size, it 

still had enough participants that could be investigated with a stratified implementation. 

Independent T-Test 

I used the independent t-test function from the stats module in the SciPy library. This function 

calculates a T-test from the means of two independent samples of scores. In this case it is for HIV 

positive and HIV negative brain regions. With this argument, we test for the 2 hypotheses mentioned 

in the approach section: HIV Status Hypotheses. This statistical test needed to be performed per 

brain region to determine the significance that each brain region could help predict HIV status. The 

original distribution of MRI regions was not Gaussian (bell curve) and therefore had to be normalised 

in-order to be subjected to the independent t-test. After the initialisation stage of the program, the 

data was normalised to create the required distributed as validated in the MRI region distribution 

visualisation. [17] The SciPy t-test functioned required 2 parameters, a list of values from the HIV 

positive MRI region, and the list of values from HIV negative participants for that same MRI region. 

The t-test would then compare the means of said MRI regions to determine the t-value & p-value. It 

would then perform another t-test for a different MRI region in the dataset until all brain regions 

have been statistically analysed for their significance. 



In the program, this is done using pandas dataframes in a for loop. First the dataset is split by HIV 

status by defining a new dataframes for each status. Then the for loop indexes each relevant column 

of the dataframe to extract a list of the values for the positive and negative participants. Then these 

are statistically examined with the stats.ttest_ind function, where 2 values are returned and 

appended to a list so they can be visualised and evaluated in the next stage of the program. One list 

containing the t-values and the other list containing the p-values of each MRI region. 

The same implementation was also applied using the viral load status as the split to help determine 

if there was any statistical significance between the MRI regions regarding viral load detectability. 

A bar chart showing the significance of each brain region was then produced to visualise the t-

values, p-values, and statistical significance for any of the MRI regions (features). These 

ǀisualisatioŶs used “eaďoƌŶ’s barplot function and the statistical significance was indicated using a 

line positioned on the y axis at 0.05, indicating the <0.05 statistical significance of any brain regions. 

This line was then annotated with an arrow in-order to explain its meaning. At this point, there were 

only statistically significant MRI regions in regard to the HIV hypothesis. Therefore, feature selection 

would only be carried out on the HIV dataset. 

Feature Selection Investigation 

As a result of the independent t-test results, the statistically significant brain regions were identified 

and were further examined. Selecting and then analysing these features in greater detail allowed the 

project to check for further correlations that support the relevant hypothesis. 

Feature selection is a widely used methodology in analysis and machine learning. Applying 

supervised learning to a dataset of just the 4 core features that were indicated by the t-test will 

increase performance. ͞[It] is one of the core concepts in machine learning which hugely impacts the 

performance of your model. The data features that you use to train your machine learning models 

have a huge influence on the performance you can achieve.͟ [39] 

There are many reasons why this program implemented feature selection. One of these benefits was 

the reduction in overfitting because there is less superfluous data and therefore less chance to draw 

conclusions from the noise of said data. Feature selection also improves accuracy and reduces 

training time as a result of having a reduced amount of data. As there is less undesirable data that 

requires processing in the program. [39] 

More data analysis techniques were applied to the selected MRI regions to see the differences in a 

visualised format. This included a scatterplot, where the grey matter of the 4 significant brain 

regions was plot against the intracranial volume separated by HIV status, and a line of regression 

added to help determine the degree of correlation. Another method used on the selected features 

was a pairplot graph that shows the pairwise relationships for those brain regions, separated by HIV 

status. 

With the results of which brain regions showed statistical significance, a separate supervised 

machine learning segment was placed in the program to see if it performs in a more reliable and 

accuracy manner. This additional segment to the program uses the same code from the original 

supervised learning (classification) segment of the program. The data trained and tested in the 

program code consists of only the 4 significant brain regions rather than all 13 that were present in 

the previous data. 



There was no statistical significance shown for the brain regions of undetectable and detectable viral 

loads in the HIV positive dataset. Therefore, when performing supervised learning to predict viral 

load detectability, feature selection was not implemented for any of the brain regions. 

Supervised Machine Learning 

During implementation, there were many different areas that needed to be included in the 

supervised machine learning stage of the program. The aim of this stage in implementation is to 

create predictive models that can predict HIV status or Viral Load detectability in the dataset.  

In the initial plan, there was no mention of using feature selection for certain brain regions. 

Although, once statistical significance was identified that supported the hypothesis to predict HIV 

status from the MRI data, using feature selection seemed appropriate. Therefore, an MRI feature 

selection program was implemented to assess those particular brain regions for better results. 

When implementing feature selection on the predictive models, there were minimal differences in 

the initially supervised learning models. The main changes required for feature selection was during 

the implementation of the training/testing data, where rather than allowing all brain region data to 

be used, the program isolates the significant brain regions to train and test in the different 

supervised machine learning models. The only other modifications from the initial predictive models 

were the variable names for the results. In-order to main integrity in the program, the variables that 

defined the final results were changed so that they can be easily called later in the program for 

evaluation, as required. 

Defining Training and Testing Data Split 

A well-established practice in the data science community is to split the data in-order to evaluate the 

model and make sure it performs appropriately on different elements. For this we use a test split 

which divides the original data into two groups. A training group that was used to train the different 

models and a test group using a new set derived from the rest of the data. So once the models are 

trained, it can be evaluated by checking if the model is consistent by accurately predicting the 

testing data. Typically, a data scientist will use a 80–20 or 70–30 percent train-test split as it is often 

reliable while being effective in performance. [40] 

For the HIV status investigation, the features and class were defined by indexing the appropriate 

mriDF dataframe columns. When including feature selection, the same method was applied but only 

the 4 significant columns were indexed to be used as the features. The implementation of a train-

test split began with random split using the Scikit Learn model_selection.train_test_split function. In 

this function the test_size was set to 0.25, meaning that the train-test split is 75% training data and 

25% testing data. So that the results created in the program were re-creatable the random_state of 

each of these functions was set to 1. This would be conducted with other random states in the 

Classification Accuracy sections of the program. 

Defining Cross-Validation Methods 

In the initial part of the supervised learning program, different cross-validation methods were also 

employed to test the accuracy of the classifiers in a way that approach the problem from multiple 

angles to prevent overfitting/underfitting of the predictive models. An advantage of using cross-

validation include the utilising of all the MRI data, so every participant will be used to train and test 

the classifiers in the program. The usefulness of this method means that the program implements 

nested cross-validation functions when executing the pre-set functions with tuned hyperparameters. 



In this program, 4 different types of cross-validation were used, each with their own approach to a 

train/test split. These cross-validation model_selection functions are also imported from the Scikit 

Learn Metrics module. 

• KFold: which divides all the samples within the groups of samples known as folds. Training is 

learned using 3 of the 4 folds, and the last fold is excluded and then used the test split. 

• RepeatedStratifiedKFold: repeats Stratified K-Fold n times with different randomisation in 

each repetition. It was used to run KFold n times, producing different splits in each 

repetition. 

• StratifiedShuffleSplit: which is a variation of ShuffleSplit and returns stratified splits, i.e. 

which creates splits by preserving the same percentage for each target class as in the 

complete set. 

Classification Models 

The main predictive models that were implemented into the program are classification models 

which each use a different classifier function. In this program, each classifier has its own sub-

program dedicated to hyperparameter tuning which is then evaluated against the other predictive 

model performances. 

Initially, the viral load detectability was going to be a multiclass predictive model, where it would 

class the participants as undetectable, slightly detectable (< 40 cps/ml but still detectable), and 

highly detectable (> 40cps/ml). Though when running the train/test split, there were not enough 

participants who identified as slightly detectable (only 2 participants) to adequately use as a class in 

the classification models. Therefore, it was redundant to implement a multiclass system. So, the viral 

load detectability was turned into a binary class of undetectable & detectable viral load data. 

