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Abstract: 

Nowadays, the Internet of things (IoT) refers to the billions of devices, which are 

connected into networks to deliver advanced and intelligent services are spreading 

between government, industry, academic, and private parties. With Machine Learning 

techniques taking centre stage in today’s computer technology, significant efforts are 

made to integrate machine learning into the art and science of malware detection. Since 

Machin Learning approaches are effective technique and easy to implement, they are 

used on the purpose of reducing malware activities. 

The main purpose of this project is to classify malware network traffic of IoT devices 

from a given dataset into either malicious or benign and to investigate the performances 

of different Machine Learning classification algorithms with evaluation metric to 

identify the best machine learning techniques. 

The model is trained with a given data set, depends on the most popular Machine 

Learning classification algorithms that have successfully implemented in malware 

problems; which are, Random Forest, Support Vector Machine in three different 

variations and Logistic Regression. Feature Selection was maintained throughout the 

project, and the whole project was implemented using Python programming language. 
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Chapter 1: Introduction 

 

1.1 Preface 

Malware is a malicious software and is a threat to digital devices and cybersecurity. It is 

developed by cyber attackers to intrude or cause damage to the network system, usually without 

the victim’s knowledge. There are multiple different types of malware include viruses, 

spyware, ransomware, and Trojan horses [31]. According to Norton, a leading anti-malware 

software developer, a malware attack is when hackers design malicious software that can be 

installed in victims' devices without their knowledge. The main reason for that is to obtain 

access to private information or to destroy the device, mainly for financial gain. Malware 

attacks can happen on all kinds of machines and operating systems, including Microsoft 

Windows, macOS, Android, and iOS [ibid]. New research from leading market analysts, 

Juniper Research indicates that the expenses of data breach in 2020 will overreach $150 million 

[23]. In 2012, Saudi Aramco oil company exposed to one of the biggest cyberattack that 

affected on 30,000 of its Windows based machines, the process of recovery from the harm took 

around two weeks [4].  

Cyber-attacks is increasing year on year, therefore it is needed to avoid attacks by increasing 

the security of the network base and data information which could be achieved by using 

protected devices; such as, antivirus services, antispam devices, firewalls, IPS (Intrusion 

Prevention System), IDS (Intrusion Detection System). Anti-malware is software that protects 

digital devices and computer networks from malwares, by detecting malicious networks that 

are trying to interact with the devices and thereby preventing any intrusion by the malware. 

Anti-malware software requires a fast and accurate mechanism to detect malware in real-time. 

The market of Antivirus system is worth over $37 billion and achieved a high success by 

disclosing more than 350,000 bits of malware each day [22]. Machine Learning algorithms, 

with its advancement and its adoption in many aspects including computer science, has become 

widely popular in detecting abnormal network traffic with higher degrees of accuracy and 

adaptability in numerous situation and environment [33]. the development and application of 

machine learning techniques for malware detection will add a high security value due to its 

ability to maintain pace with malware evolution.  Machine Learning powered antimalware 

tools will assist in detecting modern malware attacks and produce better scanning engines [17].  
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This report covers the necessary exploration of network traffic data followed by discussion of 

the application of various Machine Learning classification algorithm in detecting malware 

from amongst a pool of malicious and benign network traffic data that captured from real IoT 

devices.    

 

1.2 Project Aim and Scope 
 

The main purpose of this project is to detect malware network traffic for IoT devices from a 

given dataset and to investigate the performances of different Machine Learning classification 

algorithms with evaluation metric to identify the best machine learning techniques. 

 

The project scope focuses on implementing and examine the performances of different 

Machine Learning Classification algorithms which can classify the Network traffic in training 

and testing set into either malicious or benign. The approach used in this project is 

implementing three different types of Machine learning algorithms with three different 

variations of one type. They are Random Forest, Support Vector Machine in three different 

variations (Linear kernel, RBF kernel, Sigmoid kernel) and Logistic Regression. All Machine 

Learning algorithms have been chosen based on their popularity and their successful used in 

malware detections.  The data set used is a given data set captured from real IoT devices. 

Since python is an essential and the most preferred language for machine learning task, All the 

implementation of the project will use python as programming language and will be 

implemented and tested on a MacOS device. More information will be disused later within 

implementation section.  

 

1.3 Intended Audience 
 

The intended audience and beneficiaries from this project are people who are interested or 

planning to be involved in research in the field of security application approaches build by 

Machine Learning algorithms especially in the field of malware detection on IoT devices. 

Moreover, it is beneficial for people who are interested in the application of statistical and 

mathematical models in security analysis. 
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1.4 Report Structure 
 

This report comprises of six sections marked as chapters as follow: 

• Chapter 1: introduces the project, its aims and objectives and the audience who may find it 

interesting.  

• Chapter 2: provides a short background of Machine Learning and various Machine Learning 

approach utilised for malware detection and measures for evaluating Machine Learning 

classifiers.  

• Chapter 3: discusses the requirements and design of the provided solution.  

• Chapter 4: provides an explanation on the implementation of various Machine Learning 

algorithms on using the specific dataset down to the coding level.  

• Chapter 5: presents the test cases that were undertaken to test the implemented solution.  

• Chapter 6: discusses the results of the Machine Learning algorithms utilised to solve the 

problem along with the Limitations of the approach taken. 

• Chapter 7: discuss potential future work that could be undertaken to improve the project 

• Chapter 8: concludes the main findings of the project. 

• Chapter 9: discuss the reflection on Learning gained from completing this project. 
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Chapter 2: Background Research 

 

2.1 Artificial Intelligence and Machine Learning 

Artificial Intelligence (AI) is a field of science that makes it possible for computer systems to 

learn from experience and perform human-like decision making tasks [1]. It simulates human 

intelligence processes for a wide array of activities, especially with vast size information. It is 

purpose built to process the information much faster than human capabilities and with a high 

degree of efficiency and accuracy [ibid]. 

Machine learning is a branch of Artificial Intelligence which comprises of diverse methods of 

data analysis that automates analytical model building, and it is one of the most active 

technique to achieve AI [ibid]. In 1959, the first scientist on the field of computer gaming and 

artificial intelligence, Arthur Samuel described Machine Learning as the “field of study that 

gives computers the ability to learn without being explicitly programmed” (Samuel 1959). He 

indicated that computers will learn from experience and will reduce the need for detailed 

programming effort [ibid]. Nowadays, the popularity of machine learning increased, and it 

became important in the area of extraction information from a large data set. The main purpose 

of machine learning is to predict future events that are unseen to the computer. Machine 

Learning approaches achieved by the collection of algorithms which utilised statistics and 

mathematics to find patterns in massive amounts of data where data can be numbers, words, 

image or click [44], Machine learning is the process that powers a wide range of today's 

services, as most industries in multiple fields are relying on machine learning technologies; for 

instance, financial services, health care, transportation, gas and oil, government, and retails 

[ibid]. Machine learning has the ability to offer for the organisation the opportunity to obtain 

leverage over other competitor companies, as different goals have been used, for example; in 

recommendation systems, most known companies like Netflix, YouTube, and Spotify use 

machine learning to predicts utility of items for every user. Moreover, in search engines like 

Google, machine learning has various aspects as it uses for pattern detection to help identifying 

spam or duplicated contents, also use to identify new signals [35]. Whereas voice assistant 

devices like Siri and Alexa, machine learning is the reason for the continues improvement in 

the ability of voice-activated user interface [18]. 
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Machine learning has a classification approach that extracts information from training datasets 

to use it for obtaining the categorisation of unseen data, as shown in Figure 2.1 [13].  

 

 

 

 

 

 

 

 

 

 

 

 

Classifiers are a specific family of Machine Learning algorithms that learns from the input data 

and then implements rules to classify observations into groups. It works by identifying specific 

features that help discriminate between observations. The process of the classification 

algorithm is to input the data and split it into two groups, one called training dataset and the 

other called validation/test dataset [44]. The training dataset is the one that is used by the 

algorithm to “learn” about the data, which is generally comprised of multiple variables, also 

called features. As a next step, classifiers use all or some of the features to understand the 

association amongst the variables; after that, rules will be generated to classify observations. 

The process of the classifier model is shown in figure 2.2. 

 

Figure 2.1: Machine Learning Flow  
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There are multiple Machine Learning classifiers exist, some of the most popular Machine 

Learning classifiers that is going to use in this project will be addressed in the following 

sections.  

 

2.1.1 Supervised vs Unsupervised learning 

There are several types of Machine Learning, Supervised and Unsupervised Machine Learning 

are mostly used based on the availability of the observations which are already labelled 

(classified) [26]. In a supervised learning model, the algorithm discovers the pattern and learn 

on a labelled data set, giving an answer key that algorithm can use to evaluate the accuracy on 

training data which is illustrated in Figure 2.3 [36]. Therefore, classification is a typical 

example of supervised machine learning. In contrast, unsupervised model provides unlabelled 

data that the algorithm tries to understand, by extracting features and patterns by itself. 

Example of a labelled dataset would be data containing network traffic information with each 

traffic marked as “benign” or “malware”. This dataset is suitable for a supervised Machine 

Learning algorithm, say a classifier, which learns the features that associate strongly with a 

particular class; therefore, it gains the necessary knowledge to classify a new dataset that is not 

labelled [39]. On the other hand, an example of a dataset suitable for unsupervised learning 

would be a similar dataset without explicitly labelling the observations as “benign” or 

“malware”. An unsupervised Machine Learning classifier can read this type of dataset and then 

classify the observations into some reasonable groups. It leaves the researcher with the task to 

further analyse the groups to understand what all features segregates the data into groups. For 

Figure 2.2: Process of Classification Model 
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the purpose of this project, Supervised Machine Learning will be utilised by applying 

classification methods [ibid]. 

