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Abstract 

This project is focused on exploring the relationship between sentiment 

analysis and emoji prediction. The data used within the project is a variety of 

tweets, collected from the USA at alternating time periods. Ultimately, this is an 

analysis of tweets perceived as natural language and how this language is 

connected to the use of emojis. The goal is to determine whether sentiment 

analysis can prove useful in the field of emoji prediction. To accomplish this 

natural language processing task, it employs a variety of neural networks, 

developed with TensorFlow, and more specifically Keras. The architectures 

explored vary between recurring neural networks and convolutional neural 

networks, as well as a few merged model structures.  
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Introduction 

Emojis are essentially a set of ideograms and smileys that are becoming 

more and more commonplace as a way for people to express themselves 

online. They have even went as far as being recognized by Oxford Dictionaries 

as word of the year in 2015. [19] Considering the rapid adoption of emojis as a 

medium of expression, they hold their own implications, semantics and linguistic 

traits. That would imply their importance in text analysis is rising. As a relatively 

new type of data they require further and expanded research, since currently 

they are being somewhat neglected in the area of text analysis. [3] To 

understand these newly adopted forms of expression, we need to analyse their 

behaviour compared to more traditional means of communication such as 

written text.  

For this project I will focus on the expression of emojis in social media. Emoji data 

is common to come across in online communication, and as such there is plenty 

of data sources to be explored. [2] However, it is of utmost importance to find 

data that has a healthy balance between text and emoji to assist in the task of 

comparing emoji to natural language. Seeing as emoji is commonplace in texts, 

social media posts and even making its way into certain articles online, the type 

of data I have chosen to focus on for this project is tweets that contain emojis.  

I chose to analyse twitter data as by the end of 2019 there are over 330 million 

people are active on the platform monthly. [13] As such a widely used platform 

it can offer an up-to-date, realistic sample of emoji uses, as well as a variety of 

expression in the realm of sentiment analysis, resulting in perfect conditions for 

this analysis task. The nature of twitter data is quite favourable for analysis as it 

offers condensed and concise samples with just enough context and keywords 

to map and analyse, without any significant data noise or cluttering. 

Data aside, emojis and sentiment seem to have a correlation that is frequently 

explored from the angle of sentiment.  There has been past research pointing 

towards emoji and sentiment having a valuable correlation.[28],[23],[32] The 

focus of this project is to look at this relationship through a different angle that 

explores the relationship between sentiment and emoji, this time using sentiment 

to predict emojis, hopefully shedding light on those new and mysterious ways of 

expression. [16] 

With all the above into consideration, the scope of this project lies mainly in the 

realm of natural language processing (NLP), which is a field tightly entwined not 
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only with artificial intelligence (AI) but linguistics as well. Due to the broadness 

and complexity of the field, there is a vast disparity between the difficulty and 

requirements of the different subjects within it, hence why this project picks one 

of the better explored subjects – namely sentiment analysis, and a newer, less 

explored part of the field, the use of emojis in natural language exhibited online 

and mainly on social media. 

Machine learning is not a new concept, yet it only recently started gaining 

traction among academics and the industry alike. Though since I have set my 

sights on a narrower application of machine learning – deep learning.  In this 

project I chose to develop neural networks to accomplish my task, focusing on 

supervised learning. To achieve this, I employ the Keras API in Python to build 

and test my models, as it is one of the most popular and widely used APIs that 

are currently in use for machine learning projects. 

Sentiment analysis has a long-standing history in the area of NLP as stated 

above. It is a well-researched topic with a variety of uses in academia and the 

advancement of tech that enhances day-to-day life. Since the broadness of 

complexity in sentiment analysis is wide, I chose to explore a rather simple 

variation focusing on the positive and negative sentiment shown through text. 

When it came to implement and understand the implications the task offered, 

there was outstanding research coverage on the most optimal techniques to 

analyse text data and determine sentiment as stated in some of the referenced 

studies. [20]  

To accomplish the above I use deep learning models to explore both problems. 

The similarities mostly end here, as I use varying techniques and compare them 

to determine which is optimal for each problem and why.[1] The problems are 

similar yet, as emoji classification is a bigger categorical problem, that will 

require a more complex solution, determining the positive, negative or neutral 

sentiment of a text sample is a much simpler classification process. Both 

problems are categorical, and both can run into some issues later regarding 

sarcasm and finer ways of expression. [7] 

Background 

There is a variety of research papers on the topic, covering different 

implementations and several solutions to emoji prediction and sentiment 

analysis. For one, there is an in-depth analysis of the different techniques used 

for sentiment analysis in the realm of AI [20], however, my primary interest lies 
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with machine learning implementations, specifically neural network ones. For 

NLP there seems to be a consensus that the most optimal types of models 

around are based on either Long Short-Term Memory (LSTM) based neural 

networks and convolutional neural networks. [8], [27] 

There seems to be a wider variety of LSTM-based models that are implemented 

for this specific task, mostly due to LSTM’s ability to analyse the given tensors 
using a ‘timestep’ allowing it to have a more in-depth grasp of the context of 

the provided sequential data. The type of LSTM layers used varies greatly, from 

Bi-sense, to attention-based and the ordinary LSTM that can also prove very 

useful in analysing sequential data.  

The Bidirectional recurrent neural networks boil down to the concatenation of 

two independent RNNs together. The structure allows both networks to have 

access to backward and forward information about the sequence at every 

given timestep. Whereas the attention LSTMs focus on implementing an 

encoder-decoder dynamic in order to increase the accuracy of the model 

providing ‘context vectors’ that enable the LSTMs to more adequately 

recognize patterns in sentences or tweets. A more in-depth showcase of its 

impact on sentence data can be found in the referenced studies. [31] There are 

two types of attention: hard attention and soft attention their focus being crisp 

making of decisions via context vector (hard) and implementing the context 

vector in the context of weights (soft), respectively explored in more detail within 

‘Show attend and tell’. [39] 

Apart from that there are studies of models made with convolutional neural 

networks, despite their more common use in image processing. The main idea 

behind this approach being to implement them on a 1D convolutional space. 

The reason for this is the way the convolution treats the matrices parsed in the 

model. The simplest way I can explain convolution is from a mathematical 

standpoint: it is a mathematical operation that takes two functions and 

produces a third function, which demonstrates how one affects the other. In NLP 

convolution is usually used in its 1D variation, as the dimensions refer to the way 

the data is being convolved and processed. [40]  

The further in-depth description aside, they show quite promising results 

regarding classification problems such as detecting emotion in tweets [30] and 

the overall more classical problem of approaching sentiment analysis of tweets. 

