
Evaluating the Robustness of a Lattice-Based

Cryptosystem

Author Andrea Paige Pesigan [C1606020]

Final-Year Computer Science Undergraduate at Cardiff University

Project Supervisor Eirini Anthi

IoT and ICS Security Research Associate at Cardiff University

Project Moderator Dr. Frank Langbein

Senior Lecturer in the School of Computer Science and Informatics at Cardiff University

CM3203 One Semester Individual Project

40 credits

15 May 2020

Abstract

As part of the student’s undergraduate degree in computer science, the security and practical-
ity of a lattice-based cryptosystem was assessed. This task was accomplished by choosing an
implementation of NTRUEncrypt to analyse, performing select experiments using classical
computing, and researching current quantum computing attacks. As a result of the project,
it was determined that NTRU will, for the foreseeable future, remain resilient against the
current attack methods analysed of both classical and quantum nature, provided that the
correct parameters are chosen. However, it may only be a matter of time before a quantum
algorithm is designed that effectively solves the mathematical problem the security of NTRU
relies upon.

Acknowledgements

I would like to express immense gratitude to my supervisor, Irene. You are someone I look
up to, and I know you will continue to accomplish whatever you set out to do. Thank you
for your support and friendship.

I would also like to thank my project moderator, Dr. Frank Langbein, for guidance with my
project. Your passion for a variety of topics is an inspiration to others.

A special thank you goes out to Mr. Jędrzej Krauze, whose code was analysed as part of
this thesis.

Lastly, I would like to thank the lecturers, the staff, and my fellow classmates at Cardiff
University for their support throughout my degree and for encouragement in my project.

1

Contents

List of Figures 3

1 Introduction 4

2 Background 6

2.1 NTRU History and Classical Attacks . 6
2.2 The Current Status of Quantum Computing 7

3 Methodology 9

3.1 Choosing an Implementation . 9
3.2 Understanding Lattices and NTRU . 10

3.2.1 Mathematics for NTRU . 11
3.2.2 What makes NTRU secure? . 14
3.2.3 How Key Generation Works . 14
3.2.4 How Encryption Works . 15
3.2.5 How Decryption Works . 16
3.2.6 Other Characteristics of NTRU . 16

3.3 Experiment 1: Sage Attack Experiments . 17
3.4 Experiment 2: Parameter Choices for Decryption Successes 17
3.5 Experiment 3: Brute-Force Estimates . 19
3.6 Exploring Quantum Attacks Against NTRU 19

3.6.1 Demonstration of a Quantum Algorithm 20

4 Results 23

4.1 Experiment 1: Sage Attack Experiments . 23
4.2 Experiment 2: Parameter Choices for Decryption Successes 23
4.3 Experiment 3: Brute-Force Estimates . 25
4.4 Quantum Algorithms . 27

5 Discussion and Evaluation 27

5.1 Classical Attacks . 27
5.2 Quantum Algorithms . 29
5.3 Strengths and Weaknesses of this Approach 30

6 Future Work 31

2

6.1 Classical Attacks . 31
6.2 Quantum Attacks . 31

7 Conclusion 32

8 Reflection 33

9 References 36

A Appendix 40

A.1 d Experiment Results for 100% Decryption Success Rates 40
A.2 d Experiment Results for 50% Decryption Success Rates 42
A.3 d Experiment Results for 0% Decryption Success Rates 43

3

List of Figures

3.1 A basis in Z
2, the set of integers in two dimensions 10

3.2 Another basis in Z
2 . 11

3.3 Not a basis in Z
2 . 11

3.4 The Bernstein-Vazirani quantum circuit for an instance of the Bernstein-
Vazirani problem . 20

3.5 Application of a CNOT gate that changes the control qubit but not the target
qubit . 22

4.1 Evaluating dr . 24
4.2 Evaluating dg . 24
4.3 Evaluating df . 25
4.4 Decryptions per minute for varying values of N 26

4

1 Introduction

Cryptography has had practical worth for millennia, from its use to securely transport
war intelligence in the times of Julius Caesar, to ensuring that payment details are seen
only by the intended recipients in the digital age. This subtopic within mathematics (and,
in recent decades, computer science) has seen many important uses, and it is vital that it
continues to be studied and improved further to prevent malicious entities from uncovering
confidential information.

Every cipher created has a way to recover the key used or recover the plaintext from
the ciphertext and render the encryption futile, with some methods better than others. A
key used in a Caesar cipher is easily found with frequency analysis, whereby an attacker
can match up the most frequently-used letters of the ciphertext to the most frequently-used
letters of the language in plaintext use. DES can be broken with differential cryptanalysis.
With greater computing power, smaller keys for digital ciphers can be brute-forced in less
time, leading to the need for larger keys. Ideally, any given key should be infeasible to brute-
force both in the present and in the far future where the technology to perform brute-forcing
has improved. With a large enough key space, many widely-used ciphers are protected, at
least from computers as we have known them before quantum.

Whereas private-key cryptographic methods have a great reliance on properties such as
key sizes and block modes for their robustness, public-key methods have more of a reliance
on the difficulty of solving certain mathematical problems. The well-known RSA public-key
algorithm relies on the difficulty of factoring the products of large prime numbers. It is far
easier to multiply two large prime numbers to get a product than it is to find those factors
when given just the product, since the only factors of that number, aside from the number
itself and the number 1, are those two large primes. Diffie-Hellman Key Exchange (DHKE)
another public-key system, used primarily for secure exchange of encryption keys between
parties, relies on the discrete logarithm problem. In essence, as long as the key space is
sufficiently large and it is computationally infeasible to solve these mathematical problems
(meaning that no algorithm has been discovered that solves such a problem in a reasonable
amount of time), the cryptosystems are safe.

Enter quantum computing. Though the field is in its infancy, the promises of great
computational power are enticing, and some experts expect quantum computers of sufficient
computing power to model and simulate complex biological systems, to start becoming com-
mercially available next decade [1]. The excitement is appropriate as this is a time where
increases in computational power of classical computers (such as those that use silicon pro-
cessors) are slowing down [2]. Creating algorithms requires a different way of thinking when
it comes to quantum computing, and the hardware to take advantage of quantum mechanics
is far from reliable, let alone standardised. But already there are a handful of algorithms
published that have the potential to change how we must perform tasks such as cryptogra-
phy. An algorithm that has this potential is Shor’s algorithm, which can factor large integers

5

in polynomial time, rendering cryptosystems such as RSA insecure [3].

Private-key cryptosystems such as AES are said to still be secure against quantum com-
puters, even with Grover’s quantum search algorithm that reduces worst-case search time

from O(N) to O(π
√

N
4

), as long as the key space is adequately large [4].

The United States standards agency National Institute of Standards and Technology
(NIST) has recognised the importance of finding a public-key cryptosystem that can resist
quantum computers (known as post-quantum cryptography or PQC); the organisation has
initiated a process [5] to standardise one or more candidate cryptosystems. This process
includes a call for submissions of post-quantum cryptosystems, evaluating the submissions,
and standardising one or more finalists. At the time of writing, NIST is selecting the algo-
rithms that will pass the second round of the PQC standardisation process [6]; the selection
comes from the 26 candidate algorithms that passed the first round in early 2019.

Cryptography was chosen as the subject of this project due to its relevance to computer
security. Post-quantum cryptography in particular was chosen as quantum computing is a
growing and exciting field. There is clearly much to learn yet as the field of quantum com-
puting is very young. Public-key cryptographic methods are being broken by this emerging
technology, and it is in the public interest to explore post-quantum cryptography.

Lattice-based cryptography was chosen as the type of cryptography to be analysed as
it is the most popular candidate for PQC. Lattice-based cryptography has garnered much
interest because, whereas most cryptographic algorithms are only worst-case hard, lattice
problems are proven to be average-case hard [7]. Of the 26 algorithms that made it to the
second round of the NIST PQC standardisation competition, many of them are lattice-based
[6], and IBM is focusing on lattice-based cryptography as its approach to PQC [8].

The aim of this project was to choose an implementation of a lattice-based cryptosystem
and assess its robustness against both classical and quantum devices. Assessing its robustness
involved understanding the cryptosystem and the mathematics behind what makes it secure,
as well as understanding the foundations of quantum computing, its advantages over classical
computing, and what can be done in the present to work with a quantum computer.

This report covers what was done throughout the course of the project to achieve the
goal of assessing the robustness of the cryptosystem chosen (NTRU) by stating results and a
reflection of the shortcomings of these results. The structure of the report is as follows: the
report covers the background of the problem in greater detail in section 2, the methodology
of choosing and analysing the cryptosystem in section 3, what results were found in section
4, and a discussion of the results to determine how robust the cryptosystem is in section
5. Some remarks on future directions of research and an overall summary are included in
sections 6 and 7. In addition, a reflection of academic growth and personal development is
provided in the final section 8.

As a result of the analysis performed, it appears that NTRU is secure against classical
attacks provided the proper parameters are chosen, and will be resistant to quantum attacks

6

with current available quantum algorithms.

2 Background

2.1 NTRU History and Classical Attacks

A viable solution to PQC is lattice-based cryptography. This type of cryptography refers
to schemes based on the mathematical objects known as lattices, part of the abstract algebra
and geometry branches of mathematics. The lattice-based cryptosystem chosen for analysis
for this project was NTRUEncrypt, hereby referred to simply as NTRU. It is worth noting
that in practical usage of the term, NTRU can refer to the encryption scheme, the digital
signature scheme, or the many variations of the two. This portion of the report provides
a historical overview of NTRU and attacks against the cryptosystem. The next section 3,
Methodology, will go into greater depth on the mathematics behind NTRU as well as why
this particular cryptosystem was chosen.

NTRU stands for N-th degree TRUncated polynomial ring. The cryptosystem was first
devised around 1996 by Hoffstein, Pipher, and Silverman [9], though improvements have
since been made to the original version of NTRU in speed and security. The patent for
NTRU expired in 2017 [10], which has led to increased interest in the cryptosystem.

The main mathematical attacks against NTRU include lattice reduction, a chosen ci-
phertext attack, and a meet-in-the-middle attack. Perhaps the most widely-tested attack
is lattice basis reduction (also referred to as lattice reduction or basis reduction), due to
NTRU’s security relying on the shortest vector problem (SVP), which lattice reduction can
assist in solving. As a result of the popularity and effectiveness of this attack, the attack
was chosen for exploration in this project. What exactly lattice reduction entails is better
understood after covering foundational knowledge to understand lattices and NTRU.

One basis reduction method is the Block Korkin-Zolotarev (BKZ) algorithm [11], based
on Gram-Schmidt orthogonalisation of vectors. Another, arguably more popular lattice
basis reduction algorithm based on the number of NTRU studies performed on it, is the
Lenstra-Lenstra-Lovasz (LLL) algorithm, published in 1982 [12]. LLL builds on BKZ and
approximates a reduced basis in polynomial time, meaning it does not solve the SVP exactly.
LLL has been found to be successful against NTRU by LatticeHacks [13] using SageMath,
an open-source mathematics software system often used as an open-source alternative to
software like MATLAB.

Another popular attack on NTRU is the aforementioned meet-in-the-middle attack [14],
which attempts to get the private key from the public key. This attack operates by finding
two parts of the private key such that certain mathematical conditions are satisfied, based
on how keys are generated in NTRU. This attack can reduce the time to brute-force the
private key by a square root. With careful parameter choice, however, this attack becomes
infeasible.

7

The multiple-transmission attack, published by the original creators of NTRU [15] is
another attack. Across many transmissions of the same message, an attacker can determine
information about the coefficients of the private key, and paired with a brute-force attack for
the rest of the coefficients, the cryptosystem can be broken. The authors then stated that
practices such as some scrambling and padding of each message will prevent this attack.

