
Creating an online adblocker
One Semester Individual Project

Final Year Project

Final Report

CM3203

Author: Oliver James Robert Storey-Young

Student Number: C1635943

Supervisor: Padraig Corcoran

Moderator: Federico Liberatore

15/05/2020

School of Computer Science and Informatics, Cardiff University.

1 | P a g e

Abstract
When browsing the internet, it is all too common to be bombarded by adverts that will hinder

and alter their browsing experience. Over the past few years, the number of adverts and

unwanted traffic loaded when you visit a website has increased to a ridiculous amount.

Adverts can often be unsafe, collect personal information and have even been known to

influence political elections.

This project aims to create a reliable and effective adblocker that will be able to detect and

circumvent adverts that may be displayed on any given website. Since there are already ad-

blockers available, time will spend time researching the techniques and algorithms that have

previously been used by them to help identify adverts on a web page. As a result of that

research and this project, an adblocking application shall be created.

The outcome of this project involved the creation of a Google Chrome extension that can be

used to block and identify adverts while browsing the internet. The extension makes use of a

concise handful of options and settings to accompany it. The finished product could later be

slightly adapted to use and integrate a filter or block list published by third parties found

online.

The following report will outline and evaluate thoroughly the processes that have been used

to complete this project.

2 | P a g e

Acknowledgements
I would like to give a big thanks to all my friends and family who gave continued support and

motivation throughout the duration of my project. I would also like to express my gratitude

to Dr Padraig Corcoran for his continued guidance and help throughout the project.

Most of this project was completed during the lockdown brought on by the coronavirus

outbreak of 2020. I would like to add further thanks to all the NHS staff, key and essential

workers who have risked their lives to keep the country running during these times.

