
1

AutoŵatiĐ GeŶeƌatioŶ of Woƌd doĐuŵeŶts foƌ
the Yeaƌ iŶ IŶdustƌy Pƌogƌaŵŵe

By

Woƌaǁat Kiŵpaƌa
BSĐ Coŵputeƌ SĐieŶĐe

A FiŶal Repoƌt Suďŵitted iŶ FulfilŵeŶt of the ReƋuiƌeŵeŶts foƌ
the Degƌee of BaĐheloƌ of SĐieŶĐe iŶ Coŵputeƌ SĐieŶĐe of

Caƌdiff UŶiǀeƌsity

SĐhool of Coŵputeƌ SĐieŶĐe aŶd IŶfoƌŵatiĐs,
Caƌdiff UŶiǀeƌsity, Wales, UŶited KiŶgdoŵ

Supeƌǀisoƌ: MaƌtiŶ CaŵiŶada

Modeƌatoƌ: Natasha Edǁaƌds

May 29, 2020

2

Abstract

In this project, a tech stack comprised of Django Web Framework, PostgreSQL, and Nginx

containerized with Docker to produce a production ready, stable, and scalable web application

which utilizes vector space models with Term Frequency, Inverse Document Frequency (TF-IDF)

in a search function. This web application was made to assist the Cardiff University Year in

Industry Programme with the generation of word documents using information from the Skills

Framework for the Information Age (SFIA) and with the implementation of a vector model TF-IDF

search using natural language processing to calculate similarity models using TF-IDF to weight

words based on their significance calculated based on the rarity of its use in a search. This

algorithm, chosen due to its strong performance in comparing the similarity of technical papers

in the study ͚Text Similarity in Vector Space Models: A Comparative Study͛, utilizes vector space

models and TF-IDF to yield results that surpassed the expectations of me and my client when

used to map inputs to the SFIA framework. This search algorithm is implemented using Python in

the web application utilizing the Natural Language Tool Kit (NLTK) and Gensim Python libraries.

Careful consideration was put into place during the development of the project to ensure that

stability, maintainability, and scalability is achieved to a high degree in the final project.

The project is available to be viewed at:

http://sfia.worawat.com

Source code is available at: (Deployment instructions in README.md)

https://github.com/SmilingTornado/sfia_generator

and

https://gitlab.cs.cf.ac.uk/c1744034/sfia-generator

Licensed under the Apache License, Version 2.0

http://sfia.worawat.com/
https://github.com/SmilingTornado/sfia_generator
https://gitlab.cs.cf.ac.uk/c1744034/sfia-generator

3

Acknowledgements

I would like to thank my supervisor Dr. Martin Caminada and client Dr. Catherine Teehan for their

help and feedback during the course of this project. I would also like to thank my former

colleague Pulitz Lertamornthep for always being patient, helping me debug, and teaching me

new things when I worked with him during the summer of 2019. Thanks to my family for

supporting me from the start. And finally, thank you to my girlfriend Soo Bin Oh, for all her love

and support.

4

Table of Contents
Abstract ... 2

Acknowledgements ... 3

Introduction .. 6

Core Aims and Approach ... 6

Assumptions .. 6

Background ... 7

Overview of the problem .. 7

Proposed Solution ... 7

Software Development Methodology .. 8

Specification and Design ... 8

Pre-Web-Application Preparation ... 8

Search Algorithm ... 8

Chosen Search Algorithm Approach .. 9

Web Application Framework .. 10

Flask ... 10

Django .. 10

Chosen Option ... 10

Databases .. 11

Deployment ... 11

Web Server Gateway Interface (WSGI) ... 11

Apache ... 12

Nginx .. 12

Containerization .. 12

Docker .. 12

Implementation and Algorithms ... 13

Scripting for document scraping and generation ... 13

SFIA Document Scraping .. 13

Document Generation ... 13

Django Web Application.. 14

Starting the Django Project ... 14

5

Creating models ... 14

Admin Panel Functionality Additions .. 14

Importing JSONs .. 14

Form View .. 14

Validating POST and returning docx document .. 15

Vector Model TF-IDF Similarity Search .. 15

Additional Features ... 16

Deployment ... 17

Docker Containerization .. 17

Deploying on Linux .. 18

Ensuring ease of future project development .. 19

Results and Evaluation .. 19

Client Feedback ... 19

Personal Evaluation ... 19

Document Generation ... 20

Search Functionality .. 20

Future Work .. 21

Overall ... 21

Search functionality... 21

Conclusions ... 22

Reflection on Learning .. 22

Web Development Reflection ... 22

Docker Reflection .. 23

Natural Language Processing Reflection ... 23

Appendix ... 24

Appendix A: Search Function Code ... 24

References .. 26

6

Introduction

Core Aims and Approach

This project intends to deliver a web application to be used by the Year in Industry programme

for the automated generation of Word (docx) documents using skills from a skills framework

called the Skills Framework for the Information Age (SFIA). This project also aims to implement a

search algorithm of some form to take a user input and to try to pair the input with a set of skills.

The development of such a project will benefit the Year in Industry as it would decrease the time

needed to be spent on menial tasks for students looking to enter the Year in Industry programme.

As there are many parts to this project, it will be developed in individual components that would

gradually be combined to form the final product. The client will also be involved with the project

giving input during weekly meetings which would increase the amount of feedback I will be able

to gather from the client and allow me to make iterative improvements until the client is satisfied

with the outcome. I will also be approaching this project from the onset with stability,

maintainability, and scalability in mind and I will draw on my past experiences in professional

web development to ensure that these three key principles are clearly embodied in the final

release of this project.

Assumptions

This project will be created based on certain assumptions that will greatly affect the design

choices and decisions made throughout this project:

• The project will be used in a production setting by the Year in Industry programme and

must have the capability to perform to the needs of the program and be able to be scaled

if needed.

• The content used by the project͛s current features must be able to be easily maintained

and modified via a content management system without the need for a developer to

modify the source code.

• The deployment process should be made to be as convenient as possible with features

implemented with scalability in mind to accommodate for any potential future expansion

of its use.