Even though a binary class system was implemented, the sample data sizes between them was too 

great of a difference (with 8 undetectable and 52 detectable participants). Therefore, a stratified 

approach needed to be used to make sure that undetectable samples were being used in both the 

training and the testing split of the data. Supervised learning was still carried out even with the great 

disparity of the sampled data.  

This project implemented many different classifiers that approached the problem using different 

algorithms and methodologies. The classifiers used in this program are: 

• Linear Discriminant Analysis (LDA) 

• Support Vector Machine (SVM) 

• K-Nearest Neighbour (KNN) 

• Logistic Regression 

• Random Forest 

These models were chosen as they are some of the most well-known and widely used classifiers in 

the data science community. [41] These classifiers on the surface can be easy, fast, and simple to 

implement and did not require extensive prior knowledge of the classifier or algorithms used in the 

classification sub-program. Several of the models also did not have many hyperparameters that 

required tuning. Random forest also would not require extensive pre-processing to be performed on 

the original dataset or make assumptions on the distribution of the data unlike other classifiers. 

When implementing these sub-programs, a strict design was followed so that the program cells all 

had an engaging yet structured layout. This design was applied to each of the classifiers, with the 

only changing factors being the variable names, parameters, and the classifier function from Scikit 



Learn itself. These sections use python comments to outline the headings and which part of the 

relevant code is being addressed. 

The code structure for each of the classifier sub-programs is as follows: 

1. Defining Model and Parameters: 

In this section of the sub-program, the imported classifier is defined along with any relevant 

parameters that need to be pre-defined for the hyperparameter grid searches (which are 

used to create the tuned models). 

2. Training Baseline Model with Random Split and Cross-Validation: 

Here, the baseline classifier is trained (fit) with the random split and cross-validation 

methods specified in the test/train split cell before the classification sub-programs. With the 

cross-validation methods, the program returns a list of the scores for each of the 

implemented cross-validation processes. These baseline results are kept in their own 

variables to be called later in the sub-program. 

3. Set Hyperparameter Grid Search and Train: 

In-order to create a model with optimised performance, the program uses the parameters 

from the first section in a dictionary to create a hyperparameter grid. This grid is then 

supplied to an exhaustive search function, to find the best estimators for the trained model. 

A parameter grid is also given to a random search function which allows for a comparative 

evaluation of a control result for the baseline and best estimator results. It does this by 

selecting a random set of parameters to use in the classification model. These grids searched 

models are then fit with the training data to minimise overfitting whilst finding the prime 

parameters for that model. These trained grid results are then set to their respective 

variable to be called later in the sub-program. 

4. Train and Assess the Tuned Models: 

This section then takes the best estimator from the grid results and trains a model using the 

best hyperparameters from the exhaustive grid search. A cross-validation process is then 

employed with this tuned grid to evaluate a nested cross-validation method against the 

random split hyperparameter tuned model. Each of the models thus far have not be 

assessed against the test data to predict the desired class. The next part of this section 

produces the value for each score and assigns the results to their appropriate variables. 

Several of these variable results are then placed into corresponding dictionary dataframe 

ǁhiĐh is ǁill ĐoŶtaiŶ the keǇ ƌesults foƌ eaĐh Đlassifieƌ’s tuŶed ŵodel. This is saǀed so it ĐaŶ 
be called in the accuracy and performance section of the sub-program. 

5. Display and Assign Results for Evaluation: 

The last part of each sub-program is used to print out the results of the classifier models and 

concatenate the dataframe of results for each classifier to their overarching tables. These 

overarching tables are dataframe variable reportDF which contains the "Precision", "Recall", 

"F1", "Accuracy", "ROC_AUC" scores & resultsDF which contains the "Baseline random split", 

"Baseline cross-validation", "Baseline repeated stratified CV", "Baseline shuffle split CV", 

"Random hyperparameter grid", "Tuned hyperparameter grid", "Tuned hyperparameter CV" 

performance accuracy. 

 

Classifiers’ Accuracy & PerforŵaŶce 

Once all the sub-programs have been executed, the results collected are analysed and visualised in 

this final part for each investigation. These include the HIV status investigation, the HIV status 

feature selection and the viral load detectability investigation.  



The first measure of performance displayed in this section is a tabular dataframe of all the collected 

results from the different classification model accuracies. Here, the results are converted form 

decimal to percentages and then the dataframe is displayed. The program then groups the accuracy 

scores by Classifier to get the mean value of each classification mode and display those values. 

These results are then visualised in a classifier accuracy comparison barplot. This was implemented 

by setting the x axis to the accuracy and the y axis to the classifier. This barplot is positioned in a 

horizontal orientation to improve interpretability as it is comparing percentages of accuracy. The 

error bars of this graph are set to include a confidence interval of 95%, which is the standard for bar 

chart statistical graphs. [42] 

The results from the classification models were then used to create a set of confusion matrix. One 

confusion matrix was created from the results of each classifier using a for loop and seaborn 

heatmap function. In this cell 3 lists were defined. One to differentiate the classifiers, another to set 

the titles, and a final list to assign a sequential colour palette for each confusion matrix. The 

confusion matrix function looks at the y_test data (the actual class data) and compares it against the 

y_predict data that ǁas ĐalĐulated iŶ eaĐh Đlassifieƌs’ suď-program. It then accesses the performance 

for each of the classifier results which can then be visualised in a heatmap. 

The classification models thus-far have been set to use a random state of 1. This means that any 

results created would be replicable over the course of the project. However, this limits the data to 

only perform under one instance of the program whenever it is executed. For the final performance 

test of the investigation, the program uses a for loop to iterate over many different random states 

and takes the precision, recall, F1, accuracy and ROC AUC scores for each iteration and appends 

them to a consolidated dataframe. 

These performance scores are then visualised in a tabular view and barplot graph to determine if the 

classification models were successful at proving the hypothesis. A 50% performance threshold was 

also added to the HIV investigation barplot to signify when the accuracy becomes a circumstantial 

possibility in an even sampled (50:50) predictive model. In data science, these 5 scores are 

exceedingly important and informative when evaluating the classification performance. Therefore, 

displaying them in this comparative view allows for efficient assessment of performance for each 

classifier. 

After generating the results, the program finishes the investigation by performing a one-way analysis 

of variance (ANOVA). This ANOVA will test the significance of the obtained results by seeing if the 

performance values have the same population mean when applied to the ROC AUC score and 

accuracy of each classifier. This test will assess any correlation and highlight the significance of 

means and interactions between the performance scores. Implementing an ANOVA has benefits 

such as using an improved technique to analyse various factors in multidimensional data. The one-

way ANOVA function was imported in the SciPy stats module, similarly to the t-test. However, this 

function requires at-least 3 parameters to be supplied for the analysis. Therefore, the program 

needed to separate the performance values by classifier and defined individual lists for each set of 

scores. The function stats.f_oneway then takes these lists as parameters and perform one-way 

ANOVA to return an f-value (Variance between Classifiers' Performance) and a p-value (Significance 

of Classifiers' Performance Variance). 

 

  



Results and Evaluation 

In this section of the report, I will be discussing the results identified from the project and evaluate 

how these solutions assisted in solving the problem. Some results showed promise to prove the 

project hypotheses, however there were no tangible solutions that reliably achieved the aim to 

predict HIV in a neuroimaging dataset. This part of the paper will go over the recorded results by 

evaluating their quantitative significances at solving the hypotheses. The project aims to find 

correlations, associations, and inferences within the neuroimaging data that supports the pre-

existing theory that HIV positive individuals show signs of neuronal inflammation/death. In areas 

where the results contradict the existing concepts, a discussion about the reasons why the result do 

not satisfy the hypotheses is conducted. 

Quantitative Result Methodology 

This project predominantly took a quantitative approach to results by producing statistical numeric 

values regarding the analysis of the data and performance of the program. These arithmetic values 

are then transformed into diagrams to visualise, compare, and interpret the results identified by the 

program. This approach was preferred because this project uses python programming to employ 

analysis and algorithms which identify any concrete results. Using tables and graphs from the 

resulting data is also useful for the Stellenbosch University Research team, who will observe the 

results from an outside perspective (with insufficient knowledge about the python program). 

