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Abstract 

As machine learning continues to perpetuate through all aspects of society, we must question 

its ability to improve all aspects of life, including the medical industry. With the average age of the 

global population on the rise, Alzheimer’s disease is soon expected to reach epidemic proportions. 

Advancements in neuroimaging are currently leading the field in the diagnosis of the condition, but 

the earlier these signs are detected the more effective the treatment for the reduction of symptoms; 

a syndrome more commonly known as Dementia. This project aims to develop and train a deep 

learning model with the ability to distinguish Alzheimer’s magnetic resonance imaging (MRI) from 

normal, healthy control data.  
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Introduction 

Over the last two decades, neuroimaging has been at the forefront of both psychiatric and 

neurological analysis. Studies related to the comparison of healthy control subjects from those 

suffering with such disorders have depended heavily on mass-univariate analytical techniques. Such 

have yielded results reporting neuroanatomical differences in subjects at group level, leading to 

significant advances in our understanding of the neurobiology of a multitude of various 

neurological conditions. However, mass-univariate analytical techniques draw the assumption that 

regions of the brain act independently. This contradicts our current understanding of brain 

function, which suggests that the brain is intrinsically organized into dynamic, anticorrelated 

functional networks [1]. Furthermore, these techniques employ methods that detect disparities at 

group level, but do not allow for statistical inferences on a subject-wise basis. This negatively 

impacts the translational benefits from research to practice, as clinicians are required to make 

diagnostic conclusions based on the study of an individual. 

As the field of neuroimaging advances, those researching approaches to statistical analysis of 

subjects have developed a growing interest in machine learning (ML). This is an area of artificial 

intelligence that focuses on the development of algorithms to discover trends in existing data that 

can be used to make predictions on unseen data. Firstly, unlike before, these are multivariate 

techniques that can recognise interdependencies between voxels from separate neural regions, thus 

improving upon the first univariate limitation. Secondly, these learned patterns can be used to make 

inferences on an individual level, as a clinician would. This resolves the second issue with univariate 

analysis, furthering the functionality of statistical models translated to applications in neuroimaging. 

Since the comeuppance of ML in neuroimaging, various models have been tested across a 

diverse range of modalities, such as MRI, fMRI, and PET scans. One popular technique is Support 

Vector Machine (SVM), which finds a hyperplane in an N-dimensional space that distinctly 

classifies a set of data points. However, criticism has been directed towards SVM for its 

requirement of expert inspection to extract useful regions of interest from raw formats; a process 

referred to as ‘feature selection’ [2]. Thus, it is essential that those engaged in these tasks are 

competent in both the ML and neurology disciplines. This has led researchers to study methods 

within deep learning (DL), another branch on the ML tree. These models follow hierarchical 

structures with multiple levels of complexity that obtain higher levels of abstraction. This is 

achieved through the application of consecutive nonlinear transformations to the raw data. 

Motivation for the development of these models has arisen from the study of human 



neuroanatomy, with the building blocks of deep-learning networks – artificial neurons – analogous 

to neurons within the brain. 

This project focuses more deeply on one field from each of the three major disciplines 

mentioned thus far: Alzheimer’s disease (AD) from neurology, magnetic resonance imaging (MRI) 

from neuroimaging and deep convolutional neural networks (CNNs) from machine learning. AD 

is an irreversible, progressive, neurodegenerative disorder, characterised among those within the 

elderly community. It is the leading cause of dementia, which, in 2015, was the most common 

cause of death for females, and the most common cause for death for males over the age of 80 [3]. 

As the global average life expectancy increases, AD is becoming more and more prevalent across 

society. It is projected that around 16 million Americans will be living with Alzheimer’s in 2050, 

costing around $1.1 trillion (in 2020 USD) [4]. 

Medical imaging has been both theorised and practiced for over a century, but only of recent 

has it been commonly available to most major hospitals. MRI is a common imaging technique used 

predominantly in the medical industry for establishing a 3D portrait of anatomy in a digitized form. 

Both a strong magnetic field and radio waves are used to create a detailed image of the region of 

interest (roi), such as the brain or abdomen. This can aid in both diagnosis and prognosis of patients 

suffering from a multitude of various mental and physiological health defects. Such defects caused 

by Alzheimer’s disease include abnormalities associated with mild cognitive impairment (MCI) and 

the decrease in size of multiple regions within the brain. These regions include the hippocampus 

(temporal lobe) (the forming of new memories), the frontal lobe (intelligence, judgement, 

behaviour) and the parietal lobe (language) [5]. Earlier detection of such abnormalities via thorough 

analysis of MRI scans may lead to the reduction of symptoms in a patient. 

A CNN is an application of deep learning whereby a series of kernel convolutions breaks apart 

an image into its constituent features to map spatial relationships across a group of data. CNNs 

have been successfully implemented numerous times to develop classification algorithms for the 

field of neuroimaging [6] [7]. Particularly, those that can distinguish MRIs presenting a patient 

suffering with a neurological condition from healthy control data. MRIs successfully capture 

anatomical images in 3D space; therefore, this project will follow the process of constructing a 3D 

CNN that can differentiate MRI scans of patients with neurodegeneration caused by AD from 

normal subjects. More precisely, it will invoke a binary classifier that measures disparities between 

the two groups. The network will be trained and tested using the ADNI (Alzheimer’s Disease 

Neuroimaging Initiative) dataset, which contains thousands of images in different modalities 

acquired over the last two decades. 



One issue faced with such studies is the computational work required for rigid pre-processing 

stages that normalize the input data and rid redundant information from the scans. Thus, five 

datasets will be produced from a series of pre-processing measures that will register, skull-strip and 

smooth each MRI scan. Moreover, the formerly mentioned CNN will be tested across all five 

datasets to conclude which of the five approaches best suits the development of a basic neural 

network model for neurological analysis. 

To reiterate, the overarching aim of this project is to develop and end-to-end pipeline that takes 

as input a series of MRI volumes, performs a series of complex pre-processing steps, and classifies 

individuals accordingly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Background 

1. Machine Learning 

Overview 

Machine learning is an application of artificial intelligence (AI) driven by observations pertaining 

to the natural world. A system that implements a machine learning algorithm will continually 

improve from experience without being explicitly programmed. A computer program is said to 

learn from experience E with respect to some class of tasks T and performance measure P, if its 

performance at tasks in T, as measured by P, improves with experience E [4].  

These models fall under two categories: supervised and unsupervised. A supervised machine 

learning model must be given data that has been explicitly categorized by a label, and the model 

must be able to interpret both the datum and its label as paired entities. Whereas this is not a 

requirement for an unsupervised model. This project will adopt the former of the two. Next, the 

nature of the machine learning problem to be solved is recognized. Problems of relevance to 

supervised machine learning models can be further categorized as classification and regression 

problems. Classification problems attempt to map input data to a discrete set of variables, such as 

‘cat’ or ‘dog’. However, a regression problem handles real or continuous values, such as ‘age’ or 

‘salary’. Again, this project will be solving the former. 

Supervised Learning 

Supervised learning is the most common subbranch of machine learning today. In layman’s 

terms, it can be thought of as a teacher overseeing the operation of the system. During the training 

phase, labelled data is used to infer a learning algorithm. These labels correctly classify datum into 

their corresponding category, which the model uses to search for patterns that correlate to the 

desired output. Following this, the model will be presented with a new set of inputs and will attempt 

to determine labels for each based on its previous learning experience. At its most basic form, a 

supervised learning algorithm can be represented as Y = f(x), where Y is the predicted output, f is 

the mapping function and x is the input [9]. 