• The project should be able to be easily maintained and locally deployed in a development

environment on as many types of systems as possible to ensure that anyone with the

desire to, can modify, expand upon, and use the project for their own needs.

• The ability for future localization should also be considered due to Cardiff University͛s

requirement to be as accommodating as possible to Welsh speakers.

7

Background

Overview of the problem

Currently, students in the Year in Industry programme have to go through the SFIA document to

select the two skills that they think are most appropriate for them with the requirement that for

BSc students, they must reach level three on at least one of the skills they͛ve chosen and for MSc

students, they are required to achieve level four competency in at least one of the skills. Once

the student has chosen skills which they deem to be appropriate for them, they must select the

range of levels for each with the lower bound being what level they currently believe they͛re at

and the upper bound being the maximum level that they think is feasible to be achieved in the

duration of their year in industry. As currently, students have to manually go through the

document, select their desired skills and ranges for each skill, then manually populate a template

with the information from the SFIA document, and finally format the document to make it

presentable, this process wastes a lot of time that could have been used productively elsewhere

such as for doing coursework, studying for assessments, or reorganizing lecture notes. With the

popularity of the Year in Industry programme increasing by the year, the cumulative time wasted

due to this process will also increase thus further highlighting the need for a solution to assist in

this process.

Proposed Solution

The core idea of the web application would be a simple form where a user would input the skill

codes and levels found in the SFIA document into the form. After submitting the form which

would send a POST request to the web application, the web application should return a docx

document populated with skill descriptions and a table populated with levels and their

descriptions. Adding upon this, a search feature should also be implemented to allow students

to input a body of text into an algorithm which would then pre-populate the form with skills

which it has calculated to have the highest similarity to their input. This solution will be

implemented using a fairly typical tech stack comprised of Nginx, Django Web Framework, and

PostgreSQL which in the end will be containerized to allow for easy deployment using Docker.

The process in which this tech stack was carefully selected is explained in more depth in the

͚Specification and Design͛ section of this report but the summary of it is that the technologies

and algorithms used in this project were all selected with stability, maintainability, and scalability

in mind.

8

Software Development Methodology

As the project will be comprised of developing multiple components which will eventually be

combined to achieve the final product, the usual ͚Wateƌfall͛ softǁaƌe deǀelopŵeŶt ŵodel ǁould
not be as effective for the project as the testing phase is separated from the build phase.

Theƌefoƌe, I deĐided to opt foƌ the ͚Agile͛ softǁaƌe deǀelopŵeŶt ŵodel where I would be able to

iteratively improve the web application with input from the client until their satisfaction is

achieved. The Agile approach was especially suitable for this project as during the weekly

meetings with the supervisor of my project, the client would usually present meaning that their

feedback Đould ďe gatheƌed ƌegaƌdiŶg aŶǇ Ŷeǁ featuƌes that I͛ǀe ďeeŶ aďle to iŵpleŵeŶt during

the course of the week. The Agile approach also helped me better understand my project as time

goes on as my lack of personal experience with the year in industry programme means that I had

little knowledge of the SFIA framework or how a web application to generate documents with it

would be used so it was vital to the development of the project to speak to the client to better

understand the framework and how the future web application would be used.

Specification and Design

Pre-Web-Application Preparation

As almost the entire project will be written in Python aside from some HTML, CSS, and

configuration files, I decided that I would also use Python to write the scripts used for scraping

the SFIA document and generating the docx documents. To scrape the SFIA document, I would

first convert the PDF to an HTML document as HTML is much easier to scrape and then utilize the

popular BeautifulSoup4 to help trawl through the HTML file and extract the information. For

document generation, I will use the ͚python-docx͛ library to add text, format font, text size, and

styles, and to create tables and to format them.

Search Algorithm

As it is often time consuming for the students doing their year in industry to read through the

entire SFIA document to find skills that match their own interests, the idea of creating a method

of searching for skills was brought forward by the year in industry team. The specification for this

was simple in that the year in industry student would input a paragraph about themselves and

the web application would try to find skills that most closely resemble what they put in. Though

the specification was simple, it would be important to choose an algorithm that would take into

account factors such as topics or key words as the language used throughout the document is

fairly similar and therefore the algorithm would have to understand and weigh the importance

of each word in its context.

9

Chosen Search Algorithm Approach

The two main options of search algorithms for this project were either to use an algorithm that

took advantage of machine learning or one that did not. Due to the lack of training data and the

complexity that would be required to create training data, the route not involving machine

learning was chosen. I modeled my approach to be based around TF-IDF (Term Frequency Inverse

Document Frequency) due to the positive results yielded by it in the study ͞Text Similarity in

Vector Space Models: A Comparative Study͟ ďǇ Omid Shahmirzadi, Adam Lugowski, and Kenneth

Younge. This approach utilized natural language processing to create vector models with

weighting for each word calculated with TF-IDF using the formula: �௜,௝ = ��௜,௝ × log ���௜ ��௜,௝ = number of occurrences of ݅ in ݆ ��௜ = number of documents containing ݅ � = total number of documents

The theory is that in the vector model, TF-IDF would assign rarer words a higher weight, the

vector space model could then be compared using a generated similarities index. This approach

appealed to me as the theory indicated that it would be highly effective at matching the

similarities of sentences taking into consideration specific key words that it would weight higher

with TF-IDF to increase the chances of finding better matches especially when comparing

technical texts such as that of the SFIA framework. Creating a bespoke algorithm meant that if

made in python with the Natural Language Tool Kit and Gensim libraries, it could be seamlessly

integrated into the views file for the web application decreasing the deployment complexity

compared to if using an external service such as Elasticsearch or Algolia. Thankfully, there is an

abundance of information in the documentation of Gensim on its website made by the creator

‘adiŵ Řehůřek. The many examples provided in the documentation greatly accelerated my

development of my bespoke solution and would mean that if any are found, future optimization

to the algorithm could also be easily implemented by modifying the existing code rather than

being stuck using a system such Algolia where you cannot change the algorithm or ElasticSearch

where it is much more difficult to modify the algorithm especially as it is written in Java meaning

that someone wanting to improve the algorithm have to understand and know how to create

complex algorithms in Python, but they would also have to know how to do so in Java.