HIV Status Investigation: Data Analysis 

Descriptive Statistical Characteristics 

The initial steps of data analysis identified the core statistical characteristics, which define the 

variables and attributes of the neuroimaging dataset supplied by Stellenbosch University. These 

initial statistics state the baseline characteristics of all 124 participants, 62 of which are HIV negative 

and 62 HIV positive. Demographic data did not describe many traits, but did reveal that the dataset 

ĐoŶsisted of eŶtiƌelǇ ͞ďlaĐk͟/͟Đolouƌed͟ [7] South African women between 18 & 50 (with a mean 

age of 30.27). 

Other statistical qualities depicted in this stage of analysis include the mean ranges/quartiles and 

standard deviation of each feature. These details are useful regarding some of the characteristics in 

the dataset however to fully understand the distribution amongst the brain regions of the 

participants, a boxplot was created. In figure 9 we see the boxplot that shows the 

normalised/standardised grey matter volume as allocated between the separate MRI regions. 

Displaying this data using the seaborn boxplot function, we not only see the overall distribution of 

each MRI region, but it also depicts the median, inter-quartile range (lower/upper quartiles), the 

minimum & maximum correlating values as-well as any outliers present for the set of normalised 

data in each feature (MRI region). 

The distribution of normalised MRI regions, as displayed in figure 9, was then shown to the research 

team at Stellenbosch University in South Africa. Here they could confirm that the MRI regions 

showed usual distribution for their respective features. Since the distribution of the participant 

neuroimaging data has been verified by professional neurologists, the next stage of analysis was 

permitted. 



 

Independent T-Test 

The main form of statistical analysis used in this stage of the program was an independent t-test. In 

this t-test we are attempting to test against the null hypothesis that: the normalised grey matter is 

the same between HIV positive and negative participants. By evaluating the mean values of the HIV 

negative and positive participants we can see how much variance there is per brain region. The 

independent t-test will give us 2 sets of results. A t-value, where the magnitude of variation is 

measured. The higher the t-value the more that brain region supports the alternate hypothesis. 

There is also the p-value, which gives the probability that the t-value occurred by chance. 

Therefore, we look for a p-value less than 0.05 which is statistically significant enough to say it was 

not produced coincidentally.  

Figure 10 shows us the results of the initial t-test by displaying the t-values in a barplot per MRI 

region, which made analysis easier and enhanced interpretation. It is apparent from this graph that 

there are 5 MRI regions which show promise of solving the hypothesis. These regions of interest 

are LH_Frontal, LH_ACC, CC_Total, LH_Putamen, RH_Putamen. These regions with the highest score 

test against the null hypothesis, so we can be sure to analyse them in more detail, in-order to see 

correlations and inferences when predicting the HIV disease in neuroimaging data. 

Figure 10 shows the magnitude of each brain region against the null hypothesis but some of these 

values could have occurred by chance during the independent t-test. In-order to see which MRI 

regions truthfully have a chance of proving the alternate hypothesis I created another barplot. 

 

 

 

 

Figure 9: Distribution of Normalised MRI Regions 



Figure 11 compares the p-values of each feature analysed in the t-test. This barplot directly 

corresponds to the comparison of HIV t-values per feature diagram using the same style palette to 

represent each brain region. The p-values identified represent the likelihood that the t-value 

occurred by chance, which is very evident in some of the brain regions. In particular, the RH_Frontal, 

LH_Amygdala & RH_Hippo all have high chance, so those scores probably occurred by happenstance. 

In this barplot we are specifically look for the MRI regions that have a p-value of less than 0.05 to 

signify their statistical significance. This probability threshold is shown using a red line at the x axis 

value of 0.05. Therefore, any MRI regions that fall below this line show an inconsequential enough 

probability of chance occurrence that we can scientifically assume they support their values in figure 

10.  

Figure 10: Comparison of HIV T-Statistics per Feature 

Figure 11: Comparison of HIV P-Values per Feature 



Out of the 5 MRI regions identified in figure 10, we can see that 4 of these regions support the 

alternate hypothesis with statistical significance. These are: LH_Frontal, CC_Total, LH_Putamen, 

RH_Putamen. However, looking at the probability of chance, we have had to discard the LH_ACC 

brain region as it has not shown to be statistically significant in this test. We can therefore move on 

with the 4 significant regions identified and investigate these brain regions further in future analysis. 

Feature Selection Diagrams 

Now that the significant brain regions have been identified, some rudimentary data analysis was 

carried out for these regions to look for clear relationships as-well as any disassociation between the 

sampled participant groups. In-order to perform this in-depth analysis, feature selection was used to 

isolate the 4 main MRI regions identified in the independent t-test. 

The first form of feature selection data analysis used a scatterplot to see the general distribution and 

correlation of the 4 isolated MRI regions, separated by HIV status. Figure 12 depicts the results of 

this examination. 

Figure 12 shows the general shape, correlation, and distribution of the MRI brain region grey matter 

against the intracranial volumes for both the HIV negative and positive participants. This columnized 

component analysis details the differences between the HIV groups showing several noteworthy 

elements in the selected data. Firstly, both have a similar negative correlation with a slightly steeper 

degree in the HIV negative samples. We also see clear limitation are present in the HIV positive MRI 

regions as there are no participants with a ICV higher than 1.6, whereas there are many outliers 

present in the HIV negative dataset which could have caused the MRI regions to support the 

alternative hypothesis in the independent t-test. These visible limitations mean that there may not 

be enough inference in the dataset to predict the HIV status for participants, even though we found 

some statistical significance for this project. 

To finish the feature selection data analysis part of this project a pairplot was created to see the 

associations in the data per significant MRI region (separated by HIV Status). This assisted in 

demonstrating the divergence for said features. This pairplot is listed in the appendix as figure 23. 

Figure 12: Comparison of Significant Neuroimaging Features by HIV Status 



HIV Status Investigation: Supervised Machine Learning 

Classification Accuracy 

In table 2 we can see the individual classifier model accuracy results. Each method represents a 

model that was used to predict the HIV status of participants neuroimaging data. To observe the 

average accuracy for each classifier, the final column of table 2 includes this metric. 

Classifier Method Accuracy % Mean % 

LDA 

Baseline random split 58.06 

58.96 

Baseline cross-validation 60.48 
Baseline repeated stratified CV 59.68 

Baseline shuffle split CV 57.89 
Random hyperparameter grid 58.06 

Tuned hyperparameter grid 58.06 
Tuned hyperparameter CV 60.48 

SVM 

Baseline random split 48.39 

50.07 

Baseline cross-validation 45.16 
Baseline repeated stratified CV 45.97 

Baseline shuffle split CV 45.39 
Random hyperparameter grid 48.39 

Tuned hyperparameter grid 64.52 
Tuned hyperparameter CV 52.69 

KNN 

Baseline random split 48.39 

50.43 

Baseline cross-validation 46.77 
Baseline repeated stratified CV 54.57 

Baseline shuffle split CV 51.97 
Random hyperparameter grid 51.61 

Tuned hyperparameter grid 45.16 
Tuned hyperparameter CV 54.57 

Logistic Regression 

Baseline random split 48.39 

47.84 

Baseline cross-validation 45.97 
Baseline repeated stratified CV 49.19 

Baseline shuffle split CV 45.39 
Random hyperparameter grid 48.39 

Tuned hyperparameter grid 48.39 
Tuned hyperparameter CV 49.19 

Random Forest 

Baseline random split 54.84 

56.80 

Baseline cross-validation 52.42 
Baseline repeated stratified CV 53.49 

Baseline shuffle split CV 57.24 
Random hyperparameter grid 64.52 

Tuned hyperparameter grid 64.52 
Tuned hyperparameter CV 50.54 

Table 2: Accuracy of Classification Models per Classifier 

The best classification model was Random Forest using a tuned hyperparameter grid which 

predicted the correct HIV status of 64.52% of the test data. The least accurate method was a 

baseline support vector machine which had an accuracy of 45.16%. The over-all average accuracy 

for all classification models implemented in this stage of the project was 52.82%. Due to the sample 

data being a 50% split of HIV positive and HIV negative participants, we can see there is a very small 

amount of inference. However, it is still an insignificant conclusion when attempting to classify the 

neuroimaging dataset. In-order to understand how the classifiers performed, we must investigate 

their overall performance and not just their accuracy. This was done through the use of a confusion 

matrix. Figure 14 in the subsequent section discusses this in more detail. 