Classification problems in machine learning 

Classification predictive modelling is the task of approximating a mapping function from input 

variables to discrete output variables. These problems belong to the category of supervised 

learning, where the target is also provided with the input data. There are many applications in 

classification in many domains, namely spam detection, credit approval and target marketing. In 

binary classification problems, the class space is comprised of only two categories.  This project 



poses the solution to a binary classification problem in medical diagnosis. In binary classification 

problems, the class space is comprised of only two categories, which are populated with our 

Alzheimer’s and control MRI data. 

Model Fitting 

Overview 

The crux of machine learning is to obtain a model with optimum values of parameters and 

hyperparameters such that they generalize to a set of similar data to that on which it was trained. 

This is model fitting, and practitioners often observe one of three phenomena during this stage: 

underfitting, good / robust fitting and overfitting. 

Underfitting 

A model is said to be underfitted if it does not observe the underlying patterns that correlate 

inputs to desired outputs on a set of training data. This often occurs when a there is a lack of data 

to build a complete and accurate model. As shown by the left-most graph, the model has not 

learned enough about the data to observe trends across a distribution of values. Thus, it has formed 

a linear fitting on a set of non-linear data.  

Robust fit 

The middle graph shows a suitable fitting of a model to the data. Here, the system has learned 

the general trend of patterns between training data without observing its noise and fluctuations. 

Thus, it can form close predictions given unseen inputs. 

Overfitting  

A model is said to be overfitted if it learns the relationships between training data too well such 

that it cannot generalize for unseen data. This can occur when the set of training data is too large 

for the problem. As shown by the right-most graph in figure 1, the model has accounted for noise 

and fluctuations as well as a general trend. Overfitted models can be identified by the large variance 

in accuracy between training and unseen data. Thus, it will form abnormally close predictions on 

training data, but will underperform when given new inputs. In classical machine learning, 

overfitting can be defined as: 

Given a hypothesis space H, a hypothesis h E H is said to overfit the training data if there exists 

some alternative hypothesis h' E H, such that h has smaller error than h' over the training examples, 

but h' has a smaller error than h over the entire distribution of instances [4]. 



 

Figure 1 Underfitting vs Robust Fit vs Overfitting [10] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. Deep learning 

Overview 

Deep learning refers to the training and testing of multi-layered artificial neural networks 

(ANN)s that can learn complex structures and achieve high levels of abstraction. ANNs have been 

inspired in part by the observation that biological learning systems are built of very complex webs 

of interconnected neurons [4]. It is estimated that the human brain consists of around 86 billion of 

these neurons, forming networks of such intricacy that human interpretation is infeasible [8]. This 

is a black-box approach to problem solving, whereby information is gathered from the 

environment, hidden calculations are performed, and a response is produced. 

The implementation of DL in the context of supervised classification problems involves two 

main steps: training and testing. In the first step, a subset of the available data known as the training 

set is used to optimize the network’s parameters to perform the desired task (classification). 

Learning is achieved through an iterative process of adjustment of the interconnections between 

the artificial neurons within the network, much like in the human brain. In the second step, the 

remainder subset – the test set – is used to assess whether the trained model can blind-predict the 

class of new observations. This section will cover the basic principles of Artificial Neural Networks, 

as well as introduce more complex schemas. 

Artificial Neural Network basics 

Structure and operation 

The most elementary form of a deep neural network is the multilayer perceptron; a precursor 

to more complex models. It is formed of three layers: an input layer, a hidden layer, and an output 

layer. Each layer takes some vector, performs calculations, and outputs another vector to be fed to 

the next layer. At the input layer, the data enters the model. In neuroimaging, this can be 

represented as a one-dimensional vector with each value corresponding to the intensity of one 

voxel. The hidden layers learn and store increasingly more abstract features of the data. These 

features are then fed to the output layer that assigns the observations to classes. 

Layers are comprised of nodes, or artificial neurons, such that each neuron is fully connected 

to all those in the previous layer. Each input neuron, xi, has an associated weight value, wi, which 

reflects the strength of that connection; much like a synapse between two biological neurons. Each 

layer also has an associated bias, b, which has its own weighted connection, bi, to each neuron. The 

pre-activation is the sum of all weighted inputs, ∑ �ݓ�ݔ +  �ܾ , which is then passed through some 

non-linear activation function, f, that squashes the value between some range. The greater the yield 



from this activation function, the greater the activation of the neuron. The output of this activation 

function, yi, then serves as input to some neuron in the next layer.  

Notable activation functions are the rectifier function (where neurons that use it are called 

rectified linear unit (ReLU)), the hyperbolic tangent function (Tanh), the sigmoid function and the 

softmax function. The latter is commonly used in the output layer as it can compute the probability 

of multiclass labels. However, for binary classification problems, the preference is generally to use 

sigmoid in the output with only one activation neuron and one class label (labels in the form of [1] 

or [0] for AD / control), versus softmax with one activation neuron and one-hot encoding (labels 

in the form of [1, 0] / [0, 1] for AD / control). 

The input signal propagates through the network until the output layer is reached. For a 

classification algorithm, each neuron in this layer represents some class identifier. The most 

activated among these will be the final prediction for the model, with the value representing the 

certainty at which that prediction has been made. The loss is then backpropagated through the 

network, and neurons in the hidden layer(s) that directly contribute to the output will have their 

weights adjusted accordingly. This continues until each layer receives the loss signal. 

Training and testing 

Parameters and hyperparameters 

When an ANN is being trained, it will attempt to determine the set of weight variables. These 

are known as network parameters, whose value can be either estimated or learned from the data. 

Network parameters are paramount to the operation of the system and are (often) not set by the 

practitioner, but rather learned iteratively by the network. However, model hyperparameters are a 

set of configuration variables that cannot be learned through training data. These are set and altered 

by the practitioner to obtain a model with optimum performance.  

Loss functions 

The loss function is a method of measuring how good the neural network is at a certain task 

[9]. To improve the network, the loss function must be minimized. It can be said that the problem 

of training the neural network is equivalent to the problem of minimizing the loss function. For 

binary classification problems, a common loss function is binary cross entropy. Cross-entropy loss, 

or log loss, measures the performance of a classification model whose output is a probability value 

between 0 and 1 (does not have AD / has AD). Cross-entropy loss increases as the predicted 

probability diverges from the actual label. For binary classification, where the number of classes is 

two, cross-entropy can be calculated as: −ሺݕ log ݌ + ሺͳ − ሻlog ሺͳݕ −  ሻ݌



[12] 

Where log is the natural log, y is the binary indicator (0 or 1) if class label c is the correct 

classification for observation o and p is the predicted probability observation o is of class c. 

Backpropagation 

Backpropagation is a recursive process that feeds the loss signal for a single training example 

back through each layer of the network. The idea is to calculate how each layer should adjust its 

parameters to positively affect the layer ahead (when an input signal propagates forward) vias some 

optimization function. Each neuron in a given layer has its own desired adjustments for the 

connection weights between itself and neurons in the previous layer. The desires of all neurons are 

totalled to produce an overall list of adjustments for that layer. This process is recursively applied 

to each layer in the network until the input layer is reached and a final list is given. 

Gradient descent 

Artificial neural networks are trained through the adjustments of the weights w and bias b for 

each neuron. The model is first initialised with random values for these parameters, and 

adjustments are made during training to reduce the loss function via some specified optimisation 

function. An optimisation function may be represented as o(w), where w is the set of parameters 

for the network. Traditionally, neural networks can learn through a gradient descent-based 

algorithm. The gradient descent algorithm aims to find the values of the network weights that best 

minimise the error (difference) between the estimated and true outputs, calculated via some loss 

function.  Consider a large valley in 3D space. A person, stood at the crest of the hill, wishes to 

descend to the lowest point in the most efficient way. Trivially, at each point, they step in the 

direction with the most negative gradient, until they reach a point where the gradient in every 

direction is positive. This, essentially, is an analogy for backpropagation in a neural network using 

gradient descent optimisation. Gradient descent attempts to find the global minimum of the loss 

function. Given the loss function, L, the vector for the gradient of steepest descent at some point 

is given by −∆�ሺܹሻ, where L is the loss function, −∆� is the negative of the gradient (calculated 

from the differential) at that point, and W, is the vector containing all network parameters.  

Each component of the (negative) gradient vector yields two pieces of information. The sign 

represents whether the corresponding component in the weight vector, W, should be increased or 

decreased, and the magnitude represents the relative importance of that change. That is, an 

adjustment to one weight may have a larger impact on the loss function than the same adjustment 

on a different weight. The weights will also be adjusted according to some learning rate, which is a 

hyperparameter that controls how much to change the model in response to the estimated error 



each time the model weights are updated [10]. I.e., these parameters will be updated according to 

the learning rate, which is set by the practitioner. This makes each step proportional to the gradient 

at that point, allowing for smaller steps as the cost converges to some minimum. Selecting a good 

learning rate for a model is crucial. Learning rates too large will miss global minima, whereas 

learning rates too small will take a long time to converge. 

Stochastic Gradient descent 

Calculating the negative gradient of the loss function is computationally intensive. Thus, a 

common method for closely estimating the process is to randomly shuffle training data into equal-

sized batches. Each step of the gradient descent algorithm is then performed sequentially according 

to each batch of data forward-fed through the network. This is known as stochastic gradient 

descent 

Adam optimizer 

Adam invokes an adaptive learning rate method [14]. Moreover, it computes individual learning 

rates for different parameters. The authors of Adam collated ideas from two former adaptations 

of the stochastic gradient descent algorithm; Adaptive Gradient Algorithm (AdaGrad) that 

maintains a per-parameter learning rate that improves performance on problems with sparse 

gradients; Root Mean Square Propagation (RMSProp) that also maintains per-parameter learning 

rates that are adapted based on the average of recent magnitudes of the gradients for the weight. 

Adam uses estimations of first moment (mean) as per the RMSProp algorithm, but also makes 

use of the second moment (uncentered variance) of the gradient to adapt the learning rate for each 

weight of the neural network. The N-th moment of a random variable is defined as the expected 

value of that variable to the power of n. More formally: ݉� = �[ܺ�] 
Where m is the moment and X is a random variable. 

Specifically, the algorithm calculates an exponential moving average of the gradient and the 

squared gradient and includes parameters (beta1 and beta2) to control the decay rates of these 

moving averages. 

Testing 

The performance of a deep neural network can be scrutinised under several performance 

measures, namely sensitivity, specificity, accuracy, and F-score. Sensitivity refers to the proportion 

of true positives correctly identified. For this project, this measure would be the proportion of 

subjects that were correctly as patient. Specificity refers to true negatives correctly identified, which 



would be the inverse of the former, i.e. the proportion of subjects that were predicted as healthy 

controls and that are true healthy controls. The accuracy of a classifier represents the overall 

proportion of correct classifications. The statistical significance of this overall accuracy can be 

tested using parametric tests such as permutation testing, which measures how likely the observed 

accuracy would be obtained by chance. Metrics such as F-score and balanced accuracy, which 

consider each group’s sample size, are particularly useful in cases where classes are unbalanced. 

The F-score is a measure that combines precision or positive predictive value and sensitivity. 

Balanced accuracy, on the other hand, correlates to the average accuracy obtained on either class. 

Overfitting and remedial strategies 

The use of multiple non-linear functions across deep neural networks leads to highly complex 

models that attempt to estimate a very large volume of parameters. This can lead to model the 

learning noise and fluctuations in the training set that are immaterial to the problem of 

classification. This phenomenon is known as overfitting, and is analogous to that of ML. In 

neuroimaging, the alleviation of this occurrence is particularly challenging, as there exists a much 

greater number of data points (voxels) than there are subjects. 

Regularization 

Regularization is any modification we make to a learning algorithm that is intended to reduce 

its generalization error but not its training error. The goal is to reduce variance and increase bias.  

L1 and L2 are the most common types of regularization, which update the general cost function 

by adding another term known as the regularization term: �݊݋݅ݐܿ݊ݑ݂ ݐݏ݋ = + ݏݏ݋�   ݉ݎ݁ݐ ݊݋݅ݐܽݖ݅ݎ݈ܽݑ݃݁� 

 

This leads to a much simpler model, meaning that the likelihood of overfitting significantly 

lowers. This regularization term differs slightly across L1 and L2. 

For L1: 

݊݋݅ݐܿ݊ݑ݂ ݐݏ݋ܿ = ݏݏ݋� + ߣʹ݉  ∗  ‖ݓ‖∑ 

For L2: 

݊݋݅ݐܿ݊ݑ݂ ݐݏ݋ܿ = ݏݏ݋� ߣʹ݉ + ∗  2‖ݓ‖∑ 

[15] 



Here, lambda is the regularization parameter. It is the hyperparameter whose value is optimized 

for better results. In L1, we penalize the absolute value of the weights, which may end up at zero. 

Hence, it is very useful when trying to compress our model. In L2 regularization, also known as 

weight decay, the weights decay towards, but never reach, zero. 

Another strategy is ‘dropout’, where the network is defined by the presence of neurons at some 

probability, p, during the training phase, i.e., neurons are left out of the network with a likelihood 

of 1-p. This means that the contribution of dropped-out neurons to the activation of downstream 

neurons is temporally removed during the forward pass and that any weight updates are not applied 

to these neurons during backpropagation. The aim of dropout is to extract different sets of features 

that can independently produce a useful output, thereby allowing higher levels of generalizability. 

Data augmentation is the act of generating new training data from existing training data. This 

is particularly useful in the field of neuroimaging as data is often sparse and must be sourced under 

strict protocol. Common augmentation techniques are rotations, mirrors, random crops and 

gaussian noise and blur effects. 

Normalization 

Normalization is applied during the preparation of data to change the values to use a common 

scale when the features in the data have different ranges. Namely, voxel intensity for MRI scans. 

Z-score normalization results in the features being rescaled such that they have the properties of a 

standard normal distribution, with zero mean and a standard deviation (from the mean) of one. Z-

scores are calculated as follows: 

ݖ = ݔ  − �ߤ   

Where ߤ is the mean value of the feature and � is the standard deviation of the feature. 

As this is an import pre-processing stage for the input layer, it would be intelligible to assume 

the effects translate to the hidden units in the network. This is known as batch normalization and 

reduces the amount that the hidden unit values shift around (covariance shift), increasing the 

stability of the network. This is achieved by, for the output of a given activation layer, subtracting 

the batch mean and dividing by the batch standard deviation. Batch normalization also adds two 

trainable parameters to each layer: gamma (standard deviation) and beta (mean), which allows the 

optimization function to ‘denormalize' the output by computing the inverse calculation. if it aids 

in minimizing the cost function. 