In the chosen ciphertext attack [16], the secret key was determined from a few ciphertext-
plaintext pairs with good probability, by taking advantage of the key generation process. It
was concluded by the same authors that using a special type of padding and/or hashing in
the messages should be used to mitigate this attack.

Hybrid attacks, as in [17], combine attacks such as those above. In this paper, Howgrave-
Graham combined lattice reduction with a meet-in-the-middle attack. It was found that
correct parameter choices will make this attack infeasible, however.

As a result of the above attacks, NTRU as originally published is not secure. Care needs
to be taken to use secure padding methods, and the original parameter suggestions have
since been re-announced. As stated in the NTRUEncrypt submission to the NIST PQC
competition [18], N = 443 provides 128 bits classical security and 84 bits quantum security,
and N = 743 provides 256 bits classical security and 159 bits quantum security, where N is
a significant parameter in NTRU.

To understand the cryptosystem and lattice reduction attacks, the LatticeHacks LLL
attack was reproduced for the implementation of NTRU found. Details and findings will be
given in later sections. Other attacks were not deeply examined due to time constraints.

2.2 The Current Status of Quantum Computing

Quantum computation simply refers to performing computations using hardware that
takes advantage of quantum mechanics. Subatomic particles have physically strange be-
haviour. An example of this peculiarity is demonstrated in the double-slit experiment, which
has been performed in many variations with one recent case being [19]. Physicists wanted
to see whether an electron behaved like a wave (implying electrons are energy) or a particle
(implying electrons are matter). By firing electrons one at a time at a filter with one slit, the
electrons produced a pattern on the other side of the filter that particles would make. After
adding another slit, however, the physicists found that the electrons produced a pattern that
looked like one made by a wave. The same wave-like behaviour occurred even after firing
the electrons one at a time, making it seem as if when passing through the slits, an electron
transforms from a particle to a wave, passes through both slits, and interferes with itself to
create the patterns that resemble what a wave would produce. When a measuring device
was placed at the slits to observe which slit the electrons passed through, the electrons again
produced a pattern that a particle would produce, as if the electrons were aware they were
being watched. This behaviour is still the subject of much research.

The takeaway from the double slit experiment is that in quantum mechanics, measuring
a system changes the state of that system. The state of the electrons before being measured
at the filter is known as superposition. Like Schrodinger’s analogous cat being in the states of

8

both dead and alive before being observed, the physicists conducting the double-slit experi-
ment initially did not know which slit the electron passed through to produce the wave-like
behaviour; it seemed that the electrons passed through both, and observation (measurement)
changed this behaviour.

Quantum computing makes use of superposition. The quantum computing equivalent
of a bit (called a qubit) can be put into superposition, meaning that there is a probability
that the qubit, when measured, will output 1, and a probability that it will output 0. But
once measured, the qubit cannot be put back into the state it was in just before measuring;
this is a one-way system. Another interesting and useful quantum phenomenon is entangle-

ment, whereby one qubit’s behaviour instantaneously influences another’s. When quantum
phenomena such as superposition and entanglement are used, the usefulness and advantages
of quantum computing over classical become more apparent. Two qubits can represent four
(22) numbers simultaneously, three qubits can represent eight (23), and so on.

Quantum computing today is in its infancy. The largest setback to making quantum
computers mainstream is decoherence. That is, it is difficult to make a qubit maintain a
state of superposition, similar to keeping a coin balanced on its side and preventing it from
tipping over to heads or tails. Quantum computers can be constructed from whatever exhibits
quantum behaviour, and one current physical implementation is through superconducting
electronic circuits. Qubits in these computers need to be kept at extremely low temperatures,
near absolute zero. Many forces, including light, sound, and heat, have the potential to
make a qubit lose its state, making it very difficult to perform useful calculations with even
relatively few qubits. There is a trade-off between keeping the qubits in the system resistant
against information loss and making the qubits controllable. When preventing decoherence
in qubits, the design must also ensure that it is easy to manipulate the state of the qubit.
This task is a difficult one.

Google made headlines in the autumn of 2019 for claiming the achievement of quantum
supremacy [20], meaning that the company’s quantum computer (comprised of 53 qubits)
demonstrated solving a problem that a classical computer cannot feasibly solve. A task that
would take 10,000 years on a classical computer took Google’s quantum computer a mere
200 seconds. IBM, Google’s major rival in the field, was quick to express skepticism on this
claim [21], saying that a powerful enough supercomputer could complete that task in 2.5
days. While a computer the size of about 50 qubits such as those announced by Google
and IBM [21] is impressive given the ongoing decoherence problem, humanity is still a long
way from scaling up these devices to be the thousands of qubits needed to break RSA with
Shor’s Algorithm [22], if key lengths are 2048 bits as is recommended by NIST for standard
security [23].

It is currently difficult to say how much more powerful a quantum computer comprised
of thousands of qubits has, practically, over the current classical ones, given how early it
is in the stages of development for such devices. A quantum computer can perform the
same computations a classical computer can, albeit through a different physical medium.
However, without taking proper advantage of quantum phenomena such as entanglement and
superposition, there is little gain. Although in theory 10 entangled qubits in superposition
can store up to 1024 numbers at once, how these qubits are manipulated is what determines

9

how beneficial a quantum computer is over a classical computer. Algorithms such as that
created by Shor provide that gain because they make use of these quantum properties.

A handful of tools already exist to help current software engineers begin developing quan-
tum algorithms, such as IBM Qiskit, Microsoft Q#, and PyQuil [24]. However, these tools
handle quantum computing at the circuit level, and, exactly like classical computing, layers
of abstraction and compilers need to be created for more useful higher-level programming
and for greater ease in creating algorithms.

As part of this project, some Qiskit programming was done to understand the advantages
of quantum algorithms, but no results that were of great use towards breaking NTRU were
produced.

Investigation was carried out to gain a firm foundational understanding of NTRU, quantum
computing, and how quantum computing can render NTRU insecure, but to properly look
at the other methods of attacks and to look further into quantum computing requires time
that is out of the scope of this three- to four-month-long undergraduate project.

3 Methodology

The initial plan of the project was followed rather closely: the first week was spent
searching for and deciding on an implementation of lattice-based cryptosystems to analyse,
the next couple weeks were spent understanding the mathematics and how that cryptosystem
works and what makes it secure, and the weeks after involved attacking the cryptosystem
using classical computing methods. The last few weeks of the project before writing were
dedicated to understanding the foundations of quantum computing with a focus on how it
can be used to break the cryptosystem.

3.1 Choosing an Implementation

An existing implementation of a lattice-based cryptosystem was analysed rather than
creating one as part of the project so that more time could be dedicated to analysis of its
security and practicality. NTRU and GGH were chosen as the cryptosystems to find imple-
mentations of due to their popularity, as much has been written about these cryptosystems.
NTRU is based on the shortest vector problem, while GGH is based on the closest vector
problem.

GitHub, the popular code-sharing platform, was searched for existing implementations.
Two implementations each of NTRU and GGH were downloaded and examined for the
following criteria: documentation provided, flexibility for modification, understandability,
speed, and testing performed. After examination, one candidate program stood out as the
easiest to work with. The NTRU implementation in Python3 released by the GitHub user
jkrauze [25] was noticeably and thoroughly documented, was readable, was structured such
that functions are organised and their purposes are clear, and was mindful of using logging.
The code demonstrated professionalism and care in its creation that the other three programs

10

simply did not have. For these reasons, this implementation was chosen as a focus of this
project.

3.2 Understanding Lattices and NTRU

This subsection covers the mathematics necessary to understand NTRU, and the process
performed as part of this project to obtain this knowledge.

The weeks immediately after choosing an implementation were spent understanding the
mathematics behind lattices and NTRU, as this knowledge is required to recognise how
attacks will work. The first task was to comprehend lattices.

To put this structure in layman’s terms, lattices are a grid of points in a given number of
dimensions, and those points are spaced apart regularly and stretch out in those dimensions
infinitely. More formally, a lattice is a subgroup of the group R

n, and the points in the
lattice are a subspace of the real coordinate space R

n . R refers to the set of real numbers
and n refers to the number of dimensions. What defines which points in all of Rn are part
of the lattice is the basis of the lattice. The basis is a set of vectors such that all linear
combinations of those vectors produce that lattice. That is, all possible combinations of
integer coefficients for the basis vector produce all points in the lattice, and by starting from
any arbitrary point in the lattice, one can reach any other arbitrary point in the lattice with
a combination of those vectors. A lattice has infinitely many bases, with shorter, orthogonal
vectors producing a basis that is more manageable and easier to visualise.

Lattices are perhaps best understood visually. The following images are taken from the
University of Tel Aviv autumn 2004 lectures on lattices by Oded Regev [26].

Figure 3.1: A basis in Z
2, the set of integers in two dimensions

It becomes very difficult for humans to picture lattices beyond three dimensions.

Whereas the security of the public-key cryptosystem RSA is based on the difficulty of
solving the mathematical problem of factoring the product of two large prime numbers, the
security of lattice-based cryptosystems relies on the difficulty of mathematical problems with
lattices. Two of these problems include the shortest vector problem (SVP) and the closest
vector problem (CVP). The shortest vector problem is as such: given a lattice, find the
shortest non-zero vector between two points. The closest vector is similar: given a lattice
and a point p, find the point in the lattice that is closest to p. The SVP and the CVP are

11

Figure 3.2: Another basis in Z
2

Figure 3.3: Not a basis in Z
2

easy for both humans and computers to solve when the lattice is of a dimension of 2, but gets
increasingly difficult as the number of dimensions grows. The security of NTRU is based on
the SVP.

3.2.1 Mathematics for NTRU

As stated in the Background section, NTRU stands for N-th degree TRUncated poly-
nomial ring. The prerequisite mathematical knowledge to understand what this means and
how the cryptosystem works is provided in this section.

Polynomials are mathematical expressions that consist of variables and coefficients. The
operations involved in the expression are addition, subtraction, and multiplication, and the
exponents of the variables are non-negative. The degree of a polynomial with one variable
is the largest power of that polynomial, such as 6 in x2 + 3x6 − 5. In NTRU, the degree of
the polynomials are defined by a value assigned the variable name N , hence “N-th degree”.

The question naturally arises: how exactly are polynomials related to lattices? With
NTRU, the coefficients of the polynomial form a vector in a lattice. The degree of the
polynomial is equivalent to the number of dimensions in a lattice. As the vectors are linearly
independent, each coefficient is equivalent to the magnitude of the vector in that dimension.
The cyclic convolution of the coefficients provide the other basis vectors in that lattice. For

example, with N = 3 the convolution of a vector [3 1 4] in that lattice is





3 1 4
4 3 1
1 4 3



, where the

columns of the matrix provide each vector. Factoring the product of two such polynomials
is similar to basis reduction in a lattice. Thus, while it is helpful to understand lattices and

12

basis reduction, it is more useful to focus on polynomials rather than lattices when learning
about NTRU.

• A ring R is a set of elements with two operations (addition + and multiplication ×)
such that:

– The set is closed under those two operations (performing one of those two opera-
tions on two elements in that set returns another element in that set)

– The set is commutative under addition (for every a and b in R, a + b = b + a);
commutative rings are also commutative over multiplication

– The operations are associative (for every a, b, and c in R, then (a+b)+c = a+(b+c)
and (a× b)× c = a× (b× c))

– There is an identity element e under addition (for every a in R, a+e = e+a = a)

– Every non-zero element has an inverse under addition (for every a in R, a+(−a) =
0)

– The distributive property holds (for every a, b, and c in R, a×(b+c) = a×b+a×c)

• Z, the set of integers, satisfies the conditions of a ring.