Figure 13 visualised the mean classification accuracy values with their respective error bars for a 

more distinct comparison and to strengthen interpretability of the results. The best classifier for 

average accuracy across the different classification models was Linear Discriminant Analysis with 

which falls within a small quantity of error (as depicted using the confidence interval). We can also 

see the worst functioning model was Logistic Regression with less than an average of 50% accuracy, 

which is the only classification model that goes against the core hypothesis of this project. 

Figure 13: Comparison of Classifiers Average HIV Neuroimaging Accuracy 

From the classification accuracy table (table 2), ǁe ĐaŶ see that ŵaŶǇ Đlassifieƌs’ accuracy was 

improved through cross-validation and hyperparameter tuning. The tuned hyperparameter grid 

represents the exhaustive parameter grid search model and should be representative of the best 

accuracy for said classifier. However, this can facilitate overfitting in the model and therefore, a 

hyperparameter tuned nested cross-validation model is used with the best estimator parameters 

from the tuned grid model results. From the baseline split accuracy to the nested tuned cross-

validation accuracy we see the following improvement: 

• LDA: increase of 2.42% 

• SVM: increase of 4.30% 

• KNN: increase of 6.18% 

• Logistic Regression: increase of 0.80% 

• Random Forest: decrease of 4.30% 

The mean percentage accuracy increase is 1.88% as a result of the tuned nested cross-validation 

models. This grid-search was used to find the optimal hyperparameters for each model which results 

in the most accurate predictions. Given a clear increase in classification accuracy as a result of the 

hyperparameter tuning, these tuned models will also be employed to classify the HIV status using 

different train/test data in a subsequent part of the program. 

Overall, these results show an some suggestion that the HIV disease can be predicted using 

supervised machine learning as a vast majority of the classifiers had an accuracy better than 50%, 

which passes the accuracy threshold required as evidence in favour of proving the hypothesis that 

HIV status can be predicted with neuroimaging data. The accuracy of these supervised learning 

models does indeed show some inference of HIV status from the neuroimaging data. However, the 



Figure 14: Confusion Matrix per Classifier 

accuracy results are simply not substantial enough to clearly say that there is evidence of neuronal 

inflammation and death for HIV positive individuals. To prove this hypothesis, a significant 

correctness would be required where the majority of models have an accuracy result of at least 95% 

when predicting the HIV status of each participant. 

Classification Performance 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The training and testing data for each confusion matrix was the same, but the predicted data still 

differed between the classifiers. This meant that each confusion matrix had unique results and 

varying performance. The classifier with the best accuracy was both SVM and Random Forest which 

predicted 64.52% (20/31 participant) of the test data’s HIV status correctly. Using these confusion 

matrixes, we are also able to see which model performed the worst. Logistic Regression performed 

poorly as it predicted all the participants to be HIV negative even though more than 50% of the test 

samples were actually HIV positive. This demonstrated that logistic regression has a negligible 

precision score which raises concerns about the viability of the neuroimaging dataset. This is also 

corroborated with the fact that no individual classifier could predict the HIV status of the test data 

with more than 64.52% accuracy. The confusion matrix is a valuable performance metric because it 

doesŶ’t just alloǁ foƌ the eǀaluatioŶ aĐĐuƌaĐǇ ďetǁeeŶ the Đlassifieƌs ďut it ĐaŶ also ďe used to 
calculate the precision, recall and F1 score which in-turn gives us the ROC AUC score. 

Classifier Accuracy % 

LDA 58.06 
SVM 64.52 
KNN 45.16 

Logistic Regression 48.39 
Random Forest 64.52 

Table 3: Confusion Matrix Accuracy per Classifier 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Average Performance Score per Classifier 

The ĐlassifiĐatioŶ ŵodels’ ƌesults ǁeƌe appeŶded to a list aŶd the ŵodels theŶ assessed under 10 

different random states to produce a list of impartial results which maintained integrity. The 

performance scores are attained from the hyperparameter tuned nested cross-validation models 

already created when they are applied to the 10 different train/test splits. This includes the ROC AUC 

score where an average result was calculated from the different train/test splits. Table 4 depicts the 

mean score of all the results identified from the integrated train/test splits per classifier. 

Figure 15 also reads these values and displays them in a comparative format using a barplot to 

visualise the scores, making it easier to understand which performances scored best across the 

different classifiers. From Table 4, we can identify that the most accurate classifier was Linear 

Discriminant Analysis with a prediction rate that was correct 57.04% of the time across the different 

testing iterations. This still suggests that there is a small margin of inference that can be detected 

usiŶg the ŶeuƌoiŵagiŶg dataset, hoǁeǀeƌ theƌe isŶ’t a stƌoŶg eŶough presence of neuronal 

inflammation/death in these participants to be able to accurately predict the HIV status based on 

their neuroimaging data. The average accuracy across the different classifiers stood at the value 

53.22%. Although above the 50% threshold needed to see any inference, this result is still an 

inconsequential accuracy score. 

The ROC AUC score represents how capable the classification model is at distinguishing between 

the HIV positive and negative participants. A high score means the model is effective at separating 

the classes and predicting the right outcome. With the HIV sample size being a 50:50 split, a ROC 

AUC score of 50 is the worst-case performance as it shows that the model does not actually 

distinguish a difference between the neuroimaging data for each class. [43] In table 4 it is obvious 

that there are no models that have learned enough from their training data to be able to 

Classifier Metric Score 

KNN 

Accuracy 51.71 
F1 48.59 

Precision 54.19 
ROC_AUC 51.96 

Recall 47.49 

LDA 

Accuracy 57.04 
F1 53.22 

Precision 55.27 
ROC_AUC 54.27 

Recall 53.08 

Logistic Regression 

Accuracy 45.18 
F1 23.58 

Precision 16.77 
ROC_AUC 50.00 

Recall 40.00 

Random Forest 

Accuracy 52.23 
F1 48.62 

Precision 54.21 
ROC_AUC 52.01 

Recall 46.46 

SVM 

Accuracy 52.04 
F1 47.80 

Precision 46.56 
ROC_AUC 48.20 

Recall 51.65 



significantly predict the test data. The highest ROC AUC score is only 54.27 (+4.27 above an 

undistinguishing model). This is also representative of the other classifiers ROC AUC scores which all 

fall around the 50 mark, and therefore show that no inferences could be feasibly predicted using this 

neuroimaging data. A remarkable result identified using the ROC AUC score is from support vector 

machine classification model. This is because it has a score of 48.20, meaning that it predicted more 

HIV negative people as positive and vice-versa. A score below 50 means that the model is able to 

differentiate between the classes but predicted them incorrectly (showing promise but also having a 

low accuracy). That is why we cannot use the accuracy or the ROC AUC score alone as the primary 

metric in Machine Learning. The mean ROC AUC for all classifiers is 51.29 (+1.29) which still is not 

enough to show potential to prove the hypothesis.  