Other issues in neural networks 

The dying ReLU problem 

The dying ReLU refers to the problem when neurons activated with a ReLU function become 

inactive and only output 0 for any input [16]. This is most probably caused by the network learning 

a large negative bias term for its weights. Once a ReLU ends up in this state, it is unlikely to recover, 

as the function gradient at 0 is also 0, thus the weights will no longer be altered the gradient descent 

algorithm. One simple solution to exchange the ReLU function for the appropriately name Leaky 

ReLU function. This is a modification of the function that allows small negative values when the 

input is less than zero. 

The vanishing gradient problem 

The vanishing gradient problem outlines the phenomenon of extremely small loss function 

gradients caused by certain activation functions, like the sigmoid function, squishing a large input 

space into a small input space between 0 and 1. Therefore, a large change in the input of the sigmoid 

function will cause a small change in the output. Hence, the derivative becomes small. This issue 

resolved by several network architectures, particularly ResNet. 

Summary of artificial neural networks 

To summarise, the multilayer perceptron is the elementary predecessor of more complex neural 

network. It consists three layers of artificial neurons: the input layer, the hidden layer and the output 

layer. Each neuron receives N+1 values, where N is the number of connections between that 

neuron and the neurons in the previous layer, and the additional value is the bias b. Each neuron 

will then calculate the weighted sum of these inputs given the weight vector w and the bias. The 

output is then passed through an activation function that squashes the value between some range 

before being transferred to the next layer. Training this network is a recursive process that uses 

backpropagation to distribute weight adjustments across the network given the network loss. 

Conclusively, a neural network can be considered mathematically as a large function, such that: the 

input to the function is the encoded data, e.g. each pixel in a Bitmap image; the output is the 

prediction of the network, i.e. some level of certainty across each neuron in the output layer; the 

parameters are the weights and biases of the network. 

Feedforward and recurrent neural networks 

Neural networks can be partitioned into two architectures: feedforward and feedback 

(recurrent). In a feedforward neural network, the input signal propagates in a single direction only. 

However, a recurrent neural network has a looping mechanism that allows results to be carried 

forward from previous stages. Each neuron has a hidden state, which is a representation of previous 



inputs. This allows the network to hold information that may provide context to later iterations. 

For example, the sentence ‘what time is it?’ may be fed into a network one word at a time. A 

recurrent neural network will store each previous word in a hidden state, thus encoding the 

sentence. This may then be fed into a feedforward layer to classify an intent. This project will 

invoke the former of the two, as sequential inputs are not contextually dependent. 

Convolutional Neural Networks 

The focus of this project is to develop a 3D convolutional neural network (CNN) to 

differentiate patients suffering with Alzheimer’s from healthy control data. CNNs are a special type 

of feedforward neural networks that were initially designed to process images, and as such are 

biologically inspired by the visual cortex. In addition to the input and output layers, CNNs are 

comprised of three types of layers: a convolution layer, a pooling layer, and a fully connected layer. 

In the convolution layer, a high-volume of training data undergoes a series of kernel convolutions 

to isolate scale- and shift-invariant features to produce a feature map. Each feature map is 

connected to a fixed set of neurons in a local region of the previous layer known as the receptive 

field in such a way that the whole image is covered (local connectivity). This allows the network to 

capture spatial and temporal dependencies in an image. As the layers progress, the features become 

more complex and distinguished. The pooling stage reduces the number of neurons in the previous 

layer by performing some function. After a series of convolution and pooling stages, the final 

output is flattened into a column vector via a fully connected layer and fed through a multi-level 

perceptron for classification. This sequence provides a better fitting to the dataset, as the number 

of network parameters is dramatically reduced, without the loss of critical attributes [13].  

Convolution layer 

In 2D CNNs, small portions of the image (called local receptive fields) are treated as inputs to 

the lowest layer of the hierarchical structure. One of the most important features of CNNs is that 

their complex architecture provides a level of invariance to shift, scale and rotation, as the local 

receptive field allows the neurons or to elementary features, such as oriented edges or corners. This 

network is primarily comprised of neurons with learnable weights and biases, forming the 

convolution layer. A kernel of size n is systematically applied across height and width of the input 

image. At each image section, the dot product between the kernel and that section is calculated and 

the result is mapped to a 2D matrix. The kernel is a learned image feature, and the output matrix 

provides a summary of the presence of that feature across the image. This is the process of 

convolution, which is repeated with many different kernels to form a convolution layer with a stack 

of filtered images. Essentially, a convolution layer will transform a single image to a stack of filtered 

images. Figure 2 displays this process. 



 

Figure 2: Convolution layer [18] 

A convolution layer in a 3D CNN is not dissimilar from that of a 2D model. 3D convolutions 

yield a volumetric space by applying a 3D filter to the dataset that manoeuvres tridirectionally (x, 

y, z) to account for the extra spatial dimension. Employing 3D convolutions into our network 

resolves issues surrounding certain pre-processing steps, such as image slicing. However, these are 

much more computationally intensive processes. 

Pooling layer 

The pooling layer is used to down-sample the feature map procured from convolution layer, 

while further desensitizing the network to its spatial positioning and orientation. There are many 

pooling techniques, but a popular choice is max pooling. Both a window size and a stride length 

are selected as hyperparameters for the network, and the window is walked across a filtered image 

one stride at a time. At each image section, the maximum value within the window is selected and 

mapped to another 2D matrix. This process is repeated for all filtered images. Again, the methods 

applied to 3D pooling layer does not hugely differ from its lower dimensional counterpart. The 

pooling function is exerted over chunks of each 3D feature map to supply a down-sampled volume 

before being passed to the next layer. Figure 3 displays this process. 



 

Figure 3: Max pooling layer [18] 

Fully connected layer 

Fully connected layers are similar to the hidden layers from the conventional MLP, where the 

neurons are connected to all neurons from the previous layer. Here, the filtered and pooled image 

is flattened to a single vector. When training the network, every element in this vector receives a 

connection weight to the output layer that determines how much it correlates to each class.  For 

example, the connection between a feature representing wings and the class ‘bird’ in the output 

layer is much stronger than that of a feature representing four legs. When an unseen image is passed 

through the network, the weighted average of the vector is calculated for each class, which is taken 

as the model’s prediction. As the output of this layer is analogous to its input, fully connected layers 

may be aligned sequentially for intermediate categorisation. These intermediate classes are often 

called ‘hidden units’ and can improve the accuracy of the model by further breaking down the 

structure of the image. Figure 4 displays this process. 