• A polynomial ring R[x] refers to all polynomials with coefficients in the ring R. Z[x]
refers to all polynomials with coefficients being integers. The ring is formed from the
set of polynomials, with coefficients in another ring (often a field such as Zp where p
is prime).

• The concept of fields, related to rings, will become relevant later in this section. It is
a good time to note that rings, fields, and groups are all simply sets of elements, each
with unique rules about how to combine elements to produce another element in the
set. Performing the modulo operation on two polynomials is similar to performing the
operations on standalone numbers: a mod b is the remainder after dividing a by b.

• Truncation in this case does not refer to the traditional sense of removing terms in the
polynomial based on the power of the term (e.g. discarding x3 in x3 + 5x2 − 1 to give
5x2 − 1), but rather in performing the modulo operation on the polynomial.

• NTRU operates on objects in the truncated polynomial ring R where

R = Z[x]/(xN − 1)

. xN − 1 indicates that a modulo operation is then performed on the polynomials
with xN − 1. As an example, if N = 3 and a mod(x3 − 1) operation is performed on
(x2 + 1)× (x2 + 1), the answer is 2x2 + x+ 1.

• Truncating using the modulo operation in NTRU is often paired with reducing poly-
nomials in Zp. In Z3, for example, x3 + 3x2 + 3x+ 1 is reduced to x3 + 1.

• A field F is a commutative ring that also satisfies the conditions that:

– There is an identity element under multiplication

13

– Every element has an inverse under multiplication (for every a in F , there is an
element b also in F such that a× b = 1)

Every field is a ring but not every ring is a field.

Finding the inverse of a polynomial in a field is relevant in NTRU especially in generating a
public-private keypair. An example of this process is as described in [27]. The example can
help in appreciating the mathematics of why NTRU is secure.

In this example, we are asked to find the inverse of x2+1 in the polynomial ring Z3[x]/(x
3+

2x+ 1).

We can write f(x) = x3 + 2x+ 1 and g(x) = x2 + 1, and find the inverse of g in the field
F3[x]/(f). In other words, we are looking for h such that gh ≡ 1 mod f or gh + kf ≡ 1 for
some k in F3[x]. We can find h and k using Euclid’s algorithm:

f = xg + (x+ 1)

g = (x+ 2)(x+ 1) + 2 = x2 + 3x+ 4 = x2 + 1

x+ 1 = 2(2x) + 1

By working backwards (all the while recalling to apply mod3 to coefficients):

1 = (x+ 1)− 2(2x)

= (x+ 1)− (2x)(g − (x+ 2)(x+ 1)

= (x+ 1)− (2x)(g) + (2x)(x+ 2)(x+ 1)

= (x+ 1)− (2x)(g) + (2x2 + 4x)(x+ 1)

= (2x2 + x+ 1)(x+ 1)− (2x)(g)

= (2x2 + x+ 1)(f − xg)− (2x)(g)

= (2x2 + x+ 1)(f)− (2x2 + x+ 1)(x)(g)− (2x)(g)

= (2x2 + x+ 1)(f) + (−2x3 − x2 − x)(g) + (−2x)(g)

= (2x2 + x+ 1)(f) + (x3 + 2x2 + 2x)(g) + (x)(g)

= (2x2 + x+ 1)(f) + (x3 + 2x2)(g)

As such, the sought format of gh + kf ≡ 1 has been found. The inverse of g mod f is
h = x3 + 2x2(modf) = 2x2 + x + 2(modf). This result can be verified by confirming

gh(modf) = 1. If we evaluate (x2+1)(x3+2x2)
x3+2x+1

= x5+2x4+x3+2x2

x3+2x+1
we produce x2 + 2x − 1 with

remainder −3x2 + 1, which when performing mod3 for the coefficients, indeed produces 1.
This process is helpful in understanding how key generation operates and why it is difficult
to decrypt messages encrypted using NTRU. More linear algebra was learned to understand
NTRU, but the most significant elements were summarised in this section.

14

3.2.2 What makes NTRU secure?

Another way to ask the above question is: what is the difficult mathematical problem
that NTRU relies on? Related to the difficulty in solving the SVP with lattices in general,
the problem that makes NTRU secure can be summarised as factoring polynomials. It is
more difficult to factor polynomials than integers (like in RSA), especially in a truncated
polynomial ring. What is especially hard in NTRU is that it is difficult to factor such a
polynomial into two polynomials that have small coefficients, which the private key consists
of. The exact process of key generation, encryption, and decryption are described in the
next subsections.

Polynomial factoring is similar to lattice reduction in this case. To summarise lattice
reduction, another basis for the same lattice is found where the vectors found are shorter
and usually more orthogonal. With a reduced basis, the shortest vector problem is easier to
solve, and a message encrypted using the larger basis as a public key may be decrypted with
its reduced form.

The explanations of key generation, encryption, and decryption follow the jkrauze imple-
mentation of NTRU.

3.2.3 How Key Generation Works

1. Three numbers N , p, and q are agreed upon by the entities taking part in encryption.
These values are not secret.

N is a prime number that will determine the degree of the polynomials making up the
keys; generally speaking, the larger N is, the more secure the encryption will be but
the slower key generation, decryption, and encryption will be

p is a small number (usually 3) to which each coefficient is reduced (so coefficients in
the private key will be -1, 0, or 1 if p = 3)

q is a number that’s a power of 2 (usually 128 or 256) to which each coefficient is
reduced (so coefficients in the public key are in the range [- q

2
, q

2
]); q is much larger than

p; p and q should be relatively prime

Security Innovation (who acquired NTRU Cryptosystems, Inc., a company created
by the mathematicians who devised NTRU) have determined that N = 251, p = 3,
q = 128 are considered standard security level.

Another parameter, d, represents the number of -1 and +1 integers each in the pro-
duction of f and g in the next step of the key generation process and in r in the
encryption process. In jkrauze’s implementation, the d value for f and g are separate,
hereby referred to as df and dg respectively. In this version of NTRU, df =

⌊

N
3

⌋

and
dg = dr =

⌊√
q
⌋

.

N , p, and q are part of both the public key and the private key.

2. Choose two random polynomials f and g satisfying the following:

15

• The degree of both is at most N−1, as the result of performing the mod (xN −1)
operation

• The coefficients of both will be -1, 0, or 1

• In f , there is a df number of +1 coefficients and a df number of -1 coefficients; it
is the same for g and dg

• f has inverses under modp and under modq (if this condition is not met, gener-
ate another f until it is met)

f is part 1 out of 2 of the private key

g is used in calculating the public key in step 4

3. Calculate the inverses fp of f(modp), and fq of f(modq). These will be polynomials
of degree N−1. fp will have coefficients in the range [-p

2
, p

2
] and fq will have coefficients

in the range [- q
2
+ 1, q

2
]. In other words, determine fp and fq such that:

• f × fp = 1(modp)

• f × fq = 1(modq)

fp is part 2 out of 2 of the private key in this implementation of NTRU; other versions
may omit this

fq is used to calculate the public key in the next step

4. Calculate another polynomial h = p× fq × g(modq) from the values established

h is the polynomial that is the public key; coefficients will be in the range [− q

2
+ 1, q

2
]

To summarise, choose three parameters N , p, and q (sometimes d, depending on the imple-
mentation of NTRU) each with requirements, create polynomials based on those values and
some other requirements, and calculate inverses of those polynomials. It is difficult to invert
h over the ring to produce f or g. One might attempt to perform the procedure as described
in section 3.2.1, but it is difficult to produce an f or g that has small coefficients.

3.2.4 How Encryption Works

1. Turn the message into a polynomial m

This is usually done by using the binary values of the data, e.g. 1101 becomes x3+x2+1.
If the message polynomial is longer than N , the message is split up into blocks each
the size of N . In the jkrauze implementation, each block is encrypted separately and
each block of ciphertext is then concatenated.

2. Choose a random polynomial r to be the blinding value.

• This polynomial will be of degree N − 1 with coefficients in the range [-1, 1]

• There will be dr amount of -1 and +1 coefficients

3. Calculate the ciphertext e = r × h+m(modq)

16

h and q are taken from the public key. r and m are determined from the previous
steps.

e will be a polynomial of very high degree with coefficients in the range [- q
2
+ 1, q

2
].

“hello” gets encrypted to a polynomial of degree 66 in jkrauze’s implementation with
the parameters N = 11, p = 3, and q = 16.

To put the encryption process in the context of lattices, a random point p in N -dimensional
space is chosen, and a message vector is added to it (that vector being +1 unit in certain
dimensions and 0 in others). Take that random point in the lattice spanned by the basis
(both f and h) by taking a random combination of the vectors in h (i.e. perform r × h)
and add the message to that. Applying modq makes it difficult to invert e over the ring to
produce m, even knowing h and q.

3.2.5 How Decryption Works

1. Calculate a polynomial a such that a = f × e(modq)

Coefficients of a are in the range [- q
2
+ 1, q

2
]

q is publicly known and f is from the private key

2. Calculate a polynomial b such that b = a(modp)

p is from the public key

3. Obtain the original message m = fp × b(modp)

fp is from the private key, b is taken from the previous step, p is publicly known

Finding polynomial inverses in a ring as in the example in section 3.2.1 becomes explicitly
relevant in the decryption process.

3.2.6 Other Characteristics of NTRU

In cryptography and even in information security as a whole, a trade-off usually has to
be made between the speed and functionality of a system, and the security of that system.
It is the same with NTRU; to make NTRU more secure, the length of the keys needs to
be bigger, meaning that the key space is bigger and that brute-force and other attacks
are harder to achieve. However, by increasing the key length, it takes more computing
time to generate keys, encrypt messages, and decrypt messages since larger numbers are
dealt with in computation. With RSA, NIST recommends an RSA key size of 3072 bits
to be secure past 2030. The key sizes for NTRU recommended by Security Innovation is
N = 251, p = 3, q = 128 for standard security, and the key size in bits depends on the
particular implementation of NTRU, as keys can be represented in many formats. In the
implementation considered in this project, a private key f created for N = 251 and stored
as a .npy file (a serialised numpy array object) was 906 bytes.

NTRU has been found to be faster, in terms of time elapsed encrypting and decrypting,
than RSA, while providing the same level of security. It takes O(N2) operations, with some
sources citing O(N logN) to encrypt and decrypt in NTRU [28], whereas RSA takes O(N3).

17

Although comparing cryptosystems is not directly within the scope of this project, it is
helpful to know for assessing the practical uses of NTRU that it appears to perform better
than a main competitor in public-key cryptography.

3.3 Experiment 1: Sage Attack Experiments

The LLL attack as shown by LatticeHacks indicates that the attack is successful depend-
ing on the values set for q and d; there is a trade-off between successes in decryption and
failures in LLL attacks depending on these two values. A difference in their implementation
of NTRU in Sage and jkrauze’s implementation in Python is that LatticeHacks chose to keep
d the same value for f , g, and r, whereas in jkrauze’s implementation, df is

⌊

N
3

⌋

, and dg
and dr are

⌊√
q
⌋

). To discover how successful this attack is against jkrauze’s implementation
chosen, this attack was applied.