 

 

In figure 15 we can see a clear comparison between the classification model performance for each 

classifier, including the average precision, recall, F1, accuracy & ROC AUC scores. The red line 

depicted in the diagram represents the 50% performance threshold. The higher the score is above 

this threshold, the better the classifier is at solving the hypothesis. Although a low ROC AUC score is 

more preferable than one near the 50% threshold. From this figure, it is clear that the best 

performing classifier was Linear Discriminant Analysis where all the performance scores are above 

the threshold and higher than the corresponding results from the other classifiers. The margin of 

error at 95% confidence interval still shows the most reliability for LDA when compared with a 

model of similar performance (Random Forest). We can also deduce that the worst classification 

model was Logistic Regression, where none of the performance metrics show any results that helped 

prove the hypothesis. It also had a great deal of error within its predicted values leading to the 

tremendous error bar seen for the recall metric in the graph. Overall, these classification models did 

not show any significance for the hypothesis. 

 

Figure 15:Comparison of Classifiers' Performance Scores 



To quantifiably evaluate the resultant performance scores, a statistical analysis was carried out using 

one-way analysis of variance (ANOVA). This will show how reliable the results are for each 

ĐlassifiĐatioŶ ŵodel iŶ ĐoŵpaƌisoŶ to eaĐh otheƌ’s peƌfoƌŵaŶĐe sĐoƌes. The Đlassification model 

results (for both the ROC AUC and Accuracy scores) were supplied to the one-way ANOVA and 

statistically analysed for variance and probability of occurrence. ROC AUC ANOVA results: 

• Variance between Classifiers ROC AUC Score (ANOVA F-Value)= 0.6006  

• Significance of Classifiers ROC AUC Score Variance (ANOVA P-Value)= 0.6641 

The low f-value suggests that we can assume that there is no significant variation between the ROC 

AUC scores per classifier and that the mean score depicted in the above diagrams are representative 

of the average ROC AUC score. Though because the p-value is above 0.05, this f-value could have 

easily occurred by chance (especially considering that the value is at a considerably high 0.6). 

Therefore, we must not assume that the above mean is reflective of the average ROC AUC score 

for the classifiers. 

A one-way ANOVA was also carried out on the accuracy results of each classifier to determine their 

variance and significance: 

• Variance between Classifiers Accuracy (ANOVA F-Value)= 14.12  

• Significance of Classifiers Accuracy Variance (ANOVA P-Value)= 1.527e-07 (0.0000001527) 

The ANOVA performed for the accuracy results had a high f-value and a low p-value (< 0.05). 

Therefore, the results obtained proves that there is high ǀariaŶĐe ďetǁeeŶ the Đlassifiers’ aĐĐuraĐy 

results and that this variance is significant enough to be considered reflective of the scores produced 

for this dataset under most circumstances. Thus, making the accuracy results inconsequential as a 

performance metric in this project. 

This predictive model was inaccurate because it was not able to prove the hypothesis using the given 

dataset from Stellenbosch University. Limitation such as demographic characteristics could play a 

big role in why this data is not able to adequately train these classification models. The given dataset 

does not account for all the relevant brain regions as there are no features that represent the 

Optical-lobe, which is known to be the region whose grey matter is most effected by HIV. [5] 

  



HIV Status Investigation: MRI Feature Selection 

After determining that supervised machine learning was not able to predict the HIV status of 

participants dependably, feature selection was used in an attempt to boost the performance of the 

classification models. Therefore, the 4 MRI brain regions that showed statistical significance in the 

independent t-test were used as the features for the classification models rather than using all the 

brain regions as was applied in the aforementioned machine learning sub-programs. 

Classification Accuracy 

Classifier Initial Accuracy Feature Selection Accuracy Accuracy Change 

LDA 58.96 58.88 -0.08 
SVM 50.07 53.02 2.95 
KNN 50.43 50.60 0.17 

Logistic Regression 47.84 59.04 11.20 
Random Forest 56.80 53.32 -3.48 

Table 5: Classification Accuracy of Feature Selection Comparison 

Table 5 gives us a comparative view of how the accuracy of the models improved/deteriorated since 

using feature selection. The most accurate model used with feature selection became Logistic 

Regression which had a substantial increase of 11.2% accuracy. The net increase in classification 

accuracy across all models was 2.15%. In the initial classification models, we had an average 

accuracy of 52.82% overall. This increased to an overall average accuracy of 54.97% after using 

feature selection. Foƌ ŵoƌe detail oŶ eaĐh ŵodel’s aĐĐuƌaĐǇ peƌ Đlassifieƌ, ƌefeƌ to table 8 in the 

appendices. 

Figure 16: Comparison of Baseline Classifiers' HIV Neuroimaging Accuracy with Feature Selection 

By comparing figure 16 with the initial results in figure 13, we can clearly see the drastic increase in 

Logistical Regression classification accuracy and the decrease in Random Forest accuracy. This 

visualisation also depicts the 95% confidence intervals between the different classification models. 

This shows that there is a general increase in doubt for the feature selection accuracy results, as the 

error bars are larger and more varied per classifier. 

  



Classifier Performance 

Feature selection has shown an overall improvement in accuracy, however in-order to determine if 

there is an improvement in performance, performance metrics were implemented to evaluate the 

classifier results. A confusion matrix for each feature selection classification model can be found in 

the appendices, figure 24. From these matrices, we can see that LDA and SVM had the highest 

accuracy at 67.74% (21/31 participants) using the hyperparameter tuned model. This means that 

those models predicted 1 more participant correctly than the initial models. However, the average 

accuracy across all models fell by 1.24% (from 54.27% to 53.03%) when using feature selection. 

 

Classifier Metric Feature Selection Performance 

KNN 

Accuracy 53.19 (+1.48) 

F1 50.7 (+2.11) 

ROC_AUC 54.95 (+2.99) 

LDA 

Accuracy 56.19 (-0.85) 

F1 61.19 (+7.97) 

ROC_AUC 59.87 (+5.60) 

Logistic 
Regression 

Accuracy 54.04 (+8.86) 

F1 51.03 (+27.45) 

ROC_AUC 57.89 (+7.89) 

Random 
Forest 

Accuracy 46.44 (-5.79) 

F1 49.69 (+1.07) 

ROC_AUC 50.81 (-1.20) 

SVM 

Accuracy 55.27 (+3.23) 

F1 56.54 (+8.74) 

ROC_AUC 58.08 (+9.88) 
Table 6: Feature Selection Performance Score Changes per Classifier 

 

Table 6 show the increase/decrease in accuracy, F1 and ROC AUC scores as a result of feature 

selection. Logistic Regression had the biggest change in accuracy, precision & recall (and therefore 

highest change in F1 score) whilst SVM had the largest increase in ROC AUC score. However, it is LDA 

which became the best model for distinguishing between the HIV positive and negative individuals 

with a ROC AUC score of 59.87 (+9.87). Which is noticeably higher than the best score of 54.27 in 

the initial LDA model performance. The models had an average ROC AUC score of 56.32 which was 

5.03 (6.32–1.29) higher than the original models because of feature selection. This means that the 

classifiers were able to differentiate the HIV status more precisely than the initial Classification 

models. 

The values in table 6 corroborate with the results shown in figure 17, which is a revised diagram of 

the ͞Comparison of Classifiers' Performance Scores͟ from figure 15. These performance metrics are 

evidently more integral per classifier than the previous results. We can conclude this because the 

results are noticeably higher in relation to the 50% performance threshold outlined in both figures. 

From figure 17 we still see that Linear Discriminant Analysis has the best performance of any 

classification model with SVM and Logistic Regression following up with a better performance than 

the initial results. 



From the previous results, we found that there was little variation between the ROC AUC scores with 

an insignificant probability of occurrence using a one-way ANOVA. The results from feature selection 

when applying statistical analysis: 

• Variance between Feature Selection Classifiers’ ROC AUC Score (ANOVA F-Value)= 2.4854  

• Significance of Feature Selection Classifiers’ ROC AUC Score Variance (ANOVA P-Value)= 

0.05528 

There is some variation present between these ROC AUC scores; however, it is not exceedingly 

prevalent because the f-value is high but not substantial. Nevertheless, in this ANOVA we almost 

have statistical significance as the p-value is just over the 0.05 threshold. This is still enough, to 

prove the significance of the given variation score, or a score close to it, to be specific enough. In 

conclusion, the feature selection ROC AUC scores likely have only trivial variation between each 

other and likely reflect the outcomes of current and future analysis with the classification models. 