. 

 

 

Figure 2.3: Working model of a supervised learning 

 

2.2 Existing Solutions 
 
Various malware detection techniques have been into existence for a long time; however, 

increasing diversification of malware and its subtypes has made it necessary to devise newer 

methods for better efficacy. In 2014, Ahmad and Salleh, has exhaustively dealt with botnets 

(malware), their history and issues facing rapid growth of botnet techniques [25]. They have 

discussed the use of mathematical algorithms for anomaly detection which involves Decision 

Trees, Clustering, Correlations and Neural Networks to create an artificial immune system 

around computer networks to prevent any malicious attacks from botnets [ibid]. Combinations 

of these statistical and machine learning algorithms created a hierarchical alarm signal to detect 

suspicious activities across the network. Similarly, in 2019, Lim, Kim, Hong and Han 

published a paper on Payload‐Based Traffic Classification Using Multi‐Layer LSTM in 

Software Defined Networks [28]. They proposed a traffic classification system by utilising a 

deep learning model in software defined networks. The authors trained two deep learning 

models: 1) the multi‐layer long short‐term memory (LSTM) model and 2) the combination of 

convolutional neural network and single‐layer LSTM models, to execute network traffic 

classification. They also executed a model tuning approach to find the perfect hyper‐parameters 

of the two deep learning models. They showed the advantage of the multi‐layer LSTM model 

for network packet classification [ibid]. Moreover, Machine learning model has been widely 

used in other aspects of malware detection such as web-attacks. In 2014, research by 

ElBachirElMoussaid and Toumanari had successfully improved web application security by 
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utilising intrusion detection systems and scanners based on machine learning and artificial 

intelligence approaches [15]. 

Based on the success of earlier work, it would be used to build a machine learning model to 

detect malware network traffic from IoT devices. This project has considered various 

techniques explored by researchers in the past. However, the approach of this thesis is to solve 

the problem by implementing the most popular classification model for detecting malware 

traffic from a different group of machine learning algorithms (Tree à Random Forest, Kernel 

à Support Vector Machine, Function à Logistic Regression). Also, it considers three 

different variations of Support Vector Machine, which are, Linear kernel, RBF kernel, Sigmoid 

kernel. Another difference is that the developed solution will include classifiers performances 

evaluation with the combined result and will focus on comparing the performance of the given 

classifiers to decide the best model produced. Moreover, Random Forest classification was 

firstly chosen among the rest classifiers, due to the studies it proves the suitability in multiple 

fields such as malware detection, and it also prevents overfitting. 

 

2.3 Machine Learning approach to malware detection 

Malware detection is considered as a binary classification task, where in this project, Malicious 

network traffics are treated as (1), and benign network traffics as (0). Therefore, Machine 

Learning techniques and statistical approaches are utilised to build classifiers that will be 

trained using labelled training data that consist of network traffic captures packets and labels. 

As recommended by Hyo-Sik Ham and Mi-Jung Choi, some of the most popular Machine 

Learning classification algorithms that are used for malware detection are Random Forest, 

Support Vector Machine, Logistic Regressing [21]. Each one of the classifiers mentioned 

above is further discussed in the upcoming sections.  

2.3.1 Random Forest Classifier 
 

Random Forest is a supervised learning algorithm which uses decision tree-based classification 

as well as regression algorithms to evaluate a massive number of decision trees (known as 

forest) generated randomly from the data [7]. It takes the predictions from various trees and 

then selects the best by means of a voting mechanism, as shown in Figure 2.4 [27]. Random 

Forest algorithm also generates variable importance. There are two ways to the importance 

ofeach variable in the random forest. Firstly, by calculating how much the accuracy decreases 
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when the variable excluded. Secondly, by measuring the decrease of Gini impurity when a 

variable chose to divide a node [ibid]. After training the Random Forest classifier, it can predict 

the labels of a new dataset which has the same set of features as the training data set [ibid]. A 

well calibrated model can have a high degree of accuracy in generating predictions on the new 

dataset.    

 

 
Figure 2.4: Voting mechanism in Random Forest algorithm 

 

2.3.2 Support Vector Machines 
 

Support vector machines are a strong classification algorithm extensively used for 

classification problem in wide fields and achieved successful rate [24]. The main task of a 

Support Vector Machine is separating the data into groups using a boundary called a 

hyperplane. Hyperplane can be linear or non-linear depending upon how the data is distributed 

in the dimensional space [29]. In a binary scenario, where the labelled dataset contains two 

classes; for example, benign and malicious, the algorithm generates a boundary to separate the 

two from each other. Data that are really close to the hyperplane are called support functions, 

they represent the hard-to-classify cases and they have a direct bearing on the optimal location 

of the hyperplane. Optimum location of a hyperplane is determined by minimising the distance 

of the points from the hyperplane; this distance is called margin. A good margin is one where 
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this separation is larger for both the classes. The reason behind choosing the hyperplane with 

the largest margin is because it makes the classification right for testing data that are close, but 

not similar to the training data [ibid]. Figure 2.5 depicts the hyperplane and margin in simple 

terms.  

There are different mathematical sets of Support Vector Machine algorithms that are defined 

as the kernel. The purpose of the kernel is to take data as input and convert it into the required 

form. [41] Different SVM uses different kernel functions; an example of kernel used in this 

project are, Linear kernel, Radial Basis Function kernel (RBF), Sigmoid kernel [ibid]. 

 

  

 

 

 

 

 

 

 
 

 

 
 

2.3.3Logistic Regression: 

Logistic regression is a suitable regression analysis to handle when the dependent variable is 

dichotomous (binary) [44].  It is also a supervised learning model as it needs a pre-labelled 

outcome variable which takes binary values like 1 and 0 or Yes and No. Logistic regression is 

essentially a linear regression of odd ratios. An odds ratio is a statistic that quantifies the 

strength of the association between two events, A and B. Events are packet lengths >10 and 

<=10, or origin bytes > 50 bytes and origin bytes <=50 bytes [ibid]. Logistic regression uses a 

Figure 2.5: Support Vector Machine 
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sigmoid function to map the independent variables with the dependent variable via the odds 

ratio, as shown in Figure 2.6 [27]. 

.  

 

 

 

 

 

 

 

 

 

 

2.4 Learning Evaluation 
 
This section will include the evaluation technique for evaluation the performance of machine 

learning model. 

 

2.4.1 Confusion Matrix 
 

There are various formal metrics and tools to assess model performance.  A confusion matrix 

is a table that indicates how successful is the classification model by summarising the 

prediction results. Confusion matrix outcomes are: 

 

•    True positive (TP) is a result of the model when it correctly predicts the positive class 

•    False positive (FP) is a result of the model when it incorrectly predicts the positive class.  

•    True negative (TN) is a result of the model when it correctly predicts the negative class 

•    False negative (FN)mis a result of the model when it incorrectly predicts the negative class 

 

The above four measures are reviewed in a table that shows how successful is the classification 

model's in predicting the outcome; that is, the correlation between the label and the model's 

classification [44]. The label on one axis of a confusion matrix table is model prediction and 

the other axis is the actual label. The size of the confusion matrix table is NxN, where N 

Figure 2.6: Shape of sigmoid function 
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indicates the number of classes; for example, in a binary classification problem, N=2 [ibid]. 

Figure 2.7 shows the confusion matrix for a binary classifier. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.4.2 performance Indicator:  

 
A good performance indicator from the confusion metrics will rely on having small numbers 

in the off-diagonal element and large numbers in the diagonal elements. The confusion metrics 

are used by different evaluation metrics; for example, Accuracy, Recall, Precision, F1-score 

and AUC to measure performance [8]. The evaluation metrics are described individually in the 

following list: 

 

Accuracy: indicates the total percentage of correct prediction and it is given by the number of 

correct classification example divided by the total number of classified examples. In the term 

of the confusion metrics, it is given by:  

 

 

the best accuracy value is 1 and the worst is 0 [ibid].  

 

 

 

Figure 2.7: Confusion matrix for binary classifier 
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Precision: defined as the number of correct predictions returned by the machine learning 

model. It is the ratio of correct positive predictions to the overall number of positive examples 

in the dataset and it can be calculated by confusion metrics with the help of following formula: 

 
 
 
 
 
Recall: defined as the number of classifiers to find all the positive instances. It is the ratio of 

correct positive predictions to the overall number of positive examples in the dataset and it can 

be calculated by confusion metrics with the help of following formula: 

 

 
 
 
 

F1 score, also known as F-score or F-measure. It is the average of the combination of Precision 

and Recall. Thus, this score takes into account both false positives and false negative. 