10

Web Application Framework

The most important decision made during the development of this project was choosing the

framework. Though I have built simple API endpoints with Node.js before, my plans to implement

a vector model TF-IDF search algorithm which uses natural language processing drew me towards

using a Python based web framework such as Flask or Django so I may take advantage of Python

libraries such as Natural Language Tool Kit and Gensim though in the end I chose Django for its

much more robust feature set compared to the lightweight Flask.

Flask

Flask is a lightweight web framework written in python based on Werkzeug WSGI (Web Server

Gateway Interface) Toolkit and the template engine Jinja2. Flask is often used to power

microservices because it is lightweight and simple core functionality allows for flexibility in

extending its capabilities with other libraries made for Flask or python libraries made for general

python use. Flask in its simplest default form does not come with a database abstraction layer

meaning that if needed, the developer must import a library such as Flask-PyMongo to use a

NoSQL database or Flask-SQLAlchemy to use an SQL database such as PostgreSQL.

Django

Django is a MVC (Model-View-Controller) web framework written in Python and is often thought

to ďe the ǁoƌld͛s ŵost populaƌ ǁeď fƌaŵeǁoƌk due to the thousaŶds of projects known to utilize

its simple, fast, reliable, and scalable abilities from startups to tech giants such as Facebook

owned Instagram, Dropbox, and Spotify. Like Flask, if desired, developers can import or create

libraries to suit the needs of their web application allowing for the use of various databases and

the abundance of libraries for Python developers. PǇthoŶ aŶd DjaŶgo͛s fleǆiďilitǇ alloǁs
developers to create and deploy new features easily and quickly as unlike Flask, Django͛s ďuilt iŶ
tools, made by the Django team and optimized for ease of integration, reusability, and speed,

handles the core functions such as security and content management via the built in admin panel,

allowing developers to spend more time working on the features.

Chosen Option

Though the lightweight approach achievable by Flask is often very useful for creating RESTful APIs

and other microservices, For the purposes of this project, Django was chosen as although the

included features increased the complexity of leaƌŶiŶg to adopt the platfoƌŵ, this ǁasŶ͛t aŶ issue
as I have had previous experience using Django professionally before meaning that these features

would provide more of a benefit than a hinderance. Features such as the admin panel and models

system built into Django proved to be very useful to the development of the program and would

also be useful for future maintainability as all the documentation needed to understand the core

functioning of a Django based web application is in one place; on the Django Project site. As

Cardiff University is in Wales and its services should be made to accommodate speakers of the

Welsh language, a key feature which played a role in the decision making for choosing the web

framework was Django͛s localization abilities. The localization features in Django would allow for

someone to add support for the welsh language in the future which would help satisfy Cardiff

11

University͛s need to accommodate Welsh speakers. The admin-panel feature would be of

particular importance in the future when the project would have to be maintained and updated

to accommodate for changes in the SFIA skills framework. Additionally, considering that the

project is ŵeaŶt to ďe iŶtegƌated iŶto the uŶiǀeƌsitǇ͛s sǇsteŵ it could also be converted to a

RESTful API with Django REST Framework to be easily integrated with other university pages using

the same front-eŶd ƌatheƌ thaŶ haǀiŶg a ŵisŵatĐhed page ďeiŶg ƌeŶdeƌed ďǇ DjaŶgo͛s ďuilt iŶ
system.

Databases

Django has a built in SQLite database management system which is suitable for most small

projects. However, as this program is intended to be used for the year in industry programme,

an SQLite database would not be suitable especially if the web application is expanded to store

student information, new frameworks are added, and/or new skills are added. PostgreSQL was

chosen to be the database of choice on my deployment mainly due to the vast amount of support

that exists for its use with Django. PostgreSQL is also open source, SQL compliant, has some

native NoSQL features, and has good performance with complex queries compared to other

relational database management systems.

Deployment

As the web application will be used for the Year in Industry programme, it is important that it be

deployed on a dedicated server rather than having students run it locally themselves. For the

purposes of testing, I personally used a T2.Micro instance from Amazon Web Services (AWS) to

run my test deployment at http://sfia.worawat.com/ as I͛ŵ ŵost faŵiliaƌ ǁith the AWS platform.

However, as I did not use an Amazon Machine Instance using their in-house proprietary Linux

distribution and opted to use the open source Ubuntu 18.04 instead, the process should be

identical ǁhetheƌ usiŶg aŶ iŶstaŶĐe fƌoŵ AW“, MiĐƌosoft Azuƌe, aŶ oƌgaŶizatioŶ͛s OpeŶ“taĐk, oƌ
a personal system as long as it is also running Ubuntu 18.04. Later on in my project I also

ĐoŶtaiŶeƌize the ǁeď appliĐatioŶ aŶd the eleŵeŶts used to suppoƌt it usiŶg ͚DoĐkeƌ͛ aŶd ͚DoĐkeƌ
Coŵpose͛ meaning that the deployment of this project is now able to be deployed extremely

easily on any system running an x86 version of Mac OS, Linux, or Windows. Though I have not yet

tested it on an x64 system such as a Raspberry Pi, I believe it may be possible though the number

of dependencies I͛m utilizing for this project means that there will likely be some issues

encountered that would not be present on an x86 system. However, as almost all servers used in

production environments are x86 based, this issue is a fairly minor one.

Web Server Gateway Interface (WSGI)

To run the web server, a WSGI is needed to act as the middleware to quickly serve static files and

to determine the best way to route many requests concurrently. This greatly reduces the load on

the web application server and improves responsiveness due to static files being served more

quickly thus improving the perceived experience by the end user.

http://sfia.worawat.com/

12

Apache

Apache is what I started off using as it is what comes with Ubuntu meaning I did not have to

install any additional things to get it working. Apache is one of the earliest WSGIs if not the

earliest one. For this reason, its popularity is no longer as dominant as it once was, but it is still

very capable and is still used by many large companies. Another reason why I initially used Apache

was the abundance of documentation it has as it uses ͚.htaĐĐess͛ foƌ ĐoŶfiguƌatioŶ ǁhiĐh is also

very flexible. However, this feature comes at the cost of performance – a costly sacrifice when it

comes time to scale.

Nginx

Though I initially used Apache during the development of my project, I eventually switched to

Nginx to utilize its better performance and more scalable feature set. Nginx is currently the

ǁoƌld͛s ŵost populaƌ W“GI aŶd foƌ good ƌeasoŶ; it is fast, efficient, and promotes scalability.

NgiŶǆ fƌoŵ the oŶset ǁas ͞WƌitteŶ speĐifiĐallǇ to addƌess the peƌfoƌŵaŶĐe liŵitatioŶs of ApaĐhe
ǁeď seƌǀeƌs͟ ~OǁeŶ Gaƌƌett (NgiŶǆ͛ pƌojeĐt ŵaŶageƌ) meaning it is better suited for more

intensive use than compared to Apache. However, Nginx is not as configurable and is often

harder to use than Apache. Though harder to use and less flexible, the main reason I switched to

Nginx is its performance with it being able to often handle double the number of requests as

Apache in the same amount of time. This increase in performance although likely unnoticeable

at a small scale, would greatly improve performance at a larger scale

Containerization

Although the web application was not too difficult to deploy as I͛ǀe had soŵe foƌŵal eǆpeƌience

with web development in the past, I would occasionally have to redeploy my web application

either voluntarily because of a desire to change something, or involuntarily due to breaking

something in the operating system. Initially, I did not think much of it as I was the only one

working on this project however, as I later met the post graduate candidate who would be taking

over from me to integrate my web application to a future Year in Industry Programme portal, I

realized that not only would a complicated deployment mean scaling its use would be more

difficult, it also means that any future maintainers or people wanting to build upon the web

application would also have to learn how to deploy the web application meaning they would

either have to read an extensive deployment note that I would create or they would have to learn

how to set up Nginx, PostgreSQL, and the web application itself. Therefore, I decided to

containerize my web application using a containerization tool. Unfortunately, I did not have time

to explore other solutions such as CoreOS, so I had to use the containerization tool that I am

already familiar with, Docker.

Docker

Docker is a virtualization tool used to deploy containerized applications and is often used in the

industry to assist in deploying and scaling web services. It is especially usefully when developing

in large teams where not everyone might have a system with the same specifications as its

operating system virtualization allows everyone to develop in the same environment. The tool I

13

ǁould ďe usiŶg is Đalled ͚DoĐkeƌ Coŵpose͛ ǁhiĐh alloǁs deǀelopeƌs to configure and make

multiple Docker containers to work together. In my case, I would be using Docker Compose to

allow users to easily deploy the entire tech stack using a single command once they install Docker,

Docker Compose, and they clone the repository. This would enable anyone interested in the

project on any platform to work on just the web application without having to handle the rest of

the components of my solution.

Implementation and Algorithms

Scripting for document scraping and generation

SFIA Document Scraping

Before creating the document generator and web application, I first had to extract information

from the human readable SFIA document in PDF format to a machine-readable format such as

CSV or JSON. To allow for better structuring, I opted to use JSON over CSV. The structure of the

JSON file could also be easily documented with a JSON Schema. I initially tried to directly scrape

from the PDF but using the PǇthoŶ pdf ƌeadeƌ liďƌaƌǇ ͞pdfƌeadeƌ͟ did Ŷot pƌeseƌǀe the stƌuĐtuƌe
of the document which meant that it would not be feasible to scrape data this way as it͛d ďe
difficult to determine the iŶdiǀidual seĐtioŶs I͛d like to sĐƌape. Theƌefoƌe, I first converted the

PDF to aŶ HTML file usiŶg ͚pdftohtŵl.Ŷet͛ ǁhiĐh alloǁed ŵe to scrape the document using the

͚Beautiful“oupϰ͛ ǁeď sĐƌapiŶg liďƌaƌǇ for python to identify the types of headers using their style

classes and HTML tags. After analyzing the document for the pattern, I created a script to extract

each skill and each level and stored it into a dictionary and then appended the dictionary to a list.

UsiŶg the PǇthoŶ ͚jsoŶ͛ liďƌaƌǇ, I created a file Ŷaŵed ͚sfia_ƌefeƌeŶĐe.jsoŶ͛, foƌŵatted the list,
and dumped the contents into the file, which was then ready to be used to generate the

documents.

Document Generation

I made a pythoŶ sĐƌipt ǁith a liďƌaƌǇ Đalled ͚pǇthoŶ-doĐǆ͛ This alloǁed ŵe to edit teǆt, create

text, create tables, add page breaks, and change fonts and styles. To start, I used the form

currently used by the Year in Industry Programme to create a template by deleting the blank

tables and any information which I would have to replace. I created one template for the student

version and one template for the employee version and I have the program select which one to

use depending on the value of the parameter for it when the function is called. Next, I created

functions to add descriptions and create a table for the skills and then depending on the input

parameters, the program would generate the document with one or two skills and would order

them in a way which would minimize the risk of the table on the first page spilling into the second.

In the case where the skill does not have all the levels of a skill that has been requested in the

parameters, only the skills that exist are used to populate the table. One issue I did run into was

that the table would not auto-size even when I generated a table with the auto-sizing property.

Therefore I had the program adjust the width of each cell by calculating for each skill the

proportion of characters it had compared to the total and adding that to a minimum width to

eŶsuƌe that theƌe ǁouldŶ͛t ďe aŶ eǆĐessiǀelǇ skiŶŶǇ ĐoluŵŶ ǁith oŶe ǁoƌd peƌ liŶe.

14

Django Web Application

Starting the Django Project

To start, I created a python 3 virtual environment using the tool ͚pipenv͛ on my desktop with the

ĐoŵŵaŶd ͚pipeŶǀ shell͛ once in the shell, I used the command ͚pip iŶstall djaŶgo͛ to iŶstall the
Django core libƌaƌies aŶd ƌaŶ the ĐoŵŵaŶd ͚django-admin startproject SFIAGeŶeƌatoƌ͛ to create

the project. I then did a test run ǁith ͚pǇthoŶ ŵaŶage.pǇ runseƌǀeƌ͛ and navigated to

͚localhost:8000͛ in my browser to make sure that the test server was working. I then stopped the

server by using CTRL+BREAK and created aŶ app Đalled ͚GeŶeƌatoƌ͛ ǁith ͚python manage.py

staƌtapp GeŶeƌatoƌ͛

Creating models

I created three Django models the main one was for the skill information and had the skill͛s full
name, the skill͛s unique abbreviated four-character code, and the skill͛s description. The second

model was for the levels in each skill aŶd had the foƌeigŶ keǇ to the skill it ďeloŶged to, the leǀel͛s
level Ŷuŵďeƌ, aŶd the leǀel͛s desĐƌiptioŶ. The final model was a model to store uploaded JSONs

for processing and only consisted of a single file field.

Admin Panel Functionality Additions

To allow easy editing of levels belonging to each skill, I had to customize the admin panel for

showing skill information to also include the levels with foreign keys matching the skill. To do

this, I defined a Django admin Tabular Inline class for the levels and appended the inline class to

the Django admin for skills.

Importing JSONs

In order to quickly import JSONs with skill information into the models, I created an admin action

in the admin panel which would take the selected JSON and take each skill and either update old

skills ǁith the iŶfoƌŵatioŶ oƌ Đƌeate Ŷeǁ skills if the skill hadŶ͛t been added before.

Form View

To display the form to the user, I created a django template using the popular library Bootstrap

and JQuery to make the form look nicer and to have a ranged slider. To serve the form to the

user, I created a simple view to return the form as an HTTP response using the Django render

function ǁheŶ the useƌ͛s ďƌoǁseƌ seŶds a GET ƌeƋuest. The user would then fill out the form and

press submit which would send a POST request to the same URL but in another tab. If using a

JQuery library like I did, ensure that in the ͚data-ajax="false"͛ is put iŶ the tag foƌ the foƌŵ

15

Validating POST and returning docx document

In the same view function as the one used to GET the form, I added aŶ ͚if͛ stateŵeŶt to ĐheĐk
whether the request is a GET or a POST request. If the request is a GET request, the web

application would return the form but if the request is a POST request, the web application would

check to ensure that at least the first skill code has been entered and that it is a valid skill code.

It would then check to see if a second skill were inputted and if one has been inputted, it would

check the validity of it. This is done using a validation function. Once the skills have been

validated, the web app then uses the document generation script that I had created before using

the docx python library and returns the docx object to the user. In the case where the inputted

skills are invalid, the program instead returns a page informing the user that the request was

invalid. This page closes itself after a few seconds using a simple JavaScript script.

Vector Model TF-IDF Similarity Search

This feature allows for the user to input a body of text into the field which is then run through a

vector model TF-IDF search to find the skill with level with the most similar description. The code

can be seen in the appendix as ͚Appendix A͛ and can be broken down into the following steps:

1. The body of text is broken down into sentences which is then broken down into a list of

words and this list of words is appended to a list.

2. The liďƌaƌǇ ͚GeŶsiŵ͛ is theŶ used to geŶeƌate a diĐtioŶaƌǇ, which is a list of unique words,

from the list of lists of words for each sentence and then each word is assigned a number

to represent it.

3. A corpus oƌ ͚ďag of ǁoƌds͛ is theŶ generated which measures the frequency that a word

is used in a sentence.

4. A TF-IDF (Term Frequency, Inverse Document Frequency) is then generated for the corpus

which identifies the importance of each word in the corpus. This is done so that rarer

words are given a higher weight than common words when later comparing similarities.

5. ͚GeŶsiŵ͛ is theŶ used agaiŶ to Đƌeate a siŵilaƌitǇ measure object which will be used to

compare with later.

6. For each sentence in each level and skill description, the similarity to the similarity model

must now be calculated using the following steps:

a. Each sentence is tokenized as before by breaking down the sentences into a list of

words.

b. The Đoƌpus oƌ ͚bag of words͛ for the sentence is then generated using the

dictionary created earlier in step 2.

c. Each word in the sentence is then run through the similarity measure object which

uses the weighting calculated in the TF IDF in step 4 and then the values are

summed up.

d. The score for each sentence is then found by averaging the sum.

16

7. For each level or skill, the average similarity for all the sentences in its description is

calculated and then stored in a list of dictionaries with the skill code as its key. In the case

where a level from the same skill has already been added to the dictionary, if the new

level has a higher similarity, then the existing one is replaced otherwise the new one is

discarded

8. The skill code key with the highest similarity score is then found and stored ǁith the ͚ŵaǆ͛
function which gets the highest score in the list.

9. To find the second highest scoring skill, the highest scoring skill is then removed from the

list aŶd theŶ the ͚ ŵaǆ͛ fuŶĐtioŶ is theŶ used agaiŶ to fiŶd the highest scoring skill currently

in the list and then the code is stored.

10. The web application then renders a form to generate the word document prepopulated

by the skills which were most similar. If no similar skills were found, the form is not

populated.

Additional Features

Skill Browser

To avoid having to have the user have the SFIA reference PDF next to them when filling in the

form, I created a way of browsing skills. When the user requests the page, the site renders the

page using the list of skills so that in the case a skill is added or removed, the site self-updates. If

the user then clicks on one of the skills in the list, a page for that skill is then rendered by taking

the skill code from the URL and finding the corresponding model and then using the information

of the model to populate the page along with the levels that have the skill model as the foreign

key.

Skill Selector

Using the skill browser, the user can select skills they want interactively rather than having to

manually input the skills into the form. To do this, I created new URL patterns and modified the

views to show the list of skills and to show the details of an individual skill. When the first skill is

selected by clicking the link in the skill details page, the user will be sent to the list of skills but

now, the skill code for the selected skill will now be in the URL. The user can now browse for the

second skill that they would like to select. Once the user finds the one that they want to select,

the detail page will have a form submit button that will send a POST request with the skill codes

in the body of the request to the form page which will then render the form with the skill codes

pre-populated in their fields. As the form page is also the endpoint for submitting the form to

request the docx document, the endpoint checks the body of the request first to see whether it

is requesting the document or the pre-populated form.

17

Deployment

Even once the web application had been completed, the method of deploying it was too

convoluted in my opinion and therefore to enable fast and convenient deployment, I utilized

Docker to containerize my project. To ensure fast and efficient development, I also preserved the

ability to run the project locally without using docker by installing the requirements with or

without an environment aŶd theŶ ƌuŶŶiŶg ͚pǇthoŶ ŵaŶage.pǇ ƌuŶseƌǀeƌ͛ where it will run on

localhost port 8000.

Docker Containerization

To containerize ŵǇ pƌojeĐt, I Đƌeated tǁo ͚DoĐkeƌfiles͛ ǁhiĐh aƌe the files that defiŶe hoǁ to set
up an environment for a service. One of them creates the container for the Django web

application and the other creates a container for the Nginx service. Fortunately for simplicity

sake, there is already a ready-made image of PostgreSQL which does not need to be configured

with a Dockerfile and can just be passed the parameters for its login credentials in the Docker

Compose file. If any of the parts of the tech stack is replaced by an external service, the part

handling that component can just be disabled by removing it from being created in the Docker

Compose file.

Django Container

To build the container for the Django web application, the Dockerfile first pulls an image called

͚pǇthoŶ:ϯ.8.ϯ-sliŵ͛ ǁhiĐh a DeďiaŶ ďased sliŵŵed doǁŶ LiŶuǆ iŵage ǁith Ŷot ŵuĐh ŵoƌe thaŶ
what is needed to run Python 3.8.3. Theƌe is a lighteƌ iŵage Đalled ͚ pǇthoŶ:ϯ.8.ϯ-alpiŶe͛ hoǁeǀeƌ,
various issues arise ǁheŶ tƌǇiŶg to iŶstall the PǇthoŶ liďƌaƌǇ ͚GeŶsiŵ͛ ǁhiĐh is uŶfoƌtuŶate as
GeŶsiŵ is esseŶtial to the ǁeď appliĐatioŶ͛s vector search algorithm. After pulling the image and

installing it, the Dockerfile then ŵakes a diƌeĐtoƌǇ Đalled ͚Đode͛ ǁheƌe all the files for the

container will be put. It theŶ Đopies the ƌeƋuiƌeŵeŶts file iŶto the ͚Đode͛ diƌeĐtoƌǇ aŶd ƌuŶs ͚pip
install -ƌ ƌeƋuiƌeŵeŶts.tǆt͛ to iŶstall all the Ŷeeded paĐkages. One small quirk of the Natural

Language Tool Kit (NLTK) is that pip doesŶ͛t install all of the files it needs to do certain tasks so

once all the requirements are installed, I have to run an additional command ͚python -c "import

nltk; nltk.download('punkt')"͛ ǁhiĐh doǁŶloads the ͚puŶkt͛ ŵodule which is needed in my vector

search algorithm. Once everything has been installed, the Dockerfile finally copies the rest of the

files in the directory into the ͚Đode͛ diƌeĐtoƌǇ. Additionally, to avoid having to change the settings

file between the non-docker environment and the docker environment, I separated off the

settings file so that by default, the development friendly non-docker one is used and then I

configured docker to specifically use the one I made for docker.

18

Nginx Container

The deployment for Nginx is a bit more complicated as the Nginx server must be configured first.

To configure it, I told it which port the Django web app is running on (port 8000), which port to

listen to (port 80), and the location of the resources that it will send out such as static files. Once

the configured, all that the Dockerfile does is defines the work directory, copies the configuration

file to it, and then copies all the project files into a diƌeĐtoƌǇ Đalled ͚Đode͛ ǁheƌe NgiŶǆ ǁill aĐĐess
the static files from.

Deploying on Linux

To make it as seamless as possible, I took some time to make some scripts so if deploying on

Ubuntu 18.04 or some other Linux distributions, it only takes these four commands to get the

project running:

1. git clone https://github.com/SmilingTornado/sfia_generator.git

2. cd sfia_generator

3. sudo bash docker-compose-install.sh

 - If using Windows or MacOS, consult the Docker Documentation for installation

information

4. docker-compose up -d

To add a superuser, eǆeĐute the ĐoŵŵaŶd ͚sudo ďash Đƌeatesupeƌuseƌ.sh͛ aŶd iŶput the
credentials. And to edit the secret key, use vim to edit SFIAGenerator/settings/base.py. As Django

automatically restarts the server when it detects changes, the changes would be applied

automatically.

Scripts

docker-compose-install.sh

This script uses the Advanced Package Tool (APT) to download docker and docker. First it updates

the package manager, then it removes any existing docker installation that might interfere, then

it installs the docker.io and docker-compose packages, then it starts docker, and finally, it enables

the docker service.

createsuperuser.sh

Though normally only taking one line to execute anyways, this script just makes it a lot more

ĐoŶǀeŶieŶt. All it does is ƌuŶ the ĐoŵŵaŶd ͚docker-compose run web python manage.py

createsuperuser --settings=SFIAGenerator.settings.docker͛ ǁhiĐh ƌuŶs the ĐoŵŵaŶd ͚python

manage.py createsuperuser --settings=SFIAGenerator.settings.docker͛ in the ͚ǁeď͛ ĐoŶtaiŶeƌ
which houses the Django web application. This command allows someone to create a superuser

which can be used to access the admin panel. This command is only needed so that whoever uses

it can then go and define groups and create users in the admin panel.

https://github.com/SmilingTornado/sfia_generator.git

19

Ensuring ease of future project development

To fuƌtheƌ iŶĐƌease the ease of deǀelopŵeŶt, I also pƌeseƌǀed the ǁeď appliĐatioŶ͛s aďilitǇ to use
an SQLite database by having separate settings files where the one used for a development

environment would automatically be used by default and the settings for production, in a

separate file, would be specifically used by the scripts used to deploy the program via Docker.

However, using a well featured interpreter such as PyCharm by JetBrains would allow for the use

of the interpreter within the Docker container so in the case where incompatibility across

platforms occur when using certain libraries such as graph-tool, using docker would enable non-

Unix developers to continue using their regular development flow in Windows rather than having

to switch over to using Linux or MacOS. This solution enables the ease of use for

Results and Evaluation

Client Feedback

Overall, the client was very satisfied with outcome of the project noting that the stability and

usability of the web application were very good and she showed particular interest in expanding

the possible applications of the vector model TF-IDF search so that it can be applied for other skill

frameworks such as the Institute of Information Security Professionals (IISP) Information Security

Skills Framework. The flexible input for the search function has also meant that the client has

reportedly also utilized the search algorithm to purposes other than its original one with at least

some degree of success by inputting university module descriptions into the search to try to find

their corresponding skills. Following the conclusion of this project, I will likely see how I could

accommodate a more flexible use of this search functionality by possibly creating an API allowing

users to upload their own documents to search through rather than being restricted to only

searching the skills stored in the models of the web application.

Personal Evaluation

Like my client, I am personally also very satisfied with the outcome of my project. The web

application, built on Django, is stable, responsive, and to my knowledge is production ready

especially as if it is needed to be scaled in the future, it could be easily done. I have very little

regrets about the design choices I made as I believe the web application I produced is production

ready for use in the real world and to my knowledge, no one has encountered any major issues

oŶ the ǀeƌsioŶ I͛ǀe had ƌuŶŶiŶg publicly at http://sfia.worawat.com. If I had more time, I would

possibly explore more containerization solutions such as CoreOS though Docker has performed

admirably throughout all my testing without fail and should be more than capable of performing

in a production environment especially as it is already used by many large companies to deploy

their web services such as JPMorgan as evidenced by their Docker Hub contributions at

͚https://hub.docker.com/u/jpmc/͛.

http://sfia.worawat.com/
https://hub.docker.com/u/jpmc/

20

Document Generation

The web application performs generation of the docx documents with little to no issues and with

formatting issues only arising rarely when the user tries to generate tables with a volume of text

too large for the auto fit algorithm to handle which causes the table on the first page to overflow

into the next page. To remedy this, I did two things; firstly, the table with a larger amount of text

is always generated on the second page where there is more room and therefore almost no

chance of it overfilling into another page. In the rare edge cases where both tables would

overflow on the first page, the user has the option to generate the tables and their descriptions

on dedicated pages by selecting an option on the form. Additionally, the client requested that it

be able to generate a document with only one skill table. With all the precautions for proper

formatting, the chances that the end user will not be able to generate a nice and properly

formatted form are drastically mitigated and in the very rare edge cases where the generation

cannot be done at a high enough standard, the user has the option to manually open the docx

file and modify the document if needed.

Search Functionality

Though harder to evaluate, I do believe my implementation of the vector model TF-IDF natural

language search algorithm has been successful and effective in its role to compare document

similarity. Similarly, to the results found in the study ͚Text Similarity in Vector Space Models: A

Comparative Study͛ the results were surprisingly good though not perfect. I personally tested the

functionality of the search by inputting my full resume from https://worawat.com into the search

which does yield a result of skills I am personally interested in though they may not be necessarily

the ones I would consider my best match. However, I hesitate to fault the program as there may

perhaps be a method of describing myself in a certain format that would allow the algorithm to

better perform. To test this function in more depth, data could be collected on what users end

up suďŵittiŶg afteƌ theǇ͛ǀe tƌied out the seaƌĐh fuŶĐtioŶalitǇ via allowing the user to opt into the

data collection to ensure that the user knows what their data is being used for.

https://worawat.com/

21

Future Work

Overall

In the future, the web application will be integrated into a portal made for the Year in Industry

Programme which will contain other web applications meant to manage and assist people

involved with the Year in Industry Programme. For a more seamless integration, The styling of

the web application will have to be made to more closely resemble that of the other ones on the

portal by changing elements such as font and color as well as adding elements such as logos and

photos. As currently, the page is minimally styled using the Bootstrap and JQuery libraries, doing

this would likely not be too difficult though if seamless integration cannot be achieved with the

current built in Django template rendering system, it would also be possible to convert the

project into a RESTful API backend with Django REST Framework which would allow for the use

of more powerful frontend engines such as React.js or if a more lightweight approach is desired,

static HTML pages with forms for posting to the API could also do less complex tasks. New skills

framework such as the IISP Information Security Skills Framework mentioned earlier could also

be added into the project via creating a new Django model to house them and modifying the

current features to allow for both the current and future framework to work on the same

platform. I also licensed my project under the Apache 2.0 License to ensure it can be easily used

in the future

Search functionality

The search functionality has great potential to be improved and its applicability in other

applications extended. As the search algorithm is bespoke, additions and improvements can be

easily performed on it in the future by any interested people. Things that could be added to

improve its effectiveness include adding additional input fields, refining the algorithm, and

improving speed. As the search algorithm is built on natural language processing, a fast-moving

topiĐ iŶ todaǇ͛s ǁoƌld, it means that innovations in the field have the potential to allow for

dramatic improvements to the algorithm. Also, as the algorithm is fairly flexible and could easily

be transferred for other document matching purposes, in the case of a new skills framework

being added to the web application, the search should also be extended to work with it though

additional tuning may be required as the way that each framework is structured may not be the

same.

22

Conclusions
The project was an overall success and exceeded not only my expectations, but that of the client

and the supervisor as well. A very usable and stable project was produced which will certainly

assist the Year in Industry Programme in the future with skill document generation as well as the

novel skill searching feature. My vision to ensure the scalability, maintainability and compatibility

across platforms will also enable this project to be used, modified, and scaled as needed for its

purposes and should ensure the longevity of its use and maintainability. As this is my first time

building a web application of this complexity from scratch, I believe my experiences with

professional web development in the past has also greatly contributed to my approach towards

the development of my project as it ensured that each element of the project was developed

with ease of use in mind not only for the user, but also for future maintainers and anyone wanting

to deploy or modify the project to suit their needs. The tech stack chosen also allows for a great

amount of flexibility and ease of maintenance as I tried to use tools widely used in the industry

with readily available and high-quality documentation. I attribute a lot of the success regarding

client satisfaction to the Agile software development process I decided to use over the Waterfall

approach. The Agile process allowed me to receive iterative feedback on iterative improvements

allowing me to continuously add features with input from the client which greatly helped me

ensure that what I was developing was to that of the specification desired by the client.

Reflection on Learning

Web Development Reflection

Though I have had professional web development experience in the past, this was the first time

I have developed a web application of this scale from scratch on my own. Whereas in the past, I

would only have to know how to locally run the project and edit existing code, this project greatly

helped reinforce my knowledge in web development by allowing me to go through the full

process of creating the app rather than modifying an existing project that is already in operation.

Through this project, I also came to appreciate each individual component in my tech stack as

they were all crucial in what I view as they key features of the project that I would attribute to its

success. I am particularly satisfied with the containerization of my project as it makes deployment

so much more elegant.

23

Docker Reflection

Though I have used Docker in the past, I never recognized how much it contributes to the

efficiency of deployment and development. To get started working on a project, all that is needed

is to iŶstall DoĐkeƌ aŶd DoĐkeƌ Coŵpose aŶd ƌuŶ the ĐoŵŵaŶd ͚sudo docker-Đoŵpose up͛. This
process is magnitudes more efficient than having to set up the database, then set up virtual

environments, and then setup the WSGI in the case of a deployment. The experience I have had

using Docker throughout the development of this project has had a profound effect on how I will

likely perform development in the future if I were to create a system where compatibility and

scalability were key requirements. As more of the web is moving to containerization solutions

such as Docker, I also believe that it may be of interest to start integrating this into university

web application curriculums as if job board requirements are anything to go buy, it is quickly

becoming a job requirement for anyone seeking to apply for a DevOps role and I have occasionally

spotted it iŶ the ͚ŶiĐe to haǀe͛ seĐtioŶ foƌ ďaĐk-end developer roles.

Natural Language Processing Reflection

One of the most interesting parts of the project to me was the implementation of my natural

language processing-based search. Prior to this project, I have had no experience using natural

language though after using it in this project, my curiosity in the field has increased. Following

the completion of the algorithm used in the project currently, I have begun to wonder ways I

could possibly tune it and to apply it to other uses. Prior to this project if I were wanting to

implement a search algorithm, I would likely just utilize an existing service such as ElasticSearch.

However, using a bespoke system allows for refinement and possible improvement especially as

natural language as a topic is becoming increasing popular every day for use in data science. As I

will soon be beginning work at a local data company as an associate software engineer following

the completion of my studies at university, the field of natural language processing may become

something I will spend more time exploring in the future.

24

Appendix

Appendix A: Search Function Code
def search_similarities(request):

 similarities = {} # Dictionary to store the calculated similarities

 input = request.POST['input'] # Get the input from the request

 # Create a list of sentences where each sentence has been broken down into a list

of words

 gen_docs = [[w.lower() for w in word_tokenize(text)]

 for text in sent_tokenize(input)]

 # Create a dictionary of unique words

 dictionary = gensim.corpora.Dictionary(gen_docs)

 # Generate bag of words to measure frequency of word use

 corpus = [dictionary.doc2bow(gen_doc) for gen_doc in gen_docs]

 # Calculate Term Frequency, Inverse Document Frequency of words

 tf_idf = gensim.models.TfidfModel(corpus)

 # Create similarity model

 sims = gensim.similarities.Similarity(settings.BASE_DIR + '/Generator/gensim',

 tf_idf[corpus],

 num_features=len(dictionary))

 # Checking for similarities with level descriptions

 for level in Level.objects.all():

 skill_sim_total = 0

 for sentence in sent_tokenize(level.description):

 query_doc = [w.lower() for w in word_tokenize(sentence)]

 query_doc_bow = dictionary.doc2bow(query_doc)

 query_doc_tf_idf = tf_idf[query_doc_bow]

 sum_of_sims = (np.sum(sims[query_doc_tf_idf], dtype=np.float32))

 similarity = float(sum_of_sims / len(sent_tokenize(input)))

 skill_sim_total += similarity

 skill_sim = skill_sim_total / len(sent_tokenize(level.description))

 # Check if similarities for a skill has been calculated before

 if level.skill.code not in similarities:

 similarities[level.skill.code] = skill_sim

 # If calculated before, check if new description is more similar

 elif similarities[level.skill.code] < skill_sim:

 similarities[level.skill.code] = skill_sim

This function continues down below on the next page

25

 # Checking for similarities with skill descriptions

 # Same procedure as with for levels

 for skill in Skill.objects.all():

 skill_sim_total = 0

 for sentence in sent_tokenize(skill.description):

 query_doc = [w.lower() for w in word_tokenize(sentence)]

 query_doc_bow = dictionary.doc2bow(query_doc)

 query_doc_tf_idf = tf_idf[query_doc_bow]

 sum_of_sims = (np.sum(sims[query_doc_tf_idf], dtype=np.float32))

 similarity = float(sum_of_sims / len(sent_tokenize(input)))

 skill_sim_total += similarity

 skill_sim = skill_sim_total / len(sent_tokenize(skill.description))

 if skill.code not in similarities:

 similarities[skill.code] = skill_sim

 elif similarities[skill.code] < skill_sim:

 similarities[skill.code] = skill_sim

 # Find the most similar skill

 first_match = max(similarities, key=similarities.get)

 # If the maximum similarity score was 0, return the form

 if (similarities[first_match] == 0):

 return render(request, 'form.html', {'searched': True})

 # Removes the most similar skill

 similarities.pop(first_match, None)

 # Finds the current maximum similarity score

 second_match = max(similarities, key=similarities.get)

 # If the new maximum similarity score is 0, return only the first match

 if (similarities[second_match] == 0):

 return render(request, 'form.html', {'sk1_code': first_match.upper,

 'searched': True})

 # Return rendered form with found matches

 context = {'sk1_code': first_match.upper, 'sk2_code': second_match.upper,

 'searched': True}

 return render(request, 'form.html', context)

26

References

Oŵid “hahŵiƌzadi, Adaŵ Lugoǁski, KeŶŶeth YouŶge: ͞Teǆt “iŵilaƌitǇ iŶ VeĐtoƌ “paĐe Models: A
Coŵpaƌatiǀe “tudǇ͟, Ϯ018; [http://arxiv.org/abs/1810.00664 arXiv:1810.00664]