This shows more potential than the initial results, but it displays more variation present in the 

performance score than originally expected. 

When analysing the accuracy performance for the classification models, the one-way ANOVA shows 

that there is exceptionally high variation that also has a substantial chance of probability. Therefore, 

the results identified during the accuracy testing for the classifiers is likely to have significant 

variance when running the model. These results do not help solve the hypothesis of this 

investigation due to the large probability of variation. 

• Variance between Feature Selection Classifiers Accuracy (ANOVA F-Value)= 14.951  

• Significance of Feature Selection Classifiers Accuracy Variance (ANOVA P-Value)= 4.202e-08 

In conclusion, feature seleĐtioŶ has iŵproǀed the ĐlassifiĐatioŶ ŵodel’s perforŵaŶĐe in most 

aspects in comparison to the initial classification performances. Though, there is still not enough 

reliability for the investigated classifiers when predicting the HIV status using the neuroimaging 

dataset supplied by Stellenbosch University. Limitations in this dataset cause the feature selection 

classification models to perform insufficiently. This could be due to factors such as the limited 

feature data. Currently the dataset only focuses on grey matter volume per MRI region, whereas it 

has been proven that the HIV disease most impactfully affects the white matter of the brain as-well 

as other features that could have been present in the participant dataset. 

Figure 17: Comparison of Classifiers' Performance Scores for Feature Selection 



Viral Load & ART Investigation: Data Analysis 

The next step in this project was to look into the Viral Load and antiretroviral treatment (ART) data 

to see if data analysis and supervised machine learning could be used to investigate and predict 

these classes for the participants, rather than just the HIV status. 

Preliminary Results 

 

Before carrying out any statistical analysis, we want to count the sample size of participants who 

apply to the hypotheses. From this result we know if there is reason enough for an investigation into 

those classes. Below are figures 18, 19 & 20 which depict the sample sizes for the 3 areas we want to 

investigate in this part of the project. 

The project supervisors from Stellenbosch University asked for the prediction of Viral Load and ART 

to be a potential deliverable in this project, as they were features present in the dataset. So, I 

analysed both the initial data and the follow-up data to determine if these factors were worth 

investigating. In figure 18, we see that there is a substantial difference in the count of detectable 

and undetectable viral load participants. However, there is still a total of 8 participants who have an 

undetectable viral load that could potentially be investigated further. Using statistical analysis to 

determine if there are any areas of significance and a stratified train/test split in machine learning, 

we may produce an accurate predictive model. Thus, we will investigate the viral load detectability 

in more detail to produce some results. 

Figure 18: Quantity of Viral Load Participants 



 

 

Looking at figure 19 the majority of HIV positive participants had a viral load that did not change 

between the initial and follow-up examinations. Here, only 4 participants changed their viral load 

status which is simply too small of a sample size to investigate. Because of this data limitation (and 

after identifying how limiting the data already is from the initial investigation) we decided to 

suspend the investigation into changing viral load status and its neuroanatomical implications. 

Looking at figure 20, there is even more of a disproportionate sample size which simply cannot be 

investigated until more neuroimaging data with changing ART status is produced. 

Figure 19: Quantity of Participants which Changed Viral Load Status 

Figure 20: Quantity of Participants which Changed ART Status 



Independent T-Test 

An independent t-test was carried out on the MRI regions of HIV positive participants to see if 

theƌe’s aŶǇ sigŶifiĐaŶt brain regions that contradict the null hypothesis: normalised grey matter is 

the same between detectable viral load participants and non-detectable viral load participants. The 

results of this t-test can be found in the appendices (figure 25 for the subsequent t-values barplot 

and figure 26 for the resultant p-values plot). Looking at these results we see the two MRI regions 

LH_Caudata and RH_Caudata have the most statistical significance of all the brain regions. 

Nevertheless, the probability that they occurred by chance is too high and not statistically significant 

enough to warrant the use of further feature selection analysis/classification. 

Viral Load Investigation: Supervised Machine Learning 

 After running the classification models for the different classifiers, the results seem astonishingly 

high considering no statistical significance was identified. This originally came as a surprise when 

obtaining the results. But on further inspection, we can see that these results stemmed directly from 

the sample size of the undetectable participants. The sample size equated to 0.8667 (52/60) and 

therefore the accuracy threshold for this investigation is 87% rather than the 50% split used in the 

HIV status investigation. The results shown in table 7 and figure 21 show that even with this high 

accuracy and a reflective train/test split for the supervised models, none of the classifiers showed 

potential. The average accuracy across all the classification models was therefore only 85.72% due 

to the limitations in sample size. 

  

Table 7: Viral Load Classification Accuracy 

 

Classifier Accuracy 

KNN 86.67 
LDA 80.95 

Logistic Regression 86.99 
Random Forest 86.99 

SVM 86.99 

Figure 21: Comparison of Viral Load Performance Scores per Classifier 



 

When looking at the confusion matrix (figure 27 in appendices), we see where the classification 

models are failing. The models predominantly learn how to classify detectable viral load 

neuroimaging data whilst only learning the data attributes of 8 undetectable participants. When the 

model predicted the viral load status in the test data, it classified them all as undetectable giving the 

model, on average, an 87% accuracy from just the distribution of the sample data. The models 

should therefore get a ROC AUC score near 50 as the classifiers did not differentiate the data at all. 

Figure 22 visualises the invalid results remarkably well. The results may look noteworthy however, 

the ROC AUC score for each classifier reveals its true performance (where a score closer to 50 cannot 

disseminate between the predictive classes). This is because the disparity of samples is too great to 

Đƌeate aĐĐuƌate ƌesults fƌoŵ the ŵodels’ peƌfoƌŵaŶĐes. As a result of the undetectable viral load 

class only having 8 participants, all results from this investigation are proved to be insignificant. 

To prove that these results are truly invalid an ANOVA was conducted in the same methodology as 

previously implemented. The results for both ROC AUC and Accuracy performance show that there is 

only slight variation between the scores. The p-value suggests that this small variation is statistically 

significant (<0.05). BeĐause theƌe is this little ǀaƌiatioŶ aĐƌoss the ŵodel’s peƌfoƌŵaŶĐe sĐoƌes, theŶ 
the results are likely to be the standard we can expect for these models when applying the viral 

load neuroimaging dataset. 

• Variance between Viral Load Classifiers' ROC AUC Score (ANOVA F-Value)= 3.417  

• Significance of Viral Load Classifiers' ROC AUC Score Variance (ANOVA P-Value)= 0.01273 

• Variance between Viral Load Classifiers' Accuracy (ANOVA F-Value)= 3.533  

• Significance of Viral Load Classifiers' Accuracy Variance (ANOVA P-Value)= 0.01072 

This result identified and confirmed that there are limitations from the dataset which invalidate the 

classification accuracy due to the limited sample size and data present for these investigations. 

More participant data that highlights undetectable participants and participants whose HIV 

condition changed during the follow-up examination, is required in this project. Then a detailed 

discussion of evidence and results would be able to appropriately prove/disprove the core 

hypotheses.  