Intuitively, F1 is more useful than accuracy with an uneven class distribution. In other words, 

accuracy works better if false positives and false negatives cost the same. If they are different, 

it’s more accurate to consider both Precision and Recall [ 10]. It can be calculated by confusion 

metrics x with the help of following formula: 

 

 

 

 

AUC is the area under the ROC curve:  

ROC is a graph representing the performance of a classification model in all thresholds. It uses 

a combination of true positive rate as recall and false positive rate (the proportion of negative 

example predicted incorrectly). More area under the ROC curve (AUC), the better the 

classifier. Figure 2.8 illustrates the ROC curve and the AUC [8].  
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2.5 Python Machine Learning Libraries: 

This section will cover the tool used for the development of the project. Since python 

programming language will be used throughout the implementation step of this project, 

research on supporting libraries for Machine Learning had to be taken [23]. Python is 

considering as a high-level programming language that grants user to focus on the important 

function rather than programming tasks. The simple syntax rules make it easier to keep the 

code readable and maintainable. Moreover, different open sources specified for machine 

learning libraries are included with Python, which will be utilised in essential areas of the 

project involving in the data analysis process, prototyping and evaluation [ibid]. There are 

several libraries used in the project; such as Panda, NumPy, Scikit-learn, Seaborn, Matblotlip 

libraries, and Brothon as a package. 

Pandas is a Python library used mainly for data manipulation and analysis. It employed before 

the data set is developed for training. Pandas make tasks with time series and structured data 

smooth for machine learning programmers [37]. Panda will also be used to create a panda data 

Figure 2.8: The area under the ROC curve (shown in grey) 
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frame with a tabular data structure (rows and columns). NumPy is another essential package 

that provides useful features and offers speedy computation and execution of complicated 

functions working on arrays. Also, it handles multi-dimensional data and provides 

mathematical operation. On the purposes of this project, Scikit-learn will be utilised, which is 

an actively used machine learning library for Python. It includes simple integration with 

different machine learning programming libraries like NumPy and Pandas to provide an easy 

and useful system [ibid]. Also, it includes essential and helpful methods for machine learning; 

for example, splitting data and measuring performance. Moreover, Brothon package was used 

to process and analyse a Bro IDS data [45]. Finally, Seaborn and Matplotlib both libraries used 

to visualise attractive graphs and to apply for statistical purposes [42]. 

 

2.6 Research Questions 
 

Aims 

The main purpose of this project is to classify malware network traffic of IoT devices from a 

given dataset into either malicious or benign and to investigate the performances of different 

Machine Learning classification algorithms with evaluation metric to identify the best machine 

learning techniques. 

 

Research questions 

To demonstrate the achievement of the stated aims, this project will explore common 

techniques employed to detect malware traffic by implementing the most appropriate Machine 

Learning classification algorithms and applying suitable evaluation metrics to evaluate the 

classifiers and to decide the best model. 
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Chapter 3: Specification and Design 

 

For a successful constructed design, it is essential to select and design the main components 

that need to be considered when implementing the solution. Therefore, this chapter of the report 

will explain the design of the implemented solution to be developed. Moreover, software 

requirements specification and initial plan of the design will be discussed. Also, it will review 

the system design and the methodology of this project. 

 

3.1 Software Requirement Specification 
 
Software requirement specification considers as a foundation of every system design. It helps 

to reduce cost and time of the project as well as it helps in evaluating the success of the result. 

In this project, the Software Requirements Specification contains functional and non-functional 

requirements illustrate as follow: 

 

3.1.2 Functional Requirements 
 

The most important functional requirements are defined in the following list,  

 

Data Type: The System must take network traffic data from the bro log file as an input with 

their labels and classify them into malicious or benign.  

 

- Bro log files which is a specific file format “conn.log” obtained from the Zeek software 

are required for the system for training and testing the classifiers (more details of Bro 

log file will be included in chapter 4). Therefore, the system will get the data from the 

user input by specifying the directory of the data file.  

 

Data flows through the system:  The system must pre-process the given raw network traffic.  

 

- Once the data import is successfully completed, which contains categorical (object), 

numeric (int64), and datetime64 type of values, pre-process step will take place to 

output a clean data with only numeric values to prepare the data for the classifiers. The 

next step will take place is feature selection to choose suitable features for each 

classifier.   
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Algorithms: The system must provide three different classification algorithms with three 

different variations of one of the provided classifiers.  

 

- The system will have in total of five different classification algorithms. The classifiers 

available are Random Forest, SVM Linear Kernel, SVM RBF Kernel, SVM Sigmoid 

Kernel and Logistic Regression.  

 

Evaluation: The system must allow evaluating trained classifiers to identify the best 

performing model.  

 

- The system will present the results from calculating the Accuracy, Precision, Recall, 

F1 score and AUC of the Classifier for each training and test set. 

 

 

3.1.3 Non-Functional Requirements 
 
The non-functional requirements are defined in the following list: 

 

• Reliability: 

-The system will have no errors and will be available to use all the time. The performance 

indicators that will be provided are accuracy, precision, recall, F1 score, AUC and confusion 

matrices which are also indicators of reliability. 

 

• Usability: 

- The project will implement three models to be used for classification.  

- The introduced models will be trained with pre-labelled collected data. 

- These models will be evaluated using a test set from the collected data.  

 

• Speed: 

- Pre-processing the datasets, creating the classifiers, testing and evaluating the classifiers 

should be reasonably quick.  

 

 

• Size: 

- The size of the system will not exceed 1000 megabytes; hence the system will have a small 

impact on computer memory since the data set used are vast.  
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• Re-usability:  

- The implementation of the project is divided with multiple modules that can be reusable in 

other projects or systems. 

-All models are taking column features from a panda data frame, and most type of files like 

CSV, Pcap and Bro log files can be saved as a panda data. Therefore, these models can be used 

in a different project with a different type of files. 

 

3.2 System Plan:  
 

The produced system will be implemented based on the given data set from the Stratosphere 

Laboratory [40]. The data set called CTU-IoT-Malware-Capture-1-1 contains 539465 

Malicious network traffics out of 1008740 IoT network traffics. The system will mainly 

classify these networks traffic depends on its labelled, 0 for benign and 1 for malicious traffic. 

The implementation of the project will be done using Python Programming Language and the 

script will be written in one Jupyter notebook file called MLForClassifiyingNetTraffic.ipynb 

This file will consist of sections that work sequentially to feed into the next or acts as a 

standalone module to be reused elsewhere in the program. There are five sections within 

MLForClassifiyingNetTraffic.ipynb file and they are as follow: 

 

1-    loading Bro log file: read the file from the directory 

2-    Exploratory Data Analysis (EDA): which is an approach to analyse data sets and 

conclude their main attributes. 

3-    pre-process data which prepare data for the machine learning classifiers  

4-    machine learning models (classifiers) contains three main models Random Forest, 

Support Vector Machine, Logistic Regression and with three different variations of 

SVM which are SVM Linear Kernel, SVM RBF Kernel, SVM Sigmoid Kernel.  

5-    Evaluation which contains the critical role in providing performance indicators 

 

3.3 System Design:  
 
In order to understand the structure and behaviour of the developing solution, a model of the 

Unified Modelling Language (UML) diagram is used. This approach helps to visualise the 

architecture design of the implemented code and understand its functions. The two diagrams 
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used are user case diagram and activity diagram. Also, the provided diagrams can be used for 

future work to implement the solution delivered as a software system that allows user 

interaction. 

Figure 3.1 shows a user case diagram that represents the possible implemented models that 

used as a solution for this project. The five available options involve three different classifiers 

model with three different variations of one of the models. All classifiers are as follow, 

Random Forest, SVM Linear Kernel, SVM RBF Kernel, SVM Sigmoid Kernel, and Logistic 

Regression.  

 

 

 

 

 

 

 

 
 

Moreover, figure 3.2 illustrates the approach includes behaviour aspects of the implemented 

solution as an activity diagram. The flowchart below contains the steps taken after loading the 

data to the script, which are; read data, exploring data (EDA), and pre-process for the 

classifiers. Pre-process data involves multiple steps which are; split the data into training and 

test set, feature selection for each model depends on the model type and classify the data as 

malicious or benign by using available classifying models. Finally, after predicting the test 

data, the evaluation metrics process will take place by using different approaches to calculate 

the result and compare it with the outcome of different classifiers.  

Figure 3.1: User Case Diagram 
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3.4 Development Methodology:  
 

Due to the constrained time, where the solution framework must be created and tested, a 

development strategy must be followed to deal with the development and evaluating to ensure 

that all deliveries were achieved by the end of the project and to deliver optimal project result. 

In this project, Agile Software Development strategy has been decided to be the appropriate 

technique and was utilised during implementation and testing stage. With this strategy, the task 

could be broken down into smaller task called iteration. Whenever each iteration completed, 

the work product display to the customer. There are various reasons for adopting Agile 

methodology over other techniques in this project. Firstly, Agile allows requirement changes 

at the start or during the plan as the project is on moderate to high risk of changes due to the 

high dependency on the data set provided. Agile is a suitable method because it will allow 

editing, modifying or even changing the requirements during the project without losing the 

entire task. Secondly, a working software will be conveyed considerably quicker and 

successive iterations can be achieved frequently and display to the customer at a consistent 

pace which will gain customer satisfaction. Finally, feedback will be received from the client 

and can modify the project in the next iterations. Although Agile is a more cooperative 

Figure 3.2: Activity Diagram of Software System 
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approach with a team, planning it was easier for me with a single developer. I followed the 

methodology by breaking down assigned tasks, arranging the task based on the priority, 

considering feedback that received from the supervisor on each meeting, and finally by setting 

the planned objectives and adapt to the changing of the work to achieve the task within the 

given frame time. Following is the list of four iterations that have been used in order to 

accomplish this project. Each iteration involves goals and deliverables.  