The value to set for q such that (1) the attack as done by LatticeHacks is successful and
(2) q is closest to the actual value recommended by jkrauze in the README for N = 167
(which is the old standard considered secure by Security Innovation), was determined by
experimenting with various q values in the LatticeHacks version, where the parameters other
than q were set to the standard security values of N = 167, p = 3, and d = 110. d was set
to 110 since df in jkrauze’s program would be

⌊

167
3

⌋

= 55 and d in the LatticeHacks code
is the number of both +1 and -1 coefficients, not each. As it appeared that a q value of
214 produced a successful LLL attack in the LatticeHacks Sage code, q was set to 214 when
conducting the experiment.

It was also found when conducting this preliminary experiment that a sufficiently low d
led to successful LLL attacks.

The experiment is as follows: generate a public-private key pair as usual except with q as
214 rather than 27, encrypt a message with the public key to produce ciphertext c, perform
the SageMath LLL attack on the public key, and decrypt c with both the true private key
and the key found via LLL to see if each matches the true plaintext. Results will be shown
in the next section 4.

3.4 Experiment 2: Parameter Choices for Decryption Suc-

cesses

Exploring combinations of N , p, and q for the best security has been examined extensively,
but d has not received the same attention. To visualise the effects of d on NTRU operations
as well as to understand the cryptosystem on a deeper level, an experiment was performed by
having separate values of d for f , g, and r. To reiterate, a lower d value results in less -1 and
+1 coefficients in the polynomial, and a higher one results in more of these coefficients. Doing
this may shed light on how timing on NTRU operations is affected and which combinations
make decryptions fail, as well as how these results change as N increases. The results
of this experiment can help in understanding the reliability of NTRU, as a cryptosystem
should be able to decrypt ciphertext consistently and without failure and, given the ability
to perform an LLL attack with a low d value as shown with the LatticeHacks attack, a

18

cryptosystem should be resistant to mathematical attacks. Additionally, having an idea
about how performance scales as N increases can help in knowing what to expect about the
security and practicality of NTRU as N increases, and whether improvements the current
implementation can be made by changing how d values are determined given N , p, and q.

This experiment was performed on a simplified but logically equivalent version of the
jkrauze implementation to make acquiring results easier. The results were obtained by ob-
serving which combinations of d values were the minimum needed to achieve a sufficient
decryption success rate, which combinations achieved decryption failures, and the approxi-
mate combinations in which the success-fail rate was about 50-50.

The procedure to get the 100 percent decryption success results is as follows: for each
combination of high/med/low for two d values, start at the most demanding setting of the
third d value in question (such that it is the most difficult it can possibly be to consistently
be successful at decrypting), and decrease this value until no failure occurs in 25 rounds
of key generation, encryption, and decryption. As soon as a decryption failure occurred,
decrease the value in question.

The procedure to get the 0 percent results is similar to the 100 percent results, except that
rather than start from the most difficult setting for decryption to succeed and making that
setting easier, start from the easiest setting and increase the difficulty until 25 decryption
attempts in a row result in failures. A more difficult setting at that point is not very likely
to produce many successes in decryption.

The procedure to get the 50 percent results is as follows: in the cases where such results
were not obtained from the previous two procedures, start at the most difficult setting for 25
decryptions in a row to succeed according to the results from the 100 percent experiments,
and decrease this value until the ratio of successes and failures when decrypting is between
a 10-15 ratio and 12-13 ratio.

High, mid, and low values for each d was determined for each N as such: high refers to
the largest possible d value for that N , low refers to the lowest possible value for d which
is 1, and mid refers to the average of the high and low values. For example with N = 167,
the highest value that d can be is 83 since a polynomial of degree 166 can have at most 83
coefficients of the value of -1 with 83 coefficients of value +1. Since the lowest possible value
for d is 1, the “mid” value for N = 167 is the average of 83 and 1, which is 42.

It would be more accurate to perform this experiment with 100 rounds instead of 25,
but the computing resources needed to effectively carry out the experiment as such was not
accessible, and acquiring use of a supercomputer occurred at a later point in this project.

Where patterns emerged and where a particular combination of parameters can only
result in failures or successes in decryption no matter the variable in question, the appropriate
value for the variable in question could be estimated, thus reducing time obtaining results.

19

3.5 Experiment 3: Brute-Force Estimates

It may be of interest to estimate the classical computing power needed to brute-force
the private key, given the public key, in a certain amount of time. To get a more realistic
estimate than relying on mathematical speculation using computational complexities, the
amount of decryptions per minute was tested on a high-performance computer.

The supercomputer provided by Supercomputing Wales, which Cardiff University stu-
dents are eligible to access, was utilised as the student does not have access to a high-
performance computer otherwise. To access the supercomputer and run programs for this
project, approval was acquired from Supercomputing Wales. The resources requested were
32GB of RAM, 8GB of home storage, and 8GB of scratch storage.

3.6 Exploring Quantum Attacks Against NTRU

Quantum computing was explored towards the end of the project. These weeks were
dedicated to grasping the capabilities and advantages of quantum computing, how quantum
computation works, and how to program a quantum computer. The end goal was to gain a
better understanding of how secure NTRU is against quantum computers of even thousands
of qubits, despite the challenges of being in the very early stages of quantum.

The learning process included taking from a variety of sources to understand the ba-
sics of quantum computing. This included completing a Udemy course by University of
Massachusetts teacher and software engineering consultant Kumaresan Ramanathan [29] as
an introduction to quantum computing principles and perusing the Quantum Country in-
teractive essays [30] to dive deeper into the mathematics of the topic and to gain another
perspective of it.

IBM Qiskit [31] was examined and official tutorials from IBM [32] were followed to see
what can be done currently in quantum programming. According to this guidance, this
how a typical quantum program is structured at the moment: import packages, initialise
variables, add gates, visualise the circuit, run the circuit (either through simulation or on
IBM’s quantum computers accessible through the cloud), and visualise the results. Most of
the procedure is similar to constructing a classical program. Visualising the results involves
seeing how many runs of the program result in, if there are two qubits, 00, how many runs
result in 01, and how many in 10 and 11. When running the circuit on IBM’s actual quantum
computers, this process is necessary at this time due to qubit decoherence, which is expected
to decrease as the technology progresses.

By completing the above activities, the foundations of quantum computation were better
understood.

20

3.6.1 Demonstration of a Quantum Algorithm

It may be helpful to demonstrate a quantum algorithm and the benefits it offers over
a classical algorithm in order to understand how a quantum computer can break NTRU
more effectively than a classical computer can. This exploration is not directly relevant
to breaking NTRU and may be seen as optional, but it serves to enhance all mentions of
quantum computing in this report by providing a clear example of quantum computation,
and allows the student to evidence independent learning.

An algorithm that demonstrates this benefit is the Bernstein-Vazirani algorithm, which
is explored in the Qiskit YouTube tutorial series [32], and whose Qiskit code is included
in this thesis submission. The algorithm addresses the following problem: we are given a
hidden sequence h of n bits. We are also given an oracle that takes as input a sequence s
of n bits, performs the operation of s⊕ h where ⊕ denotes the bitwise inner product mod2,
and returns that single bit of output. We are to find the unknown number h using the
oracle. A classical computer can guess the number in n queries to the oracle, but a quantum
computer can guess the number in one try. For example, if h is 6 bits long and is ‘101001’,
a classical computer can query ‘000001’ to the oracle and receive 1, then query ‘000010’ to
receive 0, and so on until ‘100000’ is queried. Piecing together the outputs from the oracle
queries will return ‘101001’. The following quantum circuit demonstrates how a quantum
computer would solve this instance of the problem: Quantum circuits are often represented

Figure 3.4: The Bernstein-Vazirani quantum circuit for an instance of the Bernstein-Vazirani
problem

in a timeline format as in 3.4. In this circuit, there are seven qubits labelled q0 to q6. There
are also six classical bits that will be used for storing the outputs of the qubits. These
classical bits are denoted with C at the bottom of the diagram, with the double line and the
6 indicating that there are six such classical bits.

21

The purple and teal icons on the lines of the timeline indicate the application of quantum
logic gates (the equivalent of AND, OR, etc. gates in classical computing) to the qubits.
The NOT gate, labelled as X switches a qubit from state |0〉 to state |1〉 and vice versa. The
Hadamard gate, labelled as H, puts a qubit that is in state |0〉 to the superposition state
|+〉, and puts a qubit in state |1〉 in the superposition state |−〉. The same gate also reverses
that state change: the H gate puts a qubit that is in state |+〉 to the superposition state
|0〉, and puts a qubit in state |−〉 in the superposition state |1〉. Although it is not explicitly
stated in the circuit diagram, the qubits at the beginning of the timeline are in the state |0〉.

The notation of |φ〉, known as Dirac or Bra-ket notation, is commonly used to conve-
niently represent the state of a qubit. The state of one qubit can be represented as a vector
with two elements: one for representing the probability of measuring the qubit to be in the
quantum equivalent of 0, and another for representing the probability of measuring to 1.

For example, |0〉 is the same as the vector

[

1
0

]

. There is a 100% probability of measuring

the qubit to be 0, and a 0% probability of measuring the qubit to be 1. The state of a

qubit in superposition can be represented as |+〉 and |−〉, or

[

1
√

2
1
√

2

]

and

[

1
√

2

− 1
√

2

]

respectively;

these states have equal probability of measuring to state 0 or 1, although |+〉 and |−〉 are
distinctly different states. This will become relevant in understanding why the circuit works
and why quantum computing can be helpful in breaking NTRU.

The quantum gate stretching across two qubits indicates a CNOT (Controlled NOT)
gate, where the solid circle signifies the control qubit and the circle with the open plus sign
signifies the target qubit. A CNOT gate operates like an if statement in a classical program:
if (control qubit measures as 1) then (NOT the target qubit). In this circuit, applying these
CNOT gates is equivalent to querying the oracle.

The gauge-like icon at the end of the timeline for the qubits signifies a measurement, and
in this particular circuit, the outputs from qubits q0 to q5 are stored in classical bits c0 to c5.

Put together, this circuit takes an n number of qubits, puts them into superposition,
queries the oracle, puts the qubits back into a state of either |0〉 or |1〉, and measures the
state of those qubits. It takes just one run of this circuit to guess the hidden binary number
h.

Key to understanding why this circuit works is understanding what querying the oracle
does to the qubits. Following the Quantum Country series of essays, it was of interest to
complete the following mathematical exercise in understanding quantum logic gates: indicate
how a CNOT gate functions in the case where the control qubit is in the state |+〉 and the
target qubit in |−〉. In this application of the CNOT gate, the target qubit is not altered
but the control gate is, which is counterintuitive. A quantum gate can be represented as
a matrix, with the application of a gate equivalent to multiplying the state of the qubit(s)
with that matrix.

We can rewrite a quantum state

[

α
β

]

as α |0〉 + β |1〉. If we have two single-qubit states

22

α |0〉 + β |1〉 and γ |0〉 + δ |1〉, then their combined state is (α |0〉 + β |1〉)(γ |0〉 + δ |1〉) =

αγ |00〉+ αδ |01〉+ βγ |10〉+ βδ |11〉, which can also be represented as









αγ
αδ
βγ
βδ









. If the control

qubit is in |+〉 and the target qubit is in |−〉 like in figure 3.5 then the above becomes
(1
√

2
|0〉+ 1

√

2
|1〉)(1

√

2
|0〉 − 1

√

2
|1〉) = 1

2
|00〉+ 1

2
|01〉+ 1

2
|10〉 − 1

2
|11〉.

Figure 3.5: Application of a CNOT gate that changes the control qubit but not the target
qubit

Applying the CNOT matrix









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









to









1
2
1
2
1
2

−1
2









yields









1
2
1
2

−1
2

1
2









.









1
2
1
2
1
2

−1
2









·









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









=









1
2
1
2

−1
2

1
2









The state the qubits must be in to form that combined state vector is |−〉 and |−〉 as
(1
√

2
|0〉− 1

√

2
|1〉)(1

√

2
|0〉− 1

√

2
|1〉) = 1

2
|00〉+ 1

2
|01〉− 1

2
|10〉+ 1

2
|11〉. The control qubit is changed

but the target qubit remains unchanged. This is what is happening in the Bernstein-Vazirani
circuit to each qubit in the position of the hidden sequence s where there is a 1. The queries
to the oracle change the qubits, which cannot be the case in a classical computer since
classical bits cannot be in superposition nor entangled.

This brief introduction to quantum circuits explains how a quantum computer can per-
form computations in a way a classical computer cannot, and this explanation may help in
appreciating how a quantum algorithm can help render NTRU insecure more efficiently than
a classical computer can.

Again, there is a need for abstraction when it comes to programming with a quantum
computer. It became clear that there would be limited gain from looking further at, as more
mathematical knowledge and more time would be needed.

Following guidance from the project moderator, it was understood that time would be
best spent looking at what methods within attacks can be replaced or sped up by current
quantum algorithms. The end of the project was spent on this task, and the findings are
explored in the next sections.

The approach taken to this project could be summarised as choosing a version of lattice-

23

based cryptography to analyse, understanding the lattice-based cryptosystem, performing
some experiments with that implementation, learning the basics of quantum computation
from software engineering and cryptographic perspectives, and investigating how robust that
lattice-based cryptosystem will be in the foreseeable future of quantum computing.

4 Results

To discover how robust this application of a lattice-based cryptosystem is, three exper-
iments were run, and current quantum algorithms were examined against known attacks
against NTRU. The results of these undertakings are displayed in this section.

4.1 Experiment 1: Sage Attack Experiments

The attack was successful against the implementation of NTRU chosen, though with a
large q. This result matches that found by the LatticeHacks team. A public-private keypair
with parameters N = 167, p = 3, q = 214 was generated, the LLL attack in SageMath
as written by LatticeHacks was applied to the public key h to produce h′, and a message
encrypted by h was able to be decrypted successfully by both the true private key f and the
fake private key h′.

4.2 Experiment 2: Parameter Choices for Decryption Suc-

cesses

These experiments were run on a 2013 MacBook Air running Ubuntu 18.04, with 4GB
1600 MHz DDR3 RAM and a 1.3 GHz Dual-Core Intel Core i5. The results of running
the program are included in the appendix, with appropriate graphs included in this section
for N = 167. The full results across varying N values, including timing of key generation,
encryption, and decryption, are included in the appendix A.1 A.2 A.3.

N df dg dr Key Generation
Time (sec)

Encryption
Time (sec)

Decryption
Time (sec)

167 55 11 11 5.688 0.270 0.266
251 83 11 11 12.942 0.509 0.596
347 115 11 11 25.310 1.098 1.125

Actual average operation times for N = 167, 251, 347

The d value that affects timing of key generation the most appears to be df . dr seems to have
the greatest effect on decryption error and security since, as shown in 4.3, dg can be of a
low, medium, or high value, but depending on dr decryptions can become reliably successful
or reliably unsuccessful, no matter what df is.

As N increases, timings for all operations increase, which is to be expected since a higher
dimension of the lattice requires more computations.

24

This experiment was conducted to understand how different parameters work with NTRU,
and viewing these results with different combinations of values for those parameters can in-
dicate how secure the suggested standard parameters are. These results are explored in 5.

Figure 4.1: Evaluating dr

Figure 4.2: Evaluating dg

25

Figure 4.3: Evaluating df

4.3 Experiment 3: Brute-Force Estimates

The results of number of decryptions per minute, one way of verifying that an NTRU
key is the corresponding private key given a public key, are shown.

The graph suggests a exponential decrease in decryptions per minute, which makes sense
as decryption time increases exponentially as N increases.

The number of possible keys for this implementation of NTRU is all permutations of
coefficients where the number of -1 and +1 coefficients each are

⌊

N
3

⌋

. For example, for
N = 4 (not possible for actual use since it is not a prime number) the number of keys
possible is the number of permutations of (0, 0, 1, -1), which is 24, divided by the individual
permutations of 0, -1, and 1, which in this case is 2 for the individual permutations of 0. This
division is performed to account for the insignificance of order for individual coefficients. In
other words, (0a, 0b, 1, -1) and (0b, 0a, 1, -1) both refer to (0, 0, 1, -1) or, in polynomial
form, x− 1, so (0, 0, 1, -1) should not be counted twice. The number of possible keys given
this practice for varying N is shown in the table below.

26

Figure 4.4: Decryptions per minute for varying values of N

N Number of Possible Keys
4 12
5 20
6 90
11 9240
13 90090
17 4900896
19 46558512
23 2.80× 109

29 1.68× 1012

53 2.78× 1023

101 1.21× 1046

167 2.30× 1077

211 1.83× 1098

251 1.85× 10117

347 8.56× 10162

Number of possible keys for varying N , in jkrauze’s implementation of NTRU

The key space grows quickly. For the standard security parameters of N = 251, p = 3, and
q = 128 it appears infeasible to reliably brute-force the private key even with many devices
that have the computing power used in the brute-force experiments. The mathematics to
estimate how many such computers it would take to brute-force an N = 167 key is given in
the discussions section 5.

27

4.4 Quantum Algorithms

By comparing known attacks to current quantum algorithms as listed in Quantum Al-
gorithm Zoo (a comprehensive catalogue of quantum algorithms) by Dr. Stephen Jordan
[33], it appeared that the best direction for research to undermine the security of NTRU is
to design a quantum algorithm that performs lattice reduction more efficiently. This will be
discussed in greater deal next section.

In this section, the results of exploring NTRU as proposed in the previous section were
displayed and explained. The next section goes deeper into discussing the significance of
these results.

5 Discussion and Evaluation

In this section, discussions are made about what the experiments performed indicate
about the security of this implementation of NTRU against classical methods. Additionally,
conjectures are made regarding security against quantum attacks.

5.1 Classical Attacks

As suggested by LatticeHacks [13], a trade-off was indeed found between rate of failures
in decryption and rate of successes of lattice reduction methods. By selecting the correct
values of N , p, q, and, as explored in the parameter choices experiment, d, this attack can be
avoided. This may not be the same for other lattice-reduction methods that have a smaller
approximation factor (i.e. are more precise), however.

The parameters suggested by jkrauze of N = 167, p = 3, q = 128, which automatically
produces df =

⌊

N
3

⌋

= 55, dg =
⌊√

q
⌋

= 11, and dr =
⌊√

q
⌋

= 11 in this adaptation of
NTRU, is suitable for a balance between resistance to the LLL attack and decryptions.
However, it may be better to manually set df , dg, and dr to have more control over this
balance for varying N . For example, with N = 11, p = 3, q = 128, which were used when
performing tests on smaller dimensions early in the project, run-time errors would occur as
⌊√

q
⌋

=
⌊√

128
⌋

= 11 and even for q = 64,
⌊√

q
⌋

=
⌊√

64
⌋

= 8 are not valid d values since
N = 11 < 8× 2 < 11× 2.

If an attacker has knowledge of the d values, this drastically reduces how many possible
keys there are compared to not knowing these values, and makes brute-forcing easier. Al-
though it is still infeasible to perform this attack for large N as shown in the next subsection,
it is additional security to have a slightly more random element in how many +1, 0, and -1
coefficients there are in the private key.

As stated previously, some considerations in obtaining the results include not testing
with enough rounds and not testing a larger combination of d values (as opposed to low,

28

medium, and high for each). It is also worth noting that the operations of encryption and
decryption for all combinations of N and d values were done on a message that was the same
length. Some further observations on the security of this implementation of NTRU can be
made by performing the tests for varying message lengths. However, the obtained results
may be sufficient to say that the current parameter choices are safe.

LLL works with a large q because a large q allows for approximation, where smaller q
values require more exact approaches to the SVP. As suggested by the Sage LLL attack,
decreasing q and increasing N leads to increased security in NTRU. However, decreasing q
means a higher chance of decryption failures. LatticeHacks suggests to choose parameters
such that q

2
> 4d. Security Innovation’s submission of NTRU to NIST [18] has a proposed

parameter set of N = 743, q = 2048, and d = 247. This is the same d value that jkrauze’s
implementation would produce for that N (as

⌊

743
3

⌋

= 247), and 2048
2

= 1024 is indeed greater
than 4×247 = 988. As suggested by the Sage attack and the d experiments and as suggested
by LatticeHacks these are good choices for achieving the balance between providing security
against the LLL attack and minimising decryption failures.

It makes sense to separate df from dg and dr since df has the largest influence over key
generation time among these three values.

As N increases, df increases proportionally. For dg and dr, one should increase q ac-
cordingly if

⌊√
q
⌋

is to be used for these two values. It may be advisable to make dg and
dr dependent on N as well rather than q so that the implementation can work on smaller
dimensions and a sufficiently large q, or even make the d values settable by the parties tak-
ing part in encryption for more control over the security and decryption failures. The exact
effects on security will have to be looked at further, though these are some directions to take
with exploring parameter choices for this implementation of NTRU.

When it comes to brute-forcing the private key, the number of possible keys when N = 167
is 2.30 × 1077 and the number of decryptions per minute when N = 167 for the resources
of the supercomputer requested is about 125. The number of minutes in a year is 525,600,
meaning that the number of decryptions per year is 65,700,000. How many such devices are
needed to brute-force an N = 167 NTRU key in a year? This can be put as:

[#ofdecryptionstotal] = [#ofdecryptionsperyear]× [#ofyears]× [#numberofcomputers]

2.30× 1077 = 65, 700, 000× 1 times[#numberofcomputers]

[#ofcomputers] ≈ 3.50× 1069

This number of devices required is impractical. For this reason, NTRU with N = 167 is
suitably secure against this type of brute-force attack.

It should be noted that, in addition to decrypting a particular ciphertext when given the
plaintext, a potential f can be verified as the actual f by seeing if f ′ × h(modq) has small
integer coefficients.

29

The classical experiments allowed the student to demonstrate programming skills as required
for this module and learning about NTRU on a deeper level, while also demonstrating the
scientific method and analytical thinking. A full brute-force attack for a small N to get a
more accurate timing estimate and more advanced attacks would have been carried out with
more time.

5.2 Quantum Algorithms

An instinctive approach to breaking NTRU using quantum computation is to brute-force
the private key using quick search. This might involve representing all possible private keys
for a given N , p, and q as qubits in superposition, and calls to an oracle as the process of
seeing if decrypting a message with that potential key produces comprehensible plaintext,
or if f ′ × h(modq) has integer coefficients in the range [-1, 1]. For N = 167, the number
of qubits in superposition needed to represent all possible combinations of coefficients for f
is 257, as ⌈log2(2.30 × 1077)⌉ = 257; this number may not seem incredibly large since 257
classical bits can be used to represent a very small amount of data, but only if the decoherence
problem is solved and these qubits are manipulated smartly can this be an advantage.

The next method to try would be to speed up classical SVP methods or parts of those
approaches using quantum computation. There is a conceptual quantum version of the LLL
algorithm published [34] but the number of qubits required makes this approach infeasible.
Grover’s algorithm has been explored in speeding up sieving and saturation approaches to
the SVP [35]. These are approaches that remove possible solutions from an initially full
list or add possible solutions to an initially empty list respectively. However, this solution
in itself does not provide the speed-up required for polynomial-time results. However, this
same approach may indicate further speed-ups of classical SVP solvers.

Search will not be enough to completely undermine NTRU in the same way Shor’s al-
gorithm does RSA. If search is the only quantum attack, then for both NTRU and RSA,
increasing the key size will be sufficient. The question to answer is whether or not the SVP
can be solved in polynomial time. As a result, the best approach for breaking NTRU with
quantum computation is a lattice basis reduction algorithm, ideally using exact methods
rather than approximations for the shortest vector.

Oded Regev has made significant contributions to this topic. Many of the papers ad-
dressing the security of lattice-based cryptosystems have cited his 2003 paper [36]. In the
paper he has shown that the SVP can be solved efficiently by a quantum computer if there
is a quantum algorithm that solves the hidden subgroup problem for the dihedral group. In
Regev’s solution, the lattice space is split into subspaces such that in each subspace there are
only two points. However, the problem remains difficult to solve in the nearly two decades
since this publication.

The hidden subgroup problem (HSP) is a generalisation of problems such as the SVP;
in the case of lattice-based cryptography, the non-abelian variant of the problem is relevant
as opposed to the abelian since dihedral groups of orders greater than 3 are non-abelian.
Solving the HSP for non-abelian groups would solve the SVP, meaning that a given plaintext
encrypted with a given h in NTRU can be decrypted by performing the algorithm on that h

30

to find a suitable f , no matter the q value, which differs from LLL’s approximation methods.

Now the question to answer becomes: is there a quantum algorithm that can solve the
dihedral HSP efficiently? If such an algorithm is created, then the foundations of lattice-
based cryptosystems such as NTRU are compromised.

Kuperberg found a time 2O(
√

logN) algorithm for finding a hidden subgroup of the dihedral
group [37], and Regev improved on this to use polynomial space [38]. The classical complexity

for the same problem is 2O(
√

N).

If there are efficient quantum algorithms for the HSP, that implies there are efficient
quantum algorithms for the SVP. Given a group of neighbouring points in a lattice, getting
from one point to another takes more steps using the vectors in h than f , since f is a basis
of the same lattice of h, but with shorter vectors. There can be many points produced by f
contained in the area produced by h. This provides an intuitive view of how the HSP relates
to the SVP.

On the other hand, there is no need to worry about NTRU being safe against quantum
computers in the thousands of qubits if physical implementations of these computers cannot
be scaled up to have a useful amount of fault-tolerant qubits in the first place. All this
speculation is for naught if quantum computers cannot be effectively scaled up from the
current ∼ 50 qubits or cannot maintain the state of their qubits.

An efficient solution does not seem attainable in the near future but it does not seem
unrealistic that some great minds will eventually create a method that fully realises the ideas
proposed by Regev and uses quantum computation to solve the SVP efficiently.

5.3 Strengths and Weaknesses of this Approach

The work carried out indicates that this implementation of NTRU is safe from brute-force
attacks and lattice reduction using LLL if parameters are chosen correctly. These results
match those found in other published works. Other attacks were not explored due to time
constraints; what can be done further is discussed in section 6.

Due to quantum computing being early in development, a substantial weakness of this
approach is that quantum attacks cannot be fully carried out. Experimentation on NTRU
with quantum algorithms can only be done using theory and mathematical conjectures at
this point in time since no quantum algorithms currently exist to properly experiment with
quantum attacks against NTRU. It could be interesting to attempt to implement something
like Regev’s approach using quantum simulators and current quantum programming lan-
guages such as Q# or using Qiskit, using small lattice dimensions and keeping black-box
operations hidden.

In the initial plan of the project, it was stated that an attempt would be made to recover
the private key from the public key. Through lattice reduction, this attack was carried out,
since a suitable private key was obtained from applying this operation on the public key. An
improved attempt, such as more precise approximation, at this attack could be made with

31

use of quantum algorithms.

6 Future Work

This section addresses what can to be done to improve the security and practicality of NTRU.

6.1 Classical Attacks

For this particular implementation of NTRU, it will be worth ensuring that the padding
method used in encryption adheres to current standards, such as NAEP [39]. In addition to
padding improvement, the speed of key generation, encryption, and decryption leaves more
to be desired. More efficient key generation, for example, could be improved upon using the
method as described in [40], which takes advantage of field norms, or that of [41], which
computes the inverse of a polynomial in the ring more efficiently.

It may be worth examining how random the polynomial generator (which utilises the
numpy random function) truly is, since if an attacker can guess the seed of this function
and knows the values of N , p, and q, he or she can potentially find f . The random polyno-
mial generator suggested by Security Innovation [42] may provide a better solution, though
whether or not this is the case is what could be explored.

Side-channel attacks such as those in [43] are another avenue to explore. Cryptosystems
should be designed to resist attacks that take advantage of power consumption, timing
information, or electromagnetic leaks.

The classical attacks covered in the background section 2 can be explored against the
chosen implementation of NTRU, though many of the attacks mentioned can be mitigated
with appropriate parameter choices and padding schemes.

6.2 Quantum Attacks

As quantum computers become more fault-tolerant, as more layers of abstraction are
created, and as more quantum algorithms are developed, we can get a better idea of how truly
robust NTRU is against quantum computers. The most direct course of action to take when
creating quantum algorithms against lattice-based cryptography is to create one that solves
the dihedral hidden subgroup problem, though other directions include designing quantum
algorithms to speed up search and other areas of classical lattice reduction methods and
improving on lattice-reduction methods quantum or otherwise. According to [42], the best
attacks on NTRUEncrypt tend to utilise both lattice reduction and combinatorial search.
As an alternative to looking solely at solving the DHSP or speeding up classical lattice
reduction, this hybrid approach can be taken.

Regev showed that solving the unique-SVP (a variant of the SVP relevant to NTRU)
is attainable if there is an algorithm that solves the dihedral HSP, and Kuperberg found a
speed up for this problem. Their work is a step towards solving the SVP in direct relation
to NTRU and indicates that it may be a matter of when rather than if a quantum algorithm

32

will be created that solves the SVP efficiently enough to render NTRU vulnerable even with
larger keys, like Shor’s does with RSA.

After the finalist(s) for the NIST PQC competition are announced, similar research on
attacks like those mentioned in this paper will continue to be performed on those cryptosys-
tems. It is likely that this research will not stop until the underlying hard problem of the
cryptosystem is solved, breaking the system entirely.

Quantum cryptography (utilising quantum mechanical properties to perform crypto-
graphic tasks, as opposed to post-quantum cryptography which is about finding a classi-
cal cryptosystem that is robust against quantum attacks) such as the BB84 quantum key
distribution scheme [44] may be the best option for a cryptosystem that resists quantum at-
tacks. It may take a quantum-based cryptosystem to provide the security needed to prevent
quantum-based attacks.

It would be most productive to attack the version of NTRU that Security Innovation
submitted to NIST for the PQC standardisation project. This version and the suggested
parameters are what are thought to be the most secure of this cryptosystem, and attacks on
this version will more effectively reveal what to improve on NTRU next. There are several
routes to attack NTRU and in particular the implementation chosen, though it will be some
time before its security can be properly tested against quantum computers.

7 Conclusion

This paper is an exploration of a lattice-based cryptosystem and how resistant it is to both
classical and quantum attacks. For classical computing, this has been done through replicat-
ing LLL lattice reduction, experimenting with parameters, and examining the feasibility of
brute-force attacks on the chosen implementation of the NTRU lattice-based cryptosystem.

Lattice-based cryptosystems are significant as they are a candidate for post-quantum
cryptosystems, which are thought to be secure against quantum computers of even thousands
of fault-tolerant qubits, unlike current popular public-key cryptosystems such as RSA. By
assessing and confirming the robustness of such a cryptosystem, it can be assured that if
quantum computers have sufficient capabilities that encrypted data remains confidential.

Based on the current status of published attacks against NTRU, the cryptosystem remains
safe from classical and quantum attacks provided that parameters are carefully chosen; it is
infeasible for either classical or quantum attacks to break the cryptosystem. For quantum
computing, current research directions were examined to estimate how likely it is that a
quantum algorithm will be devised that will efficiently undermine the security of NTRU, or
what would need to be done for that to be the case. It was determined that NTRU remains
safe against current attacks and technologies, but it does not seem unreasonable that a
quantum algorithm will eventually be designed that will compromise the cryptosystem in
the way Shor’s algorithm does RSA.

The objective of this project was to evaluate the robustness of a lattice-based cryptosys-

33

tem. As was pledged in the initial plan, this project was able to provide an overview of the
cryptosystem, an overview of quantum computing, and an investigation of how resistant it
is to various attacks.

8 Reflection

Writing this report has made me realise what a broad amount of work I have done over
the past few months. I learned some advanced mathematics in the process of understanding
how NTRU works, I researched what research has been done to attack NTRU, I learned
quantum computing fundamentals, and I conducted multiple experiments to explore NTRU
and its security. I have also come to appreciate the usefulness of LATEX. My primary goals of
this report were to present my work clearly and to demonstrate that I have indeed learned. It
is my hope that I was able to demonstrate independent learning, application of the scientific
method, perusal of academic publications, and writing in an academic context.

The most significant personal development I experienced from this project is that I am
more confident taking charge of my own learning and performing independent research. I felt
responsible for producing an interesting project and applying what I have learned throughout
university to expand on my knowledge. This project also tested my organisational and
task prioritisation skills in a way that was relatively new to me; although throughout my
academics I have exercised these abilities, this is the first instance I have had to do so for
such a large work. I planned so that I could keep my progress in accordance with the time
plan I set at the beginning of the project, and I regularly checked with my supervisor that I
was taking the right direction with what precisely I was doing for this project. Throughout
the project I kept extensive notes of what I did and what I learned, why I was doing it, and
what the next steps were.

I was able to apply material taught in previous modules I have taken as part of my
undergraduate degree. For example, I utilised mathematical knowledge such as matrix mul-
tiplication (used in quantum computing to model the modification of the state of a qubit)
taught in my first year, data processing and visualisation methods from the aptly-named
second-year module, complexity theory from the algorithms and data structures module,
and optimality theory (which the SVP is about) from combinatorial optimisation. Perhaps
what is most significant and most relevant is the material taught in the third-year security
module. The module made me curious about exploring cryptography further and prepared
me for this project. As a result of the module, I was more familiar with public-key cryptog-
raphy and I discovered the importance of finding quantum-resistant cryptographic solutions
as the security of current public-key methods is threatened by quantum algorithms.

At one point in my project, a lecturer gave me advice that stuck with me: with projects
that do not have clear deliverables (such as research-based papers) it can be easy to be
disheartened during the course of the project. This was certainly the case in this project,
and it was the most persistent difficulty I experienced throughout the months. I thoroughly
enjoyed learning about more advanced mathematics and about quantum computing, despite
my fears that I would fall out of love with mathematics over the course of the project.

34

Furthermore, it was necessary to perform plenty of preliminary research given the nature
of the project. However, it seemed that I was taking in information without producing
new conclusions of my own. It took me a while to become comfortable with the fact that
when performing research and exploring topics that are new to me and when performing
experiments as a result of this learning experience, that not all results will be interesting or
productive. My optimism fluctuated between enjoying the learning process and feeling that
I was not doing enough despite my efforts. It was only as I was approaching the end of the
project that I saw that what I was doing has indeed led to learning and personal development.
As someone who sets high standards for herself, I learned to be more compassionate towards
myself and understand that the learning in itself can be enough. Although I struggled
throughout this project from feeling that I was not accomplishing much, I can say looking
back at my efforts over the past few months that I am satisfied that I have grown as a
student.

Apart from struggling with meeting my own standards, another challenge I faced in writ-
ing this report is writing for an audience with varying knowledge about the topics presented.
I aimed to discuss these topics on the level of other undergraduate computer science students,
all of whom will have different levels of expertise in topics of cryptography and quantum
computing. By tailoring the writing to a diversity of levels of understanding, I have more
thoroughly understood the material I have been learning about as part of my project.

Although I followed my initial plan closely, I did not contribute as much to the final
report over the course of the project as I had hoped. I made detailed notes and put together
a few sentences every couple of weeks but I never did anything substantial. What I would do
differently in my project is focus less on topics that are not very productive towards my final
work such as learning about Galois fields, and redirect that attention towards looking more
deeply at the current quantum algorithms that can assist in attacking NTRU. Another thing
I would do that would have made this project progress further is read the post-quantum
cryptography textbook by Bernstein [45] and follow the Oded Regev lattice lectures [26].

It is worth noting that I worked on this project during the COVID-19 global crisis. About
halfway through the project, the United Kingdom went into lockdown to prevent the spread
of coronavirus. Although my project could be done from nearly any place with a stable
internet connection, I often found it difficult to work from home. My project is not properly
represented without a mention that the assignment was completed under lifestyle-changing
circumstances.

With regards to applying what I have gained from this project to my career after gradua-
tion, I am more prepared for further study or at least to apply a more scientific-minded way
of thinking in industry. I am more comfortable with topics such as linear algebra, quantum
computing, supercomputing, and, of course, lattice-based cryptography. I had not seriously
considered a research-oriented career before this project, but after completing this project
and with encouragement from my supervisor, I would like to pursue such a career, whether
it be in academia, industry, or a combination of both.

I aspire to make some original and substantial contributions to the field of cybersecurity
at some point in my life. This project has shown me that although I often doubt myself, I do

35

enjoy the process of independent learning and I have the curiosity and drive that is needed
to make those contributions.

36

9 References

[1] B. Connolly, “Quantum computers will be commercially available in 20 years:
scientist,” CIO, 2012. [Online]. Available: https://www.cio.com/article/3493265/
quantum-computers-will-be-commercially-available-in-20-years-scientist.html

[2] R. Merritt, “Moore’s law dead by 2022, expert says,” EE Times, 2013. [Online].
Available: https://www.eetimes.com/moores-law-dead-by-2022-expert-says/#

[3] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,”
in Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994, pp.
124–134.

[4] V. Mavroeidis, K. Vishi, M. D. Zych, and A. Jøsang, “The impact of quantum
computing on present cryptography,” CoRR, vol. abs/1804.00200, 2018. [Online].
Available: http://arxiv.org/abs/1804.00200

[5] L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and
D. Smith-Tone, “Report on post-quantum cryptography,” National Institute of

Standards and Technology Interagency or Internal Reports, 2016. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf

[6] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, Y.-K. Liu, C. Miller,
D. Moody, R. Peralta, R. Perlner, A. Robinson, and D. Smith-Tone, “Status report
on the first round of the NIST post-quantum cryptography standardization process,”
National Institute of Standards and Technology Interagency or Internal Reports, 2019.
[Online]. Available: https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf

[7] M. Ajtai and C. Dwork, “A public-key cryptosystem with worst-case/average-case
equivalence,” in Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory

of Computing, ser. STOC ’97. New York, NY, USA: Association for Computing
Machinery, 1997, p. 284–293. [Online]. Available: https://doi.org/10.1145/258533.
258604

[8] IBM. (2019) 5 in 5: Lattice cryptography. [Online]. Available: https://www.research.
ibm.com/5-in-5/lattice-cryptography/

[9] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ring-based public
key cryptosystem,” in Algorithmic Number Theory, J. P. Buhler, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1998, pp. 267–288. [Online]. Available: http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.8422&rep=rep1&type=pdf

[10] ——, “Public key cryptosystem method and apparatus,” U.S. Patent US6 081 597A,
2000. [Online]. Available: https://patents.google.com/patent/US6081597A/en

https://www.cio.com/article/3493265/quantum-computers-will-be-commercially-available-in-20-years-scientist.html
https://www.cio.com/article/3493265/quantum-computers-will-be-commercially-available-in-20-years-scientist.html
https://www.eetimes.com/moores-law-dead-by-2022-expert-says/#
http://arxiv.org/abs/1804.00200
https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf
https://doi.org/10.1145/258533.258604
https://doi.org/10.1145/258533.258604
https://www.research.ibm.com/5-in-5/lattice-cryptography/
https://www.research.ibm.com/5-in-5/lattice-cryptography/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.8422&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.8422&rep=rep1&type=pdf
https://patents.google.com/patent/US6081597A/en

37

[11] Y. Chen and P. Q. Nguyen, “Bkz 2.0: Better lattice security estimates,” in Advances

in Cryptology – ASIACRYPT 2011, D. H. Lee and X. Wang, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 1–20.

[12] H. Lenstra, A. Lenstra, and L. Lovász, “Factoring polynomials with rational
coefficients.” Mathematische Annalen, vol. 261, pp. 515–534, 1982. [Online]. Available:
http://eudml.org/doc/182903

[13] D. J. Bernstein, N. Heninger, and T. Lange. (2018) Latticehacks. [Online]. Available:
https://latticehacks.cr.yp.to/ntru.html

[14] N. Howgrave-Graham, J. H. Silverman, and W. Whyte, “A meet-in-the-middle attack
on an NTRU private key,” 07 2003.

[15] J. Hoffstein and J. H. Silverman, Implementation Notes for NTRU PKCS Multiple

Transmissions, 1998. [Online]. Available: https://www.onboardsecurity.com/products/
ntru-crypto/ntru-resources

[16] E. Jaulmes and A. Joux, “A chosen-ciphertext attack against NTRU,” vol. 1880, 08
2000, pp. 20–35.

[17] N. Howgrave-Graham, “A hybrid lattice-reduction and meet-in-the-middle attack
against NTRU,” 08 2007, pp. 150–169.

[18] OnBoardSecurity, “NIST post quantum crypto submission,” 2018. [Online]. Available:
https://www.onboardsecurity.com/nist-post-quantum-crypto-submission

[19] S. Eibenberger, S. Gerlich, M. Arndt, M. Mayor, and J. Tüxen, “Matter–wave
interference of particles selected from a molecular library with masses exceeding 10000
amu,” Physical Chemistry Chemical Physics, vol. 15, no. 35, p. 14696, 2013. [Online].
Available: http://dx.doi.org/10.1039/C3CP51500A

[20] I. Sample, “Google claims it has achieved ’quantum supremacy’ – but IBM disagrees,”
The Guardian, 2019. [Online]. Available: https://www.theguardian.com/technology/
2019/oct/23/google-claims-it-has-achieved-quantum-supremacy-but-ibm-disagrees

[21] E. Pednault, J. Gunnels, D. Maslov, and J. Gambetta. (2019) On “quantum
supremacy”. [Online]. Available: https://www.ibm.com/blogs/research/2019/10/
on-quantum-supremacy/

[22] T. Moses, Quantum Computing and Cryptography: Their impact on cryptographic

practice, 2009. [Online]. Available: https://www.entrust.com/wp-content/uploads/
2013/05/WP_QuantumCrypto_Jan09.pdf

[23] E. Barker and Q. Dang, “Recommendation for key management: Application-specific
key management guidance,” NIST Special Publication 800-57 Part 3 Revision 1, 2015.
[Online]. Available: http://dx.doi.org/10.6028/NIST.SP.800-57pt3r1

http://eudml.org/doc/182903
https://latticehacks.cr.yp.to/ntru.html
https://www.onboardsecurity.com/products/ntru-crypto/ntru-resources
https://www.onboardsecurity.com/products/ntru-crypto/ntru-resources
https://www.onboardsecurity.com/nist-post-quantum-crypto-submission
http://dx.doi.org/10.1039/C3CP51500A
https://www.theguardian.com/technology/2019/oct/23/google-claims-it-has-achieved-quantum-supremacy-but-ibm-disagrees
https://www.theguardian.com/technology/2019/oct/23/google-claims-it-has-achieved-quantum-supremacy-but-ibm-disagrees
https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/
https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/
https://www.entrust.com/wp-content/uploads/2013/05/WP_QuantumCrypto_Jan09.pdf
https://www.entrust.com/wp-content/uploads/2013/05/WP_QuantumCrypto_Jan09.pdf
http://dx.doi.org/10.6028/NIST.SP.800-57pt3r1

38

[24] R. LaRose, “Overview and comparison of gate level quantum software platforms,”
Quantum, vol. 3, p. 130, Mar. 2019. [Online]. Available: https://doi.org/10.22331/
q-2019-03-25-130

[25] J. Krauze, “ntru: Simple python implementation of NTRUEncrypt cryptosystem,”
2018. [Online]. Available: https://github.com/jkrauze/ntru

[26] O. Regev, “Lattices in computer science,” 2004. [Online]. Available: https:
//cims.nyu.edu/~regev/teaching/lattices_fall_2004/

[27] D. Chouinard, “Finding inverse of polynomial in a field,” Mathematics Stack Exchange,
2012. [Online]. Available: https://math.stackexchange.com/q/124300

[28] C. Narasimham and J. Pradhan, “Performance analysis of public key cryptographic
systems RSA and NTRU,” 01 2007. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.97.8669&rep=rep1&type=pdf

[29] K. Ramanathan, “QC101 quantum computing quantum physics for
beginners,” 2020. [Online]. Available: https://www.udemy.com/course/
qc101-introduction-to-quantum-computing-quantum-physics-for-beginners/

[30] A. Matuschak and M. A. Nielsen, “Quantum computing for the very curious,” 2019.
[Online]. Available: https://quantum.country/qcvc

[31] IBM, “Qiskit,” 2020. [Online]. Available: https://qiskit.org/

[32] Qiskit, “Coding with qiskit,” 2019. [Online]. Available: https://www.youtube.com/
playlist?list=PLOFEBzvs-Vvp2xg9-POLJhQwtVktlYGbY

[33] S. Jordan, “Quantum algorithm zoo,” 2019. [Online]. Available: https:
//quantumalgorithmzoo.org/

[34] M. Tiepelt and A. Szepieniec, “Quantum LLL with an application to mersenne
number cryptosystems,” Cryptology ePrint Archive, Report 2019/1027, 2019. [Online].
Available: https://eprint.iacr.org/2019/1027

[35] T. Laarhoven, M. Mosca, and J. van de Pol, “Solving the shortest vector problem in
lattices faster using quantum search,” in Post-Quantum Cryptography, P. Gaborit, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 83–101.