Figure 22: Comparison of Viral Load Classifiers' Accuracy 



Future Work 

The core objectives of this project were fulfilled to completion, but the desired outcome was not 

achieved because of several major limitations identified in the project data. Because of this, the 

project should be continued with new data that helps prove or disprove the hypothesis to see if 

machine learning can be used to predict HIV status in neuroimaging data. Even with the current 

results identified, there are still many ways that this project could be expanded. These include: 

1. Obtaining more data and increasing the sample size. 

2. Optimising the current program by adding new functionality. 

3. Collaborate with Stellenbosch University research team regarding their next publication. 

4. Explore the deliverables dropped from the initial scope in more depth. 

Applying a new dataset should strengthen support in favour of the theory that neuronal 

death/inflammation is present for HIV participants. The program created in this project could also be 

applied to this new dataset reasonably easily too. Especially if the CSV file(s) contain similar 

neuroimaging values obtained using the same MRI methodology. The new dataset would be 

sufficient if it contains several of the following factors that were identified as limitations in the 

current data. Including: 

• Larger dataset of participants to limit the need for data stratification. 

• Wider demographics to explore, not just South African women. 

• More time relevant data, like disease stage and participants who changed viral load or ART 

status for a follow-up in a much larger sample. 

• More neuroimaging data, white matter accounts for most neuronal death nor just the grey 

matter that was examined in this project. 

The current program explores the classification side of supervised learning in great detail but does 

not examine any regression models that could be better applied to the dataset. The classification 

ŵodel ǁas used ďeĐause of the dataset’s foƌŵat, haǀiŶg a ďiŶaƌǇ Đlass of HIV positiǀe aŶd Ŷegatiǀe 
participants and a list of features detailing each of the participants MRI brain regions. Implementing 

regression models were not used in scope to help predict HIV status from the neuroimaging data. In 

reflection and given more time, regression models would be particularly insightful for this project. 

The models would be useful for predicting the CD4 count and Viral Load concentration for the HIV 

positive participants. 

Further Research with Stellenbosch University can also be performed as future work inf this project, 

so that a fully informed publication is created to help tackle the challenge of HIV in neurology. 

Over the course of this project several of the deliverables changed to best fit the data and approach 

desired. One of these deliverables was to produce and develop a neural network predictive model. 

Which after the initial analysis was deemed as unnecessary for the customers and too costly for the 

project scope (as it would take excessive time to implement). This project did begin to explore deep 

learning as a potentially useful tool when creating a predictive learning model, however the initial 

results showed the same limitations as the classification and statistical analysis. Therefore, it was not 

implemented into the program, and therefore not mentioned in this report as an implemented 

model. To corroborate the results in this project, other libraries and programming languages could 

be employed with the same methodology applied in those instances. Several other processes that 

could be explored include: Keras, TensorFlow, PyTorch, and OpenCV as they are reliable models that 

are often used in supervised machine learning and deep learning programs.  



Conclusions 

In the conclusion of this project, an appraisal of its success is evaluated against which aims were 

satisfied. The core aim of this project was to use data analysis and machine learning to predict HIV in 

a South African Dataset. Using statistical analysis and data science methodologies, a program with 

data analysis, supervised machine learning and feature selection was implemented. However, this 

program failed to create an accurate predictive model that would show clear inference for HIV in 

neurology. This project did prove that there are statistically significant brain regions when looking at 

the mean values for the HIV positive and negative participants in the South African data, because of 

the independent t-test. When performing supervised machine learning, the program was not able to 

actively predict HIV status of participants when applying proven data science methodologies. 

However, this project was able to deduce that these results were because of the limitations present 

in the obtained neuroimaging data. Other research projects have scientifically proven that there are 

discrepancies between HIV positive and negative individuals, therefore we can look into the 

restrictions of the given dataset. Limitations identified in the dataset applied to this project included:  

• Small sample size, especially with follow-up participant data. 

• Inadequate demographics, only focussing on one main ethnic group of South African 

women. 

• Solitary focus on grey matter volume in the 13 MRI regions and not taking other 

neuroanatomy features into account (e.g. Optical-lobe & white matter distribution). 

This pƌojeĐt’s initial aim was to ͞Further my technical knowledge of data science regarding data 

analysis and predictive machine learning͟. This was achieved through the learning and 

implementation of data science methodologies by fulfilling the other principal aims. I also aimed to 

͞Analyse and visualise the neuroimaging dataset to identify key areas of the brain that signify HIV 

infection͟. Here, I found the descriptive characteristics and performed statistical analysis on the 

dataset to identify the statistical values of HIV positive participant. The results were then visualised 

using python programming with the Seaborn library functions. 

Implementing the supervised learning models and then developing these model using 

hǇpeƌpaƌaŵeteƌ tuŶiŶg aŶd Ŷested Đƌoss ǀalidatioŶ aĐĐoŵplished the Ŷeǆt tǁo aiŵs, to ͞Create 

ĐlassiĐal ŵaĐhiŶe leaƌŶiŶg ŵodels aŶd eǀaluate the ŵodel’s peak ĐlassifiĐatioŶ peƌfoƌŵaŶĐe to 
determine the best model to utilize͟ & ͞Develop the predictive model to closely predict if a 

participant has HIV based on neuroimaging data͟. Although an effective predictive model was not 

able to be developed this project discovered the limitations present in the HIV dataset as-well as the 

difficult interpretability of the HIV disease within neurology. These results have been recorded and 

will be published for other research projects to reference and then distributed to the Stellenbosch 

research team which satisfies the aim to ͞Identify any tangible results that could contribute to the 

Stellenbosch University research project͟.  

Completing this project has expanded personal knowledge regarding data science practices and 

allowed for independent contemplation and documentation of the overall project. Logging these 

processes and implementing the knowledge learned has help me accomplish my last aim to ͟Reflect, 

evaluate and document the one semester individual project͟ ďefoƌe it is suďŵitted foƌ eǆaŵiŶatioŶ. 
Whether or not the project was effective in the end is dwarfed by how much skill and experience 

that was ascertained over the course of this venture. Therefore, this individual project can be 

counted as a successful endeavour as a result of the investigation undertaken.  



Reflection on Learning 

Over the course of this project I have challenged myself to learn new processes and deliver an 

individual project that addresses a very impactful problem which affects millions of people on a daily 

basis . I find that providing sound analytical support on a professional level is extremely rewarding, 

especially when I am part of a group more at-risk of contracting this disease. This project had many 

challenges to overcome but still taught me valuable skills that I will be using in future projects. 

Learning and Growth 

This project was the most challenging academic venture I have undertaken while being an 

undergraduate student. Both the technical knowledge and the soft skills I have applied and 

internalised over the course of this project was phenomenal. Since my second year of study at 

Cardiff University, I have wanted to pursue a career in data science. Successful analysts must 

discover useful information from piles of data and provide tangible solutions. This project gave me 

the chance to investigate an impactful dataset and show my passion for statistical analysis and data 

visualisation. I learned how to implement data science methodologies in python using the incredible 

library, Scikit Learn. To not only understand this knowledge but apply it to an important project gave 

me the chance to identify new statistical techniques and learn how impactful the limitations of 

project data can be. After completing this report, I went through the individual sections to 

proofread, format, and add details where necessary. This project has helped me understand that I 

am a visual/auditory learner because reading through the entirety of this report was tough initially. I 

theƌefoƌe deĐided to go thƌough eaĐh seĐtioŶ usiŶg MiĐƌosoft Woƌd’s teǆt-to-speech functionality 

(Read Aloud). This drastically reduced the time used to proofread and was also more akin to my 

preferred learning styles. I hope to apply these newfound learning techniques in future large-scale 

projects.  

I have experienced significant personal growth in aspects such as time management, motivation and 

dealing with taxing circumstances. This project took more time than initially anticipated. Originally 

the aiŵs Đould haǀe ďeeŶ ŵet ǁith ϭϱ ǁeeks’ ǁoƌth usiŶg the Easteƌ ƌeĐess to aĐĐoŵplish ŵoƌe 
objectives. The project started slowly, only having 10 to 20 hours of work a week to complete 

objectives. However, when the project got to the Easter break, the workload ramped up because 

results had to be identified and the report needed to be written. This led to more than 40 hours per 

week being allocated to complete this project over Easter and the weeks leading up to the hand-in 

date. I set myself objective deadlines for the remainder of the project which proved useful as to not 

overload myself with work when project blockades were present. I also made sure that I was not 

working more than 8 hours per day, as every day required myself to complete a different section of 

the project. A-lot of the time was spent waiting for the hyperparameter tuned models to be defined 

each time the Google Colab session was terminated (which usually happened daily). In this process I 

learned how to separate the objectives and prioritised the tasks that were critical to the project 

completion. This did mean that extra functionality was dropped from the final program, as the initial 

investigation into neural networks did not show any tangible results for the project. 

