
Final Report CM3203 C1722514

1

5th of June 2020

School of Computer Science and Informatics, Cardiff University

1920-CM3203 – One semester Individual Project – 40 credits

USING SENTIMENT ANALYSIS TO

IMPROVE EMOJI PREDICTIONS IN

TWEETS

Final report submitted as part of the Final Year Project for the degree of

BSc Computer Science

Supervisor: Luis Espinosa-Anke

Moderator: Matthias Treder
By Fani Krasimirova Noncheva

Final Report CM3203 C1722514

2

Acknowledgements

I want to thank Alexandra Nicholas and Brendan Rhys Lamb for

supporting me in this time of global crisis, whilst I had to write this project on my

own with no relatives to turn to, stranded a continent away from home, their

support helped me stay strong and focus on work despite all the stressful events

of this year. I am glad to have found a family overseas that I can rely on and

cherish.

I would also like to thank my supervisor, Luis Espinosa-Anke, for providing

guidance and insight, where needed, as well as being very understanding and

supportive of me when I applied for extenuating circumstances due to personal

reasons.

Notable mentions include Anastasia Ugaste, a friend and roommate of mine

that assisted me with her profound knowledge of data science when I was first

starting this project, Michael Stachowicz, my supportive partner, my family for

the fiscal security they provided for me during the pandemic and to the authors

and creators of machine learning mastery.

Final Report CM3203 C1722514

3

Table of contents
Abstract ... 4

Introduction ... 6

Background ... 7

Data sources ... 9

Approach & Design .. 10

Data processing .. 12

Why focus on data processing? .. 13

Initial pre-processing ... 13

Tokenization.. 15

Implementation: .. 17

Emoji prediction model ... 18

Sentiment analysis model ... 21

Merged and combined models .. 23

Findings .. 29

Reflection ... 33

Future Work .. 35

Conclusion ... 36

Acknowledgements ... 2

Bibliography ... 37

Final Report CM3203 C1722514

4

Table of figures

Figure 1: Emoji mapping ……………………………………………………………………………………………………14

Figure 2: Emoji-only model architecture diagram..……………………………………………………………………17

Figure 3: Emoji-only model accuracy graph…….………………………………………………………………………19

Figure 4: Emoji -only model loss graph……………………………………………………………………………………19

Figure 5: Sentiment analysis accuracy graph…………………………………………………………………………..21

Figure 6: Sentiment analysis loss graph…………………………………………………………………………………...21

Figure 7: Combined sent vector and emoji prediction model architecture diagram….………………………23

Figure 8: Merged model LSTM structure diagram..……………………………………………………………………..24

Figure 9: Merged model updated structure diagram………………………………………………………………….25

Figure 10: Sentiment original model vs merged metrics………………………………….……………………………28

Figure 11: Emoji plus sent vector vs merged model vs emoji-only performance…...……………………………29

Figure 12: Emoji plus sent vector performance vs merged model performance ……………...…………………29

Figure 13: Emoji data updated merged model.…………………………………………………………………………30

Figure 14: Sentiment data updated merged model……………………………………………………………………30

Final Report CM3203 C1722514

5

Abstract

This project is focused on exploring the relationship between sentiment

analysis and emoji prediction. The data used within the project is a variety of

tweets, collected from the USA at alternating time periods. Ultimately, this is an

analysis of tweets perceived as natural language and how this language is

connected to the use of emojis. The goal is to determine whether sentiment

analysis can prove useful in the field of emoji prediction. To accomplish this

natural language processing task, it employs a variety of neural networks,

developed with TensorFlow, and more specifically Keras. The architectures

explored vary between recurring neural networks and convolutional neural

networks, as well as a few merged model structures.

Final Report CM3203 C1722514

6

Introduction

Emojis are essentially a set of ideograms and smileys that are becoming

more and more commonplace as a way for people to express themselves

online. They have even went as far as being recognized by Oxford Dictionaries

as word of the year in 2015. [19] Considering the rapid adoption of emojis as a

medium of expression, they hold their own implications, semantics and linguistic

traits. That would imply their importance in text analysis is rising. As a relatively

new type of data they require further and expanded research, since currently

they are being somewhat neglected in the area of text analysis. [3] To

understand these newly adopted forms of expression, we need to analyse their

behaviour compared to more traditional means of communication such as

written text.

For this project I will focus on the expression of emojis in social media. Emoji data

is common to come across in online communication, and as such there is plenty

of data sources to be explored. [2] However, it is of utmost importance to find

data that has a healthy balance between text and emoji to assist in the task of

comparing emoji to natural language. Seeing as emoji is commonplace in texts,

social media posts and even making its way into certain articles online, the type

of data I have chosen to focus on for this project is tweets that contain emojis.

I chose to analyse twitter data as by the end of 2019 there are over 330 million

people are active on the platform monthly. [13] As such a widely used platform

it can offer an up-to-date, realistic sample of emoji uses, as well as a variety of

expression in the realm of sentiment analysis, resulting in perfect conditions for

this analysis task. The nature of twitter data is quite favourable for analysis as it

offers condensed and concise samples with just enough context and keywords

to map and analyse, without any significant data noise or cluttering.

Data aside, emojis and sentiment seem to have a correlation that is frequently

explored from the angle of sentiment. There has been past research pointing

towards emoji and sentiment having a valuable correlation.[28],[23],[32] The

focus of this project is to look at this relationship through a different angle that

explores the relationship between sentiment and emoji, this time using sentiment

to predict emojis, hopefully shedding light on those new and mysterious ways of

expression. [16]

With all the above into consideration, the scope of this project lies mainly in the

realm of natural language processing (NLP), which is a field tightly entwined not

Final Report CM3203 C1722514

7

only with artificial intelligence (AI) but linguistics as well. Due to the broadness

and complexity of the field, there is a vast disparity between the difficulty and

requirements of the different subjects within it, hence why this project picks one

of the better explored subjects – namely sentiment analysis, and a newer, less

explored part of the field, the use of emojis in natural language exhibited online

and mainly on social media.

Machine learning is not a new concept, yet it only recently started gaining

traction among academics and the industry alike. Though since I have set my

sights on a narrower application of machine learning – deep learning. In this

project I chose to develop neural networks to accomplish my task, focusing on

supervised learning. To achieve this, I employ the Keras API in Python to build

and test my models, as it is one of the most popular and widely used APIs that

are currently in use for machine learning projects.

Sentiment analysis has a long-standing history in the area of NLP as stated

above. It is a well-researched topic with a variety of uses in academia and the

advancement of tech that enhances day-to-day life. Since the broadness of

complexity in sentiment analysis is wide, I chose to explore a rather simple

variation focusing on the positive and negative sentiment shown through text.

When it came to implement and understand the implications the task offered,

there was outstanding research coverage on the most optimal techniques to

analyse text data and determine sentiment as stated in some of the referenced

studies. [20]

To accomplish the above I use deep learning models to explore both problems.

The similarities mostly end here, as I use varying techniques and compare them

to determine which is optimal for each problem and why.[1] The problems are

similar yet, as emoji classification is a bigger categorical problem, that will

require a more complex solution, determining the positive, negative or neutral

sentiment of a text sample is a much simpler classification process. Both

problems are categorical, and both can run into some issues later regarding

sarcasm and finer ways of expression. [7]

Background

There is a variety of research papers on the topic, covering different

implementations and several solutions to emoji prediction and sentiment

analysis. For one, there is an in-depth analysis of the different techniques used

for sentiment analysis in the realm of AI [20], however, my primary interest lies

Final Report CM3203 C1722514

8

with machine learning implementations, specifically neural network ones. For

NLP there seems to be a consensus that the most optimal types of models

around are based on either Long Short-Term Memory (LSTM) based neural

networks and convolutional neural networks. [8], [27]

There seems to be a wider variety of LSTM-based models that are implemented

for this specific task, mostly due to LSTM’s ability to analyse the given tensors
using a ‘timestep’ allowing it to have a more in-depth grasp of the context of

the provided sequential data. The type of LSTM layers used varies greatly, from

Bi-sense, to attention-based and the ordinary LSTM that can also prove very

useful in analysing sequential data.

The Bidirectional recurrent neural networks boil down to the concatenation of

two independent RNNs together. The structure allows both networks to have

access to backward and forward information about the sequence at every

given timestep. Whereas the attention LSTMs focus on implementing an

encoder-decoder dynamic in order to increase the accuracy of the model

providing ‘context vectors’ that enable the LSTMs to more adequately

recognize patterns in sentences or tweets. A more in-depth showcase of its

impact on sentence data can be found in the referenced studies. [31] There are

two types of attention: hard attention and soft attention their focus being crisp

making of decisions via context vector (hard) and implementing the context

vector in the context of weights (soft), respectively explored in more detail within

‘Show attend and tell’. [39]

Apart from that there are studies of models made with convolutional neural

networks, despite their more common use in image processing. The main idea

behind this approach being to implement them on a 1D convolutional space.

The reason for this is the way the convolution treats the matrices parsed in the

model. The simplest way I can explain convolution is from a mathematical

standpoint: it is a mathematical operation that takes two functions and

produces a third function, which demonstrates how one affects the other. In NLP

convolution is usually used in its 1D variation, as the dimensions refer to the way

the data is being convolved and processed. [40]

The further in-depth description aside, they show quite promising results

regarding classification problems such as detecting emotion in tweets [30] and

the overall more classical problem of approaching sentiment analysis of tweets.

[26] The findings of them show that they can be a useful tool in sentiment

analysis yet are much more prone to overfitting and require a much more

Final Report CM3203 C1722514

9

steady and experienced approach to deliver satisfactory results in metrics and

performance compared to their RNN counterparts.

It is important to note that this project is inspired primarily from a SemEval task

during the year of 2018 regarding emoji prediction in tweets. [4] The information

on the competing teams and their approaches is quite intriguing and I have

attempted to emulate some of the models suggested to be the most successful.

The best performing models when observing the task of emoji prediction seem

to be based primarily on attention and bidirectional LSTM layers in varying

configurations. [6],[14] Those solutions explore not only the efficiency of using

embeddings for the purpose of emoji classification but also offer a glimpse into

the use of n-grams and present their solution to be closer to support vector

machines (SVMs). [14]

With that information considered I try to explore both simpler variations of LSTM

recurrent neural networks, as well as taking a closer look at the SVM approach

of handling the problem of emoji prediction. A choice to try out and compare

the most basic approach with convolutional networks has also been made on

my part within the scope of the project, that can be seen in further depth

below.

Data sources

For this project I have used two resources that are readily available online

for academic use, so before carrying on, I will describe them to give context.

The sentiment dataset I used is from the Sentiment 140 project related to twitter

sentiment analysis.[25] It is contained within archive consisting of two csv files,

the training one, that offers 1,600,000 tweets with corresponding labels of

negative (0), positive (4) and neutral (2), plus, a testing set for evaluation with

the same labels.

The second external resource for NLP that I use is expanded upon in the

implementation section and that is Glove embeddings. [18] There is a range of

pre-trained versions for different purposes available in a variety of dimensions

depending on the user’s needs.

The last remaining emoji dataset is courtesy to the researchers behind the

SemEval task of 2018, [4] one of which agreed to provide me with the dataset

they used for their task.

Final Report CM3203 C1722514

1
0

Approach & Design

The approach to the problem involved research into the basics of the

project’s structure since I am new to the type of problem I chose to take on. I

spent the initial two weeks researching what was available on the library search

regarding my chosen field and the ways it were implemented. It helped me

better understand the constraints and possible blocks I could encounter

throughout the process.

Thanks to the initial first week of research I was capable of promptly planning

out my time and setting achievable goals in the initial report I submitted. The

second week was focused on the practicality of the implementation and what

or how to use. At the time, unfortunately most available resources operated in

TensorFlow 1.x, meaning that most of the research and tutorials I came across

were in that said version. That will become relevant later in this report as I discuss

the issues, I ended up having with that.

In the remaining weeks I finally got down to implementing and tweaking the

models for both sentiment analysis and emoji prediction. My approach to the

problem involved three simple steps: to find the easiest possible solution to my

problem, adapt it to my problem and then investigate ways to improve it.

The data is to be analysed in two ways, the simpler of which is sentiment

analysis. Sentiment analysis is accomplished in natural language processing by

using artificial intelligence to analyse text and after doing so, determine the

text’s sentiment in simple baseline versions, that often means ‘teaching’ the AI
to distinguish between positive, negative and neutral sentiment. More complex

variations of sentiment analysis can try to capture polarity [36] and other more

sensitive differences in text input like irony, comedy etc.

The topic is extensively researched with a variety of papers and past studies to

investigate on clues in how to develop, and even better existing analysis

structures.[15] With that said, there is quite a variation of models available

depending on the area of research and the goals that they are looking to

achieve through it. With that said, for the current problem at hand, there have

been several iterations in trying to better sentiment via the use of emojis, less so

the other way around. [24]

Due to the complexity of emoji prediction and the sheer number of variables to

consider and tweak, I chose sentiment analysis as the anchor of this NLP project,

as it has a rather well-established formula for development. With that said, it

Final Report CM3203 C1722514

1
1

usually involves several steps that boil down to the gathering of data, clearing it

from noise, building a model to analyse the data and lastly, tweak it to improve

its predictions.

Turning towards the emoji prediction section of the project, it possesses much

less related literature due to the topic being relatively new. Especially

considering emojis have only been introduced as commonplace in Unicode 5.2

in 2009, by which point 722 of them were already in wide use by the Japanese

public. Currently in Unicode 8.0, there are over 1.6 thousand emojis present.

[33],[5] While emojis are widely covered by the media, they are only recently

gaining the attention of linguists and analysts alike. [22]

Due to the sheer number of individual emojis listed above, the project focuses

on the twenty most popular ones. The emoji prediction problem can be

reduced to a text classification problem. Except rather than the categories

being traditional text genres or text patterns revealing sentiments, but instead

focused on determining the individual characteristics of tweets that are related

to a specific emoji. Such a classifier is significantly more difficult to implement

than sentiment analysis due to the number of variables (words) to be classified

within a range of over a dozen categories (emojis).

Given that knowledge I chose to attempt both convolutional and LSTM

architectures to tackle the problem of emoji prediction. Speaking of the

convolutional approach, after a few attempts at constructing a more efficient

and adequate variation of the base convolutional model I faced greater

challenges and the results of my work seemingly didn’t pay off when it came to
performance and metrics (see graphs in implementation for reference).

Another issue I faced was the lack of tutorials on CNNs apart from their primary

use in image processing. There seemed to be an overwhelming amount of CNN

tutorials and guides, but most of them were focused on the application of CNNs

in object recognition, image processing and classification. There was rarely

mentions of using them for bigger classification problems, so I chose to attempt

using other options in my search for a solution.

Due to this I chose to focus on the RNN approaches available to me to tackle

solving the problem. There were several avenues to explore, though SimpleRNNs

were quickly ruled out as a long-term solution due to their lossy performance

and overall literature pointing against using SimpleRNN for most problems, as it

essentially is just a worse variation of the long short-term memory RNN.

Final Report CM3203 C1722514

1
2

Once I moved on to RNNs, I found it easier to understand the reasoning behind

the way they interpret text and retain its semantic properties over several

timestep iterations. That prompted me to move on to LSTM layers, since a high

proportion of the literature in references and background sections point towards

them as the solution with highest likelihood of success apart from CNNs.

CNNs gave a competitive result to my initial LSTM model, however, the loss

metric had improved steadily, as listed below. That prompted me to choose to

focus on developing an emoji prediction model using LSTM layers. With LSTMs I

found it easier to envision the model’s possible ways for improvement as well as
the way the weights would be distributed.

My final attempt includes bidirectional LSTMs that have been proven to provide

good results when it comes to working with text sequences towards solving a

text classification problem. My results with them show a similar trend compared

to the previously mentioned variations of layers.

When it comes to implementation, a similar approach to the one generally used

in sentiment analysis is valid for the emoji prediction part of the project.

However, it is important to note that its categorical nature complicates the

process of building and tweaking the model.[10] To combat this, I investigated

different methods of optimizing categorical queries that relate to NLP as well as

a competition task that was related to predicting emojis based on given tweet’s
text. [4]

Despite the difference of the use and context of the data, the sentiment

analysis model and the emoji prediction, the structure of these models is very

similar. Considering the emoji data provides many categories, that increases the

computational complexity, requiring more in-depth understanding, as well as

humble tweaks to the structure, to achieve satisfactory results. [21]

Data processing

The start to any successful machine learning project is the proper

processing of data. To achieve this, I use a separate python file to pre-process

the text initially given in the datasets. Since I use two separate datasets to train

my sentiment analysis model and the emoji prediction, I have had to work

around the way I store and extract the data. I have chosen to keep the original

datafiles intact for security purposes, as I do not want to damage the data via

altering and/or processing it incorrectly.

Final Report CM3203 C1722514

1
3

For the sentiment analysis dataset, which is contained within a CSV file I utilize

the python package Pandas, to adequately extract and process the data by

rows and columns. It is more efficient than the standard python libraries as it

allows for fewer lines of code with higher efficiency. As for the emoji prediction

dataset, I use functions that I have written myself. I have split the processing in

two sections: one that is done to create a more simplified txt file version of the

data to be parsed, and a second section done right before running through the

model.

Why focus on data processing?
Since I’m using deep learning neural network models to accomplish my

project, it’s of vital importance to carefully moderate the number of variables

used to predict emoji and sentiment alike, in order to ensure that the predictions

can be as accurate as possible and find the most important links between

words and certain emojis. To achieve this, I use several data processing tools to

reduce noise and the text corpora to minimise the impact of redundant data

that is only essential due to the constraints of human communication.

Initial pre-processing
Due to the types of data involved and their different nature, the tweets

data requires more attention. In lieu of looking for pre-existing processing, I

focused on creating something that was simple enough to cater to my needs,

hence putting research into a variety of tools within the programming language

to ensure I do not reinvent the wheel. [29] Each of those tools has been

specifically chosen to aid with the data’s ease of processing by a machine

learning algorithm and ensuring its integrity. Listed in order: lowercasing, multiple

space removal, removal of punctuation, special characters and numbers, plus

lemmatization and removal of stop words.

The simplest two functions that I use, are the bare minimum when it comes to

textbook machine learning data processing: removing excess spaces and using

lowercase. While lowercasing has debatable impact on the semantics [9], its

benefits outweigh its risks, especially when it comes to processing tweets. In

social media, proper capitalization is often scarce, while often it is used as more

of an emphasis rather than clear distinction between separate entities (e.g. the

word ‘apple’ and the company ‘Apple’). Tweets can also be referred to as

informal language, lacking complexity of more elaborate and structured texts

such as scientific papers, articles, essays etc. Hence, capitalization losing its

Final Report CM3203 C1722514

1
4

nuanced role, and rather becoming more of an obstacle towards the finding of

specific correlations.

The second function is regex-based and focused on clearing whitespace from

the tweets by replacing large quantities of whitespace with a single space.

Apart from being handy regarding reducing the size of the tweet stored in the

string, it is also used to aid in the splitting of the text data into tokens for later

processing. Since the Keras tokenizers detect spaces and determine where to

‘split’ a string into individual tokens based on that. In older versions multiple

spaces were found to create ‘empty’ tokens that had high frequency, skewing

the model’s ability to focus on more important tokens.

The third and most crucial function, regex based as well, is concerned with the

removal of all characters that are not alphabetical or spaces, including

punctuation and special characters. That holds high importance as it keeps the

data clear of any external symbols that might alter the resulting tokens and it

prepares the data for the following stage of lemmatization. As it only leaves in

words that the lemmatizing function can simplify and adequately process.

Before I run the lemmatization on the data, I employ the use of the NTLK toolkit’s
stop words. The stop words include an array of prepositions, articles, modal

verbs, pronouns, and other words of high frequency in language that can prove

redundant when looked at through a text-analysis prism.[28] Due to the nature of

tweets and their informal nature mentioned above, they can contain certain

characters that don’t belong in the NTLK Stop words set, so there have been
additions that I’ve noticed such as the frequency of the word ‘user’, and

common shortened, alternatively misspelled variations of modal verbs and

pronouns. So that more tokens of low importance and high occurrence can be

cleared, shown to improve the model’s ability to focus on more vital tokens
provided that may lack a high rate of occurrence.

Sadly, later in my research I discovered that this function was in fact hindering

my models’ performance, so I had to cut it out of the data processing pipeline
to ensure better results. My hypothesis on why that is, is the high likelihood that it

interferes with the sequences’ similarities by removing the words that bind the

sentence structure together, and thus abstracting the sequences to the point of

there being very little correlation between the individual tweet sequences.

Due to the many categories that are implied in the machine learning algorithm,

I tried to keep the data relying on as few variables as possible to improve its

Final Report CM3203 C1722514

1
5

predictions, hence why I was seeking to remove the redundant words that

would pop up frequently and lack any serious contribution to the predictions. In

other cases, it may be beneficial to keep that part of the data (such as text

generating via machine learning), but in this specific case, it proves redundant.

Then, the process of lemmatization appears in the pipeline. It’s essentially
grouping words, or ‘lemmas’, together if they are inflected forms of a word so
that they can be analysed as a single entity. That is especially useful when trying

to find patterns in language, as it simplifies the different forms of verbs to a more

accessible and simplified version, allowing the model to recognize patterns

more easily. It is also a good tool to use against misspellings of words, as they are

also included in the NTLK toolkit for lemmatization.

The above concludes the pre-processing section of the pipeline I have made for

this project. I have chosen to separate my script for data processing from the

model training and model evaluating files, to ensure easier access and reading

of each component, as well as the ability to run them independently,

depending on the occasion.

Tokenization
The secondary processing is essentially loading the data from the

simplified text files into the one of the model scripts and adding final

preparations before passing them to the model as training, evaluating or

predicting arguments. Firstly, the tweets are separated by a single newline

character, so after loading the data, the file gets split into a list of tweets, each

of which characterized by a new line in the original file.

Following the completion of this step, one of the last preparations prior to

passing the data is executed: tokenization. A tokenizer is declared, then used to

fit to the data from the tweets, encoding every word in the text corpus with a

unique value of its own. After encoding the data with a tokenizer, I have written

a function of my own to find the largest tweet, which I use as standard to set my

input size to. It’s essential to ensure the uniform size of the tweets, prior to passing

them into the embedding layer of the neural network, hence why after finding

the maximum, before I specify it as the input size of the training model, I pad all

sequences to the required dimensions, using a built-in function provided in

Python’s sequences library.

Once the dimensions are standardized and all prior actions have taken place,

the data gets passed onto the embedding layer of my machine learning model,

Final Report CM3203 C1722514

1
6

representing the words parsed as multi-dimensional vectors for the machine

learning model to analyse. I experimented with several embedding sizes

throughout, however, their further relevance is thoroughly covered in the section

regarding implementation and performance.

Numerical data
While the numerical data, representing the emojis, is initially read from its

designated file. See figure one for how they are stored initially. After that it runs a

swift function that converts the individual strings of each number to an integer

type, then maps those numbers to their appropriate indexes within the realms of

a NumPy array. Once this essential step is covered, the data is converted to

categorical before being passed onto the model, creating a 20-dimensional

vector. Which in turn represents each emoji as its own separate category,

allowing the neural network to adequately predict the individual emojis with

better clarity and optimise loss more efficiently.

Regarding sentiment I had to change the original dataset’s annotations due to
a certain bug in the sparse categorical cross entropy loss function. The labels

needed to be consecutive, which meant I had to pinpoint and relabel every

single instance of the neutral denoted by 2 and positive, denoted by 4, into

respectively neutral – 1 and positive – 2.

Figure 1, emoji mapping

Final Report CM3203 C1722514

1
7

There is a slight difference in how I treat the two types of data. Emoji-related

tweets are processed prior to running the script that trains and initializes the

model. This solution provides much faster testing in comparison to the function

used for the sentiment analysis data that is being processed in the same script

as the model initialization and training. The main reason for this difference is the

file formats used for the two datatypes: .txt for emoji and .csv for sentiment.

In both cases I find it essential to preserve the original unfiltered data so it can

be available to improve upon if the data processing proves to be detrimental or

there’s room for improvement on it later down the line.

Implementation

The implementation was difficult to envision at first – yet with enough

tutorials, practice, and insight – by the end of the research phase it seemed

clear what needed to be accomplished for this project to be a success. The

initial choice was to use TensorFlow v1.x, since most of the available tutorials and

pre-existing models that I found on the internet were based around it. In

conjunction with python 3.6, as there are several built-in packages that refer to

data processing and are essential to the data preparation section of the project

pipeline. Later due to issues listed below, the v1.x was replaced with v2.x.

There were several online resources such as Towards Data Science, Medium,

Kaggle and many more that were extremely helpful in grasping the basis of how

to build and optimize models.

The approach I used initially for the emoji model, was to try to tackle it as a

categorical classification problem with simple convolutional and recurring

neural network (RNN) layers. [34], [12] In order to be prepared, I chose to

develop the easiest possible solution and build on top of it. The first issue I

encountered was using fresh embeddings, which I soon realised were not going

to yield good results.[35],[10]

After further investigating the field of natural language processing, I realised

how long it would take to train and develop adequately performing embedding

structures, so I opted to use the pre-existing Glove embeddings, to try to relate

the tweets better and give the embedding layer a starting push towards the

right direction.[18] I employ the 27 billion tokens twitter version with fifty

dimensions, for which I have provided links in the GitHub repository, should it be

needed for download.

Final Report CM3203 C1722514

1
8

Emoji prediction model
I investigated two possible variations as being most successful at

predicting emojis: multiple or single–layer LSTM models [11], combined with

recurring dropouts set in the layers, as well as convolutional architectures. There

was an issue with overfitting, where the model performs nearly perfectly on

training data, however, it severely underperforms when introduced to new test

data. In simpler words, it memorises the training dataset and in doing so

underperforms on other data sets used for testing. Comparison drawn from an

average of 24.33% on testing categorical accuracy, versus an average of

30.17% on training categorical accuracy. (Calculated from data over 20

epochs.) Loss sustains itself on both training and testing data at roughly 2.3 on

average. The conclusion was drawn from experiments on training and testing

data for accuracy and loss listed in the figures below.

My reasoning behind this was that recurring neural networks (RNNs) perform

better with sequential data, thus they would excel at analysing text and

retaining the sentence meaning. That, of course relates to LSTM exclusively, as it

has the groundwork for spotting longer-term patterns. That knowledge would

prove useful when it comes to learning the patterns of each of the categories

within the categorical problems and theoretically performing better due to that.

[12]

The final model for emoji prediction involves an input layer for the tokenized

sequences, an embedding layer using Glove embeddings and three

bidirectional LSTM layers, with decrementing number of neurons, can be seen in

figure 2. The main idea behind this structure is to capture the broadest amount

of features on the top layers of the model, and gradually narrow down to a

specific prediction by limiting the size of the available neurons and decreasing

the recurrent dropout of each layer. The final layer is a fully connected Dense

layer with 20 neurons, that employs a SoftMax activation. That means that after

getting the final vector from the last Bi-LSTM layer, the activation function sums it

into a probability distribution consisting of several probabilities that are

proportional to the exponentials of the input numbers. (Reference

emoji_vanilla_pred.py for code.)

Final Report CM3203 C1722514

1
9

Figure 2: Structure of emoji model

Prior to reaching this final architecture, three other options were tested: a

convolutional model with global maximum pooling, a simple RNN architecture,

and finally an LSTM-based model. They performed with varying success, usually

demonstrating a similar degree of success on incremental epochs. I provide

results from the initial benchmarks below.

There were several advantages to this architecture that made me choose it

over the aforementioned ones. Firstly, while it took longer per epoch It shows a

much higher accuracy than its counterparts. That is due to the sequence being

scanned in both directions and providing more contextual understanding of the

data to the model. That allows for more accurate predictions and a more in-

Final Report CM3203 C1722514

2
0

depth understanding of the tweets’ token arrangement and contextualizes the
semantic structures better compared to an ordinary LSTM network. Comparisons

to the other models’ performances can be seen in figures 3 and 4.

When it comes to compiling the model there are several parameters involved in

the process: loss, optimizer and metrics. For each of the emoji models I have

chosen to use categorical cross entropy as my loss function. Notably I chose

categorical instead of sparse categorical since the performance of the models

that predicted emoji was good as is, there was no need to implement the

sparse variation that skips hot encoding in favour of execution speed.

Different emoji can follow a specified tweet, which makes the task even more

difficult as the categories are theoretically not mutually exclusive. For clarity’s
sake, I’ve chosen to treat them as such due to the fact that a greater part of

the emojis in this dataset, as seen above, convey vaguely similar emotions,

meaning that the task should be focused more on spotting the finer differences

between them. A notable mistake that haunted me throughout the early days

of developing this project was picking the wrong optimizers for my task, as well

as simply declaring metrics as ‘accuracy’.

With more research and time, I realised that as a matter of fact the metric for

using categorical cross entropy is consequently categorical accuracy. That was

key in properly monitoring the accuracy I was getting, since the same

architectures performed vastly different in both training and validation after this

minor change.

With that cleared up, I tested different optimizers, as well as read up on similar

issues that others faced with Keras to pick RMSprop as my optimizer of choice.

Compared to most other optimizers I tested, RMSprop and SGD performed best

with the given architectures. RMSprop’s ability to adequately perform with larger
embedding structures has proven invaluable in comparison to ADAM or other

famous picks.

Final Report CM3203 C1722514

2
1

Figure 3: comparison of the emoji-only models (accuracy)

Figure 4: comparison of the emoji-only models (loss)

Sentiment analysis model
For sentiment analysis, I tested the same three architectures as listed

above for emoji. Though, pointers suggested that LSTM was going to be the

prevalent architecture again. [36],[3] The results were similar to the outcomes of

1 2 3 4 5 6 7 8 9 10

Conv1D 0.2553 0.2706 0.2743 0.2812 0.2874 0.288 0.2982 0.3028 0.3242 0.3304

SimpleRNN 0.2332 0.2674 0.2701 0.278 0.2843 0.2878 0.2955 0.3093 0.3111 0.3224

LSTM 0.2684 0.2797 0.2803 0.2847 0.2866 0.2958 0.3005 0.307 0.3149 0.33

Bi-LSTM 0.3061 0.323 0.3327 0.3408 0.3464 0.3576 0.3556 0.3601 0.3656 0.3686

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Emoji Pred Accuracy Architecture Comparison

(training)

1 2 3 4 5 6 7 8 9 10

Conv1D 2.7237 2.6604 2.605 2.5497 2.4954 2.4465 2.407 2.378 2.3544 2.3333

SimpleRNN 2.9837 2.862 2.838 2.712 2.683 2.5928 2.515 2.465 2.3984 2.3169

LSTM 2.8334 2.7792 2.6827 2.6003 2.5381 2.4494 2.399 2.3768 2.3301 2.329

Bi-LSTM 2.3691 2.29 2.2507 2.2185 2.193 2.1575 2.1571 2.1386 2.1185 2.0995

0

0.5

1

1.5

2

2.5

3

3.5

Emoji Pred Loss comparison (training)

Final Report CM3203 C1722514

2
2

the emoji tests, whereby Bidirectional LSTMs outperformed the other models in

both loss and accuracy. My initial sentiment analysis model was built to only

recognize the highest polarity of the dataset. To start off with a simpler model I

used binary cross entropy as loss function, along with the ADAM optimizer.

Once I found an architecture that I found worked well for the binary

classification problem I built upon it with the introduction of neutral sentiment

and converting the problem to categorical. Due to the simpler nature of the

sentiment analysis classification problem I chose to give the bidirectional layers

smaller dimensions, both to help with the performance and reduce the

possibility of overfitting down the line of training. [20]

The final model includes the embedding layer discussed above, a bidirectional

LSTM layer, followed by another bidirectional LSTM layer with less parameters to

narrow down the semblances as listed above in the emoji structure. The fewer

categories require less specifics, and thus can be optimized by using smaller and

fewer layers for better time performance and overall metric results. The

prediction layer is a fully connected layer with a SoftMax activation function.

(Reference sent_LSTM.py for full code.)

Unlike the emoji classification problem, sentiment analysis had a larger dataset,

hence required more optimization and it came with a bigger embedding. I read

up on individual sources and experiments that others had attempted on this

dataset, and while most of them used ADAM, I seemingly kept achieving better

performance using RMSprop. That provided some significant improvements

regarding accuracy and overall performance. I chose sparse categorical cross

entropy to try and further save on computation time, as categorical by itself

performs a fraction slower and requires further label preparation. (See figures 5 &

6.)

However, it is notable to mention that in the initial version of Keras (v1.x) the

‘accuracy’ metric did not calculate the outcome of sparse categorical cross

entropy correctly, either. Much like it’s non-exclusive and hot encoded variation

(plain categorical), it has a specific accuracy function to reliably calculate the

accuracy, as the API had employed different calculation functions if the label

wasn’t specified to ‘sparse_categorical_crossentropy’.

Final Report CM3203 C1722514

2
3

Figure 5: Sentiment analysis accuracy

Figure 6: Sentiment analysis loss comparison

Merged and combined models
That concludes the finalized simple models that I offered to solve the two

individual problems that this task consists of. The remainder was focused around

trying to combine the two existing structures into one. I tried several methods: a

1 2 3 4 5 6 7 8 9 10 11

Conv1D (train) 0.5619 0.6205 0.675 0.6961 0.7194 0.7544 0.773 0.7907 0.7931 0.7955

Conv1D (test) 0.6623 0.7187 0.7252 0.7503 0.7588 0.752 0.7603 0.7592 0.7585 0.7663

Bi-LSTM (train) 0.7907 0.8142 0.8192 0.8219 0.8234 0.824 0.825 0.8249 0.8263 0.8263 0.826

Bi-LSTM (test) 0.7991 0.8072 0.7853 0.7882 0.8197 0.8009 0.7845 0.8222 0.8018 0.8202 0.8389

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Accuracy Sentiment Analysis Implementations

Comparison

1 2 3 4 5 6 7 8 9 10 11

Conv1D (train) 0.6919 0.6847 0.6252 0.5426 0.5176 0.5058 0.4988 0.4938 0.4902 0.4874

Conv1D (test) 0.6888 0.6742 0.576 0.5256 0.5171 0.4993 0.4825 0.4796 0.4725 0.4702

Bi-LSTM (train) 0.4428 0.4062 0.3978 0.3935 0.3908 0.3898 0.3883 0.3884 0.3874 0.3875 0.3883

Bi-LSTM (test) 0.4251 0.4223 0.4543 0.4532 0.3953 0.4374 0.4614 0.4048 0.4279 0.3975 0.3732

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Loss Sentiment Analysis Implementations Comparison

Final Report CM3203 C1722514

2
4

model with shared structure with two inputs and two outputs, a model with two

inputs, shared embedding, separate structures and two outputs, and my

simplest attempt which was employing the pre-existing models and making a

pipeline out of them.

Following what I said in the approach section, I chose the simplest approach

first. I created a new and altered version of the emoji algorithm. The initial

version just had the sentiment analysis result appended to the end of the tweet

sequence and fed into the model. As I anticipated this did not alter the

accuracy in any way, shape or form. My second attempt with this approach

was to create a separate input and pad it to the same size as the emoji

sequence input. Sadly, as I anticipated that did not alter the results.

My final attempt with option one included a change of the model structure.

That did showcase some change in the initial results I was noticing. I replaced

my additional Bi-Sense layers with a simpler structure relying on a global pooling

layer, followed by a fully connected layer, dropout layer and a prediction layer.

The performance of this model is outstanding and computation-wise it shadows

the rest when it comes speed and performance. Figure 7. (Reference

emo_pred_plus_sent.py for full code.)

An important note on the implementation of this model is that in contrast to the

solo training models it does not use zero masking within the embedding layer.

Due to its differing structure that requires pooling, it needed to have a different

approach to the embedding layer and how it handles data. The zero padding is

removed in this case to provide the model with more context regarding the hot

encoded nature of the sentiment values included.

The pipeline created for it is as follows: prepare the tweets needed using the

data preparation file, then run them through the sentiment predictor file, and

once these two steps are done, the required files for the concatenated output

are ready. Once loaded into the model, they can be used for prediction of

emoji based on the data provided.

Final Report CM3203 C1722514

2
5

Figure 7: Simple Sentiment + Emoji model structure.

The next model I built was going to be a merged model of the two that I had

built previously. My plan was to have two inputs that connect to a shared

embedding layer. To keep the sequences’ semantic characteristics intact I
figured that I’d first apply analysis of each of the sequences through individual
Bidirectional LSTM layers, the outputs of which I’d concatenate before passing
onto the shared layers and making predictions. With two separate fully

connected layers.

Final Report CM3203 C1722514

2
6

This model did not perform very well, despite retaining most of the

characteristics of its standalone predecessors. I assume that its added

complexity took a toll on both its performance and metrics. Below I draw a 10-

epoch comparison of the sentiment analysis standalone training data versus the

complex model’s in the findings section.

Due to its complexity, the performance was quite lacking in most areas,

including metrics as mentioned below. It tends to be quite computationally

taxing as well due to the number of parameters required for it to be able to

carry out its predictions. I have tried forming concatenations on different parts of

the layers and experimented with several different methods of concatenation,

but most of them only multiplied the number of parameters and slowed the

model greatly.

After many attempts to train it and tweak its performance I eventually moved

on to another idea as I noticed this may not be a feasible solution. I decided to

use a global max pooling layer after the concatenation and mimic the previous

model. My theory behind it was that it would benefit the model more than

following up with two LSTM layers as shown below in figure 8.

Figure 8: Merged model: combined LSTMs structure.

Upon later consideration of the above architecture, an idea came to mind, to

investigate if it were possible to improve the model’s performance by

Final Report CM3203 C1722514

2
7

implementing the concatenated sentiment + emoji input’s architecture into the
merged model. To accomplish this, I thought of replacing the shared LSTM layers

with a global max pooling layer and a fully connected layer.

The idea behind this was to apply a more computationally light approach to

how the layers are handled post-concatenation. Consequently, I chose to use

sparse categorical cross entropy for both problems, to speed up the formulae

computation. The details on the architecture can be seen in figure 9.

(Reference merged_structure.py for full code.)

Figure 9: Updated merged model architecture

Unfortunately, this idea struck as I write this report so I can only show very little

results for it in a graph comparison between the older version of this model and

the newer version of it. The first impressions of this improved model are quite

different to those of its predecessor – it outperforms the older version in every

conceivable way. The average loss for version one is roughly 2.9477, whereas

the average of version two 2.8159, which shows an impressive improvement in

only the first five epochs. The table provided below shows the improvements in

accuracy on the first five recorded epochs of each of the models. (v.1 referring

to the old model, v.2 referring to the new one.

Final Report CM3203 C1722514

2
8

Train v.1 Train v.2 Test v.2 Metric: Accuracy

0.1783 0.2308 0.2485 Emoji prediction

0.1857 0.2516 0.2548

0.1869 0.2567 0.2583

0.1888 0.2597 0.2608

0.1895 0.2617 0.2624

0.6142 0.7247 0.7607 Sentiment analysis

0.6298 0.7700 0.7765

0.6311 0.7810 0.7846

0.6346 0.7875 0.7900

0.6360 0.7922 0.794
Table 1: Accuracy on merged model variations one and two.

This offers insight into how the layers interact from the concatenation onwards.

While the Bidirectional LSTM picks up the timesteps and ways natural language

progresses, once concatenated, the pooling layer can extract important

features from the LSTM layer, to then analyse in a fully connected layer. You can

see a rather rushed evaluation of the epochs that I managed to train within this

short period of time in a graph of the values in the findings section, as well as the

graph above, showcasing the difference in metrics.

This merged model doesn’t compare all that greatly to the emoji-only model or

the emoji prediction plus a sentiment vector model, but it shows promise that

the initial idea behind the merge can perform better, perhaps with a more

convolutional approach.

That brings me to the latest model created for this task that simply employs a

shared embedding layer and two separate structures to do the predictions for

each of the sentiment and emoji parameters. It essentially combines the two

models into one by retaining the original architectures of each of them, except

it only uses a shared embedding. As suspected, it outperformed its

concatenated counterpart but only slightly. Due to time running out I was

unable to conduct and record this model’s overall performance and
evaluation.

This model was abandoned due to having additional complexity and not really

being related to the task in many ways, as in the end apart from extended

embeddings it did not share other data between the layers involved in later

predictions. (Reference diverged_structure.py for full code.)

Note: all the code is available on GitHub for reference and review:

https://github.com/Marielene/sentiment-emoji

https://github.com/Marielene/sentiment-emoji

Final Report CM3203 C1722514

2
9

Findings

The goal of this project being exploring the relationship between emoji

and sentiment, has reached several conclusions. While there is certainly a

dependence between the two, it would seem my project has not managed to

find an efficient way to utilize this correlation. To plot all graphs the metric used

for evaluation is primarily accuracy. However, the evaluation findings give hope

that this project’s hypothesis is on the right track.

Note that for optimal results the data must be cleared from noise, while retaining

the sentences’ structures. That includes just the use of lemmatization, removal of

extra spaces, special symbols and lowercasing. Initial models with heavily

processed data (using both lemmatization and removal of stop words), ended

up giving poorer results and higher loss overall compared to the less processed

data that retained more words (lemmatization only). Note: this table refers to

testing loss monitored by categorical cross entropy for each of the models. As

shown in table below, over roughly 10 of their best epochs each (20 total, best

referring to metrics-wise):

Models AVG loss

with light

pre-

processing

(LPP)

Accuracy

AVG LPP

Loss AVG

heavy pre-

processing

(HPP)

Accuracy

AVG HPP

Conv1D 2.4831 0.2847 2.6333 0.2431

SimpleRNN 2.573 0.2633 2.6942 0.2333

LSTM 2.2819 0.2955 2.5663 0.2597

Bi-LSTM 2.2195 0.3106 2.4861 0.2866
Table 2: Averages of testing data with different data processing approaches

The single merged model’s performance was lower than the individual on both
emoji and sentiment analysis. (Figures 6 and 7.) Showcasing an average of

15~16% worse performance on part of sentiment analysis and a similar decrease

on the emoji prediction frontier, dropping to a 21.9% validation accuracy from

nearly 37.5% on the Bi-Directional LSTM model with sentiment tokens. See figures

10 and 11. The individual drops are presented below in two comparison graphs.

Model (Emoji predict) Average Accuracy Average Loss

Bi-LSTM 0.3456 2.1992

Bi-LSTM + Sent vector 0.3460 2.2099

Merged model v.1 1.9477 2.9477

Merged model v.2 0.2521 2.8159
Table 3: Averages of test data on emoji prediction models over 20 epochs each.

Final Report CM3203 C1722514

3
0

Figure 10: Sentiment analysis metric comparison to merged model.

The reason for this, is likely due to underfitting on my part when creating the

model and possible poor layer optimization on my part, as a way to improve it

would be to convert the LSTMs to Bi-LSTMs and add dropout layers after

concatenation. Another reason is the overcomplicating of the problem, without

adequately optimizing as stated above. If there were a finer level of

optimization to be applied to the structure, it would probably improve both

metrics and performance-wise. As can be seen in figures 10 to 12.

There is a lot more to improve in that direction, as I am certain there must be a

simpler way to implement this variation and achieve adequate results. Since the

simpler variation with sentiment does seem to have a closer performance to the

original. But as showcased in the graphs below it could not be referred to as an

improvement on the overall accuracy and loss of the model.

The positive results with further training would likely be from the separated model

that included a shared embedding layer. However, it too performed poorly with

its initial epochs, though due to its complex structure, I believe it can prove

useful with more tweaking and training.

1 2 3 4 5 6 7 8 9 10 11

Merged loss 0.6667 0.6461 0.6432 0.6411 0.6406 0.6397 0.6374 0.6353 0.6308 0.6239 0.6166

Original loss 0.4428 0.4062 0.3978 0.3935 0.3908 0.3898 0.3883 0.3884 0.3874 0.3875 0.3883

Original acc 0.7907 0.8142 0.8192 0.8219 0.8234 0.824 0.825 0.8249 0.8263 0.8263 0.826

Merged acc 0.6142 0.6298 0.6311 0.6346 0.636 0.6389 0.6422 0.6431 0.6472 0.6494 0.651

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lo
ss

A
c

c
u

ra
c

y

Sentiment analysis (merged & original) metric

comparison training

Final Report CM3203 C1722514

3
1

Figure 11: Emoji prediction models comparison of accuracy (validation)

Figure 12: Emoji accuracy and Sent accuracy refer to the accuracy from the merged model, whereas

emoji + sent refers to the model with the added sentiment tokens.

Since the update of the merged model, the new architecture shows more

promise. Sadly, due to inefficient time the comparison is made with little data. A

vital improvement is that on the first epoch the updated model achieves higher

accuracy than its predecessor does in thirty epochs. That applies to both tasks

presented in the problem, respectively sentiment analysis and emoji prediction. I

present figures 13 and 14 to visualise the data.

1 2 3 4 5 6 7 8 9 10

Merged 0.1783 0.1857 0.1869 0.1888 0.1895 0.19 0.1873 0.1886 0.1892 0.1918

Bi-LSTM 0.3061 0.323 0.3327 0.3408 0.3464 0.3576 0.3556 0.3601 0.3656 0.3686

Combo Sent + Emoji 0.3365 0.3415 0.3424 0.3445 0.3536 0.3549 0.3516 0.3518 0.332 0.3582

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
c

c
u

ra
c

y

Epochs

Emoji prediction results comparison on training

accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627

A
c

c
u

ra
c

y

Training Accuracy on merged model and emoji pred +

sentiment input

Emoji (train, merged)

Sent (train, merged)

Emoji (train, +sent)

Final Report CM3203 C1722514

3
2

Figure 13: Merged model emoji data. Note: v.1 refers to LSTM only, v.2 refers to improved mode

Figure 14: Merged model sentiment data. Note: v.1 refers to LSTM only, v.2 refers to improved mode

Upon evaluation the model with additional sentiment vector achieves a better

accuracy compared to its emoji-only counterpart. That leads me to believe that

the minor addition of this vector improves the ability of the model to distinguish

between certain emojis based on the context for the tweet that the sentiment

provides.

1 2 3 4 5

Loss (v.1) 2.9543 2.9366 2.952 2.9495 2.9461

Loss (v.2) 2.8296 2.8166 2.8149 2.812 2.8067

Acc (v.1) 0.1783 0.1857 0.1869 0.1888 0.1895

Acc (v.2) 0.2308 0.2516 0.2567 0.2597 0.2617

0

0.05

0.1

0.15

0.2

0.25

0.3

2.7

2.75

2.8

2.85

2.9

2.95

3

A
c

c
u

ra
c

y

Lo
ss

Emoji prediction metrics of merged models

1 2 3 4 5

Loss (v.1) 0.6667 0.6461 0.6432 0.6411 0.6406

Loss (v.2) 0.5404 0.5112 0.5031 0.498 0.4941

Acc (v1) 0.6142 0.6298 0.6311 0.6346 0.636

Acc (v.2) 0.7247 0.77 0.781 0.7875 0.7922

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lo
ss

A
c

c
u

ra
c

y

Sentiment analysis metrics of merged models

Final Report CM3203 C1722514

3
3

The difference in evaluation being miniscule of around 1%. The combined

model achieves a loss of 2.285 and accuracy of 34% on a final evaluation.

Whereas the emoji only evaluation achieves an accuracy of 33% and slightly

bigger loss of 2.2983. Which demonstrates that the addition of sentiment

presents a positive impact on the predictions, regardless of how little it might be.

That proves the hypothesis has merit for future development and investigation.

Reflection

There are several issues to touch upon in this section, all of which focused

on deeper understanding and adequate planning of the project. Looking back

on it now, I lacked both at the beginning of this task, and barely acquired them

a few weeks prior to submission. There is a lot to unpack behind this statement,

so I will get into details below.

Firstly, when I started this project, I had no experience with data science ort

machine learning itself. That resulted in a rather ambitious outlook regarding

how fast and adequately things would work and be produced. The

technicalities and the level of understanding required quickly felt overwhelming.

I learned to incrementally deepen my understanding of a subject instead of

jumping into the deep headfirst.

My research consisted of three individual phases: the initial first week of research

to give me an overall idea of the scope and the amount of time it will take to

complete the project, the second week based entirely around implementation

and learning to utilize the tools within the Keras library and get a basic

understanding for the API, and lastly, the serious academic research that was

based around the details and technicalities of how to improve and adequately

build a model that I deem satisfactory.

The initial research delved into basics and the overall idea of the project.

Understanding the scope was crucial in order to come up with a manageable

timeline that could be fulfilled in the given circumstances. I looked up available

projects on Kaggle that were focused around using twitter data and analysing it

in various ways, usually sentiment analysis of different kinds. It gave me a rough

idea of what to expect and how my initial models will look.

The second research phase was far more practical involving following in-depth

tutorials and carefully reading the Keras documentation to attain more in-depth

understanding of the API I was going to use. There were varying levels of

Final Report CM3203 C1722514

3
4

recommendations regarding the options on which API would seem to be best

suited for the task. While Keras and TensorFlow provided a good starting

foundation for novices in the area of deep learning, PyTorch allows for more

creative freedom and building way more complex models in an accessible

package. In my case, I opted for Keras due to being inexperienced in the field.

The third and most eye-opening phase of research involved focusing on more

detailed and methodical approaches to the problem such as fine-tuning

models and understanding them from a more academic standpoint. That

meant reading dozens of papers, keeping track and comparing their findings in

hope of finding something that works for my scenario. With that in mind, I spent

a long time trying to filter out the applicable insights from the inapplicable,

which led to certain complications.

Due to most of the papers being about creating those models from scratch,

working with an API both reduced the amount of statistics and in-depth theory I

needed to know, yet it limited my options when it came to developing high

rates of accuracy. With this knowledge, I started looking into ways to refine the

options that the API gave me control over, so rather than papers, I had to turn

towards forums and developer insights. The result of that is the amalgamation of

knowledge of both developers in non-academic and academic context

coming together for the development of this project.

By the aforementioned, I mean that by the time I had realised how much

literature I needed to promptly read and classify was a rather considerable task

in itself, it felt very overwhelming at first. To combat this for future reference I

made a system of incremental learning that would prevent me from feeling

overwhelmed, as before reaching for the scientific papers, I read through most

tutorials online on basic Keras building techniques and models.

Regarding implementations there were a few situations where things did not go

as planned and resulted in slowing the overall progress of the task. One of those

peculiar situations was choosing the amount of processing the data should go

through. I thought this issue could be resolved by delving into research and

looking at similar projects, however, in the end it boiled down to seeing what

works best for the structures I had.

Keras and Google Collab have been both a blessing and a curse at times, due

to dependencies and updates that often stirred up the development process.

Around the 27th of March Google Collab updated its TensorFlow version and

Final Report CM3203 C1722514

3
5

thus, my old code was performing in a much clunkier fashion. Rather than

continuing to pursue efficiency and reusing my existing code, I chose to rewrite

and retrain most of the prototypes I had. Luckily, the update was a blessing in

disguise as it allowed for more features to be added, thus improving the code’s
overall performance.

If I had to redo this project, I would spend a lot more time researching CNNs, so I

could have multiple advanced models to have benchmarks on. That would

help me develop a more a more competitive structure that would ultimately

provide better results. Since the method I ended up choosing for the sentiment

vector emoji predictor, would work much better with a convolutional structure

compared to my current implementation.

Future Work

There are several ways to build upon this foundation if given more time.

Firstly, this system given a few tweaks could be the groundwork for an emoji

embedding to be developed and trained, though that could classify itself as an

entirely separate project, given the amount of further reading and time it would

take to develop.[38], [17]

While I have not succeeded in this endeavour, I am certain that with a bigger

sample size of emojis to predict, this project’s idea would be much more feasible

to implement and see in action. There is room for improvement in the finer

elements of this project, as well as space for experimentation with different

architectures and more complex tweaking.

For example, adding attention to the emoji prediction model to improve its

ability of understanding the tweets and developing a deeper understanding for

their contents. The model’s bidirectional layers combined with an attention
dynamic would theoretically improve greatly based on past research in the

area of NLP with neural networks. [39]

Regarding the merged models, a lot can be expanded on in future recreations

in terms of architecture and approach. Research points towards much more

complex methods of NLP being feasible for the task and due to its complexity, it

seems difficult for it to be achieved with just Keras by a person with little

experience as myself.

Overall, while Keras has definitely been the correct choice for me as a beginner

in the field, I am certain that this project would require a much more in-depth

Final Report CM3203 C1722514

3
6

level of tweaking and control over the layers, so for anyone inclined to pursue a

project of this scope and achieve successful results, I’d recommend them to

rack up experience prior to the task, as that will definitely be of aid to reaching

the deliverables in a reasonable time.

In the near future, as emojis grow to become an even more essential part of

communication, I am certain that the endeavour of predicting and delving

further into the semantics of emoji will become its own part of sentiment analysis

itself. I hope this project proves useful enough for others in the field to build

upon.

Conclusion

While the yield of these final models does not present the most convincing

results, the concept behind the project can be explored further. LSTMs can be

built upon with attention to improve the results presented in this report. [37], [11]

However, the alternatives are also tempting to consider. Especially so with the

use of convolutional networks that could provide much better insight when it

comes to the concatenated models. Due to the nature of the task and the way

the data is presented during concatenation, convolution is likely to be

outperforming LSTMs in a bigger sample space. So, the use of it would be more

beneficial in this kind of task if the goal is to create a combined model that uses

concatenation.

Final Report CM3203 C1722514

3
7

Bibliography

[1] Aliza Sarlan, Chayanit Nadam, and Shuib Basri. 2014. Twitter sentiment

analysis. In Information Technology and Multimedia (ICIMU), 2014 International

Conference on. IEEE, 212–216.

[2] Alshenqeeti Hamza. 2016. Are emojis creating a new or old visual

language for new generations? A socio-semiotic study. Advances in Language

and Literary Studies 7, 6 (2016), 56–69.

[3] Apoorv Agarwal, Boyi Xie, Ilia Vovsha, Owen Rambow, and Rebecca

Passonneau. 2011. Sentiment analysis of twitter data. In Proceedings of the

workshop on languages in social media. Association for Computational

Linguistics, 30–38

[4] Barbieri, Francesco and Camacho-Collados, Jose and Ronzano,

Francesco and Espinosa-Anke, Luis and Ballesteros, Miguel and Basile, Valerio

and Patti, Viviana and Saggion, Horacio (2018) SemEval-2018 Task 2: Multilingual

Emoji Prediction, Proceedings of the 12th International Workshop on Semantic

Evaluation (SemEval-2018)

[5] Barbieri Francesco, Kruszewski Germán, Ronzano Francesco, and
Saggion Horacio. 2016. How Cosmopolitan Are Emojis?: Exploring Emojis Usage

and Meaning over Different Languages with Distributional Semantics. In

Proceedings of the 2016 ACM Conference on Multimedia Conference, MM

2016, Amsterdam, The Netherlands, October 15-19, 2016. 531–535.

[6] Baziotis, C., Athanasiou, N., Chronopoulou, A., Kolovou, A.,

Paraskevopoulos, G., Ellinas, N., Narayanan, S. and Potamianos, A., 2018. Ntua-

slp at semeval-2018 task 1: Predicting affective content in tweets with deep

attentive rnns and transfer learning. arXiv preprint arXiv:1804.06658.

[7] Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad Rahwan, and Sune
Lehmann. 2017. Using millions of emoji occurrences to learn any-domain

representations for detecting sentiment, emotion and sarcasm. In Proceedings

of the 2017 Conference on Empirical Methods in Natural Language Processing,

EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017. 1615–1625

[8] Britz, Denny. Understanding convolutional neural networks for NLP. URL:

http://www. wildml. com/2015/11/understanding-convolutional-neuralnetworks-

for-nlp/ (visited on 11/07/2015) (2015).

Final Report CM3203 C1722514

3
8

[9] Camacho-Collados J, School of Computer Science and Informatics

Cardiff University, Taher Pilehvar M, School of Computer Engineering Iran

University of Science and Technology Aug 2018 On the Role of Text Pre-

processing in Neural Network Architectures: An Evaluation Study on Text

Categorization and Sentiment Analysis.

[10] Chen, C., Gao, S. and Xing, Z., 2016, March. Mining analogical

libraries in q&a discussions--incorporating relational and categorical knowledge

into word embedding. In 2016 IEEE 23rd international conference on software

analysis, evolution, and reengineering (SANER) (Vol. 1, pp. 338-348). IEEE.

[11] Chen, Yuxiao, Jianbo Yuan, Quanzeng You, and Jiebo Luo. Twitter

sentiment analysis via bi-sense emoji embedding and attention-based LSTM. In

Proceedings of the 26th ACM international conference on Multimedia, pp. 117-

125. 2018.

[12] Christopher Olah, Understanding LSTM Networks, Posted on August 27,

2015 URL: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

[13] Twitter: number of monthly active users 2010-2019, Published by

Clement J., Aug 14, 2019 https://www.statista.com/statistics/282087/number-of-

monthly-active-twitter-users/

[14] Çöltekin, Ç. and Rama, T., 2018, June. Tübingen-Oslo at SemEval-2018

task 2: SVMs perform better than RNNs in emoji prediction. In Proceedings of the

12th International Workshop on Semantic Evaluation (pp. 34-38).

[15] Efthymios Kouloumpis, Theresa Wilson, and Johanna D. Moore. 2011.

Twitter Sentiment Analysis: The Good the Bad and the OMG! In Proceedings of

the Fifth International Conference on Weblogs and Social Media, Barcelona,

Catalonia, Spain, July 17-21, 2011

[16] EISNER, Ben, et al. emoji2vec: Learning emoji representations from

their description. arXiv preprint arXiv:1609.08359, 2016.

[17] Eisner Ben, Rocktäschel Tim, Augenstein Isabelle, Bosnjak Matko, and

Riedel Sebastian. 2016. emoji2vec: Learning Emoji Representations from their

Description. In Proceedings of The Fourth International Workshop on Natural

Language Processing for Social Media, SocialNLP@EMNLP 2016, Austin, TX, USA,

November 1, 2016. 48–54

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/
https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/

Final Report CM3203 C1722514

3
9

[18] Pennington Jeffrey, Socher Richard, and Manning Christopher. 2014.

GloVe: Global Vectors for Word Representation

https://nlp.stanford.edu/projects/glove/

[19] Katy Steinmetz NOVEMBER 16, 2015 2:08 PM ET Oxford's 2015 Word of

the Year Is This Emoji https://time.com/4114886/oxford-word-of-the-year-2015-

emoji/

[20] Kharde, Vishal, and Prof Sonawane. Sentiment analysis of twitter data:

a survey of techniques. arXiv preprint arXiv:1601.06971 (2016).

[21] Kun-Lin Liu, Wu-Jun Li, and Minyi Guo. 2012. Emoticon Smoothed

Language Models for Twitter Sentiment Analysis. In Proceedings of the Twenty-

Sixth AAAI Conference on Artificial Intelligence, July 22-26, 2012, Toronto,

Ontario, Canada.

[22] Ljubešić, Nikola, and Darja Fišer. A global analysis of emoji usage. In

Proceedings of the 10th Web as Corpus Workshop, pp. 82-89. 2016.

[23] T. LeCompte and J. Chen, Sentiment Analysis of Tweets Including

Emoji Data, 2017 International Conference on Computational Science and

Computational Intelligence (CSCI), Las Vegas, NV, 2017, pp. 793-798.

[24] Mohammed O. Shiha, Serkan Ayvaz, The Effects of Emoji in Sentiment

Analysis 1 Department of Computer Engineering, Bahcesehir University, Besiktas,

Istanbul, Turkey. 2 Department of Software Engineering, March 1, 2017. DOI:

10.17706/ijcee.2017.9.1.360-369

[25] Sentiment 140, datasets and additional information

http://help.sentiment140.com/for-students

[26] Severyn, Aliaksei, and Alessandro Moschitti. Unitn: Training deep

convolutional neural network for twitter sentiment classification. In Proceedings

of the 9th international workshop on semantic evaluation (SemEval 2015), pp.

464-469. 2015.

[27] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term

memory. Neural computation 9, 8 (1997), 1735–1780.

[28] SHIHA, M.; AYVAZ, Serkan. The effects of emoji in sentiment analysis.

Int. J. Comput. Electr. Eng. (IJCEE.), 2017, 9.1: 360-369.

https://nlp.stanford.edu/projects/glove/
https://time.com/4114886/oxford-word-of-the-year-2015-emoji/
https://time.com/4114886/oxford-word-of-the-year-2015-emoji/
http://help.sentiment140.com/for-students

Final Report CM3203 C1722514

4
0

[29] SRIVIDHYA, V.; ANITHA, R. Evaluating pre-processing techniques in text

categorization. International journal of computer science and application, 2010,

47.11: 49-51.

[30] Stojanovski, Dario, Gjorgji Strezoski, Gjorgji Madjarov, and Ivica

Dimitrovski. Emotion identification in FIFA world cup tweets using convolutional

neural network. In 2015 11th International Conference on Innovations in

Information Technology (IIT), pp. 52-57. IEEE, 2015.

[31] Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. Sequence to sequence

learning with neural networks. In Advances in neural information processing

systems, pp. 3104-3112. 2014.

[32] Tianran Hu, Han Guo, Hao Sun, Thuy-vy Thi Nguyen, and Jiebo Luo.

2017. Spice Up Your Chat: The Intentions and Sentiment Effects of Using Emojis. In

Proceedings of the Eleventh International Conference on Web and Social

Media, ICWSM 2017, Montréal, Québec, Canada, May 15-18, 2017. 102–111.

[33] Unicode Consortium: https://unicode.org/emoji/charts/emoji-list.html

[34] Vukotić, Vedran, Christian Raymond, and Guillaume Gravier. Is it time

to switch to word embedding and recurrent neural networks for spoken

language understanding? 2015.

[35] Wang, Peng, et al. Semantic expansion using word embedding

clustering and convolutional neural network for improving short text

classification. Neurocomputing 174 (2016): 806-814.

[36] Wilson, T., Wiebe, J. and Hoffmann, P., 2009. Recognizing contextual

polarity: An exploration of features for phrase-level sentiment analysis.

Computational linguistics, 35(3), pp.399-433.

[37] Wu, Chuhan, Fangzhao Wu, Sixing Wu, Yongfeng Huang, and Xing

Xie. Tweet emoji prediction using hierarchical model with attention. In

Proceedings of the 2018 ACM International Joint Conference and 2018

International Symposium on Pervasive and Ubiquitous Computing and Wearable

Computers, pp. 1337-1344. 2018.

[38] Xiang Li, Rui Yan, and Ming Zhang. 2017. Joint Emoji Classification and

Embedding Learning. In Asia-Pacific Web (APWeb) and Web-Age Information

Management (WAIM) Joint Conference on Web and Big Data. Springer, 48–63.

https://unicode.org/emoji/charts/emoji-list.html

Final Report CM3203 C1722514

4
1

[39] Xu, Kelvin, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville,

Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell:

Neural image caption generation with visual attention. In International

conference on machine learning, pp. 2048-2057. 2015.

https://arxiv.org/abs/1502.03044

[40] Zhang, Y., & Wallace, B. (2015). A Sensitivity Analysis of (and

Practitioners’ Guide to) Convolutional Neural Networks for Sentence
Classification.

https://arxiv.org/abs/1502.03044