 

•    Iteration one:  loading, parsing and exploring the data set provided. The deliverable from 

this iteration was pre-processed dataset that can be used in classification models.  

 

•    Iteration two: focus on implementing the three classifiers and with three variations of one 

of these classifiers and allow them to be trained and tested with the previous data set. The 

deliverable of this iteration was to produce in a total of five classifiers that are able to be trained 

and tested.  

 

•    Iteration three: focused on selecting features for model training. The deliverable from this 

iteration was selecting the features by using suitable feature selection methods; for example, 

feature importance and recursive feature elimination functions.  

 

•    Iteration four: focused on creating a range of different evaluation to calculate the result of 

each classifier and decide the best model. The deliverable from this iteration was comparing 

evaluation metrics for every machine model. 
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Chapter 4 Implementation:  

 

This chapter will explain the implementation part along with the code. 

 

4.1 Project Structure  
 

To make the malware detection framework easy to debug and reader-friendly, one modular 

structure has been implemented which contain multiple sections as discussed in previously. 

Python version 3.7 is used, since python is a powerful programming language and accessible 

most developers use it as the primary language for data science project [23]. It allows 

developers to focus on the machine learning aspect rather than programming the task due to its 

ability to build complex task quickly [ibid]. Moreover, program script is written in Jupyter 

notebook as it is a handy and flexible tool, where all documentation, execution of the code, 

observation of output and visualization of the result can execute in one file. Also, each section 

works independently; thus, this has the ability to test a specific block without running the code 

from the start as it will ease the access to particular functions. 

 

The six sections demonstrated and discussed as follow: 

1 Reading Bro log file: load the file from the path directory  

2 Exploratory Data Analysis (EDA) which is an approach to analyse data sets and 

conclude their main attributes. 

3 pre-process data which prepare data for the machine learning classifiers  

4 machine learning models (classifiers) contains three models; Random Forest, Support 

Vector Machine, which consists of three variations and Logistic Regression. Also, it 

includes feature selections.  

5 The Evaluation which contain the important rule in providing performance indicators  

 

4.2 Dataset used 
 

The dataset used in the analysis is labelled malware botnet dataset consisting of a mix of benign 

and malicious network traffic data. The data set is downloaded from the Stratosphere 

Laboratory, AIC group, FEL, CTU University Czech Republic [40]. The IOT-23 dataset 

contains 20 captures of malware executed in IOT devices. Each file consists of the original 
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packet capture file of network traffic in .pcap format which is converted in Bro log file (Netflow 

format) by the providers using Zeek/Bro software [ibid]. Zeek software is an open-source 

network traffic analyser uses for security matter to detect all traffic on a link in-depth to hunt 

any suspicious activity. Additionally, Zeek features a wide range of traffic analysis tasks not 

only on the security domain; like performance measurements and use in troubleshooting [11]. 

Suspicious files are manually detected by analysts and are labelled malicious.  The Bro log file 

used in this analysis is under “CTU-IoT-Malware-Capture-1-1” folder and it consists of 

1008739 network traffic and with size of 148.3 MB. 

 

4.3 Data Preparation & Processing 
 
This section details the process of ingesting the dataset from physical memory of a computer 

to Python environment for processing and analysis.  

 

4.3.1 Data ingestion 
 

The first step towards data analysis is fulfilled by importing the dataset from the sources into 

the analysis tool. The dataset used for analysis is in a specific file format called “conn.log” 

which is obtained from the Zeek software. Specific Python package named “Brothon” is used 

to parse the bro log files. The Brothon package supports the ingestion, processing, and analysis 

of Bro IDS data with Python. BroLogReadere( ) is a specific function within Brothon package 

it will take the conn.log file as an argument, and it will be converted to a data frame using 

panda for further analysis. The code snippet used to read the conn.log file and to convert it to 

a data frame is shown in Figure 4.1. 

 

 
 
 
 

Figure 4.1: Reading and Converting Bro log File to Pandas Data Frame 
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4.3.2 Data description 

For the purpose of this project, the Network traffic data set was given with labelled contains 

21 columns of data with each column consisting of a header and 1008748 rows. Each column 

of the log file contains valuable information about the captured network traffic. Description of 

the columns of Bro log file is summarised in Table 4.1. 

 

 

Field  Type  Description 

ts time Timestamp 

uid string Unique ID of Connection 

id.orig_h addr Originating endpoint’s IP address (AKA ORIG) 

id.orig_p port Originating endpoint’s TCP/UDP port (or ICMP code) 

id.resp_h addr Responding endpoint’s 

IP address (AKA RESP) 

id.resp_p port Responding endpoint’s TCP/UDP port (or ICMP code) 

proto transpor

t_proto 

Transport layer protocol of connection 

service string Dynamically detected application protocol if any 

duration interval Time of last packet seen – time of first packet seen 

orig_bytes count Originator payload bytes; from sequence numbers if TCP 

resp_bytes count Responder payload bytes; from sequence numbers if TCP 

conn_state string Connection state (see conn.log:conn_state table) 

local_orig bool If conn originated locally T; if remotely F.  

local_resp bool If conn responded locally T; if remotely F.  

missed_bytes count Number of missing bytes in content gaps 

history string Connection state history (see conn.log:history table) 

orig_pkts count Number of ORIG packets 

orig_ip_bytes count Number of ORIG IP bytes (via IP total_length header field) 

resp_pkts count Number of RESP packets 

resp_ip_bytes count Number of RESP IP bytes (via IP total_length header field) 

tunnel_parents 

label detailed label 

set If tunneled connection UID of encapsulating parent (s) labelled 

as Benign or Malicious after physical examination 

Table 4.1 Columns Description of all Bro Log File 
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To take into consideration, not all 21 columns are used in the analysis because some of them 

are not related and some of them contain no entry. According to Eirini Anthi study on Intrusion 

Detection, feature that represented identifying properties were removed; for example, source 

IP addresses, time [14]. Therefore, in this project elimination process of some columns is 

needed before starting the implementation. Removed features are listed below with the 

specifying the reason:  

 

• Tsà the timestamp of each network traffic is not related, while duration is related  

• Uidà Unique ID Used for identifying 

• Id.org_h, id.org_p, id.resp_h, and id.resp_p à They all categorical values used for 

identifying  

• Service, local_orig, local_resp, missed_bytes à have no entry for all rows 

• History à it contains categorical values (return 13 types of the state history of 

connection). Also, it is not related. 

• tunnel_parents label detailed label à this column contains malicious and benign as a 

string and it has converted to a new column called mal_flag which contains 1,0. (more 

detail will be disuses in data cleaning and pre-processing section). 

 

There are in total of nine features remaining for the analysis. Table 4.2 lists all the remaining feature 

with more details about their functionalities [12]. All remained features have been cleaned and pre-

processed to be ready for classifiers; detailed steps will be illustrated in the upcoming section (4.3.3 

data cleaning and pre-processing). 

 



 34 

Feature 
Column 

Name 
Functionality 

Protocol proto The transport layer protocol. 

Duration duration  Time period of the connection lasted  

Original byte orig_bytes The amount of payload bytes that have been received 
from the originator 

Responded byte  Resp_bytes The amount of payload bytes that have been received 
from the responder 

Conn State conn_state Possible values of connection state. Refer to [12] for 
more detailed information 

Original Packet orig_pkts The number of packets that have been received from the 
originator 

Respond Packet Resp_pkts The number of packets that have been received from the 
responder 

Original IP Byte orig_ip_bytes Number of IP level bytes that have been received from 
the originator  

Respond IP 
Byte  

resp_ip_bytes Number of IP level bytes that have been received from 
the responder 

 

 

4.3.2 Exploratory Data Analysis  
 
Exploratory Data Analysis is a numerical detective work to gain a more in-depth understanding 

of the data using tables and charts drawn from the data [20]. The need of EDA was essential 

due to the lack of information about how the data set was labelled since it labelled manually 

by the developers. This section will discuss and show several summary statistical and graphical 

representation of variables.   

• Sample size: Number of records in the dataset is 1008748 with 2 distinct labels – Benign 

and Malicious comprising 46.5% and 53.5% of rows respectively. Composition of the data 

by labels is shown in Figure 4.2.  

Table 4.2 Columns Description of used feature in Bro Log File 
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• Variable type (categorical or numeric) identification: Python’s Pandas’ info method is 

called to get the data type information for the imported Bro log file. Figure 4.3 in Data 

Description section summaries the data type of the raw file. 

• For Validation purpose, the number of null values was checked to make sure there are no 

missing values. Figure 4.3 shows all columns in Bro Log file have 1008748 non-null 

values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Data composition by traffic type (label) 

Figure 4.3: Data type of the bro log columns 
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• Distribution of the variables: In this section, a frequency-based approach has been utilized 

to understand the distribution of a variable across the spectrum of values it takes. 

 

1.    Distribution of variable duration:  the duration of most of the network traffic has been 0, 

and the ones with non-zero durations are mostly centred around 2-3 seconds. Thus, the variable 

is highly skewed towards the right with peaks at 2-3 seconds. Moreover, a higher proportion 

of Benign traffics are of non-zero duration than Malicious. However, most of the malicious 

traffics have duration in the range of 2-3 seconds. The distribution is shown in Figure 4.4. 

 

 
 
 

2.    Distribution of original bytes transmitted from the source: Around 90% of the source 

transmitted 0 bytes. Among sources transmitting greater than 0 bytes, fairly equal proportion 

of traffic transmitted between 1 and 200 bytes as shown in Figure 4.5. 

 

Figure 4.4: Distribution of duration 
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3.    Distribution of respond bytes:  in most of the traffic’s respond bytes are 0. However, among 

traffic respond bytes greater than 0, benign traffic witnessed respond bytes between 1 and 50 

while malicious traffics are with respond bytes ranging between 1 and 8991 bytes, as shown in 

Figure 4.6. 

 

 
Figure 4.6: Distribution of respond bytes (resp_bytes) 

 

 
 
 
 
 
 
 

Figure 4.5: Distribution of original byte (orig_bytes) 
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4.    Distribution of original packets: Most of the traffic transmitted between 0 to 1 packet, 
however, traffic transmitted between 2 to 60 packets are mostly malicious. The distribution of 
original packets is shown in Figure 4.7. 

 

 
Figure 4.7: Distribution of original packets transmitted (orig_pkts) 

5.    Distribution of respond packets: Among traffic with non-zero respond packets, benign 

traffic had single respond packets while malicious traffics have respond bytes between 1 and 

75. The distribution of respond packets is shown in Figure 4.8. 

 

 

Figure 4.8: Distribution of respond packet (resp_pkts) 
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6.    Distribution of original IP bytes: most of the benign traffic carries original IP bytes between 

25 to 50 bytes whereas most of the malicious traffic carries original IP bytes of 50 to 75 bytes 

followed by bytes in the range of 175 to 200. The distribution of original IP bytes is shown in 

Figure 4.9. 

 

Figure 4.9: Distribution of original IP bytes (origin_ip_bytes) 

7.    Distribution of respond IP bytes: almost 90% of data (containing both benign and malicious 

traffic) bears 0 respond IP bytes, a small portion of malicious traffic has respond bytes between 

0 and 50 and between 200 and 9415. Benign traffic with non-zero respond IP bytes have range 

between 50 and 100. The distribution of respond IP bytes is sown in Figure 4.10. 

 

Figure 4.10: Distribution of respond IP bytes (resp_ip_bytes) 
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The conclusion from EDA: 

Summarising the observations from various stages of the EDA leads us to draw the following 

conclusion: 

• Data counts shown in Figure 4.3 shows that there are no missing value in the dataset 

across all the columns 

• Dataset contains a mix of categorical and numeric (continuous and discrete) variables 

• Most of numeric variables are skewed towards the right (higher value, away from 0) 

• Distribution of the numeric variables, like duration, origin_ip_bytes, resp_ip_bytes, 

resp_pkts, orig_pkts indicates that the data is non-normal and is not likely to follow any 

standard theoretical distribution 

• Distribution of the numeric variables (duration, origin_ip_bytes, resp_ip_bytes, 

resp_pkts, orig_pkts) shows that malicious traffic and benign traffic has clear 

distinction across all numeric features of the dataset and hence could be employed in 

training the Machine Learning classifiers. 

 

4.3.3 Data cleaning and pre-processing 
 

An integral part of data analysis is to perform data cleaning and transformation to ensure the 

data is ready for further use. The prime objective of the project is to utilize the dataset for 

Machine Learning algorithms to be able to detect the labels accurately so that it can be used in 

real-time malware detection. In that regard, it is important to validate the accuracy of the data, 

de-duplicate columns (if any), handle and treat blank values, reformat values to useful data 

format and check the threshold values of the numeric fields. Data cleaning and transformation 

steps are discussed here. 

 

• Cleaning label column: The columns contains three types of labels as shown in Figure 4.11, 

Data label “(empty)  Malicious   C&C” is heavily underrepresented and this project is not 

considering different types of malicious file; therefore, it has been removed from the 

dataset. 
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Figure 4.11: Constituents of the label column 

 

• Cleaning columns “orig_bytes” and “resp_bytes”: these two columns contained “-” in place 

of 0. As per convention, these columns are numeric in nature (integer); Thus, “-” needs to 

be replaced by 0 to preserve the integrity of the column in Pandas data frame. The code 

shows in Figure 4.12. 

 

• Data transformation: there are three different data transformation instances in this project. 

 

 

1- Label column is converted from string “Benign” and “Malicious” to 0 and 1. This 

conversion process achieved by using labelEncoder( ) function, which converts labels into 

numeric from as shown in figure 4.13. This function is available with SciKit-learn library 

in Python [37]. 

 

2- Continues numeric fields are converted to group data (quantization) using quantile-based 

partitioning (binning) to increase the efficiency of the classification algorithms such as 

Random Forest, Support Vector Machine and Logistic Regression [5]. Figure 4.14 shows 

the conversion of continues numeric variables. 

Figure 4.13: Label encoding to convert Benign to 0 and Malicious to 1 

Figure 4.12: Replacing - with 0 

Figure 4.14: Conversion of continuous variables 
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3- Duration appears in timedelta (different from a reference time) format in Bro log files; 

therefore, it has converted into comprehendible format such as seconds as shown in Figure 

4.15. 

4- Creating dummies variable to convert categorical values to numeric by using 

get_dummies() function, which is one of OneHotEncoding methods in python. This 

function takes an input with type object(categorical) and returns a vector for each unique 

value of the categorical column. OneHotEncoding method is used for the features ‘Proto” 

and “conn_state”  as shown in Figure 4.16 

 

4.3.4 Train and Test Split 
 
Machine Learning is built on the premise that it trains (learns the pattern) itself on a dataset 

known as training dataset and then makes predictions on another dataset, commonly known as 

test dataset. The training dataset is usually more extensive than the test dataset, so that it 

satisfies the statistical test and avoid fluctuations of sampling. Both the training and the test 

dataset should have similar statistical properties. Train-test split is done to ensure that the 

model works with considerable accuracy even on unseen data.  

There are three Machine Learning algorithms with three different variations of one model in 

this project,  a test dataset with 25%  size of the sample is chosen for all the models. Train-test 

split is achieved by Sci-Kit learn’s  train_test_split method from model_selection package. The 

code snipped to obtain this task is shown in Figure 4.17. 

Figure 4.15 Time Conversion 

Figure 4.16 Dummies variables Conversion 
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4.3.5 Feature Importance and Feature Selection 
 
The process of scoring the features to understand its relative importance amongst a large 

number of features is known as feature importance. It ensures that the dimensions (features) 

are reduced without losing any significant information from the data.  Feature selection enables 

the classifiers model to perform faster training, reduces complexity, eases the interpretation, 

and improve accuracy. 

 

This project involves two different feature importance and selection algorithms, one using 

Random Forest algorithm and the other using recursive feature selection.  

Sci-kit learn’s Random Forest has a property called feature_importances_ function which used 

for Tree-based classifiers. It returns an n-dimensional array with normalized importance score, 

the position of an item in the array follows the index of the feature list [3]. Random Forest 

based feature selection is shown in Figure 4.18. Also, in the upcoming chapter “result and 

discussion” the result of this process will be discussed in more details.  

Another powerful feature selection by feature elimination process is Recursive Feature 

Elimination (RFE). It uses an estimator that allocates weights to features (in this case 

coefficients of logistic regression), the objective of recursive feature elimination algorithm is 

to choose set of features by iteratively considering smaller and smaller sets of features. 

Figure 4.18: Feature importance using Random Forest algorithm 

Figure 4.17: Generating train-test and Test Set Split 



 44 

According to Scikit Learn, first, the estimator is trained on the full set of features, and essential 

features are concerned. Then, the least important features are dropped (pruned) from the full 

set of features. This process will be repeated recursively on the pruned set till wanted number 

of features to choose is finally reached, which is either passed as a number of features to be 

selected or determined based on a threshold value [6]. Scikit Learn’s RFE module generates 

feature ranking as an array where rank i corresponds to the ranking position of the i-th variable. 

All chosen features are assigned rank 1. Figure 4.19 shows the implementation of RFE feature 

extraction process used for building the logistic regression classifier in the project. 

 

 

4.3.6 Training and Evaluating the Model: 
 
 

In most data science projects, multiple Machine Learning algorithms are tested to identify the 

one which fits the given data the best and remains fairly stable over repeated implementations 

of the algorithm. The repetition process increases the model’s generalisation and reduces bias.  

In this project, three separate Machine Learning algorithms have been implemented, each 

trained on the clean dataset with the most important feature set specially created for the 

algorithm.  

This project revolves around classifying network traffic into two classes Benign and Malicious 

using supervised learning classifiers; therefore, the performance of the models is evaluated by 

comparing performance metrics for each classifier. There are in total of five performance 

metrics have been considered which are (1) Accuracy, (2) Precision (3) Recall (4) F1-Score 

and (5) Area Under the Curve (AUC). All performance metrics were utilised using Scikit 

Learn’s package with base class “metrics” function, which generates different performance 

metrics functions named as shown below [Scikit]: 

  

• sklearn.metrics.accuracy_score( ): In classification, this function calculate subset accuracy 

Figure 4.19: Scikit Learn’s Recursive Feature Elimination 
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• sklearn.metrics.precision_score ( ) : Computes the precision, the capability of the classifier 

to not label a negative sample as positive.  

• sklearn.metrics.recall_score ( ): Computes the recall, the capability of the model to find all 

the positive samples. 

• sklearn.metrics.f1_score ( ): Compute the F1 score. The F1 score is the average of precision 

and recall. The relative participation of precision and recall to the F1 score are equal. 