[26] The findings of them show that they can be a useful tool in sentiment 

analysis yet are much more prone to overfitting and require a much more 



Final Report CM3203 C1722514 

 

 

9
 

steady and experienced approach to deliver satisfactory results in metrics and 

performance compared to their RNN counterparts. 

It is important to note that this project is inspired primarily from a SemEval task 

during the year of 2018 regarding emoji prediction in tweets. [4] The information 

on the competing teams and their approaches is quite intriguing and I have 

attempted to emulate some of the models suggested to be the most successful. 

The best performing models when observing the task of emoji prediction seem 

to be based primarily on attention and bidirectional LSTM layers in varying 

configurations. [6],[14] Those solutions explore not only the efficiency of using 

embeddings for the purpose of emoji classification but also offer a glimpse into 

the use of n-grams and present their solution to be closer to support vector 

machines (SVMs). [14] 

With that information considered I try to explore both simpler variations of LSTM 

recurrent neural networks, as well as taking a closer look at the SVM approach 

of handling the problem of emoji prediction. A choice to try out and compare 

the most basic approach with convolutional networks has also been made on 

my part within the scope of the project, that can be seen in further depth 

below.  

Data sources 

For this project I have used two resources that are readily available online 

for academic use, so before carrying on, I will describe them to give context. 

The sentiment dataset I used is from the Sentiment 140 project related to twitter 

sentiment analysis.[25] It is contained within archive consisting of two csv files, 

the training one, that offers 1,600,000 tweets with corresponding labels of 

negative (0), positive (4) and neutral (2), plus, a testing set for evaluation with 

the same labels. 

The second external resource for NLP that I use is expanded upon in the 

implementation section and that is Glove embeddings. [18] There is a range of 

pre-trained versions for different purposes available in a variety of dimensions 

depending on the user’s needs. 

The last remaining emoji dataset is courtesy to the researchers behind the 

SemEval task of 2018, [4] one of which agreed to provide me with the dataset 

they used for their task.  
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Approach & Design 

The approach to the problem involved research into the basics of the 

project’s structure since I am new to the type of problem I chose to take on. I 

spent the initial two weeks researching what was available on the library search 

regarding my chosen field and the ways it were implemented. It helped me 

better understand the constraints and possible blocks I could encounter 

throughout the process. 

Thanks to the initial first week of research I was capable of promptly planning 

out my time and setting achievable goals in the initial report I submitted. The 

second week was focused on the practicality of the implementation and what 

or how to use. At the time, unfortunately most available resources operated in 

TensorFlow 1.x, meaning that most of the research and tutorials I came across 

were in that said version. That will become relevant later in this report as I discuss 

the issues, I ended up having with that. 

In the remaining weeks I finally got down to implementing and tweaking the 

models for both sentiment analysis and emoji prediction. My approach to the 

problem involved three simple steps: to find the easiest possible solution to my 

problem, adapt it to my problem and then investigate ways to improve it.  

The data is to be analysed in two ways, the simpler of which is sentiment 

analysis. Sentiment analysis is accomplished in natural language processing by 

using artificial intelligence to analyse text and after doing so, determine the 

text’s sentiment in simple baseline versions, that often means ‘teaching’ the AI 
to distinguish between positive, negative and neutral sentiment. More complex 

variations of sentiment analysis can try to capture polarity [36] and other more 

sensitive differences in text input like irony, comedy etc.  

The topic is extensively researched with a variety of papers and past studies to 

investigate on clues in how to develop, and even better existing analysis 

structures.[15] With that said, there is quite a variation of models available 

depending on the area of research and the goals that they are looking to 

achieve through it.  With that said, for the current problem at hand, there have 

been several iterations in trying to better sentiment via the use of emojis, less so 

the other way around. [24] 

Due to the complexity of emoji prediction and the sheer number of variables to 

consider and tweak, I chose sentiment analysis as the anchor of this NLP project, 

as it has a rather well-established formula for development. With that said, it 
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usually involves several steps that boil down to the gathering of data, clearing it 

from noise, building a model to analyse the data and lastly, tweak it to improve 

its predictions. 

Turning towards the emoji prediction section of the project, it possesses much 

less related literature due to the topic being relatively new. Especially 

considering emojis have only been introduced as commonplace in Unicode 5.2 

in 2009, by which point 722 of them were already in wide use by the Japanese 

public. Currently in Unicode 8.0, there are over 1.6 thousand emojis present. 

[33],[5] While emojis are widely covered by the media, they are only recently 

gaining the attention of linguists and analysts alike. [22] 

Due to the sheer number of individual emojis listed above, the project focuses 

on the twenty most popular ones. The emoji prediction problem can be 

reduced to a text classification problem. Except rather than the categories 

being traditional text genres or text patterns revealing sentiments, but instead 

focused on determining the individual characteristics of tweets that are related 

to a specific emoji. Such a classifier is significantly more difficult to implement 

than sentiment analysis due to the number of variables (words) to be classified 

within a range of over a dozen categories (emojis).  

Given that knowledge I chose to attempt both convolutional and LSTM 

architectures to tackle the problem of emoji prediction. Speaking of the 

convolutional approach, after a few attempts at constructing a more efficient 

and adequate variation of the base convolutional model I faced greater 

challenges and the results of my work seemingly didn’t pay off when it came to 
performance and metrics (see graphs in implementation for reference). 

Another issue I faced was the lack of tutorials on CNNs apart from their primary 

use in image processing. There seemed to be an overwhelming amount of CNN 

tutorials and guides, but most of them were focused on the application of CNNs 

in object recognition, image processing and classification. There was rarely 

mentions of using them for bigger classification problems, so I chose to attempt 

using other options in my search for a solution. 

Due to this I chose to focus on the RNN approaches available to me to tackle 

solving the problem. There were several avenues to explore, though SimpleRNNs 

were quickly ruled out as a long-term solution due to their lossy performance 

and overall literature pointing against using SimpleRNN for most problems, as it 

essentially is just a worse variation of the long short-term memory RNN. 
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Once I moved on to RNNs, I found it easier to understand the reasoning behind 

the way they interpret text and retain its semantic properties over several 

timestep iterations. That prompted me to move on to LSTM layers, since a high 

proportion of the literature in references and background sections point towards 

them as the solution with highest likelihood of success apart from CNNs. 

CNNs gave a competitive result to my initial LSTM model, however, the loss 

metric had improved steadily, as listed below. That prompted me to choose to 

focus on developing an emoji prediction model using LSTM layers. With LSTMs I 

found it easier to envision the model’s possible ways for improvement as well as 
the way the weights would be distributed.  

My final attempt includes bidirectional LSTMs that have been proven to provide 

good results when it comes to working with text sequences towards solving a 

text classification problem. My results with them show a similar trend compared 

to the previously mentioned variations of layers.  

When it comes to implementation, a similar approach to the one generally used 

in sentiment analysis is valid for the emoji prediction part of the project. 

However, it is important to note that its categorical nature complicates the 

process of building and tweaking the model.[10] To combat this, I investigated 

different methods of optimizing categorical queries that relate to NLP as well as 

a competition task that was related to predicting emojis based on given tweet’s 
text. [4] 

Despite the difference of the use and context of the data, the sentiment 

analysis model and the emoji prediction, the structure of these models is very 

similar. Considering the emoji data provides many categories, that increases the 

computational complexity, requiring more in-depth understanding, as well as 

humble tweaks to the structure, to achieve satisfactory results. [21] 

Data processing 

The start to any successful machine learning project is the proper 

processing of data. To achieve this, I use a separate python file to pre-process 

the text initially given in the datasets. Since I use two separate datasets to train 

my sentiment analysis model and the emoji prediction, I have had to work 

around the way I store and extract the data. I have chosen to keep the original 

datafiles intact for security purposes, as I do not want to damage the data via 

altering and/or processing it incorrectly. 
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For the sentiment analysis dataset, which is contained within a CSV file I utilize 

the python package Pandas, to adequately extract and process the data by 

rows and columns. It is more efficient than the standard python libraries as it 

allows for fewer lines of code with higher efficiency. As for the emoji prediction 

dataset, I use functions that I have written myself. I have split the processing in 

two sections: one that is done to create a more simplified txt file version of the 

data to be parsed, and a second section done right before running through the 

model. 

Why focus on data processing? 
Since I’m using deep learning neural network models to accomplish my 

project, it’s of vital importance to carefully moderate the number of variables 

used to predict emoji and sentiment alike, in order to ensure that the predictions 

can be as accurate as possible and find the most important links between 

words and certain emojis. To achieve this, I use several data processing tools to 

reduce noise and the text corpora to minimise the impact of redundant data 

that is only essential due to the constraints of human communication. 

Initial pre-processing 
Due to the types of data involved and their different nature, the tweets 

data requires more attention. In lieu of looking for pre-existing processing, I 

focused on creating something that was simple enough to cater to my needs, 

hence putting research into a variety of tools within the programming language 

to ensure I do not reinvent the wheel. [29] Each of those tools has been 

specifically chosen to aid with the data’s ease of processing by a machine 

learning algorithm and ensuring its integrity. Listed in order: lowercasing, multiple 

space removal, removal of punctuation, special characters and numbers, plus 

lemmatization and removal of stop words. 

The simplest two functions that I use, are the bare minimum when it comes to 

textbook machine learning data processing: removing excess spaces and using 

lowercase. While lowercasing has debatable impact on the semantics [9], its 

benefits outweigh its risks, especially when it comes to processing tweets. In 

social media, proper capitalization is often scarce, while often it is used as more 

of an emphasis rather than clear distinction between separate entities (e.g. the 

word ‘apple’ and the company ‘Apple’).  Tweets can also be referred to as 

informal language, lacking complexity of more elaborate and structured texts 

such as scientific papers, articles, essays etc. Hence, capitalization losing its 
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nuanced role, and rather becoming more of an obstacle towards the finding of 

specific correlations. 

The second function is regex-based and focused on clearing whitespace from 

the tweets by replacing large quantities of whitespace with a single space. 

Apart from being handy regarding reducing the size of the tweet stored in the 

string, it is also used to aid in the splitting of the text data into tokens for later 

processing. Since the Keras tokenizers detect spaces and determine where to 

‘split’ a string into individual tokens based on that. In older versions multiple 

spaces were found to create ‘empty’ tokens that had high frequency, skewing 

the model’s ability to focus on more important tokens. 

The third and most crucial function, regex based as well, is concerned with the 

removal of all characters that are not alphabetical or spaces, including 

punctuation and special characters. That holds high importance as it keeps the 

data clear of any external symbols that might alter the resulting tokens and it 

prepares the data for the following stage of lemmatization. As it only leaves in 

words that the lemmatizing function can simplify and adequately process. 

Before I run the lemmatization on the data, I employ the use of the NTLK toolkit’s 
stop words. The stop words include an array of prepositions, articles, modal 

verbs, pronouns, and other words of high frequency in language that can prove 

redundant when looked at through a text-analysis prism.[28] Due to the nature of 

tweets and their informal nature mentioned above, they can contain certain 

characters that don’t belong in the NTLK Stop words set, so there have been 
additions that I’ve noticed such as the frequency of the word ‘user’, and 

common shortened, alternatively misspelled variations of modal verbs and 

pronouns. So that more tokens of low importance and high occurrence can be 

cleared, shown to improve the model’s ability to focus on more vital tokens 
provided that may lack a high rate of occurrence.  

Sadly, later in my research I discovered that this function was in fact hindering 

my models’ performance, so I had to cut it out of the data processing pipeline 
to ensure better results. My hypothesis on why that is, is the high likelihood that it 

interferes with the sequences’ similarities by removing the words that bind the 

sentence structure together, and thus abstracting the sequences to the point of 

there being very little correlation between the individual tweet sequences. 

Due to the many categories that are implied in the machine learning algorithm, 

I tried to keep the data relying on as few variables as possible to improve its 
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predictions, hence why I was seeking to remove the redundant words that 

would pop up frequently and lack  any serious contribution to the predictions. In 

other cases, it may be beneficial to keep that part of the data (such as text 

generating via machine learning), but in this specific case, it proves redundant. 

Then, the process of lemmatization appears in the pipeline. It’s essentially 
grouping words, or ‘lemmas’, together if they are inflected forms of a word so 
that they can be analysed as a single entity. That is especially useful when trying 

to find patterns in language, as it simplifies the different forms of verbs to a more 

accessible and simplified version, allowing the model to recognize patterns 

more easily. It is also a good tool to use against misspellings of words, as they are 

also included in the NTLK toolkit for lemmatization. 

The above concludes the pre-processing section of the pipeline I have made for 

this project. I have chosen to separate my script for data processing from the 

model training and model evaluating files, to ensure easier access and reading 

of each component, as well as the ability to run them independently, 

depending on the occasion.  

Tokenization 
The secondary processing is essentially loading the data from the 

simplified text files into the one of the model scripts and adding final 

preparations before passing them to the model as training, evaluating or 

predicting arguments. Firstly, the tweets are separated by a single newline 

character, so after loading the data, the file gets split into a list of tweets, each 

of which characterized by a new line in the original file.  

Following the completion of this step, one of the last preparations prior to 

passing the data is executed: tokenization. A tokenizer is declared, then used to 

fit to the data from the tweets, encoding every word in the text corpus with a 

unique value of its own. After encoding the data with a tokenizer, I have written 

a function of my own to find the largest tweet, which I use as standard to set my 

input size to. It’s essential to ensure the uniform size of the tweets, prior to passing 

them into the embedding layer of the neural network, hence why after finding 

the maximum, before I specify it as the input size of the training model, I pad all 

sequences to the required dimensions, using a built-in function provided in 

Python’s sequences library.  

Once the dimensions are standardized and all prior actions have taken place, 

the data gets passed onto the embedding layer of my machine learning model, 
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representing the words parsed as multi-dimensional vectors for the machine 

learning model to analyse. I experimented with several embedding sizes 

throughout, however, their further relevance is thoroughly covered in the section 

regarding implementation and performance. 

Numerical data 
While the numerical data, representing the emojis, is initially read from its 

designated file. See figure one for how they are stored initially. After that it runs a 

swift function that converts the individual strings of each number to an integer 

type, then maps those numbers to their appropriate indexes within the realms of 

a NumPy array. Once this essential step is covered, the data is converted to 

categorical before being passed onto the model, creating a 20-dimensional 

vector. Which in turn represents each emoji as its own separate category, 

allowing the neural network to adequately predict the individual emojis with 

better clarity and optimise loss more efficiently. 

Regarding sentiment I had to change the original dataset’s annotations due to 
a certain bug in the sparse categorical cross entropy loss function. The labels 

needed to be consecutive, which meant I had to pinpoint and relabel every 

single instance of the neutral denoted by 2 and positive, denoted by 4, into 

respectively neutral – 1 and positive – 2.  

 

Figure 1, emoji mapping 
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There is a slight difference in how I treat the two types of data. Emoji-related 

tweets are processed prior to running the script that trains and initializes the 

model. This solution provides much faster testing in comparison to the function 

used for the sentiment analysis data that is being processed in the same script 

as the model initialization and training. The main reason for this difference is the 

file formats used for the two datatypes: .txt for emoji and .csv for sentiment.  

In both cases I find it essential to preserve the original unfiltered data so it can 

be available to improve upon if the data processing proves to be detrimental or 

there’s room for improvement on it later down the line.  

Implementation 

The implementation was difficult to envision at first – yet with enough 

tutorials, practice, and insight – by the end of the research phase it seemed 

clear what needed to be accomplished for this project to be a success. The 

initial choice was to use TensorFlow v1.x, since most of the available tutorials and 

pre-existing models that I found on the internet were based around it. In 

conjunction with python 3.6, as there are several built-in packages that refer to 

data processing and are essential to the data preparation section of the project 

pipeline. Later due to issues listed below, the v1.x was replaced with v2.x. 

There were several online resources such as Towards Data Science, Medium, 

Kaggle and many more that were extremely helpful in grasping the basis of how 

to build and optimize models.  

The approach I used initially for the emoji model, was to try to tackle it as a 

categorical classification problem with simple convolutional and recurring 

neural network (RNN) layers. [34], [12] In order to be prepared, I chose to 

develop the easiest possible solution and build on top of it. The first issue I 

encountered was using fresh embeddings, which I soon realised were not going 

to yield good results.[35],[10] 

After further investigating the field of natural language processing, I realised 

how long it would take to train and develop adequately performing embedding 

structures, so I opted to use the pre-existing Glove embeddings, to try to relate 

the tweets better and give the embedding layer a starting push towards the 

right direction.[18] I employ the 27 billion tokens twitter version with fifty 

dimensions, for which I have provided links in the GitHub repository, should it be 

needed for download. 
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Emoji prediction model 
I investigated two possible variations as being most successful at 

predicting emojis: multiple or single–layer LSTM models [11], combined with 

recurring dropouts set in the layers, as well as convolutional architectures. There 

was an issue with overfitting, where the model performs nearly perfectly on 

training data, however, it severely underperforms when introduced to new test 

data. In simpler words, it memorises the training dataset and in doing so 

underperforms on other data sets used for testing. Comparison drawn from an 

average of 24.33% on testing categorical accuracy, versus an average of 

30.17% on training categorical accuracy. (Calculated from data over 20 

epochs.) Loss sustains itself on both training and testing data at roughly 2.3 on 

average. The conclusion was drawn from experiments on training and testing 

data for accuracy and loss listed in the figures below.  

My reasoning behind this was that recurring neural networks (RNNs) perform 

better with sequential data, thus they would excel at analysing text and 

retaining the sentence meaning. That, of course relates to LSTM exclusively, as it 

has the groundwork for spotting longer-term patterns. That knowledge would 

prove useful when it comes to learning the patterns of each of the categories 

within the categorical problems and theoretically performing better due to that. 

[12] 

The final model for emoji prediction involves an input layer for the tokenized 

sequences, an embedding layer using Glove embeddings and three 

bidirectional LSTM layers, with decrementing number of neurons, can be seen in 

figure 2. The main idea behind this structure is to capture the broadest amount 

of features on the top layers of the model, and gradually narrow down to a 

specific prediction by limiting the size of the available neurons and decreasing 

the recurrent dropout of each layer. The final layer is a fully connected Dense 

layer with 20 neurons, that employs a SoftMax activation. That means that after 

getting the final vector from the last Bi-LSTM layer, the activation function sums it 

into a probability distribution consisting of several probabilities that are 

proportional to the exponentials of the input numbers. (Reference 

emoji_vanilla_pred.py for code.) 
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Figure 2: Structure of emoji model 

Prior to reaching this final architecture, three other options were tested: a 

convolutional model with global maximum pooling, a simple RNN architecture, 

and finally an LSTM-based model. They performed with varying success, usually 

demonstrating a similar degree of success on incremental epochs. I provide 

results from the initial benchmarks below. 

There were several advantages to this architecture that made me choose it 

over the aforementioned ones. Firstly, while it took longer per epoch It shows a 

much higher accuracy than its counterparts. That is due to the sequence being 

scanned in both directions and providing more contextual understanding of the 

data to the model. That allows for more accurate predictions and a more in-
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depth understanding of the tweets’ token arrangement and contextualizes the 
semantic structures better compared to an ordinary LSTM network. Comparisons 

to the other models’ performances can be seen in figures 3 and 4. 

When it comes to compiling the model there are several parameters involved in 

the process: loss, optimizer and metrics. For each of the emoji models I have 

chosen to use categorical cross entropy as my loss function. Notably I chose 

categorical instead of sparse categorical since the performance of the models 

that predicted emoji was good as is, there was no need to implement the 

sparse variation that skips hot encoding in favour of execution speed. 

Different emoji can follow a specified tweet, which makes the task even more 

difficult as the categories are theoretically not mutually exclusive. For clarity’s 
sake, I’ve chosen to treat them as such due to the fact that a greater part of 

the emojis in this dataset, as seen above, convey vaguely similar emotions, 

meaning that the task should be focused more on spotting the finer differences 

between them.  A notable mistake that haunted me throughout the early days 

of developing this project was picking the wrong optimizers for my task, as well 

as simply declaring metrics as ‘accuracy’.  

With more research and time, I realised that as a matter of fact the metric for 

using categorical cross entropy is consequently categorical accuracy. That was 

key in properly monitoring the accuracy I was getting, since the same 

architectures performed vastly different in both training and validation after this 

minor change.  

With that cleared up, I tested different optimizers, as well as read up on similar 

issues that others faced with Keras to pick RMSprop as my optimizer of choice. 

Compared to most other optimizers I tested, RMSprop and SGD performed best 

with the given architectures. RMSprop’s ability to adequately perform with larger 
embedding structures has proven invaluable in comparison to ADAM or other 

famous picks.  
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Figure 3: comparison of the emoji-only models (accuracy) 

 

Figure 4: comparison of the emoji-only models (loss) 

Sentiment analysis model 
For sentiment analysis, I tested the same three architectures as listed 

above for emoji. Though, pointers suggested that LSTM was going to be the 

prevalent architecture again. [36],[3] The results were similar to the outcomes of 

1 2 3 4 5 6 7 8 9 10

Conv1D 0.2553 0.2706 0.2743 0.2812 0.2874 0.288 0.2982 0.3028 0.3242 0.3304

SimpleRNN 0.2332 0.2674 0.2701 0.278 0.2843 0.2878 0.2955 0.3093 0.3111 0.3224

LSTM 0.2684 0.2797 0.2803 0.2847 0.2866 0.2958 0.3005 0.307 0.3149 0.33

Bi-LSTM 0.3061 0.323 0.3327 0.3408 0.3464 0.3576 0.3556 0.3601 0.3656 0.3686
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1 2 3 4 5 6 7 8 9 10

Conv1D 2.7237 2.6604 2.605 2.5497 2.4954 2.4465 2.407 2.378 2.3544 2.3333

SimpleRNN 2.9837 2.862 2.838 2.712 2.683 2.5928 2.515 2.465 2.3984 2.3169

LSTM 2.8334 2.7792 2.6827 2.6003 2.5381 2.4494 2.399 2.3768 2.3301 2.329

Bi-LSTM 2.3691 2.29 2.2507 2.2185 2.193 2.1575 2.1571 2.1386 2.1185 2.0995
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the emoji tests, whereby Bidirectional LSTMs outperformed the other models in 

both loss and accuracy.  My initial sentiment analysis model was built to only 

recognize the highest polarity of the dataset. To start off with a simpler model I 

used binary cross entropy as loss function, along with the ADAM optimizer.  

Once I found an architecture that I found worked well for the binary 

classification problem I built upon it with the introduction of neutral sentiment 

and converting the problem to categorical. Due to the simpler nature of the 

sentiment analysis classification problem I chose to give the bidirectional layers 

smaller dimensions, both to help with the performance and reduce the 

possibility of overfitting down the line of training. [20] 

The final model includes the embedding layer discussed above, a bidirectional 

LSTM layer, followed by another bidirectional LSTM layer with less parameters to 

narrow down the semblances as listed above in the emoji structure. The fewer 

categories require less specifics, and thus can be optimized by using smaller and 

fewer layers for better time performance and overall metric results. The 

prediction layer is a fully connected layer with a SoftMax activation function. 

(Reference sent_LSTM.py for full code.) 

Unlike the emoji classification problem, sentiment analysis had a larger dataset, 

hence required more optimization and it came with a bigger embedding. I read 

up on individual sources and experiments that others had attempted on this 

dataset, and while most of them used ADAM, I seemingly kept achieving better 

performance using RMSprop. That provided some significant improvements 

regarding accuracy and overall performance. I chose sparse categorical cross 

entropy to try and further save on computation time, as categorical by itself 

performs a fraction slower and requires further label preparation. (See figures 5 & 

6.) 

However, it is notable to mention that in the initial version of Keras (v1.x) the 

‘accuracy’ metric did not calculate the outcome of sparse categorical cross 

entropy correctly, either. Much like it’s non-exclusive and hot encoded variation 

(plain categorical), it has a specific accuracy function to reliably calculate the 

accuracy, as the API had employed different calculation functions if the label 

wasn’t specified to ‘sparse_categorical_crossentropy’. 
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Figure 5: Sentiment analysis accuracy 

 

Figure 6: Sentiment analysis loss comparison 

Merged and combined models 
That concludes the finalized simple models that I offered to solve the two 

individual problems that this task consists of. The remainder was focused around 

trying to combine the two existing structures into one. I tried several methods: a 

1 2 3 4 5 6 7 8 9 10 11

Conv1D (train) 0.5619 0.6205 0.675 0.6961 0.7194 0.7544 0.773 0.7907 0.7931 0.7955

Conv1D (test) 0.6623 0.7187 0.7252 0.7503 0.7588 0.752 0.7603 0.7592 0.7585 0.7663

Bi-LSTM (train) 0.7907 0.8142 0.8192 0.8219 0.8234 0.824 0.825 0.8249 0.8263 0.8263 0.826

Bi-LSTM (test) 0.7991 0.8072 0.7853 0.7882 0.8197 0.8009 0.7845 0.8222 0.8018 0.8202 0.8389
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1 2 3 4 5 6 7 8 9 10 11

Conv1D (train) 0.6919 0.6847 0.6252 0.5426 0.5176 0.5058 0.4988 0.4938 0.4902 0.4874

Conv1D (test) 0.6888 0.6742 0.576 0.5256 0.5171 0.4993 0.4825 0.4796 0.4725 0.4702

Bi-LSTM (train) 0.4428 0.4062 0.3978 0.3935 0.3908 0.3898 0.3883 0.3884 0.3874 0.3875 0.3883

Bi-LSTM (test) 0.4251 0.4223 0.4543 0.4532 0.3953 0.4374 0.4614 0.4048 0.4279 0.3975 0.3732
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model with shared structure with two inputs and two outputs, a model with two 

inputs, shared embedding, separate structures and two outputs, and my 

simplest attempt which was employing the pre-existing models and making a 

pipeline out of them. 

Following what I said in the approach section, I chose the simplest approach 

first. I created a new and altered version of the emoji algorithm. The initial 

version just had the sentiment analysis result appended to the end of the tweet 

sequence and fed into the model. As I anticipated this did not alter the 

accuracy in any way, shape or form. My second attempt with this approach 

was to create a separate input and pad it to the same size as the emoji 

sequence input. Sadly, as I anticipated that did not alter the results. 

My final attempt with option one included a change of the model structure. 

That did showcase some change in the initial results I was noticing. I replaced 

my additional Bi-Sense layers with a simpler structure relying on a global pooling 

layer, followed by a fully connected layer, dropout layer and a prediction layer. 

The performance of this model is outstanding and computation-wise it shadows 

the rest when it comes speed and performance. Figure 7. (Reference 

emo_pred_plus_sent.py for full code.) 

An important note on the implementation of this model is that in contrast to the 

solo training models it does not use zero masking within the embedding layer. 

Due to its differing structure that requires pooling, it needed to have a different 

approach to the embedding layer and how it handles data. The zero padding is 

removed in this case to provide the model with more context regarding the hot 

encoded nature of the sentiment values included.  

The pipeline created for it is as follows: prepare the tweets needed using the 

data preparation file, then run them through the sentiment predictor file, and 

once these two steps are done, the required files for the concatenated output 

are ready. Once loaded into the model, they can be used for prediction of 

emoji based on the data provided.  
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Figure 7: Simple Sentiment + Emoji model structure. 

The next model I built was going to be a merged model of the two that I had 

built previously. My plan was to have two inputs that connect to a shared 

embedding layer. To keep the sequences’ semantic characteristics intact I 
figured that I’d first apply analysis of each of the sequences through individual 
Bidirectional LSTM layers, the outputs of which I’d concatenate before passing 
onto the shared layers and making predictions. With two separate fully 

connected layers. 
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This model did not perform very well, despite retaining most of the 

characteristics of its standalone predecessors. I assume that its added 

complexity took a toll on both its performance and metrics. Below I draw a 10-

epoch comparison of the sentiment analysis standalone training data versus the 

complex model’s in the findings section. 

Due to its complexity, the performance was quite lacking in most areas, 

including metrics as mentioned below. It tends to be quite computationally 

taxing as well due to the number of parameters required for it to be able to 

carry out its predictions. I have tried forming concatenations on different parts of 

the layers and experimented with several different methods of concatenation, 

but most of them only multiplied the number of parameters and slowed the 

model greatly. 

After many attempts to train it and tweak its performance I eventually moved 

on to another idea as I noticed this may not be a feasible solution. I decided to 

use a global max pooling layer after the concatenation and mimic the previous 

model. My theory behind it was that it would benefit the model more than 

following up with two LSTM layers as shown below in figure 8.  

 

Figure 8: Merged model: combined LSTMs structure. 

Upon later consideration of the above architecture, an idea came to mind, to 

investigate if it were possible to improve the model’s performance by 
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implementing the concatenated sentiment + emoji input’s architecture into the 
merged model. To accomplish this, I thought of replacing the shared LSTM layers 

with a global max pooling layer and a fully connected layer.  

The idea behind this was to apply a more computationally light approach to 

how the layers are handled post-concatenation. Consequently, I chose to use 

sparse categorical cross entropy for both problems, to speed up the formulae 

computation. The details on the architecture can be seen in figure 9. 

(Reference merged_structure.py for full code.) 

 

Figure 9: Updated merged model architecture 

Unfortunately, this idea struck as I write this report so I can only show very little 

results for it in a graph comparison between the older version of this model and 

the newer version of it. The first impressions of this improved model are quite 

different to those of its predecessor – it outperforms the older version in every 

conceivable way. The average loss for version one is roughly 2.9477, whereas 

the average of version two 2.8159, which shows an impressive improvement in 

only the first five epochs. The table provided below shows the improvements in 

accuracy on the first five recorded epochs of each of the models. (v.1 referring 

to the old model, v.2 referring to the new one. 
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Train v.1 Train v.2 Test v.2 Metric: Accuracy 

0.1783 0.2308 0.2485 Emoji prediction 

0.1857 0.2516 0.2548 

0.1869 0.2567 0.2583 

0.1888 0.2597 0.2608 

0.1895 0.2617 0.2624 

0.6142 0.7247 0.7607 Sentiment analysis 

0.6298 0.7700 0.7765 

0.6311 0.7810 0.7846 

0.6346 0.7875 0.7900 

0.6360 0.7922 0.794 
Table 1: Accuracy on merged model variations one and two. 

This offers insight into how the layers interact from the concatenation onwards. 

While the Bidirectional LSTM picks up the timesteps and ways natural language 

progresses, once concatenated, the pooling layer can extract important 

features from the LSTM layer, to then analyse in a fully connected layer. You can 

see a rather rushed evaluation of the epochs that I managed to train within this 

short period of time in a graph of the values in the findings section, as well as the 

graph above, showcasing the difference in metrics. 

This merged model doesn’t compare all that greatly to the emoji-only model or 

the emoji prediction plus a sentiment vector model, but it shows promise that 

the initial idea behind the merge can perform better, perhaps with a more 

convolutional approach.  

That brings me to the latest model created for this task that simply employs a 

shared embedding layer and two separate structures to do the predictions for 

each of the sentiment and emoji parameters. It essentially combines the two 

models into one by retaining the original architectures of each of them, except 

it only uses a shared embedding. As suspected, it outperformed its 

concatenated counterpart but only slightly. Due to time running out I was 

unable to conduct and record this model’s overall performance and 
evaluation. 

This model was abandoned due to having additional complexity and not really 

being related to the task in many ways, as in the end apart from extended 

embeddings it did not share other data between the layers involved in later 

predictions.  (Reference diverged_structure.py for full code.) 

Note: all the code is available on GitHub for reference and review: 

https://github.com/Marielene/sentiment-emoji 

https://github.com/Marielene/sentiment-emoji
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Findings 

The goal of this project being exploring the relationship between emoji 

and sentiment, has reached several conclusions. While there is certainly a 

dependence between the two, it would seem my project has not managed to 

find an efficient way to utilize this correlation. To plot all graphs the metric used 

for evaluation is primarily accuracy. However, the evaluation findings give hope 

that this project’s hypothesis is on the right track. 

Note that for optimal results the data must be cleared from noise, while retaining 

the sentences’ structures. That includes just the use of lemmatization, removal of 

extra spaces, special symbols and lowercasing. Initial models with heavily 

processed data (using both lemmatization and removal of stop words), ended 

up giving poorer results and higher loss overall compared to the less processed 

data that retained more words (lemmatization only). Note: this table refers to 

testing loss monitored by categorical cross entropy for each of the models. As 

shown in table below, over roughly 10 of their best epochs each (20 total, best 

referring to metrics-wise): 

Models AVG loss 

with light 

pre-

processing 

(LPP) 

Accuracy 

AVG LPP 

Loss AVG 

heavy pre-

processing 

(HPP) 

Accuracy 

AVG HPP 

Conv1D 2.4831 0.2847 2.6333 0.2431 

SimpleRNN 2.573 0.2633 2.6942 0.2333 

LSTM 2.2819 0.2955 2.5663 0.2597 

Bi-LSTM 2.2195 0.3106 2.4861 0.2866 
Table 2: Averages of testing data with different data processing approaches 

The single merged model’s performance was lower than the individual on both 
emoji and sentiment analysis. (Figures 6 and 7.) Showcasing an average of 

15~16% worse performance on part of sentiment analysis and a similar decrease 

on the emoji prediction frontier, dropping to a 21.9% validation accuracy from 

nearly 37.5% on the Bi-Directional LSTM model with sentiment tokens. See figures 

10 and 11. The individual drops are presented below in two comparison graphs. 

Model (Emoji predict) Average Accuracy Average Loss 

Bi-LSTM 0.3456 2.1992 

Bi-LSTM + Sent vector 0.3460 2.2099 

Merged model v.1 1.9477 2.9477 

Merged model v.2 0.2521 2.8159 
Table 3: Averages of test data on emoji prediction models over 20 epochs each. 
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Figure 10: Sentiment analysis metric comparison to merged model. 

The reason for this, is likely due to underfitting on my part when creating the 

model and possible poor layer optimization on my part, as a way to improve it 

would be to convert the LSTMs to Bi-LSTMs and add dropout layers after 

concatenation. Another reason is the overcomplicating of the problem, without 

adequately optimizing as stated above. If there were a finer level of 

optimization to be applied to the structure, it would probably improve both 

metrics and performance-wise. As can be seen in figures 10 to 12. 

There is a lot more to improve in that direction, as I am certain there must be a 

simpler way to implement this variation and achieve adequate results. Since the 

simpler variation with sentiment does seem to have a closer performance to the 

original. But as showcased in the graphs below it could not be referred to as an 

improvement on the overall accuracy and loss of the model. 

The positive results with further training would likely be from the separated model 

that included a shared embedding layer. However, it too performed poorly with 

its initial epochs, though due to its complex structure, I believe it can prove 

useful with more tweaking and training.  

1 2 3 4 5 6 7 8 9 10 11

Merged loss 0.6667 0.6461 0.6432 0.6411 0.6406 0.6397 0.6374 0.6353 0.6308 0.6239 0.6166

Original loss 0.4428 0.4062 0.3978 0.3935 0.3908 0.3898 0.3883 0.3884 0.3874 0.3875 0.3883

Original acc 0.7907 0.8142 0.8192 0.8219 0.8234 0.824 0.825 0.8249 0.8263 0.8263 0.826
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Figure 11: Emoji prediction models comparison of accuracy (validation) 

 

Figure 12: Emoji accuracy and Sent accuracy refer to the accuracy from the merged model, whereas 

emoji + sent refers to the model with the added sentiment tokens. 

Since the update of the merged model, the new architecture shows more 

promise. Sadly, due to inefficient time the comparison is made with little data. A 

vital improvement is that on the first epoch the updated model achieves higher 

accuracy than its predecessor does in thirty epochs. That applies to both tasks 

presented in the problem, respectively sentiment analysis and emoji prediction. I 

present figures 13 and 14 to visualise the data.  

1 2 3 4 5 6 7 8 9 10

Merged 0.1783 0.1857 0.1869 0.1888 0.1895 0.19 0.1873 0.1886 0.1892 0.1918

Bi-LSTM 0.3061 0.323 0.3327 0.3408 0.3464 0.3576 0.3556 0.3601 0.3656 0.3686

Combo Sent + Emoji 0.3365 0.3415 0.3424 0.3445 0.3536 0.3549 0.3516 0.3518 0.332 0.3582
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Figure 13: Merged model emoji data. Note: v.1 refers to LSTM only, v.2 refers to improved mode 

 

Figure 14: Merged model sentiment data. Note: v.1 refers to LSTM only, v.2 refers to improved mode 

Upon evaluation the model with additional sentiment vector achieves a better 

accuracy compared to its emoji-only counterpart. That leads me to believe that 

the minor addition of this vector improves the ability of the model to distinguish 

between certain emojis based on the context for the tweet that the sentiment 

provides. 

1 2 3 4 5

Loss (v.1) 2.9543 2.9366 2.952 2.9495 2.9461

Loss (v.2) 2.8296 2.8166 2.8149 2.812 2.8067
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The difference in evaluation being miniscule of around 1%. The combined 

model achieves a loss of 2.285 and accuracy of 34% on a final evaluation. 

Whereas the emoji only evaluation achieves an accuracy of 33% and slightly 

bigger loss of 2.2983. Which demonstrates that the addition of sentiment 

presents a positive impact on the predictions, regardless of how little it might be. 

That proves the hypothesis has merit for future development and investigation. 

Reflection 

There are several issues to touch upon in this section, all of which focused 

on deeper understanding and adequate planning of the project. Looking back 

on it now, I lacked both at the beginning of this task, and barely acquired them 

a few weeks prior to submission. There is a lot to unpack behind this statement, 

so I will get into details below. 

Firstly, when I started this project, I had no experience with data science ort 

machine learning itself. That resulted in a rather ambitious outlook regarding 

how fast and adequately things would work and be produced. The 

technicalities and the level of understanding required quickly felt overwhelming. 

I learned to incrementally deepen my understanding of a subject instead of 

jumping into the deep headfirst.  

My research consisted of three individual phases: the initial first week of research 

to give me an overall idea of the scope and the amount of time it will take to 

complete the project, the second week based entirely around implementation 

and learning to utilize the tools within the Keras library and get a basic 

understanding for the API, and lastly, the serious academic research that was 

based around the details and technicalities of how to improve and adequately 

build a model that I deem satisfactory. 

The initial research delved into basics and the overall idea of the project. 

Understanding the scope was crucial in order to come up with a manageable 

timeline that could be fulfilled in the given circumstances. I looked up available 

projects on Kaggle that were focused around using twitter data and analysing it 

in various ways, usually sentiment analysis of different kinds. It gave me a rough 

idea of what to expect and how my initial models will look. 

The second research phase was far more practical involving following in-depth 

tutorials and carefully reading the Keras documentation to attain more in-depth 

understanding of the API I was going to use. There were varying levels of 
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recommendations regarding the options on which API would seem to be best 

suited for the task. While Keras and TensorFlow provided a good starting 

foundation for novices in the area of deep learning, PyTorch allows for more 

creative freedom and building way more complex models in an accessible 

package. In my case, I opted for Keras due to being inexperienced in the field. 

The third and most eye-opening phase of research involved focusing on more 

detailed and methodical approaches to the problem such as fine-tuning 

models and understanding them from a more academic standpoint. That 

meant reading dozens of papers, keeping track and comparing their findings in 

hope of finding something that works for my scenario. With that in mind, I spent 

a long time trying to filter out the applicable insights from the inapplicable, 

which led to certain complications. 

Due to most of the papers being about creating those models from scratch, 

working with an API both reduced the amount of statistics and in-depth theory I 

needed to know, yet it limited my options when it came to developing high 

rates of accuracy. With this knowledge, I started looking into ways to refine the 

options that the API gave me control over, so rather than papers, I had to turn 

towards forums and developer insights. The result of that is the amalgamation of 

knowledge of both developers in non-academic and academic context 

coming together for the development of this project. 

By the aforementioned, I mean that by the time I had realised how much 

literature I needed to promptly read and classify was a rather considerable task 

in itself, it felt very overwhelming at first. To combat this for future reference I 

made a system of incremental learning that would prevent me from feeling 

overwhelmed, as before reaching for the scientific papers, I read through most 

tutorials online on basic Keras building techniques and models. 

Regarding implementations there were a few situations where things did not go 

as planned and resulted in slowing the overall progress of the task. One of those 

peculiar situations was choosing the amount of processing the data should go 

through. I thought this issue could be resolved by delving into research and 

looking at similar projects, however, in the end it boiled down to seeing what 

works best for the structures I had. 

Keras and Google Collab have been both a blessing and a curse at times, due 

to dependencies and updates that often stirred up the development process. 

Around the 27th of March Google Collab updated its TensorFlow version and 
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thus, my old code was performing in a much clunkier fashion. Rather than 

continuing to pursue efficiency and reusing my existing code, I chose to rewrite 

and retrain most of the prototypes I had. Luckily, the update was a blessing in 

disguise as it allowed for more features to be added, thus improving the code’s 
overall performance. 

If I had to redo this project, I would spend a lot more time researching CNNs, so I 

could have multiple advanced models to have benchmarks on. That would 

help me develop a more a more competitive structure that would ultimately 

provide better results. Since the method I ended up choosing for the sentiment 

vector emoji predictor, would work much better with a convolutional structure 

compared to my current implementation.  

Future Work 

There are several ways to build upon this foundation if given more time. 

Firstly, this system given a few tweaks could be the groundwork for an emoji 

embedding to be developed and trained, though that could classify itself as an 

entirely separate project, given the amount of further reading and time it would 

take to develop.[38], [17] 

While I have not succeeded in this endeavour, I am certain that with a bigger 

sample size of emojis to predict, this project’s idea would be much more feasible 

to implement and see in action. There is room for improvement in the finer 

elements of this project, as well as space for experimentation with different 

architectures and more complex tweaking. 

For example, adding attention to the emoji prediction model to improve its 

ability of understanding the tweets and developing a deeper understanding for 

their contents. The model’s bidirectional layers combined with an attention 
dynamic would theoretically improve greatly based on past research in the 

area of NLP with neural networks. [39] 

Regarding the merged models, a lot can be expanded on in future recreations 

in terms of architecture and approach. Research points towards much more 

complex methods of NLP being feasible for the task and due to its complexity, it 

seems difficult for it to be achieved with just Keras by a person with little 

experience as myself. 

Overall, while Keras has definitely been the correct choice for me as a beginner 

in the field, I am certain that this project would require a much more in-depth 
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level of tweaking and control over the layers, so for anyone inclined to pursue a 

project of this scope and achieve successful results, I’d recommend them to 

rack up experience prior to the task, as that will definitely be of aid to reaching 

the deliverables in a reasonable time.  

In the near future, as emojis grow to become an even more essential part of 

communication, I am certain that the endeavour of predicting and delving 

further into the semantics of emoji will become its own part of sentiment analysis 

itself. I hope this project proves useful enough for others in the field to build 

upon. 

Conclusion 

While the yield of these final models does not present the most convincing 

results, the concept behind the project can be explored further. LSTMs can be 

built upon with attention to improve the results presented in this report. [37], [11] 

However, the alternatives are also tempting to consider. Especially so with the 

use of convolutional networks that could provide much better insight when it 

comes to the concatenated models. Due to the nature of the task and the way 

the data is presented during concatenation, convolution is likely to be 

outperforming LSTMs in a bigger sample space. So, the use of it would be more 

beneficial in this kind of task if the goal is to create a combined model that uses 

concatenation. 
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