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Abstract  

This project will aim to investigate the communication between Intelligent Electronic 

Devices (IEDs) alongside the security risks associated with them and finally the 

infrastructure in which they are used. Through research and testing, a prototype will be 

created to model the proposed encryption solutions for various communication types found 

in a smart grid system. The challenge of this project is to find an elegant solution that will 

provide security without hindering the operation of the smart grid.  
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Chapter 1 Introduction  

The power grid is a critical infrastructure and therefore, it would provide a tempting target 

for sophisticated, intelligent and well-equipped attackers. As smart grids slowly become 

more widely used, it is important to understand the protocols that are used for 

communication, their constraints and vulnerabilities. There is currently concern over the 

vulnerability of critical infrastructures and what resulting damage an attack on such 

infrastructures would cause.  

 

This is a relatively new problem as legacy utility communication has previously been 

immune to security threats, most of the communication occurred through private networks 

and its communication protocols were secured through a security via obscurity principle. 

However, due to the standardisation of protocols this principle is no longer an effective 

security measure.  

 

Communication ďetǁeeŶ IED’s is haŶdled ďǇ IEC ϲϭ8ϱϬ. OŶe of the ŵaiŶ oďjeĐtiǀes of the 

IEC 61850 communications standard is to provide a set of standard model structures 

regarding data and a set of rules defining how this data should be exchanged. IEDs from 

different manufacturers that comply with these model definitions can then understand, 

communicate and interact with one another [2].  

 

Chapter 2 Background  

There are three main types of communication this literature will investigate are used 

currently, they are Manufacturing Message Specification (MMS), Generic Object-Oriented 

Substation Events (GOOSE) and Sampled Measured Values (SMV) [3]. The MMS is an ISO 

9506 standard that is used to transfer real-time process data and control information 

between the network devices, such as IED and the HMI (Human Machine Interface) [3] – it 

follows a client-server model. GOOSE is an event driven message therefore it follows a 

publisher-subscriber model for asynchronous multicast communication. SMV also follows a 

publisher-subscriber model and is used for asynchronous multicast communication with 
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voltage and current values [3]. The multicast messages use MAC addresses for the 

communication via bridge routing and does not used IP-based routing. 

 

2.1 Publisher - Subscriber Model  

The Publisher-Subscriber Model is a messaging pattern where the publishers (senders) 

publish messages into the communication infrastructure and the subscribers (receivers) 

express interest in a particular message category. This is very different from the 

synchronous request-response model and is a much more scalable solution due to no 

limitations surrounding centralized data. Within the IEC 61850 framework, GOOSE messages 

and messages transmitting sampled values (SV) are the main types of messages that require 

indirect asynchronous delivery. The Publisher-Subscriber Model can take advantage of 

Multicast messaging, this allows the sending of a single copy which will be replicated and 

passed on throughout routers and forwarded to subscribers that have previously signalled 

interest.  The communication infrastructure is responsible for delivery of the messages and 

maintains the subscription information. 

 

The Publisher Subscriber architecture is vulnerable to man-in-the-middle (MITM), replay 

and impersonation attacks. The system also suffers from issues including publisher (sender) 

authentication, subscriber (receivers) authorization and data integrity [3].  

 

2.2 MMS 

The MMS (Manufacturing Message Specification) is an ISO 9506 standard that is used to 

transfer real-time process data and control information between the network devices, such 

as an IED and the HMI application running on a PC. It follows a more traditional Client-

Server model for communication. MMS has the slowest time requirements compared to the 

publisher/subscriber methods discussed below with a wider range of data. Therefore, it has 

the most flexibility when using an encryption algorithm as it does not need to be as light 

weight.  

 

2.3 SMV 

IEC 61850-9-2 defines the Sampled Measured Values traffic which carries voltage and digital 

current samples. SV protocol uses OSI model Layer 2 for communication identified by MAC 
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address and the identifier in the message body [9]. SMV also follows a Publisher-Subscriber 

model utilising multicast messaging.  

2.4 GOOSE 

Generic Object-Oriented Substation Event (GOOSE) supports the exchange of a wide range 

of possible common data organized by a DATA-SET. GOOSE messages are used to replace 

the hard-wired control signal exchange between IEDs for interlocking, protection purposes, 

sensitive missions, time criticality and highly reliability. GOOSE messages are exchanged at 

the datalink layer using the multicast functionality of ethernet cables.  When triggered by a 

preconfigured event, an IED sends the GOOSE message containing values for the variables 

that need to be communicated, such as carry monitoring and control functions, tripping and 

interlocking information. Since these are multicast messages, there is no acknowledgement 

mechanism. A short GOOSE message that is handling just one digital status information in its 

dataset has an approximate size of 124 bytes. The actual size depends on various configured 

parameters in the GOOSE control block such as GoID, name of dataset and the reference 

object of the GOOSE control block. Typical size of GOOSE messages are between 92 bytes to 

250 bytes [9].  

 

2.5 Multicast Messaging  

Both GOOSE and SMV utilise multicast messaging. Multicast address filters limit the 

distribution of the multicast address frames (GOOSE and SMV) to the subscriber ports that 

require them, rather than to every port [9]. This reduces total traffic on the network and is 

achieved by the management layer. Further address grouping can be done by splitting 

groups of subscribers that all receive information from the same sources into MAC groups 

and assign them a unique multicast address assigned to the flows of the MAC group.  

 

 

 

Chapter 3 Specification and Design  

3.1 Overview  

This section will cover the design and specification used to create a useful comparative tool 

for different encryption methods. This section will show how the user should interact with 

the tool and what is essential to include within the functionality.  
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3.2 Project Planning  

 

This segment will provide a summary of the tasks due for completion in order to finish this 

project on time.  

Before the main project can begin, a detailed list of specifications is needed for the 

requirements of the three message types I have selected; GOOSE, MMS and SMV. This will 

determine the selection of encryption algorithms and will be used to design the testing 

networks.   

The project has two main parts, both are required for quantitative results to be analysed. 

Part 1 is the successful implementation of the encryption algorithms and a GUI tool to ease 

their testing. The second part involves gathering the results to perform an analysis and 

comparison. Due to the importance of the algorithms, I have allocated them a large 

proportion of time within my Gantt chart (Appendix A) and each encryption algorithm was 

allotted a week to be tested and incorporated.  

 

3.3 Methodologies Used  

I will discuss the various approaches to solving the task and which specific methodologies I 

incorporated.   

 

3.3.1 Prototype Approach  

I concluded the optimum approach for this was the iterative approach, this requires quick 

design and building followed by a user evaluation / prototype revision loop. This model of 

approach would allow me to develop multiple aspects of the project in tandem and refine 

this once important parts of the tool were emplaced. This approach is also required as, 

depending on the results from the first attempt, the scope of the project may change if the 

encryption methods are not meeting the message type requirements. The first prototype 

should show that they can correctly encrypt and decrypt a message sent to it with no use of 

a GUI. The next stage should begin to look at the times around different stages and increase 

the number of tests done for an average set of results. The third step would be a basic GUI 

to allow the display of results, finally, a revision of the GUI to a finished level would be 

completed.  
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3.4 Specification  

 

Within this section I will be analysing the specification for message types I will be supporting 

and my design approach to the problem.  

 

3.4.1 Message Specification  

When analysing the message types being used, GOOSE, SMV and MMS, it is important to 

distinguish them based on their different design criteria and topologies. This means that one 

design approach may not cover all the criteria of all message types in all scenarios. 

 

ID Message Type Requirement 

Name 

Criteria Comment 

R1 GOOSE, SMV Time Constraint The total time from 

Publisher Encryption to the 

message being decrypted 

by the subscriber should 

take no longer than 3ms 

This is the defining 

requirement for the 

algorithm as the time 

complexity will dictate 

what solutions should 

discussed 

R2 GOOSE, SMV Model The system should support 

multicast communication 

for Publisher-Subscriber 

model 

This is to emulate the 

real-world 

communication the 

Smart Grids use to 

communicate  

R3 MMS Time Constraint Time is less critical with 

total time ranging from 

100-500 depending if tis a 

low/medium or command 

message  

These are not very 

quick time conditions so 

a wide range of 

algorithms should be 

applicable 

R3 MMS Model Follows a client-server 

model  

This is a more standard 

model to implement 

 

Here we can see that the main considerations for each message type are the time 

requirements and the model that the message type supports, this shows that the problem is 

split into the GOOSE/SMV side and the MMS side as each of have different consideratiosn. 
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3.4.2 Prototype and Algorithm Specifications  

The messages take part on Intelligent Electronic Devices (IEDs) and such, to make the model 

practical other design considerations should be considered when examining the system for 

any encryption algorithm introduced. The non-functional requirements for the prototype 

and algorithm are detailed below.  

 

ID Requirement Name Priority Criteria Comment 

NF1 The algorithms must 

be light weight 

High In order to be 

deployed to IEDs 

the algorithms 

must be able to 

run in a limited 

environment 

This directly ties into how quickly 

the algorithm runs with most 

fast eŶĐrǇptioŶ’s ŵethods ďased 

around lightweight methods 

NF2 Time constraints High The specification 

for message types 

must be met 

The constraints for each message 

type as mentioned previously 

must be met by any 

implementation  

NF3 Message Integrity High The message sent 

on any model 

must be able to 

be decoded and 

read by the 

recipient  

All encryption must be able to be 

decrypted by the intended 

recipient  

NF4 Attack prevention High All encryption 

algorithms used 

must not be 

susceptible to any 

known attack  

The implementation must be 

cryptographically secure from 

known attacks such as Man-in-

the-middle or replay attacks 

F1 User Comparison  High It should be easy 

for the user to 

compare 

different 

algorithms with 

different message 

types. 

Using the tool, it should be easy 

to look at results of  
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3.5 System Design  

3.5.1 System Model  

I will be using a system model and class diagram to show how the tool will interact. It will 

show the outline of how the system should work as well as presenting an idea of 

architecture.  

 

From this we can see the basic flow of the network for the system model alongside the data 

exchange. The sender and receiver are treated as two nodes in a network with 

communication between the nodes handled by the network class to simulate 

communication over a network. We can consider the network to be unsecure so all 

communication between the nodes should be encrypted. For the encryption, the nodes will 

have access to the encryption methods as they should handle the entire process with no 

help other than transmission of the ciphertext and keys, which the network would handle. 

 

I have included in appendix D an in-depth class diagram exhibiting the class relationships.  

 

The SpeedTester is the class name of the GUI which uses action listener and is an extension 

of the awt frame class. It contains all the UI elements and handlers and is used to setup the 

network when the test is started via the start button. 
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 The Network class stores all the sent network parameters and the timing data generated 

from each test. It is also responsible for the instantiation of the Sender and Receiver class 

which act as our IED nodes in the network architecture. It has a unique setup and runtime 

for each encryption type.  

 

The Sender class, also doubling as our Publisher in the relevant network architecture, 

contains methods to instantiate each encryption class and a method for using the 

encryption class to convert a byte[] input into an encrypted form. For RSA it requires the 

public key to be sent to it for encryption. It also has methods to retrieve the secret key and 

if needed the initialise vector IV.  

 

The receiver class uses methods to instantiate each encryption type but uses different 

constructors, as the secret key should already be known. Therefore, the cipher should be 

made using this to achieve original plaintext. For RSA the receiver class contains the key 

generation for the private-public key pair. 

 

Each encryption method has its own class that includes two constructors, one for a new 

cipher and one to generate an existing cipher based on the secret key and/or initial vector. 

It also includes the encoding and decoding methods.  
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3.5.2 Detailed Design  

 

 

The above sequence diagram shows the full user process from selecting the input 

parameters to the returning of the timing results. It details the user and the main classes, 

not including the encryption classes that the publisher and subscriber employ for the 

encryption/decryption process. It shows how the network is being used to instantiate the 

publisher and subscriber nodes and how it acts as the main data stream. This also highlights 

communication flow around the classes. For the timing results, the time will start from the 

message generation and stop when the encrypted message has been decrypted by the 

subscriber.  

 

Chapter 4 Solution and Implementation  

4.1 Overview  

Within this section I will be discussing the implementation and approach of the different 

algorithms, languages and language specific modules I will be using in my solution. I will 

explain how the algorithms work as the majority of the algorithms are computed through 

the java crypto modules. A clear understanding of the encryption methods is still required to 

justify their use and limitations.  

 

I will not be aiming to directly replicate an exact model of a smart grid setup with all the 

protocols included, but rather I will be developing a took to test encryption algorithms so 

that they can be evaluated for a smart grid application.  
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4.2 Nodes  

For the publisher subscribers, you can construct two separate classes, sender and receiver, 

as they don’t haǀe to fill ďoth roles oŶ the Ŷetǁork. Hoǁeǀer, this means there is limited 

functionality to handle peer-peer ĐoŵŵuŶiĐatioŶ ďetǁeeŶ the ͞IED“͟ oŶ this test network. 

When used for modelling a Publisher Subscriber model the sender class acts as the 

publisher and is used to generate the secret key. The main reason for having separate 

classes for nodes and not using a superclass is that in the Publisher Subscriber, the publisher 

plays a very different role to the subscriber nodes and should not be treated as a similar 

type. The senders need to able to generate Keys for AES and ChaCHa20 and the receiver 

would need the ability to generate the RSA keys. Both nodes would need to be able to 

perform, encrypt or decrypt operations given the secret key and any other algorithm 

specific required input. 

 

4.3 Network Class 

For testing the algorithms, a testing class needed to be developed to simulate a test 

network that the GUI could run to get the results. This required a sender object and a 

receiver object that could either work as a simple client-server model for simple peer-peer 

communication or, work as a publisher-subscriber model for the GOOSE and SMV 

communication types. The network would then act as the data stream maintaining 

subscriber lists in the case of the publisher subscriber topology and forward messages to the 

designated locations. It would also handle the setup for the algorithms such as the secure 

transmission of the secret keys for the symmetric communication. 

 

4.4 Protecting Communicated Information – Confidentiality 

Encryption algorithms can be split into two kinds, asymmetric and symmetric ciphers, 

considering the time consideration I will be mostly looking at symmetric ciphers due to their 

quicker computation times. However, I will include an RSA example in the work due to how 

secure it is and to use this as a baseline comparison for other algorithms. All the encryption 

algorithms will need to take a byte input of variable size for encryption and decryption. 
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4.4.1 Asymmetric Communication RSA 

For complete security RSA is commonly used for secure communication. It is an asymmetric 

encryption that has two distinct keys, a public key for encryption and a private key which is 

used to decrypt. The security is based on the difficulty in factorising the product of two large 

prime numbers. The algorithm can be split into for major sections: key generation, key 

sharing, encryption, and decryption. 

 

Key generation for RSA first revolves around selecting two distinct prime numbers p,q which 

should be chosen at random and have similar, but different lengths, to increase the 

difficulty of factorising. The next step is computing n = pq, n is the modulus for both the 

public and private keys, its length is the key length. N is released as part of the public key. 

For the private key it is the lcm of (p-1)(q-1) which is calculated as following. Code Extract 

from RSA class. 

 
 

With phi being:  

 

 
 

For encryption and decryption I have used javas inbuilt modPow function using the 

respective public or private keys, RSA has the added benefit of being able to transmit the 

public key and modulus as part of the public key as plain text without compromising the 

security of the communication. Encryption example code is below.  

 

 

 

4.4.2 Block Cipher AES 

One algorithm I focused on in particular is the widely used block cipher AES (Advanced 

Encryption Standard) which replaced the Data encryption Standard (DES) used by the 

American government. It uses a fixed block size of 128 bits and a key size of 128,192 or 256 

bits. AES is a great block cipher to use in the comparison due to its efficient implementation 

in both software and hardware. The key size used in AES dictates the number of rounds that 

the plaintext goes through. Step 1 is a key expansion that derives a round key from the 
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cipher key. AES requires a separate 128-bit round key block for each round plus a final one. 

Next is an initial round key addition which combines (using bitwise XOR) each byte of the 

states with a byte from the round key. For the next rounds (depending on key size), run as 

follows.  

1. a non-linear substitution step where each byte is replaced with another according to 

a lookup table. 

2.  a transposition step where the last three rows of the stat are shifted cyclically a 

certain number of steps  

3. a linear mixing operation which operates on the columns of the state, combining the 

four bytes in each column.  

4. adding the round key where the subkey is combined with the state 

 

Then there is a final round which involves the same steps as the previous rounds but with 

Step 3, the linear mixing operation, removed.  

In terms of security, despite a lot of research into AES there are no practical attacks on AES 

with some side channel attacks on the implementation of AES which are easy to avoid.  

 

4.4.3 Stream Cipher ChaCha20 

Salsa20 and ChaCha20 are a close family of stream ciphers with ChaCha variant aiming to 

increase the diffusion per round and reduce the number of rounds needed for security. The 

Salsa20 encryption function is a long chain of three operations on 32-bit words 

• a 32-bit addition, producing the sum a+b mod 2^32 of two 32-bit words a, b. 

• a 32-bit exclusive-or, producing the xor a, b of two 32-bit words a, b; and  

• constant-distance 32-bit rotation, producing the rotation a <<< b of a 32-bit word a 

by b bits to the left where b is a constant. 

 

Salsa20 expands a 256-bit key and a 64-bit nonce into a 2^70-byte stream. Encryption is 

aĐhieǀed ďǇ ǆor’iŶg the ď-byte plaintext with the first b bytes of the stream and discarding 

the rest. For decryption it follows the same process. The stream is generated in 64-byte 

(512-bit) blocks. Each block is an independent hash of the key, the nonce and a 64-bit block 
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number; there is no chaining from one block to the next. This means the output block can 

therefore be accessed randomly and any number of blocks can be computed in parallel.  

 

 Chacha follows the same base design principles as Salsa20 but has an increased diffusion 

per round allowing a smaller minimum number of secure rounds for ChaCHa. The extra 

diffusion does not come at the expense of extra operations as ChaCha round has 16 

additions, 16 xors and 16 constant distance rotations of 32-bit words, just like a Slasa20 

round. The main speed and diffusion differences comes from the quarter round where each 

word is updated twice and the word matrix, where it is built with attacker controlled inputs 

words on the bottom. ChaCha sweeps the matrix through rows in the same order every 

round.  

 

4.5 Java Modules  

I will be using Java as the implementation language for its wide range of importable 

modules such as the java crypto packages for cryptographic operations for AES and ChaCha. 

Java crypto specific modules that are most useful are the Cipher and key generator class. 

For the RSA algorithm, which was used more as a comparison tool to show the difference to 

these quicker encryption methods, the java security module was used for the secure 

random feature.  

 

The Javax.crypto.cipher class provides the functionality of a cryptographic cipher. In order to 

create a Cipher object, the class calls the Cipher's getInstance() method, and passes the 

name of the requested transformation to it. A transformation is a string that describes the 

operation (or set of operations) to be performed. It includes the name of a cryptographic 

algorithm (e.g., AES), and may be followed by a feedback mode and padding scheme. In my 

case it includes the mode type of AES and a padding scheme for extra security.  

 

 

 

The cipher is then initialised with the mode (either encrypt or decrypt), the secret key and 

an initial vector.  
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The final function of the cipher class used is the final encryption of the plain text using the 

doFinal() function which will encrypt or decrypt a byte form input so if you are sending a 

string it must be converted into a bytes first. 

 

 

 

The other crypto modules used are the Key generator class which is a re-usable key 

generation object. It can only be used for symmetric secret key generation. There are two 

ways to generate a key; in an algorithm-independent manner and in an algorithm-specific 

manner. The only difference between the two is the initialization of the object.  

 

 

4.6 GUI 

For the GUI I have used the java swing and awt modules which are common graphical 

interfaces. I will use the combo boxes to select pre-selected options for which to test the 

encryption methods. There should be a combo box for Algorithm, Input size and network 

topology which will add a latency time between the encryption and decryption to simulate 

travel time on a network. There should also be an output area to collect readings using the 

GUI. 
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This is what the GUI will look like when it is ran, it 

displays the choices available to you on top and 

indicates where the readings will be displayed on the 

bottom.  

 

 

 

 

 

 

 

 

This is what the drop downs look like for selecting a variety 

of choices of the tool. When all the choices have been 

selected, the users should press the button and an action 

listener will send the choices into the network start function 

which will setup the test network to run on the indicated 

parameters. After testing, the main result should be 

returned this is the average time. However there are other 

results which can be displayed to the command line that 

could be displayed in the tool, should the user want 

advanced reading such as setup time or a break-down of the total time.  
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This is what a run simulation should look like with the output 

displayed at the bottom with the units. All units taken are in 

milliseconds as that is what the specification units of a smart 

grid are given in. This example shows ChaCha20, 20 rounds, 

being used with an input size of 500 bytes using a WLAN 

which gives a network latency of 2 ms.  

 

We can see an example of an extra console output, of the 

average time taken for key generation which can be an 

important consideration for results analysis.  

 

 

 

 

 

 

 

Chapter 5 Results and Evaluation  

5.1 Overview  

Within this segment I will be discussing the results I have gathered from the testing tool and 

evaluate the potential usefulness of these results with regards to the implementation into a 

smart grid infrastructure. I have tested all three 

 algorithms over various message sizes to ensure a fair result was reached. When discussing 

the results, I will be grouping them suitably in order to draw comparison and attention to 

specific points; I will not just be discussing the encryption and decryption times.  

 

5.2 Cycles per Byte 

To gain an improved understanding of the timing, we can use the data to work out other 

aspeĐts of the perforŵaŶĐe of the algorithŵ’s softǁare iŵplementation. Due to the wide 
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variety of variables that can affect the time, it is not as reliable as an evidence source. We 

can use readings to focus on the cycles per byte performance of the algorithm.  

 

 

The bytes per second is very easy to calculate as it is the size of the packet being sent in this 

case 100, 200, 500 or 100-bytes and we have recorded the time taken in each of these 

algorithms. We can also split this into time taken to encrypt and time taken to decrypt to 

work out a cycles per byte for each specific process. For the ease of simplicity, we are using 

symmetric algorithms, I took half of the total time to calculate the cycles per byte for either 

encrypting or decrypting. The cycles per byte is machine dependant and can be widely 

affected. Some processors also are optimised to perform certain algorithms at a quicker 

pace. The tool am I using is running on a personal machine with a CPU speed of 3.8 GHz, 

using the process manager in task manager during the algorithm run time I can see what 

percentage of the total processor is being used by the application. In most cases, this was a 

single digit percentage. I can use the percent value to view the cycles per second being used 

for the encryption process. 

 

5.3 Encryption Times  

Most results labelled under time taken was the time for the plaintext to be encrypted, sent, 

network delay, received, decrypted. There will be other periods where I will be discussing 

additional times such as, setup times and key generation times and how this affects the 

usefulness of results.  

 

5.3.1 AES 

The AES encryption times using CBC mode with a padding were taken using 100, 200, 500- 

and 1000-byte message sizes and ran on a 1 to 1 connection. The results were taken 10,000 

times with a different key generated for each connection.  
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For the publisher-subscriber message byte ranges of 150-250 bytes, on the local machine I 

was using, they had a total time of 0.0147ms for the 200 bytes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to benchmark studies [10] on a test platform using 2.9e+009Hz using CBC mode 

128 bit key which is the same encryption method, AES reached a CpS of 28. This is 

comparable to the results of 200 byte input that ran at an estimated of 29 cycles per byte 

7.8e+008HZ. Interestingly, as the byte input increases the cycles per bytes drops. This is 

because the gradient of the trendline on the AES time results is very small so despite large 

increase to the byte size it currently suggests little increase to the time taken to perform the 

operation. AES is also widely optimized for in most current hardware, meaning in desktops, 

some AES configuration could still be a faster alternative. 
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5.3.2 RSA 

The RSA used had 2048-bit big integer keys as this is deemed totally secure for now and the 

foreseeable future with some of the smaller keys, though quicker, are still deemed to pose a 

possible security risk. It takes 22ms to generate the private and public key and the public 

key needs to be sent to the sender. In the case of a Publisher-Subscriber model where it is a 

one to many ratio, the publisher would have to store a list of all the public keys of the 

subscribers subscribed in a subscriber list. This takes additional setup time and care and 

would require more validation for new subscribers.  

 

 
Even on a powerful machine the run time of RSA is much slower even with no network 

latency. The smallest packet size of RSA was 100 bytes and took an average time of just 

under 12.9 ms.  

 
As you can see RSA could more appropriately be measured in mega cycles which means it 

requires a lot more cycles per byte. To achieve low speeds would require an extremely fast 

cycle speed using optimization not currently available.  
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5.3.3 ChaCha20 

 

These are the time results for a software implementation of ChaCha20 which belongs to the 

salsa encryption family. ChaCha is the only stream cipher I am testing and would expect it to 

produce the best results out of anything I have used tested so far. It is being tested using 

the exact same parameters as the previous algorithms, running each message size 10,000 

times for an average result. 

 

 

  
 

ChaCha20 had a very low cycles per byte, we also know that ChaCha20 performs better than 

other algorithms on lower performance devices. We can see this by on lower byte inputs 

that cycles per byte does not increase as dramatically as AES or RSA. In comparison to the 
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tables of figures(appendix B) for Salsa20 and ChaCha software speeds taken from [6], it 

shows that cycles per byte in the ranges of 3.95 to 15.03 depending on hardware used. It is 

also reasonable to suggest lower cycles per byte as more optimization comes in for chach20 

as it becomes more widely used.   

 

5.4 Evaluation 

Here I will discuss suggested implementation for SMV, MMS and GOOSE based on the 

findings I have just discussed. 

 

5.4.1 Estimated Timings 

To increase the usability of the findings we can use the cycles per byte, calculated at 5.3 and 

find the CPU speed of processors used in a protection relay to estimate projected times for 

an IED. There are many different processors they could use and a wide variety of different 

architeĐtures. I ǁill ďe usiŶg The “itara™ AM33ϱǆ processor, which is one of the most 

popular processors for industrial HMI applications [12]. This has two different processor 

speeds; I have calculated more timings based on the lower one of 600 MHZ.  

 

 
This shows estimated times in seconds for both AES and ChaCha20 on this processor using 

the cycles per byte at each message size. It is also worth pointing out that ChaCha20 

performs better than AES in mobile and lower power devices due to being more lightweight 

while in hardware on optimized machines AES can outperform ChaCha20.  
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5.4.2 GOOSE and SMV 

The timing requirements of GOOSE and SMV is 3ms and the size is 92-250 and 150 bytes 

respectively, on average, we can see from the graph that both AES and ChaCha20 can be 

used even if the network latency is around 2ms such as a WLAN topology. The network 

latency of a 4G network means that it will not meet timing requirements. The theoretical 

limit of 5G is 1ms although it would not reach this time in a high connectivity area, it could 

be possible to have an IED on a 5G connection. RSA has too low of a latency time, as seen 

from the Estimated Times RSA graph, to be considered for this connection time and due to 

the Publisher-Subscriber architecture would not be a suitable encryption method. In an IED 

scenario, due to ChaCha20 performing better on less powerful machines, it is a better 

choice for a smart grid environment and is less common than AES which had more attention 

and cryptanalysis for potential attacks. Both algorithms would stop man-in-the-middle 

attacks if the secret keys remain secure. 

 

5.4.3 MMS 

MMS has much slower critical times depending on the messages that are using the protocol 

at the time, they range from 500 to 1000 ms and work on a more traditional peer-peer 

architecture. Though the RSA could be used to support this message type it would require 

each sender to have the public keys for every node it would be sending. It would be simpler 

to implement one of the other algorithms proposed, such as ChaCha20, and would be easier 

to setup as all message types would be using the same communication method.  
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Chapter 6 Future Work 

There are still parts of the project that could have additional work carried out. There are 

many different algorithms that could be tested as well as potentially more accurate ways to 

obtain the results. Setting up more complex simulations of different hardware simulations 

would produce better results for a smart grid environment.  

 

For better testing of the encryption methods, a small test network could be built to help 

replicate a real-world smart grid. This would help gather accurate measurements of the 

latency within the network and opens up more areas for testing such as security, 

performance and increased power drain, this would improve the implementation into real 

systems.  

 

A better testing system could also be used to test more real-world scalability while taking 

into account the structure of a Publisher Subscriber system, there is already some existing 

work on topics such as scalable key management.  

 

Chapter 7 Conclusions  

In conclusions, this investigation was aimed at proposing secure solutions to solve security 

issues in a smart grid setup. The solutions were tested for time, performance, and security. 

 

I have also developed a tool to aid in testing the encryption algorithms with a variety of 

different affecting factors such as the network type and size of the message being sent. The 

readings given by the tool where then used to create more accurate depictions of how the 

algorithms were performing, which gave backing to my proposed solutions for message 

encryption. I have considered the architecture of the smart grids systems when conducting 

testing and believe the solutions could be scaled up and employed in larger network setups, 

in my estimated timings section I have also suggested timings that you would expect if you 

employed my software solutions using machines that would be commonly found within the 

smart grid environment, 
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Overall, this project has successful met the criteria of proposing a workable encryption 

solution that would meet the criteria of a smart grid system.  

 

Chapter 8 Reflection  

8.1 Technical Reflection 

During this process I have used a number features I have not used before despite have a 

good understanding of java, the java security and crypto modules were very interesting in 

use and allowed me to get better timing results due to optimisation. I had also never made 

a GUI before and learning how to incorporate the awt modules into the tool was interesting 

to learn. 

 

It was an initial struggle to understand what I wanted to achieve by this project due to the 

complex nature of smart grid systems, there architecture and the IEC regulations that define 

the message types. However, through multiple papers I gained a understanding of how the 

smart grids communicated and the structure of the message types I was trying to encrypt. It 

was an enlightening experience to research algorithms from papers written by their creators 

themselves. 

 

8.2 Management  

I believe that, while I created a good project plan with some realistic time considerations, I 

did not make a good attempt to stick to said timing plan nor did I use any kind of task 

tracking for the implementation of the tool.  

 

While I was aware of my next task and made good progress with the implementation, i hit 

setbacks with algorithm implementation while attempting to reach performance 

requirements. If I had managed some of the tasks better and done more design work before 

starting the coding, I could have created a more efficient structure requiring less time to 

incorporate the tool and gui with the encryption algorithms. This may have left me more 

time to work on other security aspects relating to the problem such as key transmission, 

secure key storage.  
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Abbreviations  

AES – Advanced Encryptions Standard 

RSA - Rivest–Shamir–Adleman 

GOOSE - Generic Object-Oriented Substation Event 

MMS – Manufacturing Message Specification 

SMV - Sampled Measured Values 

ISO – the International Organization for Standardization 

IEC - International Electrotechnical Commission 

CpS – Cycles per second 

CpB – Cycles per Byte  
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Appendix A 

 Gantt Chart 

 

 



32 

 

 

Appendix B 

ChaCha model times from [6] 

 

Appendix C – User Guide 

To run the support code, everything should be compiled and you should run the java file 

Speed Tester, via command line. I.e. java SpeedTester  
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Appendic D 

Class Diagram 
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