[36] O. Regev, “Quantum computation and lattice problems,” CoRR, vol. cs.DS/0304005,
2003. [Online]. Available: http://arxiv.org/abs/cs/0304005

[37] G. Kuperberg, “A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem,” SIAM J. Comput., vol. 35, no. 1, p. 170–188, Jul. 2005. [Online].
Available: https://doi.org/10.1137/S0097539703436345

[38] O. Regev, “A subexponential time algorithm for the dihedral hidden subgroup problem
with polynomial space,” 2004. [Online]. Available: https://arxiv.org/abs/quant-ph/
0406151

https://doi.org/10.22331/q-2019-03-25-130
https://doi.org/10.22331/q-2019-03-25-130
https://github.com/jkrauze/ntru
https://cims.nyu.edu/~regev/teaching/lattices_fall_2004/
https://cims.nyu.edu/~regev/teaching/lattices_fall_2004/
https://math.stackexchange.com/q/124300
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.8669&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.8669&rep=rep1&type=pdf
https://www.udemy.com/course/qc101-introduction-to-quantum-computing-quantum-physics-for-beginners/
https://www.udemy.com/course/qc101-introduction-to-quantum-computing-quantum-physics-for-beginners/
https://quantum.country/qcvc
https://qiskit.org/
https://www.youtube.com/playlist?list=PLOFEBzvs-Vvp2xg9-POLJhQwtVktlYGbY
https://www.youtube.com/playlist?list=PLOFEBzvs-Vvp2xg9-POLJhQwtVktlYGbY
https://quantumalgorithmzoo.org/
https://quantumalgorithmzoo.org/
https://eprint.iacr.org/2019/1027
http://arxiv.org/abs/cs/0304005
https://doi.org/10.1137/S0097539703436345
https://arxiv.org/abs/quant-ph/0406151
https://arxiv.org/abs/quant-ph/0406151

39

[39] N. Howgrave-Graham, J. H. Silverman, A. Singer, and W. Whyte, “Naep: Provable
security in the presence of decryption failures,” Cryptology ePrint Archive, Report
2003/172, 2003. [Online]. Available: https://eprint.iacr.org/2003/172

[40] T. Pornin and T. Prest, “More efficient algorithms for the ntru key generation using
the field norm,” in Public-Key Cryptography – PKC 2019, D. Lin and K. Sako,
Eds. Cham: Springer International Publishing, 2019, pp. 504–533. [Online]. Available:
https://eprint.iacr.org/2019/015.pdf

[41] J. H. Silverman, Almost Inverses and Fast NTRU Key Creation, 1999. [Online].
Available: https://www.onboardsecurity.com/products/ntru-crypto/ntru-resources

[42] J. Hoffstein, J. Pipher, J. M. Schanck, J. H. Silverman, W. Whyte, and Z. Zhang,
“Choosing parameters for NTRUEncrypt,” in Topics in Cryptology – CT-RSA 2017,
H. Handschuh, Ed. Cham: Springer International Publishing, 2017, pp. 3–18. [Online].
Available: https://eprint.iacr.org/2015/708.pdf

[43] S. An, S. Kim, S. Jin, H. Kim, and H. Kim, “Single trace side channel analysis on
NTRU implementation,” Applied Sciences, vol. 8, no. 11, p. 2014, Oct 2018. [Online].
Available: http://dx.doi.org/10.3390/app8112014

[44] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and
coin tossing,” International Conference on Computers, Systems, & Signal Processing,
vol. 1, pp. 175–179, 1984. [Online]. Available: http://dx.doi.org/10.1016/j.tcs.2014.05.
025

[45] D. J. Bernstein, Post-Quantum Cryptography, D. J. Bernstein, J. Buchmann,
and E. Dahmen, Eds. Springer Berlin Heidelberg, 2009. [Online]. Available:
https://doi.org/10.1007/978-3-540-88702-7_1

https://eprint.iacr.org/2003/172
https://eprint.iacr.org/2019/015.pdf
https://www.onboardsecurity.com/products/ntru-crypto/ntru-resources
https://eprint.iacr.org/2015/708.pdf
http://dx.doi.org/10.3390/app8112014
http://dx.doi.org/10.1016/j.tcs.2014.05.025
http://dx.doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1007/978-3-540-88702-7_1

40

A Appendix

A.1 d Experiment Results for 100% Decryption Success

Rates

p = 3, q = 128 for all tests. The message used for encryption is one of polynomial degree 70.
The operation times are the average over 25 rounds. Tests that resulted only in decryption
failures are marked in red, those that resulted only in successes are marked in green, and
those that resulted primarily in failures throughout the full spectrum of possible d values
are marked in yellow. These tests were not repeated for 50% and 0% success rates as they
would produce the same results.

N df dg dr Key Gen-
eration
Time (sec)

Encryption
Time (sec)

Decryption
Time (sec)

167 83 83 16 5.394 0.265 0.267
167 83 42 36 5.360 0.268 0.261
167 83 1 83 5.299 0.275 0.265
167 42 83 18 5.620 0.266 0.261
167 42 42 36 5.682 0.273 0.263
167 42 1 83 5.598 0.275 0.262
167 1 83 17 0.475 0.237 0.046
167 1 42 38 0.401 0.240 0.043
167 1 1 83 0.322 0.126 0.042
167 83 16 83 5.358 0.274 0.263
167 83 32 42 5.323 0.267 0.258
167 83 83 1 5.378 0.202 0.263
167 42 15 83 5.629 0.272 0.258
167 42 33 42 5.708 0.274 0.266
167 42 83 1 5.687 0.170 0.264
167 1 18 83 0.369 0.240 0.045
167 1 38 42 0.411 0.243 0.045
167 1 83 1 0.470 0.138 0.043
167 1 83 83 0.489 0.261 0.054
167 1 83 42 0.474 0.251 0.045
167 83 83 1 5.412 0.196 0.261
167 1 42 83 0.383 0.249 0.042
167 4 42 42 4.994 0.270 0.260
167 83 42 1 5.417 0.172 0.262
167 83 1 1 5.270 0.177 0.263

41

167 83 1 42 5.320 0.274 0.264
167 83 1 1 5.306 0.166 0.264
251 125 125 16 12.242 0.597 0.59
251 125 63 28 12.222 0.606 0.592
251 125 1 125 12.027 0.615 0.587
251 63 125 16 12.967 0.594 0.593
251 63 63 34 12.925 0.608 0.58
251 63 1 125 12.686 0.608 0.586
251 1 125 17 0.806 0.525 0.062
251 1 63 33 0.728 0.524 0.067
251 1 1 125 0.603 0.306 0.069
251 125 13 125 12.107 0.608 0.585
251 125 31 63 12.172 0.606 0.581
251 125 125 1 12.164 0.354 0.581
251 63 15 125 12.779 0.604 0.583
251 63 31 63 12.901 0.606 0.584
251 63 125 1 12.890 0.408 0.582
251 1 16 125 0.690 0.533 0.074
251 1 35 63 0.592 0.526 0.057
251 1 125 1 0.784 0.296 0.059
251 1 125 125 0.924 0.582 0.105
251 1 125 63 0.725 0.565 0.064
251 125 125 1 12.182 0.420 0.588
251 1 63 125 0.733 0.563 0.078
251 1 63 63 0.794 0.546 0.074
251 125 63 1 12.171 0.410 0.581
251 125 1 125 11.965 0.608 0.582
251 125 1 63 11.973 0.605 0.582
251 125 1 1 11.842 0.433 0.578
347 173 173 14 23.482 1.104 1.110
347 173 87 29 23.341 1.127 1.102
347 173 1 173 23.056 1.153 1.113
347 87 173 15 25.170 1.103 1.110
347 87 87 31 25.125 1.133 1.112
347 87 1 173 24.770 1.150 1.107
347 1 173 16 1.683 0.987 0.098
347 1 87 35 1.235 0.994 0.098
347 1 1 173 0.965 0.529 0.094
347 173 15 173 23.454 1.156 1.113
347 173 32 87 23.306 1.146 1.105
347 173 173 1 23.299 0.704 1.094
347 87 13 173 24.831 1.140 1.101
347 87 32 87 24.914 1.140 1.103
347 87 173 1 24.932 0.604 1.099

42

347 1 14 173 0.963 0.980 0.088
347 1 35 87 1.127 0.988 0.099
347 1 173 1 1.480 0.507 0.092
347 1 173 173 1.278 1.100 0.165
347 1 173 87 1.404 1.073 0.138
347 173 173 1 23.308 0.724 1.095
347 1 87 173 0.957 1.070 0.103
347 1 87 87 1.103 1.052 0.100
347 173 87 1 23.231 0.716 1.096
347 173 1 173 23.515 1.176 1.132
347 173 1 87 22.859 1.137 1.099
347 173 1 1 22.747 0.705 1.105

A.2 d Experiment Results for 50% Decryption Success

Rates

N df dg dr Key Generation
Time (sec)

Encryption
Time (sec)

Decryption
Time (sec)

167 83 83 25 5.354 0.268 0.260
167 83 42 62 5.384 0.274 0.263
167 42 83 31 5.820 0.276 0.269
167 42 42 62 5.652 0.272 0.262
167 1 83 28 0.515 0.253 0.049
167 1 42 64 0.415 0.249 0.047
167 83 29 83 5.482 0.279 0.268
167 83 58 42 5.402 0.270 0.263
167 42 30 83 5.767 0.277 0.262
167 42 56 42 5.670 0.270 0.264
167 1 32 83 0.367 0.251 0.040
167 1 61 42 0.459 0.246 0.048
251 125 125 26 11.960 0.589 0.574
251 125 63 48 12.111 0.594 0.578
251 63 125 27 12.764 0.587 0.575
251 63 63 48 12.785 0.605 0.579
251 1 125 28 1.005 0.535 0.074
251 1 63 54 0.766 0.526 0.065
251 125 24 125 12.070 0.607 0.582
251 125 49 63 12.038 0.603 0.579
251 63 25 125 12.736 0.598 0.579
251 63 44 63 12.874 0.608 0.581
251 1 26 125 0.695 0.542 0.073

43

251 1 54 63 0.737 0.544 0.071
347 173 173 24 23.261 1.109 1.096
347 173 87 46 23.435 1.149 1.106
347 87 173 24 25.200 1.153 1.103
347 87 87 46 25.309 1.147 1.107
347 1 173 24 1.668 1.092 0.105
347 1 87 46 1.130 1.039 0.087
347 173 25 173 23.242 1.146 1.104
347 173 47 87 23.512 1.156 1.115
347 87 24 173 25.190 1.161 1.114
347 87 45 87 25.279 1.157 1.113
347 1 26 173 1.102 1.064 0.101
347 1 52 87 1.197 1.034 0.104

A.3 d Experiment Results for 0% Decryption Success Rates

N df dg dr Key Generation
Time (sec)

Encryption
Time (sec)

Decryption
Time (sec)

167 83 83 42 5.368 0.271 0.262
167 83 42 80 5.373 0.273 0.260
167 42 83 45 5.809 0.279 0.268
167 42 42 78 5.635 0.276 0.265
167 1 83 44 0.494 0.259 0.049
167 1 42 79 0.362 0.250 0.038
167 83 46 83 5.477 0.279 0.262
167 83 81 42 5.359 0.269 0.259
167 42 44 83 5.754 0.279 0.268
167 42 75 42 5.666 0.270 0.261
167 1 55 83 0.434 0.258 0.049
167 1 78 42 0.407 0.251 0.040
251 125 125 41 12.069 0.595 0.579
251 125 63 65 12.077 0.603 0.581
251 63 125 40 12.776 0.595 0.573
251 63 63 68 12.860 0.604 0.584
251 1 125 40 0.742 0.557 0.063
251 1 63 68 0.713 0.554 0.066
251 125 42 125 12.156 0.610 0.584
251 125 70 63 12.060 0.599 0.583
251 63 44 125 12.880 0.609 0.585
251 63 76 63 12.866 0.602 0.582
251 1 47 125 0.673 0.559 0.071
251 1 69 63 0.746 0.551 0.071

44

251 79 63 63 12.862 0.598 0.579
347 173 173 37 23.139 1.123 1.093
347 173 87 63 23.449 1.136 1.113
347 87 173 33 25.010 1.131 1.100
347 87 87 68 25.152 1.142 1.104
347 1 173 36 1.587 1.051 0.107
347 1 87 67 1.128 1.034 0.099
347 173 34 173 23.197 1.147 1.107
347 173 64 87 23.294 1.144 1.102
347 87 34 173 25.404 1.162 1.120
347 87 63 87 25.506 1.159 1.118
347 1 35 173 1.063 1.057 0.098
347 1 59 87 1.145 1.040 0.092