• metrics.roc_auc_score ( ): calculates Area Under the Receiver Operating Characteristic 

Curve (ROC AUC) from prediction scores. 

These model performance metrics are generated for each algorithm and stored in a dataset. An 

empty Pandas data frame is created to store the specific metric per model as shown in Table 

4.3 The dataset has 11 columns. One column to save the model name and the remaining are to 

store the metric described above, one score for test dataset and one for train dataset. 

 

Implementation of Scikit Learn’s metric function to generate performance metrics of the 

classifiers and storing it in the Pandas dataframe is shown in Figure 4.20. 

. 

 

 

 
 
 
 

Figure 4.20: Generating performance metrics and storing in dataframe 

Table 4.3: Blank Pandas Data Frame to store performance metrics 
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4.4 Classifiers 
 

In this project, three different classifiers have been implemented with three different variations 

of one of the classifiers. Each module is independent of the other. All Machine Learning 

algorithms have been chosen based on their popularity and their successful used in malware 

detections. 

The classifier functions are detailed as follows: 

1.    RandomForestClassifier is imported from sklearn.ensemble module  

2.    SVC is imported from sklearn.svm module (Linear kernel, RBF kernel, Sigmoid kernel) 

3.    LogisticRegression is imported from sklearn.linear_model module 

 

4.4.1 Implementing Random Forest Classifier 
 

Random Forest algorithm is the supervised learning classifier used to classify network traffic 

into Benign or Malicious.  A random forest is a meta-estimator that fits a multiple of decision 

tree classifiers on different sub-samples of the data set and use the average to increase the 

prediction of accuracy score and reduce overfitting [7]. To implement random forest model, 

RandomForestClassifier() is used, which is an ensemble technique in Scikit-learn that takes a 

parameter called n_estimator. 

Hyperparameters for Random Forest Classifier used in the project are n_estimators = 100, 

which is also the default to represent the tree numbers [34]. The model is fitted on training 

dataset and predictions are generated for the test as well as train dataset exclusively to test the 

performance across train and test dataset. Complete implementation of the steps is shown in 

Figure 4.21. 

 

Figure 4.21: Implementation of Random Forest Classifier 
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4.4.2 Implementing Support Vector Machines Classifier 
 

Support Vector Machines Classifier (SVC) is the second type of supervised machine Learning 

model utilised in the project. The most important hyper parameter for SVC is the kernel 

selection which determines the shape of the decision boundary [30]. Given the data structure 

which comprises mostly of categorical data, it is important to try non-linear kernels like 

Sigmoid and Gaussian (RBF) kernel in addition to linear kernel. Thus, the hyper parameter 

tuning trailed in this project depends entirely on selecting the kernels. All other hyper 

parameters are left to their default values.  

The model is fitted on training dataset and predictions are generated for test as well as train 

dataset exclusively to test the performance across train and test dataset. The implementation of 

linear kernel is shown in Figure 4.22, for the other two kernel’s the implementation is the same 

with the only changing in (kernel='linear'). 

 

 

4.4.3 Implementing Logistic Regression Classifier 
 

Logistic Regression Classifier is the third type of supervised machine Learning model utilised 

in the project. To implement Logistic Regression model, LogisticRegression() is used, which 

is a linear model technique in Scikit-learn [37]. Since the dataset does not suffer from class 

imbalance, and the dataset is large enough to rule out fluctuations of sampling, there is no need 

for specific class weights to be assigned. Therefore, for hyper parameters, default settings are 

allowed. The implementation of the logistic regression classification is shown in Figure 4.23. 

Similar to the other classifiers, the model is fitted on training dataset and predictions are 

generated for the test as well as train dataset exclusively to test the performance across train 

and test dataset.  

Figure 4.22: Implementation of SVC with linear kernel 
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Figure 4.23: Implementation of the logistic regression classifier 
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Chapter 5: System Testing  

 

This chapter includes test cases that were utilised to guarantee that the solution provided 

satisfies the requirements and to demonstrate how it works as intended. All the test cases 

presented have been carried out on Mac operation system device version 10.12.6 in Anaconda 

navigator using jupyter notebook.6.01 and Python version is 3.7.4 

 
 

5.1 Test case 
 
 
 

Test Case ID: TC-0 Loading data set 

Precondition: None 

Test case step: 2 

Step 

No 

Procedure: Expected Response Pass/ 

Fail  

Comment 

1 

In Reading file cell Input 
the path of the file 
directory (any kind of file) 

a message from 
Jupiter appears 
“successfully 
monitoring’ 

Fail 

A message 
‘error’ appears 
since it entered 
a .pcap file 

2 

In Reading file cell Input 
the path directory of a new 
bro log file to read it and 
save it to a data fame 

a message from 
Jupiter appears 
“successfully 
monitoring’ 

Pass 

the script 
accepts only 
bro log file 
format 

Comment: None 

Related test: None 

Table 5.1: Loading data set (TC-0) 
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Test Case ID: TC-1  Loading and parsing the data set  

Precondition: pro log file  

Test case step: 4 

Step 

No 

Procedure Expected Response Pass/ 

Fail  

1 

In Reading file cell Input the path 
of the file directory to read it and 
save it to a data fame 

a message from Jupiter appears 
“successfully monitoring’ pass 

2 

Run Check data frame cell to see 
what data is in the file  

Few lines of the data frame 
shown with name of columns 
and row 

Pass 

3 

Run Check the frequency cell to 
see the number of malicious and 
benign data  

The number of malicious and 
benign row in the data are shown  Pass 

4 
Run save to csv cell with writing 
the path directory of the new csv  

A csv file created and save in the 
directory provided 

Pass 

Comment: all these cells will be included in the first section of Jupiter file. Section 
name is #Section 1: Reading bro log file 

Related test: None 

Test Case ID: TC-2 Exploring Data Analysis step to explore and visualize data set 
variables  

Precondition: an existing data set that was previously saved to a data frame by running 
TC-1 

Test case step: 3 

Step No Procedure: Expected Response Pass/ 

Fail  

1 

Run Label code cell to add a 
column to the data frame that 
has value 1 for malicious and 0 
for Benign  

A new Column added to the data 
frame and by running view cell 
all variables in the data frame is 
shown with the new columns 

Pass 

2 

Run Replacing cell to change 
value with (-) to a number 0 in 
the specified columns 

Values (-) is changed to 0 
Pass 

3 

Run each cell under (Start of 

EDA) section to see the 
distribution of each variable in 
the data frame  

A bar graph shown the 
distribution of each column in 
the data set  

Pass 

Comment: all these cells will be included in the second section of Jupiter file. Section 
name is #Section 2: Exploratory Data Analysis (EDA). 

Related test: TC-1 

Table 5.2: Loading and parsing the data set (TC-1) 

Table 5.3: Exploring Data Analysis step to explore and visualize data set variables (TC-2) 
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Test Case ID: TC-3 Pre-processing the data to prepare it for the classifiers  

Precondition: an existing data set that was previously saved to a data frame by running 
TC-1, and the first two steps from TC-2 

Test case step: 3 

Step No Procedure: Expected Response Pass/ 

Fail  

1 

Run drop the column cell with 
entering variable’s names that 
you want to drop  

All specified variables are 
removed from the data frame. To 
check, run view cell, all specified 
variables are removed from the 
data frame  

Pass 

2 

Run Convert variables cell to 
bin numerical data into groups 
(Normalizing), with entering 
variable’s names that you want 
to convert 

New columns added for each 
specified variable with normalized 
values. To check this run the view 

cell, all variables are shown  
Pass 

3 

Run Dummy variables cell to 
convert categorical variables to 
a form of data that can be 
provided to ML algorithms. 
Enter variable’s names that 
contain categorical values 
 

New columns added to the data 
frame for each categorical 
variable. To check this run the 
view cell, all variables are shown   Pass 

Comment: all cells will be included in the third section of Jupiter file. Section name is 
#Section 3: pre-processing step 

Related test: TC-1, TC-2 

Test Case ID: TC-4 Creating, training, testing Random Forest  

Precondition: an existing data set that was previously saved to a data frame by running 
TC-1, the first two steps from TC-2, and pre-processing step TC-3 

Test case step: 1 

Step 

No 

Procedure: Expected Response Pass/ 

Fail 

Comment 

1 

Running all cells under   
Model 1: Random Forest 

Classifier section 

No error message appears  

Pass 

All results 
will be 
shown 
later in 
(TC-11) 

Comment: all cells will be included in the 4th section of Jupiter file. Section name is 
#Section 4: ML Models, under Model 1: Random Forest.  

Related test: TC-1, TC-2, and TC-3 

Table 5.4: Pre-processing the data to prepare it for the classifiers (TC-3) 

Table 5.5: Creating, training, testing Random Forest (TC-4) 
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Test Case ID: TC-5 Creating, training, testing Support Vector Machine (Linear 

kernel)  

Precondition: an existing data set that was previously saved to a data frame by running 
TC-1, the first two steps from TC-2, and pre-processing step TC-3 

Test case step: 1 

Step 

No 

Procedure: Expected Response Pass/ 

Fail 

Comment 

1 

Running all cells under   
Model 2: Support Vector 

Machin – Linear kernel 

section  

No error message appears  

Pass 

All results 
will be 
shown 
later in 
(TC-11) 

Comment: all cells will be included in the 4th section of Jupiter file. Section name is 
#Section 4: ML Models, under Model 2: Support Vector Machine – Linear kernel.  

Related test: TC-1, TC-2, and TC-3 

Test Case ID: TC-6 Creating, training, testing Support Vector Machine (RBF kernel)  

Precondition: an existing data set that was previously saved to a data frame by running 
TC-1, the first two steps from TC-2, and pre-processing step TC-3 

Test case step: 1 

Step 

No 

Procedure: Expected Response Pass/ 

Fail 

Comment 

1 

Running all cells under   
Model 2: Support Vector 

Machin – RBF kernel 

section  

No error message appears  

Pass 

All results 
will be 
shown 
later in 
(TC-11) 

Comment: all cells will be included in the 4th section of Jupiter file. Section name is 
#Section 4: ML Models, under Model 3: Support Vector Machine – RBF kernel.  

Related test: TC-1, TC-2, and TC-3 

Table 5.6: Creating, training, testing Support Vector Machine (Linear kernel) (TC-5) 

Table 5.7: Creating, training, testing Support Vector Machine (RBF kernel) (TC-6) 
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Test Case ID: TC-7 Creating, training, testing Support Vector Machine (Sigmoid 

kernel)  

Precondition: an existing data set that was previously saved to a data frame by running 
TC-1, the first two steps from TC-2, and pre-processing step TC-3 

Test case step: 1 

Step 

No 

Procedure Expected Response Pass/ 

Fail 

Comment 

1 

Running all cells under   
Model 2: Support Vector 

Machin – Sigmoid kernel 

section  

No error message appears  

Pass 

All results 
will be 
shown 
later in 
(TC-11)  

Comment: all cells will be included in the 4th section of Jupiter file. Section name is 
#Section 4: ML Models, under Model 4: Support Vector Machine – Sigmoid kernel.  

Related test: TC-1, TC-2, and TC-3 

Test Case ID: TC-8 Creating, training, testing Logistic Regression   

Precondition: an existing data set that was previously saved to a data frame by running 
TC-1, the first two steps from TC-2, and pre-processing step TC-3 

Test case step: 1 

Step 

No 

Procedure: Expected Response Pass/ 

Fail 

Comment 

1 

Running all cells under   
Model 3: Logistic 

Regression 

No error message appears  

Pass 

All results 
will be 
shown 
later in 
(TC-11) 

Comment: all cells will be included in the 4th section of Jupiter file. Section name is 
#Section 4: ML Models, under Model 5: Logistic Regression.  

Related test: TC-1, TC-2, and TC-3 

Table 5.8: Creating, training, testing Support Vector Machine (Sigmoid kernel) (TC-7) 

Table 5.9: Creating, training, testing Logistic Regression (TC-8) 
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Test Case ID: TC-9 Feature Selection step for Random Forest   

Precondition: an existing data set that was previously saved to a data frame by running 
TC-1, the first two steps from TC-2, pre-processing step TC-3, and Random Forest model 
TC-4 

Test case step: 1 

Step 

No 

Procedure Expected Response Pass/ 

Fail 

1 

Running feature selection 

cells within   
Model 3: Logistic 

Regression 

A graph shown to visualize variable 
importance 

Pass 

Comment: all cells will be included in the 4th section of Jupiter file. Section name is 
#Section 4: ML Models, within Model 1: Random Forest.  

Related test: TC-1, TC-2, TC-3, and TC-4 

Test Case ID: TC-10 Feature Selection step for Logistic Regression   

Precondition: an existing data set that was previously saved to a data frame by running 
TC-1, the first two steps from TC-2, pre-processing step TC-3, and Logistic Regression 
model TC-8 

Test case step: 1 

Step 

No 

Procedure Expected Response Pass/ 

Fail 

1 

Running two cells feature 

selection within   
Model 3: Logistic 

Regression 

 Number of important features appear 
with the selected feature and ranking 

Pass 

Comment: all cells will be included in the 4th section of Jupiter file. Section name is 
#Section 4: ML Models, within Model 5: Logistic Regression.  

Related test: TC-1, TC-2, TC-3, TC-8 

Table 5:10: Feature selection step for Random Forest (TC-9) 

Table 5.11: Feature Selection step for Logistic Regression (TC-10) 
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Test Case ID: TC-11 calculating the results of all classifiers  

Precondition: an existing data set that was previously saved to a data frame by running 
TC-1, the first two steps from TC-2, pre-processing step TC-3, Finally, all ML models 
step TC-4, TC-5, TC_6, TC-7, and TC,8 

Test case step: 7 

Step No Procedure: Expected Response Pass/ 

Fail  

1 

Run performance metric table 

cell to see accuracy results for 
all classifiers  

Table shows with accuracy 
scores for all classifiers Pass 

2 

Run accuracy plot cell to see 
accuracy results for all 
classifiers in a graph  

A bar graph shows with 
accuracy scores for all classifiers  Pass 

3 

Run Precision plot cell to see 
accuracy results for all 
classifiers in a graph 

A bar graph shows with 
precision scores for all classifiers  Pass 

4 

Run Recall plot cell to see 
recall results for all classifiers 
in a graph 

A bar graph shows with recall 
scores for all classifiers Pass 

5 

Run F1-score plot cell to see 
F1-score results for all 
classifiers in a graph 

A bar graph shows with F1-score 
for all classifiers Pass 

6 

Run AUC plot cell to see AUC 
score results for all classifiers 
in a graph 

A bar graph shows with AUC 
scores for all classifiers Pass 

7 

Run Confusion Metrics cell to 
see confusion metrics results 
for all classifiers  

A confusion metrics plot shows  
Pass 

Comment: all these cells will be included in the last section of Jupiter file. Section name 
is #Section 5: Evaluation. 

Related test: TC-1, TC-2, TC-3, TC-4, TC-5, TC-6, TC-7, and TC-8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5.12: Calculating the results of all classifiers (TC-11) 
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Chapter 6: Results and Discussion 

 
Successful execution of the three machine learning classifiers with three different variations of 

one of the classifiers enables us to analyse the output of the models critically. The end result 

of classification algorithms is to predict the labels; therefore, the performance measures are 

analysed and compared amongst the models. In addition to the assessment of the final outcome, 

feature importance is also analysed and compared. These two aspects have been shown and 

discussed in this section. 

 

6.1 Classifier Performance 
 
This section exhibits the importance attributed to each input variables as determined by non-

parametric Random Forest algorithm and by parametric Logistic Regression followed by 

evaluation of performance metrics for each classifier. Performance metrics considered are 

accuracy, recall, precision, F1-Score and AUC. Classification accuracy and misclassification 

cases are summarised by way of confusion matrix. 

 

6.1.1 Variable importance assessment 

Variable importance refers to the extent to which a model relies upon a variable to make 

accurate predictions. The more a model relies on a variable to make predictions, the more 

important it is for the model. There are two algorithms in the project where variable importance 

generated.  

1)  Random Forest based variable importance used for variable selection in the final 

Random Forest model and Support Vector Machines 

2)   Logistic Regression based Recursive Feature Elimination used for variable selection 

in final Logistic Regression model 

 

Random Forest is a forest of decision trees. In the purpose of this project, Default Scikit-learn’s 

feature importance is used which calculated as the decrease in node impurity (Gini impurity) 

weighted by the probability of reaching that node [16]. As discussed in section 2.2.1, Gini 

impurity is the probability of wrongly classifying a random item according to the distribution 

of the class labels of the dataset [9]. The decrease in Gini indicates higher variable importance 
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and higher the value, the more important is the feature. Figure 5.1 shows the variable 

importance chart as per Random Forest Classifier. 

  
Moreover, logistic regression uses dominance analysis where importance is defined as a 

quantitative comparison between pairs of predictors [2]. The importance of predictor increases 

than the other predictor, if it has more contribution to the prediction of the response variable in 

all possible subset models; in other words, all possible combinations of predictors and that 

predictor called dominant predictor [ibid]. Figure 5.2 shows the output generated by recursive 

feature elimination with logistic Regression. 

 

 

Output format 

Feature importance using Random Forest Classifier generates relative importance scores where 

all variables added to the new Random Forest classifier up to 1 or 100% score (refer to Figure 

5.1). For example, proto_tcp, proto_udp. orig_ip_bytes_cat, orig_pkts_cat, duration_cat, 

proto_icmp, conn_state_OTH, and conn_state_S0 which is scores 0.47 so it considered as an 

important feature to Random Forest Classifier. While all the remaining variables like, 

Figure 5.1: Variable importance from Random Forest Classifier 

Figure 5.2: Recursive Feature Elimination output 
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conn_state_SF, resp_ip_bytes_cat, conn_state_REJ, resp_pkts_cat, conn_state_RSTOS0, 

orig_bytes_cat, resp_bytes_cat, conn_state_RSTRH, conn_state_RSTR, conn_state_SH, 

conn_state_S2, conn_state_s1, and conn_state_RSTO removed where all variables score less 

than 1% according to the graph generated by feature importance function. 

In logistic regression, using Recursive feature elimination RFE function from Scikit Learn 

package generates feature ranking; for instance, ranking_i corresponds to the ranking position 

of the ith feature. All chosen features are estimated best features without any order, and all are 

assigned as rank 1 without more specification of which one ranks higher than others. 

 

 

Comparison of the result 

Variables such as orig_pkts, proto_tcp, proto_udp, conn_state_OTH, conn_state_RSTOS0 

and duration_sec are considered of high importance in both the models but orig_ip_bytes is 

considered third most important variable as per Random Forest but in recursive feature 

elimination using logistic regression it ranks as the least importance(rank 16th). This 

difference can be explained using the distribution of orig_ip_bytes (as shown in 4.3.2 point 

6), malicious traffic has highly skewed distribution, all towards the left around the range of 

25-50 bytes per traffic whereas huge majority of benign traffic are in the adjacent byte range 

of 50-75. Since huge majority of the traffic for malicious and benign are in short range, the 

variable is not considered to be an important one with the power to discriminate between 

malicious and benign traffic. 
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6.1.2 Accuracy of the classifiers 
 

Accuracy is defined as the fraction of correct predictions amongst the total number of cases. 

The scores of classifiers’ accuracy for train and test data set is shown in Figure 5.3. 

 

 

The value of accuracy for all models except SVM Sigmoid Kernel are very similar to each 

other and achieved more than 95% for both train and test dataset. SVM Linear Kernel model 

performs better than the comparable models. While SVM Sigmoid Kernel performed 

abysmally and achieved an accuracy of around 40% in the train as well as in the test dataset. 

Although Sigmoid kernel is widely used, its properties are not fully studied [29]. 

 

6.1.3 Precision of the classifiers 
 
Precision, as discussed in previously, is the ability to not label positive sample as negative 

and it calculated as the number of true positives divided by the total number of true positives 

and false positives. The result 0.0 for no precision and 1.0, which is the highest value for full 

or perfect precision. Analysis of precision score suggests that although most models achieved 

high precision scores for detecting malicious network traffic for the selected dataset, SVM 

linear kernel slightly outperformed other classifiers in the test set. Thus, high precision here 

Figure 5.3: Comparison of accuracy scores by classifiers 
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means a lower chance of labelling a benign file as malicious. Figure 5.4 compares the 

precision scores of the classifier models. 

 
 

 
 

Figure 5.4: Comparison of precision scores by classifiers 

 
 

6.1.4 Recall value of the classifiers 
 

The recall, as discussed previously, is the ability of the classifier to predict all the positive 

samples in the dataset. Analysis of the recall scores suggests that all the models except SVM 

Sigmoid Kernel are doing well in classifying actual positive as positive in the chosen data set 

especially SVM linear kernel and SVM RBF kernel both achieved the full score in the test set. 

In the context of the project, positive labels are used to flag malicious traffic and hence high 

recall means that chances of not flagging an actual malicious traffic as malicious is very low. 

Figure 5.5 compares recall score across classification model.    
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6.1.5 F1-Score of the classifiers 
 

Thus F-Score is a combined value between precision and recall, where the better value of F1 

is 1, and the poor value is 0. The contribution of precision and recall to the F1 score are equal. 

Higher F1-Score means the higher chance of predicting actual positives as positives and low 

probability of predicting real negative as positive. All models except SVM Sigmoid Kernel has 

relatively high F1-Score (around 96%). Amongst models with higher F1-Score, performance 

on the test dataset is better than on training dataset. Figure 5.6 compares F1-Score among 

various classifier model. 

 

 

 

Figure 5.5: Comparison of recall score across model 
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In the purpose of this project, F1-Score considers as more important than accuracy because 

accuracy contributed by a large number of True Negatives and True Positive and both are not 

as important as F1-Score. False Negatives and False Positives are important. An example of 

False Negative is when a file is malicious, and the classifier indicates as not malicious, this 

could have a negative consequence [38].   

 

6.1.6 AUC of the classifiers 
 
AUC, as discussed previously, is the area under the ROC curve. This curve plots two 

parameters which are True Positive Rate and False Positive Rate [8]. Therefore, ROC is the 

curve and AUC is the measure of separability, which shows the capability of the classifier to 

differentiating between classes. Higher the AUC score is 1, which represent better classifier. 

Although all the models (except SVM Sigmoid Kernel) has similar and high degrees of AUC 

score, SVM Liner Kernel marginally outperformed other models in this regard. Figure 5.7 

compares the AUC score across all the models. 

Figure 5.6: Comparison of F1-Score by classifiers 
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6.1.7 Classifiers Performance Summary 
 
Standalone comparison of performance metrics for the all models have been considered in the 

preceding section. In this section, all the performance metrics are combined together at one 

place to identify the best performing model as shown in Table 5.1. 

 

Analysis of Table 5.1 shows that SVM Linear Kernel model outperforms all others. The train 

set and test set performance metric are also better than others in most cases.  

Visual inspection of three confusion matrix as shown in Figure 5.8 for Random Forest 

classifier, best fit SVM model – the linear kernel and Logistic Regression classifier, also shows 

that although the False Positive count is slightly higher than others, false negative rate is 0. 

False Negative is costlier and more important than false positive in Malware detection as it is 

dangerous to indicates malicious files as benign; hence, SVM Linear Kernel performs 

satisfactorily. 

Figure 5.7: Comparison of AUC score across models 

Table 5.1: Summary of performance metrics for all models 
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In addition, SVM Linear Kernel model can be considered as the best model; therefore, it 

considered as the most appropriate algorithm to solve malware detection problems.  

 

6.2 Limitations 
 

There are some constraints in achieving this project that will be discussed in this section. One 

of the main challenges is the sudden occurrence of coronavirus COVID-19 pandemic and its 

consequences of lockdown, difficulty of travelling and evacuation of international students 

have affected on my health, time, and effort toward achieving this project. Another challenge 

faced in this project of malware detection domain was the lack of information on how labelling 

proses has been made. Also, since the data set labelled manually by a human analyst, improper 

or erroneously labelling might occur, which leads to incorrect processing of the output result 

and significant threat to the entire scheme. Secondly, recency of the training dataset is also a 

strong consideration. Malware evolves every day; hence practical use of the prototype can be 

assessed only on a real time basis. Thirdly, malware is one of many types, as such, even within 

the malware, there is enormous variation across different attributes considered during the 

modelling exercise. In statistical term, malware detection is a multi-class classification problem 

rather than a binary classification. Additionally, malicious IoT network traffic is increasing 

over time and became more complex. Therefore, the process might be hard to predict by human 

experts as the behaviours of malware are constantly changing. Although challenges are 

occurred with malware detection projects, many solutions were applied and utilised as it is an 

interesting field for researching. 

 
 
 

Figure 5.8: confusion matrix plots for top three model 
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Chapter 7: Future Work 

 

Due to the limited time allowed for this project, there are different facts of the project that could 

be addressed. First aspect revolves around machine learning implementations such as use of a 

training dataset that contains multi-class labels so that the predictions are more specific and 

can be extended to classify not only malicious and benign network traffic but also to categorise 

the type of attack occur. Moreover, testing other family of algorithms like deep learning, 

Natural Language Processing on the content or an ensemble model are in scope. This will help 

in further investigating and examining machine learning classifiers approach for detecting 

malicious network traffic for IoT devices. Another aspect is to develop the solution as a 

software system to allow interaction with users with a nicely built user interface. This can be 

achieved using web technologies such as, HTML with Java script to create a graphical user 

interface that allow interaction with users. Moreover, implementing the solution as multiple 

classes by breaking the code script into smaller parts, rather than writing the whole script in 

one as this will ease the process of building the software system. 9Final aspect is to provide a 

summary of all classifiers performances to the user and save the result for further analysis. 
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Chapter 8: Conclusion 

 

In conclusion, throughout this report, multiple tests were performed on three different 

classifiers with three different variations of one of the implemented classifiers, in order to 

evaluate and determine the best model that can classify malicious and benign network traffic 

using machine learning approach. This problem was solved by implementing Random Forest, 

SVM Linear Kernel, SVM RBF Kernel, SVM Sigmoid Kernel, and finally Logistic Regression. 

All classifiers evaluated using the performance metrics indicators, including accuracy, 

precision, recall, F1-Score, and AUC for each classifier. 

According to the results mentioned, high scores achieved for all Machine Learning models 

except SVM Sigmoid Kernel classifier in different experiments. Whereas, SVM Linear kernel 

achieved slightly the highest among all classifiers. Appropriate choice of algorithm for this 

specific type of the problem, systematic approach of data pre-processing, feature selection and 

the use of large dataset were the key to a successful implementation of Machine Learning 

algorithms. Furthermore, multiple algorithms need to be tested to ensure that the chosen model 

fares the best among other relevant models. 
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Chapter 9: Reflection on Learning 

 

Throughout this project, I realised that working on the final year project was completely 

different than other university projects, as doing my graduation project required large amount 

of commitment and hard working. One of the greatest lessons I learned, is the importance of 

writing the report alongside with the time of implementing the solution as in my case, I started 

writing the report after finishing the implementation part. This cause a struggle in writing the 

report, since most ideas were not fresh anymore and could not be remembered as I had to go 

back over things I already did before and that cause a waste of the time where I believe I could 

use it in something useful. Moreover, my knowledge expanded in different aspects while doing 

this project. Firstly, in Machine learning field I gained knowledge about various techniques in 

machine learning as a classifier. I understand the algorithms that have been used in this solution 

along with familiarising myself with the libraries implemented, constructing models, pre-

processing, evaluating the training and testing data, finally producing a complete piece of a 

report for the entire solution. Overall, I gained learning experience from undertaking this 

project, I have the chance to improve my coding skills and to gain confidence. Also, to develop 

valuable skills; for example, analysing, problem-solving, research skills, overcome obstacles 

and I believe all skills that have learnt from this project will be utilised in my career department 

which involve security aspects. 
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