Obstacles to Project 

This project started off during a time when the university was open for business as usual. This 

changed after government restrictions were put in place to control the spread of a potentially fatal 

disease known as Coronavirus (Covid-19). Covid-19 is the greatest threat and challenge to everyone 

in this generation. The UK currently has the highest Covid-19 death rate of all countries in Europe. 

[44] Because of this, the UK government have enforced the closure of all unessential locations and 



imposed heavy restrictions on all forms of travelling. The disruption caused by the virus has meant 

that many processes that would have been useful in the completion of this project became 

inaccessible for me. The foremost example is my utilisation of the university libraries. A personal 

methodology that I embody when working on university projects is to separate my workspace from 

my leisure places. But this legally enforced lockdown has meant that I am unable to visit the 

university libraries to use as my place of work. This therefore meant that I have since been confined 

to my small bedroom which in-turn caused intense productivity issues over the final weeks of the 

project. Simply because my leisure space then also became my workspace, exercise space and rest 

space. This added stress and lethargy to my life causing the end project to become less polished than 

originally intended. However, I still persevered and ended up creating an extensive report that 

highlighted all the areas I aimed for, even after a safety-net policy was deployed to make sure no 

graduates were disadvantaged.  

In my initial plan, I created a risk matrix which partially accounted for this situation. Risk 1 was 

created in-Đase ͞Injury or Illness, having to take leave to recover͟ which is a generalised explanation 

of the situation we ended up facing in this pƌojeĐt. The ŵitigatioŶ stƌategǇ adopted ǁas to ͞Focus on 

critical deliverables (project crashing) and file for extenuating circumstances if injury/illness requires 

significant recovery͟, which proved to be substantially useful when confronting these 

unprecedented circumstances. In this instance I focussed on delivering the core functionality for the 

project and abandoned the implementation of a deep learning model when the initial results were 

irrelevant for the project. No further action was required for extenuating circumstances because the 

university had already put practices in place which meant that grades would not suffer as a result of 

the virus. [45] Even with these challenges, I was able to overcome them to produce the report as the 

situatioŶ oŶlǇ sloǁed pƌoduĐtioŶ aŶd didŶ’t stop the pƌojeĐt.  

During Easter recess I was fortunate enough to get an interview with the Government Statistical 

Service (GSS). [46] This required me to take time away from the project to work on getting a career 

with the GSS. This meant that I did not have as much time to focus on the neural network 

deliverable that was originally meant to be produced by the end of the Easter break. Fortunately, I 

was successful in interview and will be working with government statistics after graduation. This 

process demonstrated that risks can be taken during a project to explore more lucrative rewards 

through the reprioritisation of work. 

To close this report, I would like to express my gratitude to those involved in this process. I have 

found this project very exciting and have been lucky enough to be work on a medical dataset that 

has been used by professional researchers before. I hope that other students are able to find data 

science as rewarded as myself in their future projects.   



Table of Abbreviations 

Abbreviation Full Form 

HIV Human Immunodeficiency Virus 

HANDS HIV-associated neurocognitive disorders 

MRI Magnetic Resonance Imaging 

sMRI Structural Magnetic Resonance Imaging 

fMRI Functional Magnetic Resonance Imaging 

CD4 Cluster of Differentiation 4 

AIDS Acquired Immune Deficiency Syndrome 

RNA Ribonucleic Acid 

ICV Intracranial Volume 

LH_Frontal Left hemisphere Frontal-lobe 

RH_Frontal Right hemisphere Frontal-lobe 

LH_ACC Left hemisphere Anterior Cingulate Cortex 

RH_ACC Right hemisphere Anterior Cingulate Cortex 

LH_Hippo Left hemisphere Hippocampus 

RH_Hippo Right hemisphere Hippocampus 

CC_Total Total Corpus-callosum 

LH_Amygdala Left hemisphere Amygdala 

RH_Amygdala Right hemisphere Amygdala 

LH_Caudata Left hemisphere Caudate 

RH_Caudata Right hemisphere Caudate 

LH_Putamen Left hemisphere Putamen 

RH_Putamen Right hemisphere Putamen 

ANOVA Analysis Of Variance 

TP True Positive 

TN True Negative 

FP False Positive 

FP False Negative 

GPU Graphic Processing Unit 

BSD Berkeley Software Distribution license 

LDA Linear Discriminant Analysis 

SVM Support Vector Machine 

KNN K-Nearest Neighbour 

ROC Receiver Operating Characteristic 

AUC Area Under the Curve 

UK United Kingdom 

GSS Government Statistical Service 
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Figure 23: Pairplot of Feature Selection MRI Areas 



 

Classifier 

Method Accuracy % Mean % 

LDA 

Baseline random split 58.06 

58.88 

Baseline cross-validation 52.42 
Baseline repeated stratified CV 55.91 

Baseline shuffle split CV 57.89 
Random hyperparameter grid 61.29 

Tuned hyperparameter grid 67.74 
Tuned hyperparameter CV 58.87 

SVM 

Baseline random split 54.84 

53.02 

Baseline cross-validation 50.00 
Baseline repeated stratified CV 52.42 

Baseline shuffle split CV 55.26 
Random hyperparameter grid 35.48 

Tuned hyperparameter grid 67.74 
Tuned hyperparameter CV 55.38 

Logistic Regression 

Baseline random split 64.52 

59.04 

Baseline cross-validation 54.84 
Baseline repeated stratified CV 57.26 

Baseline shuffle split CV 56.58 
Random hyperparameter grid 58.06 

Tuned hyperparameter grid 64.52 
Tuned hyperparameter CV 57.53 

Random Forest 

Baseline random split 51.61 

53.32 

Baseline cross-validation 51.61 
Baseline repeated stratified CV 45.16 

Baseline shuffle split CV 50.66 
Random hyperparameter grid 64.52 

Tuned hyperparameter grid 61.29 
Tuned hyperparameter CV 48.39 

KNN 

Baseline random split 48.39 

50.60 

Baseline cross-validation 51.61 
Baseline repeated stratified CV 48.12 

Baseline shuffle split CV 48.03 
Random hyperparameter grid 51.61 

Tuned hyperparameter grid 51.61 
Tuned hyperparameter CV 54.84 

Table 8: Feature Selection Classification Accuracy per Model 



 

  Classifier Metric Score 

KNN 

Accuracy 53.19 
F1 50.70 

Precision 57.08 
ROC_AUC 54.95 

Recall 49.01 

LDA 

Accuracy 56.19 
F1 61.19 

Precision 59.46 
ROC_AUC 59.87 

Recall 66.27 

Logistic Regression 

Accuracy 54.04 
F1 51.03 

Precision 62.93 
ROC_AUC 57.89 

Recall 53.43 

Random Forest 

Accuracy 46.44 
F1 49.69 

Precision 51.43 
ROC_AUC 50.81 

Recall 51.68 

SVM 

Accuracy 55.27 
F1 56.54 

Precision 58.70 
ROC_AUC 58.08 

Recall 56.71 

Table 9: Feature Selection Performance Scores 

Figure 24: Confusion Matrix per Feature Selection Classifier 



 

  

 

 

  

Figure 25: Comparison of Viral Load T-Values per Feature 

Figure 26: Comparison of Viral Load P-Values per Feature 



 

  

Figure 27: Viral Load Confusion Matrix per Classifier 
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