 

Figure 4: Fully connected layer [18] 



Backpropagation in CNNs 

The topology of CNNs utilizes spatial relationships to reduce the number of parameters that 

must be learned, improving upon general feed-forward backpropagation training. Equation 1 

demonstrates how the gradient component for a given weight is calculated in the backpropagation 

step, where E is error function, y is the neuron Ni,j , x is the input, l represents layer numbers, w is 

filter weight with a and b indices, N is the number of neurons in a given layer, and m is the filter 

size: 

 

[19] 

Equation 2 describes the backpropagation error for the previous layer using the chain rule. This 

equation is similar to the convolution definition, where ݔ(݅+ܽ)(݆+ܾ) is replaced by ݔ(݅−ܽ)(݆−ܾ). It 

demonstrates the backpropagation results in convolution while the weights are rotated. The 

rotation of the weights derives from a delta error in the convolutional neural network: 

 

[19] 

CNNs in neuroimaging 

2D convolutional neural networks 

One of the first documents detailing the use of DL in an AD study was carried out by A. Gupta, 

M. Ayhan, and A. Maida [7]. Here, the authors identified that natural images and brain imaging 

methods share similar, and therefore interchangeable, low-level features (e.g. lines and corners). As 

well as this, they outlined that natural images are more abundant, thus derived that a method of 

transfer learning could be employed. Transfer learning is the act of pretraining a network on one 

set of data to extrapolate for a similar set of data. Therefore, the authors pretrained a sparse 

autoencoder to learn features from natural images, which were then applied to structural MRI data 

via a CNN, achieving a classification accuracy of 94.7% for AD versus controls, 86.4% for MCI 

versus controls and 88.1% for AD versus MCI. Consistent with the authors’ hypothesis, this 

method outperformed the one where the learned features were extracted from the neuroimaging 

data (93.8%, 83.3% and 86.3% for the same comparisons, respectively). 



3D convolutional neural networks 

Under the same presuppositions as Gupta, Ayhan, and Maida, A. Payan and G. Montana found 

comparable classification accuracies using features that were learned from the structural MRI data 

itself using a sparse autoencoder with a 3D CNN  . Furthering the previous work, Payan and 

Montana pretrained the sparse autoencoder with general MRI data from various neurological 

patients, and fine-tuned the network with those suffering from AD. The advantage of taking this 

approach is that not only was the transfer learning more task-specific, 3D data contains more useful 

patterns for classification.  Payan and Montana compared the results of their 2D CNN 

implementation against their 3D implementation, and found that their 3D model generally 

outperformed the 2D alternative (AD vs. HC (2D/3D) = 95.4%/95.4%; AD vs. MCI 

(2D/3D) = 82.2%/86.8%; MCI vs. HC (2D/3D) = 90.1%/92.1%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Project Specifics 

Pre-processing in Magnetic Resonance Imaging 

Magnetic Resonance Imaging (MRI) is an imaging modality used in medicine to produce 

detailed images of human anatomy. First introduced to the medical industry in 1977, the MRI 

scanner has revolutionised clinical diagnosis and prognosis of patients suffering from neurological, 

abdominal, and many other variations of illness.  MRI scans are riddled with many issues that force 

robust pre-processing mechanisms to be implemented in any analysis pipeline. For most 

neuroimaging pipelines proposing solutions to challenging ML problems, this is a vital part of the 

system. There exists many normalization and redundant information removal technique, but this 

small segment highlights those of interest to the project. 

A frequent issue is with MRI images is bias field corruption. The bias field is a low-frequency 

and very smooth signal that corrupts the images, especially those produced by old MRI machines 

[20] . Further pre-processing algorithms, such as registration, brain extraction and segmentation, 

require a bias-corrected image to perform correctly. 

Another issue is the variety of imaging modalities and protocols followed during MRI 

acquisition. Thus, it is nearly always desirable for the images to be normalized to some standard 

space. Image registration is the process of transforming different sets of data into one coordinate 

system. For MRIs, a common coordinate system is that defined by the Montreal Neurological 

Institute and Hospital. The MNI space defines the boundaries around the brain, expressed in 

millimetres, from a set origin [21]. For comparative analysis, it is important that all images undergo 

this procedure. 

Many neuroimaging pipelines are also inclined to extract a more particular region of interest 

from the volume as to remove redundant information. A popular technique to do so is brain 

extraction. Intuitively, brain extraction is the process of removing skull and neck voxels from a 3D 

MRI volume. This is a costly process that requires both time and computationally intensive 

calculations. Furthering this, clinicians often spatially smooth the brains using a range of Gaussian 

kernels. Spatial smoothing is the act of averaging data points with neighbours. This has a low pass 

filtering effect, meaning that high frequencies of the signal are removed from the data while 

enhancing low frequencies [22]. The result is that sharp edges of the images are blurred and spatial 

correlation within the data is more pronounced. Moreover, this reduces the signal to noise ratio 

within the image. With relevance to the project’s aim, this could reduce the risk of the convolutional 

neural network overfitting to the training data due to this noise reduction effect. 

 



The ADNI dataset 

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a multicentre study designed to 

develop clinical, imaging, genetic, and biochemical biomarkers for the early detection and tracking 

of Alzheimer’s disease [23]. Research began in 2004 under the leadership of Dr. Michael Weiner, 

funded as a private-public partnership, and was split into four phases: ADNI-1, ADNI-GO, 

ADNI-2 and ADNI-3. The initial five-year study was extended by two years through a Grand 

Opportunities grant and furthered again in both 2011 and 2016. This dataset that will be used to 

train and test the deep convolutional neural network. 

Software and libraries 

Google Colab 

Google Colab is a free cloud-based service that implements a high-performance interactive 

Python development environment [24]. Following dependencies, such as Tensorflow, come pre-

installed on each notebook, which may be run for twelve hours at a time before being ‘recycled’ 

and local variables are deleted. A Google Drive can be mounted to each notebook for both 

permanent package installation and access to other files. 

FSL 

FSL is a comprehensive, standalone library of analysis tools for FMRI, MRI and DTI brain 

imaging data [25]. Tools can be run either directly from a command line interface, or through the 

FSL GUI. FSL provides functions for bias correction, image registration, brain extraction, 

segmentation, and other necessary pre-processing stages. 

Python 

Python is a programming language natively installed on Windows, Linux, and MAC OS [26]. It 

is one of the most popular language in the AI community, with an incredible ease of use and 

indicative documentation to follow. The following libraries will be used alongside Python to 

develop the system. 

Deep Learning Tool Kit (DLTK) 

The deep learning tool kit is a compilation of various popular neuroimaging packages that 

provides a more abstracted frontend solution to the individual package installations [27]. These 

packages include SimpleITK and Nibabel, both reputable tools for neuroimaging analysis. 

Tensorflow 

Tensorflow is an end-to-end opensource machine learning framework that hosts an eco-system 

of tools used to develop and train models. Tensorflow’s strong community makes this a an 

extremely viable framework to base the solution upon [28]. 



Keras 

Keras is an open-source API capable of running on-top of Tensorflow that provides a high-

level framework for NN model development [29]. Keras can run seamlessly on available GPUs. 

The Sequential class was of particular interest for this project. 

Nipype 

Nipype is a python library that interfaces several popular neuroimaging analysis tools, including 

FSL [30]. Nodes are stringed together in flows to form an end-to-end pipeline. Each node is 

representative of an interfaced stdout command, which is called when the flow is run. This will 

form the basis of the pre-processing module implemented in this project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Approach 

This section details the approach taken for suitably constructing a viable solution to the problem. 

1. Data Handling 

Acquisition 

The dataset for this application consisted of subjects from the ADNI study. It was pre-reviewed 

that the set acquired should be reasonably balanced. That is, no single class should dominate the 

overall population of the dataset. However, a slightly larger control set was inevitable. It was also 

noted that the information should be collected in line with the ADNI data usage agreement. After 

reviewing the available data for each phase of the study closely, subjects were to be taken from the 

baseline phases of the ADNI-1 and ADNI-2 phases. These both produced the most suitable sets 

of subjects, with minor disparities in MRI scanning modalities. 