3 | P a g e

Contents
Abstract .. 1

Acknowledgements .. 2

Table of Figures .. 5

1 Introduction ... 7

1.1 Project Overview ... 7

1.2 Project Aims .. 8

1.2.1 First Aim .. 8

1.2.2 Second Aim ... 8

1.2.3 Third Aim .. 8

1.2.4 Fourth Aim .. 9

1.3 Project Scope .. 9

2 Background .. 10

2.1 Existing solutions ... 10

2.1.1 AdBlock — best ad blocker [Fig. 2] ... 10

2.1.2 AdBlock Plus - free ad blocker [Fig. 6] .. 11

2.1.3 uBlocker - Ad Block Tool for Chrome [Fig. 9] .. 11

2.2 Evaluation of the current solutions ... 11

2.2.1 The Balance of too many options and not enough options .. 11

2.2.2 Default adblocking effectiveness .. 12

2.3 Constraints and Limitations .. 13

3 Approach .. 14

3.1 Setup ... 14

3.2 Research .. 14

3.2.1 WebRequests .. 15

3.2.2 Storage ... 15

3.2.3 AdBlock Plus ... 15

3.3 Development ... 15

4 Specification and Design ... 16

4.1 Popup .. 16

4.1.1 Users Perspective .. 16

4.1.2 System Behaviour ... 17

4.1.3 Architecture .. 18

4.1.4 Constraints.. 18

4.2 Storing Data... 18

4.2.1 Users Perspective .. 18

4.2.2 System Behaviour ... 19

4.2.3 Architecture .. 19

4.2.4 Constraints.. 20

4.3 Selecting Elements .. 20

4.3.1 Users Perspective .. 20

4.3.2 System Behaviour ... 20

4.3.3 Architecture .. 21

4.3.4 Constraints.. 21

4.4 Blocking Elements ... 21

4.4.1 User Perspective ... 21

4.4.2 System Behaviour ... 21

4.4.3 Architecture .. 22

4.4.4 Constraints.. 22

4.5 Selecting Domains ... 22

4.5.1 User Perspective ... 22

4.5.2 System Behaviour ... 23

4 | P a g e

4.5.3 Architecture .. 23

4.5.4 Constraints.. 23

4.6 Blocking Domains .. 24

4.6.1 User Perspective ... 24

4.6.2 System Behaviour ... 24

4.6.3 Architecture .. 24

4.6.4 Constraints.. 24

5 Implementation ... 25

5.1 Popup .. 25

5.1.1 Interface ... 25

5.1.2 Data population .. 25

5.1.3 Events ... 26

5.1.4 Tables ... 26

5.2 Storing data ... 27

5.2.1 Data Structures ... 27

5.2.2 Setting Data .. 27

5.3 Selecting Elements .. 28

5.3.1 Highlighting elements... 28

5.3.2 Preparing elements for storage .. 28

5.4 Blocking Elements ... 29

5.4.1 CSS injection ... 29

5.5 Selecting Domains ... 29

5.5.1 Context menu ... 29

5.5.2 XMLHttpRequest ... 30

5.6 Blocking Domains .. 31

5.6.1 Blocking domains from external list ... 31

5.6.2 Blocking domains from manual input ... 31

6 Results and Evaluation .. 33

6.1 The realisation of how ad-blockers work and what that means for this project 33

6.2 Comparison against other similar software .. 34

6.2.1 Blocking comparison... 34

6.2.2 UX & UI comparison ... 34

6.3 Evaluation against requirements and Test Cases .. 36

6.3.1 Test Cases for First Aim .. 36

6.3.2 Test Cases for Second Aim .. 38

6.3.3 Test Cases for Third Aim ... 39

6.3.4 Test Cases for Fourth Aim ... 40

7 Future Work ... 42

7.1 Full validation .. 42

7.1.1 Domain Loading ... 42

7.1.2 Manual Domain Typing .. 42

7.2 Error handling ... 42

7.2.1 Error logging ... 43

7.2.2 Try Catch ... 43

7.3 Code optimisations ... 43

7.3.1 Core components .. 43

7.3.2 Improved data fetching .. 43

7.4 Integrating with EasyList ... 44

8 Conclusion.. 45

9 Reflection on Learning ... 46

10 References ... 47

11 Terminology ... 49

13 Figures .. 51

5 | P a g e

Table of Figures
[Fig. 1] A website covered in malicious adverts with the intent on tricking the user. 51

[Fig. 2] The AdBlock Chrome extension store listing. .. 51

[Fig. 3] The AdBlock extension popup. .. 51

[Fig. 4] The AdBlock settings page overview. .. 52

[Fig. 5] The AdBlock still showing some adverts on "reddit.com" ... 52

[Fig. 6] The Adblock Plus Chrome extension store listing .. 53

[Fig. 7] The Adblock Plus extension popup .. 53

[Fig. 8] The Adblock Plus settings page overview. ... 54

[Fig. 9] The uBlocker Chrome extension store listing .. 54

[Fig. 10] The uBlocker extension popup .. 55

[Fig. 11] The uBlocker settings overview ... 55

[Fig. 12] Overview of TortoiseGit ... 56

[Fig. 13] Screenshot of my Trello boards during development ... 56

[Fig. 14] Display of <hr/> tag used to divide sections in extensions popup 56

[Fig. 15] Display of <tables> used to display blocked elements and domains 57

[Fig. 16] Code showing HTML sections being used inside popup.html 57

[Fig. 17] Code showing HTML first section inside of popup.html .. 58

[Fig. 18] Code showing HTML second and third section inside of popup.html 58

[Fig. 19] Code showing HTML fourth section inside of popup.html .. 59

[Fig. 20] Code showing initially set values from storage inside popup.js 60

[Fig. 21] Code showing callback via document ready event inside popup.js 60

[Fig. 22] Code showing example of DOM selection and value setting inside popup.js 61

[Fig. 23] Code showing example of click and change handlers inside popup.js 61

[Fig. 24] Code showing message being sent and a value updated inside popup.js 61

[Fig. 25] Code showing table generation inside popup.js ... 62

[Fig. 26] Code showing initial data structure being generated on extension install inside

background.js ... 62

[Fig. 27] Code showing element storage data structure being created inside SelectElement.js

.. 62

[Fig. 28] Code showing Get Set technique to modify data inside popup.js 62

[Fig. 29] Code showing popup.js sending a message to the SelectElement.js 63

[Fig. 30] Code showing SelectElement.js Listening for messages ... 63

[Fig. 31] Code showing custom CSS being added to the head of the current web page from

SelectElement.js ... 63

[Fig. 32] Code showing mousemove jQuery event in SelectElement.js 63

[Fig. 33] Code showing SelectElement.js click event ... 63

[Fig. 34] Code showing overview of SelectElement.js StoreElements() function 64

[Fig. 35] Code showing SelectElement.js variables being assigned ... 64

[Fig. 36] Code showing CSS.escape() in SelectElement.js .. 64

[Fig. 37] Code showing BlockElement.js .. 65

[Fig. 38] Code showing BlockElement.js DOMSubtreeModified listener 66

[Fig. 39] Code showing BlockElement.js injectCSS function .. 66

6 | P a g e

[Fig. 40] Code showing context menu creation in background.js ... 67

[Fig. 41] Code showing ResetManualDomainListeners() function in background.js 67

[Fig. 42] Code showing ResetWebblock() from background.js .. 68

[Fig. 43] Code showing request being made to external web page from background.js 68

[Fig. 44] Code showing onBeforeRequest in background.js .. 68

[Fig. 45] Code showing background.js function WebDomainBlock used by onBeforeRequest

.. 68

[Fig. 46] Code showing ResetManualDomainListeners inside of background.js 69

[Fig. 47] Code showing ManualDomainBlock function used in onBeforeRequest for manual

domain filtering in background.js .. 69

[Fig. 48] Code showing background.js onBeforeRequest for manual domain filtering 69

[Fig. 49] Code showing Blocked.js a file used to ship a default domain blocklist 70

[Fig. 50] AdBlocker verification example 1 .. 70

[Fig. 51] AdBlocker verification example 2 .. 70

[Fig. 52] Finished Interface of Chrome extension .. 71

7 | P a g e

1 Introduction
1.1 Project Overview
Websites have become littered with adverts. Adverts can come in many shapes and sizes, but

all have one thing in common, to take something from you. As internet traffic has boomed

over the past several years so have adverts. [1] Adverts have evolved from simple pictures to

embedded frames that can track you, collect your information and can even have malicious

intent. [2][Fig. 1] Some websites are so heavily plastered with adverts that load times can be

reduced and website functionality drastically lowered.

The aim of this project is to allow the user to easily manipulate their own browsing experience

by culling adverts they do not want to or should not be seeing. