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1 INTRODUCTION 
 

At its core, this project aims to make navigating around Queens Buildings easier to do. 

This will be accomplished by using RSSI data from nearby Wi-Fi access points to infer a 

location within them. A key goal of this project is to be able to display the location of a 

device on a digital map, with some degree of accuracy.  

The intended audience for the project would be new students to the school, who have 

little experience navigating around the building. Existing maps can be complex and hard 

to navigate, and don’t provide real-time updates of location. Motivation from this 

project stemmed from a personal experience of getting lost in the building late at night, 

and struggling to navigate the building using physical or virtual maps.  

2 BACKGROUND 

2.1 PROJECT CONTEXT & STAKEHOLDERS 

GPS-based navigation systems are widely used across all sectors, with huge public use 

both through specialised GPS navigation devices and through smartphone applications. 

As GPS uses satellites in orbit, it is necessary to have line-of-sight to the sky for good 

accuracy. If line-of-site cannot be maintained, signals can quickly become degraded as 

they travel through walls and ceilings. This signal degradation can result in excessive 

noise, and ultimately very poor precision. This is also the case in areas with poor 

visibility, such as forests and some city areas.  

A good example of this is St David’s Shopping Centre in Cardiff. This building covers 

over 129,500 m2 of land, and makes up 39% of the retail floor space in the city. This 

building is covered by a roof throughout, and as such would likely struggle from poor 

GPS precision. As people become reliant on modern mapping and navigation systems, 

the need for similar indoor mapping systems that function in a similar manner has 

become necessary. Google has started to include indoor maps for major buildings in its 

‘Google Maps’ software, however the approach it uses for improving accuracy of GPS for 

these indoor maps isn’t available publically. 

The applications of a method of indoor localisation are very broad, and could affect 

many industries in a significant way. Office buildings, resorts, warehouses, hospitals and 

schools could all make use of this technology, particularly with the use of data mining 

tools to analyse data. Resorts could build virtual maps and then use the data to 

understand how certain people move throughout the buildings, and warehouses could 

use them to direct warehouse staff to products and racks more effectively. 

A particularly interesting application is that of hospitals, where installations of 

equipment is likely to be an expensive and drawn out process due to approvals and 

testing. By utilising existing Wi-Fi access points, staff could simply use a virtual map to 

navigate the hospital – potentially reducing travel time between wards and regions of 

the hospital. Information on where staff are in building could then potentially be used to 



  

identify the closest doctor / nurse to call should an emergency arise in a certain area. 

This data could then be mined to identify efficiency improvements for spreading staff 

across the hospital. 

Based on the focus of this project, key stakeholders within the University consist mainly 

of students – lectures can frequently change destination, sometimes at last minute. 

Students may be unable to locate an unfamiliar room within the building in a timely 

manner, costing them learning opportunities and potentially leading to unnecessary 

absence where the room cannot be found. Faculty may need to work in a variety of 

different rooms throughout the week, with meetings and teaching potentially being 

conducted in unfamiliar areas. A digital map could potentially help them to navigate the 

building with greater ease, and improve efficiency. 

 

2.2 CONSTRAINTS 

I will focus on navigating around on a small area of Queens Buildings, rather than the 

entire building. This should provide a good proof of concept for the technique, without 

wasting time testing over a very large area of the building. We will also seek to obtain a 

2D location for a section of the building, rather than trying to work out which floor the 

device is on. Whilst this should be reasonably simple to accomplish using built in 

accelerometer data to obtain the altitude or grouping the APs into floors, this would 

again detract from the focus of the project, and require a significantly increased amount 

of testing. In terms of accuracy, the project is likely to produce only coarse location data. 

The reasoning for this is explained further on in the report, but is largely due to noisy 

data and reflected signals.  

This project will only focus on a single test device, allowing for future scope to test the 

technique on a variety of devices and investigate the technical challenges that arise from 

this.  

A very basic plan for carrying out the project is as follows: 

- Implement a method of obtaining raw RSSI data for nearby access points 

- Visualise and analyse this data to better understand the noise and fluctuations 

- Obtain or devise a method to convert a RSSI value into an estimate of distance 

from the device to the AP 

- Filter or smooth the distance data to make it less noisy 

- Use the locations of APs and respective distances to trilaterate the device 

location 

 

2.3 ASSUMPTIONS 

For the purposes of this project, I will assume that all mobile devices can provide useful 

(i.e. raw in dB / dBm) RSSI data that we can access at application level. I will assume 

that all access points are fixed in location, and are always online with a constant Tx 

Power level. I will also assume that each mobile device has the same antenna, with the 



  

same sensitivity. These assumptions may need to be adjusted as the project goes on, and 

this is detailed later in the report. 

2.4 SUCCESS CRITERIA 

To aid with evaluating the project, I have chosen 3 success criteria for the project. These 

are: 

1. For the accuracy of the finished to system to be within 5m of the actual distance. 

2. For the system to run from a mobile device, without any additional physical 

hardware necessary 

3. For the system to be able to handle moving devices as well as stationary ones 

2.5 EXISTING ALTERNATIVE SOLUTIONS 

2.5.1 ACTIVE RFID TAGS 

Passive RFID tags are used extensively throughout many industries, due to their low 

cost and fast read times. A user can hold a reader (a phone, or a specialised device) 

within around 30cm of the tag, and retrieve a small amount of data stored on it. It is 

possible to obtain the distance from the device to the reader through calculating round 

trip times, and working out a signal strength from that data. Due to the short read 

distance, this wouldn’t be applicable to this problem. However, active RFID tags differ 

from passive tags due to a constant power source, rather than one powered by the 

reader. These tags generally have a much higher read distance which could make them a 

viable option, with many of these tags placed frequently throughout a building. 

However, these tags are significantly more expensive (around 10x according to industry 

sources) than passive tags, so this could be cost prohibitive to cover an entire building. 

2.5.2 IBEACONS 

iBeacons work in much the same way as Active RFID tags, but have the added advantage 

of transmitting dynamic data such as distance and power rather than a static chunk of 

data. iBeacons seem to be in a similar price range to active RFID tags, and therefore 

suffer the same cost-prohibitive issues. It is also important to note that these devices no 

longer seem to provide granular distance data, instead offering more discrete versions 

of distance, e.g. ‘near’ or ‘far’. This would likely make any sort of accuracy impossible to 

achieve, depending on what sort of interval this data would change at. 

 

2.5.3 BLE BEACONS 

Existing solutions in the form of BLE [Bluetooth Low-Energy] tags have been widely 

explored in academia and in practice. Much like the former solutions, this requires a 

large investment for the organisation both in upfront installation & purchase costs, and 

ongoing maintenance. These tags work in much the same way as APs in that they send 

out beacons at regular intervals, from which we can obtain a signal strength. These 

beacons are specialised devices that specifically provide proximity data, and fit the 



  

needs of the project very well – however utilising existing network infrastructure would 

be significantly for suitable for many buildings. 

 

2.5.4 ON-SITE GPS REPEATERS 

An interesting solution in receiving GPS signals via antenna and repeating this across a 

building has been developed by a US company, which appears to be very popular across 

industry. It is notable however that this is designed for open warehouse spaces rather 

than that of an office block, with several repeaters likely required for a complex 

environment. It is likely that the cost would be a significant expense for an organisation 

where indoor location positioning isn’t essential, and as such doesn’t provide a viable 

solution to the problem. 

 

 



  

3 APPROACH 

3.1 INITIAL APPROACH 

3.1.1 PLAN OF APPROACH 

My initial approach was to use a mobile device to scan for nearby WIFI access points, 

and then feed the data from these scans into an app. This data would include a BSSID for 

the access point and an RSSI value for signal strength. This data would then be fed back 

to a server, where some sort of filtering would take place to filter out the noise. This 

server script would then select three known access points from the filtered data with 

the strongest RSSI, and calculate the distance for each one. Based on this distance data 

and the information stored about the location of each access point, a location for the 

device could then be estimated and returned to the app (See Figure 1). The app would 

then display the location on a map, based on the coordinates provided. The app would 

continuously scan for WIFI networks, feeding this data in the background to the server. 

This would then allow the location to be updated continuously, with accuracy of 

location likely improving with more data fed into the filter.  

 

 

Figure 1 – Example of proposed location finding through trilateration given 3 known access points 

 

3.1.2 IMPLEMENTATION 

To gather initial data, I developed a simple application using the Ionic Framework 

which scanned for nearby WIFI networks. I utilised the WifiWizard2 library, which 

exposed simple methods for obtaining this data. Despite many adjustments to the code, 

it ultimately transpired that iOS requires special permission and approval for any app 

wishing to scan for WIFI networks [1]. In addition, it appears that there is no way to do 

this in the background without user actions. Users would need to navigate to the setting 



  

app to scan, with the limited data provided to the app when the user returned to it. This 

led me to focus on Android, which did allow this functionality to be implemented.   

The library allows for scans to be requested as frequently as necessary, so I initially 

obtained this information every 50ms for 5 minutes. I then dumped this data out as 

JSON to allow me to manually transfer it for analysis. Viewing the data, I noticed a 

significant quantity of duplicated readings close together. This would indicate a stable 

RSSI signal (which would be very unexpected), however upon further inspection of the 

data an epoch-like timestamp is attached to each scan result with the time it was last 

updated. Checking this timestamp, I noticed very few of the scan results were actually 

unique – it appears that a cached result is returned for repeated requests within a 

certain period of time. Google confirms this in the documentation for WifiManager, the 

API used in the WifiWizard2 library to return WIFI scanning data. Foreground apps can 

only obtain new data 4 times in a 2-minute period (once every 30s) and background 

apps may only obtain new data every 30 minutes [2]. This heavily reduces the 

practicality of obtaining large amounts of data to filter, however I decided to collect as 

many results as I could over a longer period of time in order to produce some sort of 

meaningful dataset that I could then use to obtain a location from. 

For early testing a Jupyter notebook with pandas was used to analyse and manipulate 

data, in order to keep a record of problem solving throughout the project. After loading 

the scan data from a json file into a Pandas frame, the RSSI data is visualised with a 

scatter plot. As shown in Figure 2, the RSSI data is spread across the -40 to -32 levels. A 

histogram of this data shows the frequency of certain signal levels, with no clear level at 

which it seems strongest. However, simply taking the most common signal level isn’t 

enough to provide a reliable stable value – some sort of filtering must be employed. 

After research, I opted for a Kalman Filter due to the availability of Python libraries to 

simplify implementation, and for the lack of resources it requires to work. Updating the 

filter doesn’t require a history of all the data that has run through the system, only the 

new result and the previous ones. Given the large amount of data the server could be 

handling for one client, it made it sense to minimise the amount of resources the filter 

uses so that it can scale up for many users. I used a Python port of the KalmanJS library1, 

which simplified the process significantly. For the purposes of this project the Kalman 

Filter is seen as a ‘black box’, and the mathematics behind it won’t be explored. The 

filter is just a mechanism to make the RSSI data less noisy. Figure 3 shows a segment of 

the data before filtering, and after filtering. Note the significant reduction in variation 

between readings, with each result taking into account the prior when smoothing.  

 

 

1 KalmanJs - https://github.com/wouterbulten/kalmanjs 



  

 

Figure 2.1 and 2.2 – RSSI data scattered across time, and a histogram of the same data 

 

 

 

Figure 3 – RSSI data before and after filtering. Orange – unfiltered, Blue - filtered 

 

3.1.3 ISSUES WITH APPROACH 

After experimenting with data collected at several intervals, I found that the device 

would often not provide consistent enough data between readings. Whilst one scan at 

1m may suggest a filtered RSSI of -40, another may jump to -50 or drop to -30 on 

different occasions. Whilst this could potentially be accounted for with extensive 

readings to calculate a more accurate figure, a major issue lies with the device giving 

readings of a stronger signal at a further distance. At 2m a reading of -50 may be 

achieved, but 3m may give a reading of -45 – indicating that the device must be closer. 

There are many possible reasons for this, with a strong possibility being the access 

point dynamically increasing and decreasing power based on usage. Given the slow rate 

that results are obtained at (10 minutes for 20 readings) there is potential that the 

power may be altered during this time in such a way as to dramatically affect the RSSI.  

With the throttling of scan data proving a major hurdle for the project, it became clear 

that an alternative approach was required to allow the project to achieve some 

meaningful results.  

 



  

3.2 REVISED APPROACH 

3.2.1 ISSUES RELATING TO CORONAVIRUS 

As the preparation for a revised approach was underway, the Covid-19 pandemic 

started to disrupt the project. With the core of the project relating to navigating around 

a specific busy building, it was unlikely that the project could achieve the desired goal of 

accurately navigating around the building using existing infrastructure. Due to this, a 

decision was made to revise the project slightly. Instead of navigating around a section 

of Queens Buildings, the aim would be to identify the location between 3 access points 

in a section of my house. Whilst this is significantly less impressive than the original 

project aim, it still allows for a proof of concept to be demonstrated, and for accuracy to 

be evaluated.  

This adjustment introduced a new problem – the lack of access points. I obtained 

several access points cheaply, which would be placed around the home to broadcast a 

network. However, due to cost constraints all of these were purchased second-hand, 

and at minimal cost. This meant that none of the access points were the same, with each 

one having different transmission power and hardware specifications. Many of these 

access points were locked-down CPE routers, which meant that very few settings could 

be adjusted and very little information existed openly for them.   

3.2.2 UPDATED HARDWARE 

After considering ideas for how signal levels could be evaluated, I arrived at utilising a 

Raspberry Pi with an antenna attached to collect data. By using an external WIFI 

adaptor with an antenna, I hoped to be able to obtain higher quality and more 

consistent data than using the built-in antenna in a mobile phone. The choice of using a 

raspberry pi was purely based on the convenience of the device running Debian Linux, 

and being compatible with many of the existing network testing tools (TShark, aircrack-

ng etc). Whilst the device would be able to work wirelessly2, I connected to a laptop via 

Ethernet and a USB cable for power and connectivity purposes whilst testing. This 

provided a stable and simple setup for testing, and minimised the time spent setting up 

the new hardware. 

3.2.3 COLLECTING RSSI DATA 

Initially, I considered using the `iwlist` command-line utility to scan and retrieve 

information about nearby access points. However, upon testing this command took just 

over 2 seconds to execute, meaning a maximum of 30 scans/minute. Whilst this is a 

considerable increase from the throttling on android, it’s still a bit too low for the high 

volume of data I’m looking for.  

In the hope of viewing low-level data from the scans and increasing the scan frequency, 

I tried airodump-ng, part of the Airocrack-ng suite of tools. This tool was considerably 

 

2 Whilst the device does require power and a network connection, this could be achieved using an 

additional WIFI adaptor to connect to the internet, and a battery or power bank to provide power 



  

faster than expected, capturing updating several times a second. This worked well and 

allows me to view real-time RSSI data from nearby access points from the terminal, and 

showed a beacon count of how many times the signal had been updated. However, this 

only allowed me to export data in .cap format for use in the other tools in the Aircrack-

ng suite. Other than somehow scraping the data from stdin, this didn’t give me any way 

to obtain the realtime RSSI data I required. 

After some research and pointers, I found that tshark offers the ability to capture 802.11 

frame data and export it in a more useful format (such as .csv). I captured data over a 

period of several minutes, and loaded the resulted dump into wireshark for analysing to 

see what data it contained. After filtering for `type.type_subtype = Beacon` to only 

view beacon packets, I was able to look through them to see if they contained any useful 

data. I found that they contained a value for RSSI under `radiotap.dbm_signal`, 

which fitted my needs perfectly. Each frame also included an epoch time under 

`frame.time_epoch`, so I was able to obtain the time the beacon was sent with some 

accuracy. See Appendix 1 for the contents of the beacon frame. It seems that tshark was 

able to capture a significant amount of beacon frames in a short space of time – around 

xxx in the y minutes I ran the command for. This was a huge increase compared to all of 

the prior approaches, and should provide the necessary volume of data. 

Whilst viewing this data in wire shark was useful for exploring the frames, I needed to 

export data in a format that I could then load into a Pandas frame. Tshark has a built in 

utility for exporting to CSV, so I utilised this with capture filters to write the BSSID, 

epoch time and RSSI to a file whilst scanning. The command used and sample of the 

output is shown in Appendix 2. 

After loading this data into Pandas and generating the same visualisations as used 

previously, I found that the data seemed to more strongly favour a single RSSI level, as 

evidenced by the darker areas of the scatter graph. This is a good indicator that the new 

hardware is generating higher quality data, and having a significantly larger amount of 

data to work from in a shorter period of scanning seems to contribute to this. 

3.2.4 CONVERTING RSSI TO DISTANCE 

I opted to use the simplified equation found in the ‘Indoor Positioning Algorithm Based 

on the Improved RSSI Distance Model’ paper. [3] This equation is as follows: ���������� =  −10� log(݀)  +  �̅ 

Where ���������� is the estimated RSSI, � is a parameter for signal degradation that depends 

on the environment, ݀ is the distance between device and AP, and �̅ is the average 

measured RSSI at 1m from the AP. Rearranging, we get: ݀ = 10
(
�̅−����ଵ଴� )

 

Based on this formula, I needed to choose a suitable value for n and calculate �̅. Many 

implementations of this formula use 2 as a value for �, and so this is what I initially used 

to calculate the distance. �̅ was simply the average of a large (I used 2000+) sample of 

RSSI readings @ 1m. Due to each of my routers having different configurations, power 



  

levels and hardware, I decided to measure the �̅ value for each of the routers 

individually. I found a non-negligible difference between these readings, indicating that 

each router may give very different RSSI values at greater distances.  

Initially I tested this formula using data collected at 2m, but received very unreliable 

results. After trying to manipulate values for �̅ in the formula, I compared the RSSI 

values between tests, and found that they fluctuated significantly. After trying the 

experiment again at greater distances, I found a stronger correlation between RSSI and 

distance. This is shown in Figure 4.1. Whilst the distance was now increasing with a 

weaker RSSI signal, it didn’t seem very accurate. I found that when trying to find the 

distance to access points, the device wouldn’t sometimes show one correct value for 

distance, but upon changing location, this would have an incorrect value once again. I 

once again tried to manipulate the �̅ value in order to achieve more accurate results, but 

this only caused the data to shift by a constant value. After a significant amount of 

experimentation, I finally remembered that the � value can be adjusted to account for 

signal degradation. Increasing this to 3 greatly improved the accuracy of the distance 

conversion. See Figure 4.2 for the comparison. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 

 

3.2.5 ESTIMATING DEVICE LOCATION THEORY 

Now that I was able to obtain the distance from the device to a number of nearby access 

points with some accuracy, I needed to then use this data to estimate the location of the 

device. Initially, this seemed like a reasonably simple task. I intended to treat each 

access point as a circle, with the centre (ݔଵ,ݕଵ) being the location of the access point and 

the radius � being the estimated distance. This can be represented by the formula 

ݔ) − ଵ)ଶݔ + ݕ) − ଵ)ଶݕ = �ଶ 

By using this equation for each of the circles and solving the equations simultaneously, 

it should be possible to obtain a shared point of intersection ܽ between all 3 circles (see 

Figure 5.1). However, this requires all of the radii to be very accurate and offers no 

margin for error. Should one of the radii (distance from AP) be incorrect by any margin, 

the three circles would no longer intersect at a common point [4] (see Figure 5.2) 

 



  

 
 

 

 

Figure 5.1 

 

 

 
 

 

Figure 5.2 

 

 

This creates a significant problem, as I know that despite filtering, the data still contains 

some noise and variation. Rather than try to somehow remove all error from the data, I 

decided to accept that the data would never be perfectly accurate, and consider this in 

my approach to estimating the location. I began looking at all of the possible 

arrangements of 3 circles. There are 14 possible arrangements, assuming that they do 

not all meet at a point (as was the case in Figure 5.1).  These 14 arrangements are 

shown in Appendix 3 for reference. I initially set about writing an algorithm to find 

points of intersection and to find overlaps between circles, but given the variety of ways 

these can be arranged this proved a fruitless endeavour. I eventually considered the 

problem from a geometric point of view rather than a mathematical one. I focussed on 

the diagram shown in Figure 6. This shows three circles overlapping rather than 

touching, with the intersection of all circles bounded by points of intersection ܽ, ܾ, ܿ. 

This intersection forms a complex shape with curved edges; however, this can be 

simplified into a triangle ܾܽܿ. Given all shapes overlap here, we know that the device 

lies somewhere within it. From this triangle, we can then obtain a centroid point, which 

will serve as the best estimate of user location.  



  

 

Figure 6 – Three access points overlapping with points of intersection at ܽ, ܾ, ܿ,݀, ݁, ݂ 

This centroid isn’t the exact location of the user, we just know that the user lies 

somewhere within the complex shape. In order to determine how accurate this location 

is, we can use the area of the complex shape. This can be complex to obtain, with 

solutions including quadtree approximations and random sampling through Monte 

Carlo simulations. [5] Fortunately, many geometric libraries are able to do this with 

ease. From the area, we can convert this into a circle at the centroid, with radius � = ���.  

This radius is equal to the uncertainty of the location based on the centroid. It is 

important to note that this accuracy does not include errors stemming from the RSSI 

data or distance approximations, it is merely a calculation of the uncertainty introduced 

by assuming the device is in the middle of the intersection. 

This calculation works very well for the exact arrangement of circles shown in Figure 7, 

however there are still 13 other arrangements to contend with. This arrangement is the 

only one where we can state with any reasonable certainty that the user lies within an 

intersection, as all other arrangements would ignore at least one of the circles. Whilst it 

would be possible to calculate a midpoint between two points of intersection should 

only two circles overlap, this doesn’t include the distance from the 3rd access point, 

potentially placing the user in the wrong place. It is for this reason that I decided to only 

estimate the device location using a 3 three circle overlap, and to manipulate all other 

arrangements until they follow this rule. This is done by iteratively increasing the size of 

the radius by 25% until a region is intersection between all three is identified. Whilst 

this decreases accuracy on each iteration, we can assume that the distances given by the 

access point were not accurate in the first place, due to the lack of overlap. By increasing 

the size of the radius by a percentage rather than a constant static value (such as adding 

1m each time), each circle increases in size relative to its original size, retaining the 

ratio between circles. Once the 3 circles overlap, the location can be determined and 

accuracy calculated as above. 



  

3.2.6 IMPLEMENTING DEVICE LOCATION ESTIMATES 

I initially focussed on plotting circles with the calculated distance from AP as the radius. 

Matplotlib has a built-in patches library for drawing shapes, so this was relatively 

simple to do. Initial results proved very positive, with the actual device location residing 

in the overlap area as expected. This is shown below, in figure 7.1. 

 

Figure 7.1 – The actual device location is shown as the blue dot. The rooms are outlined in red, with the 

access points indicated by the small red dots on the walls. 

To implement this location estimate, I used the library ‘shapely’. This library includes 

classes for many geometric shapes, and the spatial relations between them. For each of 

the access points, I created a `Point` object with the coordinates of each one. Shapely 

doesn’t include a circle as a geometric shape, but we can add a buffer of length � to 

account for the radius, and achieve the same thing. For each access point, I added the 

buffer of the measured distance from AP. This creates 3 circles on a 2D plane, which we 

can now test to see if they overlap. For testing purposes, matplotlib was used to plot 

each circle as a PolygonPatch. The output of this shown below in Figure 7.2. 

 

Figure 7 

In order to test whether these three circles overlap, we simply calculate the intersection 

between two of the circles (e.g. Circle_1 and Circle_2) and then check if this new region 

intersects with the third circle. This is shown below: 



  

all_intersect = Circle_1.intersection(Circle_2).intersects(Circle_3) 

If this is true, we can then simply calculate the region of intersection between all circles 

by using the intersection method on each one, and then simply output the centroid 

using the centroid property. This is shown below: 

intersection = Circle_1.intersection(Circle_2).intersection(Circle_3) 

centroid = intersection.centroid.coords 

Should the three circles not intersect, we simply iterate through each one increasing the 

radius by 25% until the three-intersection test has been met. This creates a rippling 

pattern spreading out from each access point, and due to the relatively small number of 

iterations required, is almost instantaneous. The step of 25% could be reduced to 

provide better accuracy, as this would result in a smaller intersection area should all 3 

be very far apart. However, if all three were far apart to start with, the accuracy would 

be low as all 3 should always overlap in theory. This is shown in Figure 8. 

 

Figure 8.1 

The accuracy based on the area of intersection can be trivially obtained using 

intersection.area and the equation found in section 3.2.6.   

Using the same data as the example in Figure 7.1, I applied the algorithm to it to try and 

find the location. The output is shown in Figure 8.2, with a final estimated location of 

(2.66,1.45). This is only 0.85m away from the actual location at (2,2) which is a very 

good estimate 

 



  

 

Figure 8.2 – Estimated device location shown as blue dot 

3.2.7 MOVING FROM TESTBED TO SERVER 

In the previous sections I was able to obtain a location for a device using scan data 

collected into a csv file, which was then imported into a jupyter notebook and analysed. 

Whilst this works very well for testing purposes, this wouldn’t fulfil the project aims by 

itself. For the location estimation to be automatic, I needed to write a simple server to 

automatically perform part of the code on demand. For this, I used Flask due to its 

simplicity and low overheads. I also changed the access point data from a dictionary 

with many sub-keys to a class system. This produced significantly cleaner code and 

allows me to abstract away from the complexities of certain parts of the code.  

I created 3 simple endpoints, as shown in the table below: 

Endpoint Purpose Input / Output 

/scan-data [POST] To input RSSI data into the 

server, collected from access 

points. 

Input: JSON array of 

dictionaries with keys 

‘timestamp’, ‘bssid’ and 

‘level’ 

/get-location [GET] To obtain a location based on 

the data the server has 

received 

Output: JSON dictionary 

with keys ‘location’ and 

‘accuracy’. ‘location’ is 

a tuple of the form (x, 

y). 

/data-collection-mode 

[GET] [POST] 

To control whether the device 

collects data or not. This is 

specific to using a headless 

raspberry pi, as I’m unable 

to control it unless via SSH, 

but with other devices the 

data collection mode could be 

controlled by the user. 

Input & Output: Boolean 

value on whether to 

collect data or not. 

  

 On the device, a python script checks the data collection mode on the server every two 

seconds, before sleeping and uploading the data collected in that period if there is any. If 

the mode has only just been switched on, the script spawns a tshark process in the 

background dumping data to a CSV file. The script then iterates through the rows of this 

file every two seconds, checking for any that it hasn’t read yet. If it finds any, it then 

processes this data, ensures it’s complete and then adds it to a list of data to be sent to 

the server.  



  

Should the data collection mode be switched off, the script would then terminate the 

process and check every 2 seconds until it’s switched back on. A flowchart for this script 

is shown in Appendix 4.  

3.2.8 DISPLAYING DATA ON MAP 

For displaying the location, I chose to use a simple map made of rectangles drawn on a 

canvas. A canvas can be a very powerful element, so more complex maps could also be 

implemented if necessary. A simple JavaScript interface can be used to draw on the 

canvas, which allows us to simply iterate through the coordinates of each room, and 

draw out the rectangles. One negative part of the canvas JavaScript module is the lack of 

scaling features. The only available unit is pixels, so this means that every position and 

distance used previously in m has to be scaled up to fill the screen. This is easy to solve, 

but tedious to implement. 

Once the rooms were drawn, I needed to obtain the current location of the user. The 

flask server implemented previously exposes a very simple API, with a get location 

endpoint. I used an XHR request to fetch this data in the background, and then drew this 

on the canvas. This produces a crude, but workable map with a clear reference to the 

user’s current location. Given more time this could be made more user-friendly and 

complex, but for a simple proof of concept it works well.  See Figure 9 below for an 

example of two rooms with the user towards the centre of the northmost room. 

 

 

Figure 9 

 



  

4 EVALUATION & REFLECTION ON LEARNING 
Whilst the project did give some interesting data, and provided a reasonably accurate 

location depending on rooms, I don’t believe it was very successful. I set out a rigid 

project plan at the start, which whilst helpful in the early stages, quickly became 

redundant due to certain stages taking significantly longer than others. This wasn’t 

helped by the project complexity increasing by changing to a Raspberry Pi when code 

had already been written for a mobile phone, and also the added problem of using 

various old routers to navigate from. My original plan was based around only needing to 

account for a single mobile phone, which led to an unfortunate increase in workload 

when the Coronavirus pandemic forced this project to change. The majority of the 

project time was spent trying to obtain better data, trying to account for routers with 

varying power levels and some not really working at all. This all led to a last-minute 

push to produce some sort of prototype that would meet the project aims, but in many 

ways, it falls short of this.  

Despite the project not meeting my original expectations, it did provide many learning 

experiences along the way. In particular, working with circle geometry proved 

surprisingly difficult, and many days were spent trying to devise some sort of algorithm 

to detect which of the 14 arrangements they were in. This project also provided a great 

introduction to noise filtering techniques, and specifically the libraries that can be used 

to work with statistics / filtering.   

5 FUTURE WORK 
Whilst this technique has been widely explored and improved upon, some future 

research may still remain. There is potential for machine learning to be used with large 

datasets, for the purposes of RSSI-based trilateration. A key purpose here would be 

noise reduction, where given a large enough training dataset it may be possible to 

largely remove noise from the data. This could be used in combination with Bluetooth 

Low Energy proximity to calculate how close several devices are to each other. If several 

people were standing next to each other in the corridor, both sets of data could be used 

to calculate a location. This would be particularly interesting given that Bluetooth 5.1 

has a new feature called ‘Radio Direction Finding’, which allows a device to not only 

work out the proximity to the beacon / broadcaster, but also find out the direction in 

which the signal has come from. This could allow for a ‘mesh’ of Bluetooth devices to be 

created, where each device uses WIFI-based RSSI to find a rough location, and then uses 

proximity and direction of BLE signals to narrow the location down even further.  

It would also be interesting to see whether external data such as CCTV could be used to 

identify the location of the device in combination with RSSI. If a fixed-position camera 

could identify the location of several devices / people, then this could be used in 

conjunction with RSSI to build a ‘heatmap’ of an area, showing signal strength across a 

room or corridor. Given enough people walking through an area with WIFI-enabled 

devices over a long period of time, it should be possible to build some sort of ML system 

to adjust the RSSI accordingly. 



  

6 CONCLUSION 
Whilst the project wasn’t overly successful as a whole, it did provide some interesting 

learning opportunities along the way. Given enough data the system did estimate a 

reasonable location, and the algorithm using circle intersections seems to work very 

well. Given the original plan, this project may have worked out slightly more successful, 

however this was unfortunately not the case. 

This project shows that whilst RSSI data can provide a reasonable estimation of location 

given enough data and good conditions, it isn’t reliable enough to be used as an effective 

method of navigation. A large amount of the project also relies on the device being static 

in open space (such as placed on a table), and does not account for a person blocking the 

device by standing in front of it. Many devices used for navigation would be held whilst 

navigating, which is likely to impact the rough estimate of location significantly.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

6.1 APPENDICIES 

 

Appendix 1 – Contents of a beacon frame 

 

Appendix 2 – Tshark command & output sample 

tshark -i wlan0 -f "type mgt subtype beacon" -T fields -e frame.time_epoch -e 

wlan.bssid -e radiotap.dbm_antsignal -E header=n -E separator=, -E quote=d > 

test_file.csv 

 



  

Appendix 3 - Figure 6 – The 14 possible arrangements of 3 circles. [6]  

This image illustrates all 14 arrangements, and is the only well-respected and 

documented source on this topic easily available. 

 

 

 

 



  

Appendix 4 
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