The ADNI advanced search interface was used to filter and select subjects accordingly. Firstly, 

all control subjects were filtered, selected and added to a collection named ‘ADNI-1-2_CN’, and a 

similar search was carried out for the AD subjects, whom were saved to a collection named ‘ADNI-

1-2_AD’. This method allowed all subjects to be readily compiled according to their class, 

precluding the chance of cross-contamination between datasets. The folders were then 

downloaded, and all files were extracted to obtain the relevant files and rename them to their 

complementary subject numbers. From this, two folders – ‘cn’ and ‘ad’ – containing [n] and [n] 

NifTi files were produced which would be used as inputs for subsequent stages. 

Pre-processing 

Multiple protocols were reviewed from several software libraries that would achieve the desired 

results for this module, but it was settled that brain extraction should be analogous to FSL’s 

‘fsl_anat’ command. Replicating this command in Python would allow the solution to be 

implemented across a single interface. As per the chosen command, all subjects were to be 

reoriented, bias-corrected, registered to MNI152 space, brain extracted and smoothed. From here, 

the network could be trained on five distinct datasets to review which gives better results during 

the classification stage. Those datasets are as follows: registered whole-head MRI scans, registered 

skull-stripped MRI scans, and MRI scans that were registered, skull-stripped and smoothed with 

three separate Gaussian kernels. 

It is important that module yields suitable results and does not introduce further issues. That 

is, when brain extraction takes place, residual neck or skull voxels may remain. This would leave 

outliers in the dataset, which would be an issue when training the network. Hence, all pre-processed 



images should be scrutinised by eye before further classification stages take place. This could be 

achieved via fsl’s GUI ‘fsleyes’. 

Train test split 

It was also decided that the dataset should have an appropriate split for training, validation and 

testing data. It was important for the split to leave enough training data, as it was preconceived that 

there would already be a shortage of scans available, especially those from the AD class. To fall in 

line with these preconditions, it was settled that the data should split should be 70%, 15%, 15% 

train, validation, test material, respectively. That is, 70% of the data should be labelled and used to 

train the model, 15% could be used to assess the progression of the model during its training phas, 

then the model would make predictions on the remaining unseen 15%. 

Compatibility 

To make the network run as seamlessly as possible, it was important to ensure that the flow of 

data was as fast as possible. However, neuroimage files, such as NifTi images, can be very large, 

thus, loading all data to memory was not seen as an appropriate method for handling the data. 

Therefore, it was decided that both the train and test datasets should be serialized to disk for fast 

read / write access. Hence, it was found to be appropriate that two TFRecord datasets should first 

be created from the raw data before being passed to the network. 

2. Network Construction 

Environment 

The development environment for the network should meet satisfactory conditions such that 

the solution is able to run without hindrance due to performance issues. Thus, it was decided that 

the network should be implemented within a Google Colab notebook. This would enable GPU 

access for the Keras and in turn considerably improve performance.  

Architecture 

Basic structure 

The structural design of the network was an important, multifaceted component of the pipeline 

that was crucial for correct classification of subjects. It was determined that a basic structure should 

first be introduced, before affirming a more particular solution to the issue. This consisted of five 

3D convolution and max pooling pairs, followed by two dense layers. The input to the network 

was set to 80x100x80, as this is the size of the MRIs. The number of filters for each convolution 

was set to 32, 64, 128, 128, and 256, respectively, to ensure that the network could build a high 

enough abstraction of the scans. Each filter in each convolution layer was set to size 3x3x3, with a 



stride length of 1 in each direction. The size of each pool in each pooling layer was set to 2x2x2, 

with a stride length 2 2 in each direction, and the padding was set to ‘SAME’. This padding was 

chosen as it was important to retain as much information from each scan as possible. The neurons 

for the dense layers were set to 256 and 1, respectively. The process of choosing the number of 

neurons in the first dense layer was trivial; it could be altered for optimality. However, as the input 

data was labelled binarily ([0] or [1]) over one-hot encoding ([0, 1] or [1, 0], then it was necessary 

for the  second layer to have only a single neuron with sigmoidal activation. 

The activation for each convolution layer was set to ReLu, which was chosen over other 

activation functions as it does not saturate; that is, the gradient it always high if the neuron activates. 

Max pooling was selected over average pooling or other down sampling techniques as it extracts 

more verbose features. This was desirable as MRI images are grey-scale and all pixels surrounding 

the head are zeroed. Therefore, max pooling can define outstanding features more rigidly. 

Loss and optimization functions were chosen that best fit a solution to a binary classification 

problem. Binary cross-entropy appeared most suitable as it would minimize the distance between 

the two probability distributions – predicted and actual. Adam was chosen as the optimization 

function, which was favoured over classic stochastic gradient descent as it has been shown to 

outperform in the field of binary classification on many occasions. Adam also yields extra 

hyperparameters that could be tuned to improve performance. 

Training the network 

The training phase of the network construction should be carried out such to minimise the 

number of train-test iterations. This would be a very time-consuming approach to building the 

model. The following procedure was administered for all training sets. 

Capacity evaluation (strategic overfitting) 

Firstly, the network was scrutinised with a capacity evaluation. All hyperparameters for the 

optimization function were kept default, and the all regularization and normalization methods were 

omitted. The model was trained for ten epochs and as expected, the model overfitted to all training 

sets. This showed that the model was deep enough to learn the features of the training data, and it 

did so without issue. It was easily established that the model was overfitting as the training loss and 

accuracy were respectably extremely low and high in comparison to the validation loss and 

accuracy. Hence, the model had learned all fluctuations of the training data such that it struggled 

to generalize for the unseen data.  



Generalization 

Next, the first strategy to rectify the generalization error was introduced – batch normalization. 

A batch normalization layer was implemented in between each convolution and max pooling layer 

and the network was retrained for a further ten epochs so the effect could be monitored. It was 

instantly observed that this had aided in solving the issue. The network took longer to successfully 

map training inputs to target values but achieved more similar results between both datasets before 

overfitting once again. 

Following this, a dropout layer was administered after the first dense layer with default 

parameters. Again, the network was retrained for ten epochs so the effect could be recorded. 

Similar results were observed as per the introduction of the batch normalization layer, yet 

overfitting persisted. Thus, the final remedy was installed in the form of kernel regularization. Both 

l1 and l2 were trialled for this stage, but l2 achieved much better effects without causing the model 

to underfit to the training data due to network sparsity introduced by l1.  

After introducing these additional features, the network was now significantly better at 

generalizing, but the model struggled to fit to the training data. Thus, it was hypothesised that the 

network may struggle with the ‘dying ReLU’ issue. Therefore, the regular ReLU activation was 

subsided and replaced with the Leaky ReLU activation function. The network was again retrained 

for a further ten epochs, and it was observed that this remedied the hindrance. The operation of 

the network was now at a point where further hyperparameters could be altered to improve 

performance. 

Selecting hyperparameters 

With a more complex model in place, hyperparameters for the network could be adapted to 

the new structure. It was established that there should be some organization to the alteration of 

these. Thus, various ranges of values were self-proposed; namely the number of epochs, batch size, 

learning rate, and dropout rate for the dropout layers. The number of epochs would be trialled 

within the range of (formatted as [start : increment : end]) [10 : 10 : 100], the batch size within the 

range of [4 : 4 : 32], the learning within the range [0.1 : 0.05 : 0.001] and the dropout rate within 

the range [0.2 : 0.1 : 0.5]. 

While trialling these values, it became immediately apparent that the onboard memory for the 

Colab GPU could not sustain a batch size greater than four for this model. Thus, this left no choice 

but to keep this as the default. Leading on from this, it was recognised that the learning rate should 

also be small. This is a general rule for neural networks, as the smaller the batch size the closer to 

a stochastic gradient descent. That is, there is much less ‘confidence’ in our descent towards the 



minimum of the cost function as the overall cost is more approximated. This led to a much 

lengthier training procedure. The dropout rate was scaled between the prementioned range, but a 

value greater than 0.2 caused the model to severely underfit to the training data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Solution and Implementation 

This section details the replicable solution to the problem highlighted throughout the previous 

sections of this paper. The first segment outlines the data handling methods and supplementary 

code for review or replication of each stage. The second segment highlights the model itself as well 

as the network’s operation and supplementary code for review or replication of each stage. 

1. Data Handling 

Directory structure, file handling and demography 

Directory tree 

As proclaimed, it was vital that both groups of subjects were separated immediately from the 

acquisition phase. To do this effectively, the access of directories must be consistent across the 

application. Thus, a simple structure was devised that would be suitable for all modules to access. 

Under each class directory, there contains four distinct folders. The first of which contains the raw 

files extracted from the zip file downloaded from the Loni repository. After doing so it was 

immediately apparent that this file structure would grow to several gigabytes in size. Therefore, the 

GNU gzip command was utilised for simple lossless file compression. The following three 

directories are data sinks for the Nipype pipeline implemented in the pre-processing stage of 

operation. The meta subdirectory is a folder introduced for the complex file tree made by Nipype 

to store intermediate files used during execution. For simplicity, this file structure will be ignored. 

 

Demography 

For a more concise and robust implementation of latter processes, as well as a more general 

representation of the dataset population, a simple CSV file was created to hold the subject number 

and corresponding class for each MRI file. The code in figure 5 uses the python os class to list all 

files previously extracted to the raw folder of each group. The csv class is then used to open a file 

named ‘demographics.csv’ and write the subject with the corresponding class label (0 for control, 

1 for AD) to a new line. 



 

 

Figure 5: CSV Write function 

Pre-processing pipeline 

General structure 

The pipeline implemented for the pre-processing section of this solution iss split across two 

modules. The flow.py module contains a series of functions that are imported to the pipeline.py 

module, which connected the flows accordingly. The method was implemented to abstract away 

from the complex operations performed during each pre-processing stage. All following code was 

taken from the pipeline.py module to reduce complexity of this section. 

Data grabbing 

First, the pre-processing module collects the raw data from the data directory. The datasource 

node handles the iterative requirement for the pipeline. That is, it will iterate through the subject 

list and pass each subject id to the datagrabber node. This node uses the subject id to pull the 

corresponding files from the raw data directory based on the template given. Figure 6 shows the 

creation of this node. 

 

Figure 6: Data grabbing 



Figure 7 shows the connection made between the datasource iterable and the datagrabber node. 

 

Figure 7: Datagrasource / Datagrabbing connection 

Data sinking 

To handle the output of each stage, a data sink node was created. This allowed for important 

files to be ‘sunk’ to the file structure created previously. This ridded the issue of siphoning through 

Nipype’s complex internal files structure to find the results necessary for later stages. Figure 8 

shows the creation of this node. 

 

Figure 8: Datasink 

Figure 9 shows the connection between each relevant node and the data sink. 

 

Figure 9: Datasink connections 

Bias correction and registration 

Firstly, the pre-processing module takes the raw MRI images and reorients them, such that they 

appear ‘the same way round’. Next, each image is corrected for the bias field signal. All images are 

then linearly registered to MNI standard space using the MNI152 template supplied by FSL as the 

reference image. Each image is then non-linearly registered to standard space with the same 

template, along with the linear registration matrix output from the previous registration as the 

affine transformation matrix. Figure 10 shows the process as seen by the pipeline.py module. 

 

Figure 10: Bias correction and registration 



Brain extraction 

Following this, each image is brain-extracted using the field coefficient file procured from the 

non-linear registration. The field is inversed and applied to the MNI152 brain mask, which is then 

applied to the original bias-corrected image to achieve a bias-corrected, brain extracted image. The 

FSL BET tool was also trialled for this operation, but the latter method substantially outperformed 

this. Figure 11 shows the process as seen by the pipeline.py module. 

 

Figure 11: Brain extraction 

Full pipeline 

Figure 12 shows the full pipeline implemented in the pipeline.py module.  

 

Figure 12: Full pre-processing pipeline 

Dataset construction 

Train test split 

The train-test split was generated using a combination of numpy and pandas operations 

function. The train, validation, test split was 70%, 15%, 15%, respectively. The datasets were then 

marshalled and serialized to their corresponding files. Figure 13 shows this. 



 

Figure 13: Train test split 

Loading data 

Image loading was handled by the load_img function. This was called upon during later the 

marshalling stage of the dataset creation. The subject id and label were extracted from the metadata 

and the corresponding file name was generated. The image was loaded as a simpleitk object and 

converted to a numpy array. The image was then cropped, normalised using the DLTK 

normalise_zero_one function, reshaped to fit a dummy dimension for the channels and returned 

alongside the image label. Figure 14 shows this. 

 

Figure 14: Load image function 

Image cropping 

Image volumes were cropped using a bounding box method sourced from stack overflow. 

Figure shows the implementation of this function. Figure 15 shows this. 



 

Figure 15: Image cropping1 

Marshalling 

Data marshalling was handled by the create_data_record function. Here, an output file name 

was received as argument, along with the set of addresses corresponding to the relevant dataset 

and the explicit string that detailed that mode of operation (‘train’ or ‘test’). A TFRecordWriter 

object is instantiated and the filenames are cycled through. The load_image function was is called 

and the img, label pair is unpacked upon return. A feature is created and used to create an example 

protocol buffer, and the writer object is used to write the serialized img-label pair to the appropriate 

file. This function was later called after all filenames had been gathered and the train-test split was 

generated. Figure 16 shows the marshalling of the serialized files. 

 

Figure 16: Data marshalling 

 

1 https://stackoverflow.com/questions/39382412/crop-center-portion-of-a-numpy-image 

 

https://stackoverflow.com/questions/39382412/crop-center-portion-of-a-numpy-image


Unmarshalling 

After the TFRecord files have been written, the data could be deserialized and accessed at much 

higher speeds, without the need to load all data to memory. Two distinct TFRecord dataset objects 

are instantiated and the respective file names are passed as arguments. The function returns a 

numpy array and integer for the MRI data and label, respectively. Data is augmented, shuffled, and 

batched for the training data, whereas the augmentation and shuffle stages are excluded from the 

test data. The datasets were now in a compatible format for input to the network. Figure 17 shows 

the unmarshalling of the serialized files. 

 

Figure 17: Data unmarshalling 

2. The Network 

Input layer 

The input layer takes as input a Tensorflow dataset object that yields two numpy arrays; namely, a 

data batch and corresponding labels. The data batch array is of shape (batch size, depth, height, 

width, channels), and the labels array is of shape (number of subjects in batch). Figure 18 shows 

this. 

 

Figure 18: Input layer 

Feature selection 

During the feature selection phase, the input data faces a series of five 3D convolution and 

pooling stages to attain some interpretation of the image. As these stages progress, the model 

captures higher-level features. After the input layer, these features may be simple lines, then at the 

next stage they may progress to edges and so-forth. For patients suffering with AD, higher-level 

features may have been in the form of anatomical lesions caused by the disease. The information 

distilled from this stage was aggregated and flattened into a single 1D vector before entering the 

dense (fully connected) layers for classification.  



 

Figure 19: Feature selection stage 

Classification 

The classification segment of the neural network comprises two dense layers, with the second 

being the output layer. During the training stage the batch loss is calculated and backpropagated 

through the network, which is displayed alongside any chosen metrics for the model. After each 

epoch, the network is validated with the test data which gives insight to the progression of the 

model’s fit. Figure shows the code for this. 

 

Figure 20: Classification stage 

Compiling the model 

The model is then compiled with the previously agreed optimization and loss functions. The 

learning rate is set with the global learning rate variable. The accuracy metric is also requested to 

be displayed when running the model. shows the code for this Figure 20 shows this. 

 

Figure 21: Model compling 

 

 

 



Results and Evaluation 

The aim of the project has been achieved. A convolutional neural network that can distinguish 

patients suffering with AD from healthy control subjects has been developed and the effect of 

various approaches to pre-processing has been discussed. Regions of interest were extracted from 

the input MRIs via the multiple convolution layers and mapped to class labels. These learned 

patterns were used to make inferences on an individual level, as a clinician would. Many models 

have been developed for the ADNI dataset from those much more knowledgeable on the topic of 

neuroimaging analysis, thus direct network performance comparison is rather trivial. However, the 

comparison of network performance from different pre-processing techniques is scarcely 

documented for basic models (particularly those that do not employ pre-training or transfer 

learning). It is therefore worth nothing that this project did contribute this information towards 

the ML and neuroimaging community, which could be furthered for more complex analysis from 

piers more well-versed on the subject. 

1. Evaluation Metrics and Methods 

For each dataset, a single different performance metrics were used to assess the strength of the 

network. This selection was sufficient to suitably assess the performance of the model given each 

dataset. Accuracy is a measure of the number of correctly predicted labels of an MRI out of all 

samples. The validity of accuracy as a performance metric is dubious when the dataset is 

imbalanced. That is, the dataset has a disproportionate population of a single class. Given a dataset 

with 90% of one class to 10% of another class, the model simply learns that if it guesses the label 

representative of the larger class all the time, it will achieve at least 90% accuracy. 

As our dataset was reasonably balanced, it was decided that a confusion matrix would not be 

necessary. A confusion matrix is an n x n matrix, where n is the number of classes, used to 

summarise the performance of a classification model. A confusion matrix shows the prediction for 

a sample against its true label and specifies where erroneous classifications are made. It was 

expected that the model would not be perfect due to three reasons: lack of training data, insufficient 

knowledge of robust pre-processing methods and possible ignorance towards this, and insufficient 

resources to build a more complex model. 

 

 



2. Comparison of Results 

Testing 

As previously explained, this project aimed to discuss the effect of different approaches to 

neuroimage pre-processing when developing a classification pipeline. A total of five datasets were 

used to train and test the network, namely: whole-head and affine registered MRIs, skull-stripped 

and affine registered MRIs, and MRIs that were skull-stripped, affine registered and smoothed 

using a Gaussian smoothing kernel with sigma = 2. It was expected that the removal of redundant 

information – namely skull and neck voxels – would aid in both increasing the network’s 

throughput as well as improve accuracy in the classification of the subject. It was uncertain whether 

the smoothing would increase or decrease the accuracy of the model, as spatially smoothing each 

of the images would improve the signal-to-noise ratio (SNR), but at the expense of image 

resolution. However, it was hypothesised that due to the improvement of the SNR ratio, spatial 

smoothing could help to prevent the model from overfitting 

Comparison of pre-processing techniques 

 Accuracy (%) Loss 

Train Test Train Test 

Registered 96.6 84.4 0.035 1.242 

Registered and skull-stripped 96.8 85.0 0.034 1.171 

Registered, skull-stripped and smoothed 97.6 87.1 0.032  1.303 

Figure 22: Table of results 

The above table shows that, as hypothesised, the more robust pre-processing pipeline yielded better 

results than other approaches. 

  



Conclusion 

As this project concludes, it is worth revisiting the aims and critically evaluating whether they 

were met. To reiterate, the aim of this project was to develop a convolutional neural network that 

could distinguish patients suffering with AD from normal healthy control subjects. The intention 

was not to present a clinically valid and readily available model, but rather to explore various 

approaches to doing so and present a proof of concept that could be reviewed and built upon. It 

was immediately recognised that the validity of the pre-processing module would be the crux of 

the project, thus this was a major focus in the development of the pipeline. The various outputs 

from the module allowed us to explore to some extent the importance for rigid pre-processing 

procedures for high accuracy classification. Future work conducted by those more knowledgeable 

on neuroimaging analysis could take note of the results presented by this project before 

implementing their own strategies for developing a classification pipeline. Moreover, these results 

are not limited to classification of only AD patients but may also be extrapolated and applied to 

the detection of other anatomical disorders detectable by MRI scans. However, some of the pre-

processing measures discussed are specific only to neuroanatomical MRI scans, more specifically 

the skull-stripping section. On the other hand, bias field correction, registration and smoothing all 

translate to the other anatomical scans. 

The results suggested that the throughput of a CNN developed for neurological assessment is 

conclusively linked to the amount of pre-processing performed to rid redundant information from 

the volumes prior to entering the network. Not only this, but classification accuracy is severely 

improved by doing so. However, it was also shown that a relatively successful pipeline could be 

built with minimal processing performed on each volume. Furthermore, this paper indicates that 

neural networks are mostly limited by the practitioner’s competency when handling the specified 

data modality. The processes undergone throughout this project were conducted under no prior 

knowledge of neuroimaging data. A clinician well-versed in this subject may have performed better 

even with lesser knowledge of machine learning. 

The black-box approach to training a deep-learning model learning has proven to be both 

advantageous as well as a draw back. Programmatically, the construction of the model is concise 

and easily replicable due to the highly abstracted APIs used (Keras and Tensorflow). However, 

there is an inherent inability to assess where the model struggles to learn. Thus, when a model does 

not perform well, there are few approaches that yield better results than trial and error when 

attempting to rectify the issue. 



As with many deep learning tasks, the results are extremely limited by available computational 

resources. Despite Google Colab enabling GPU usage, the shortage of on-board memory was an 

issue when training the network. Due to the nature of a neural network’ s learning algorithm, the 

restriction on the hyperparameters imposed by this issue undoubtedly influenced the outcome of 

the solution. Thus, it is possible that stronger results may be obtained for those with access to a 

desktop computer with higher specification, or even access to a supercomputer cluster. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Reflection 

The past few months taken to complete this project have been riddled with issue. The current 

global pandemic has caused a great deal of anxiety, animosity, and struggle, and it would be a 

ridicule if I were not to say that it has had a major effect on the quality of this project. The lack of 

order had taken its toll, and I fell behind in the early stages. Communication between myself and 

my supervisor was minimal, mostly due to personal issues on my behalf regarding the pandemic. 

Nonetheless, I pushed through and pieced together a final piece that I could be somewhat proud 

of considering the situation. 
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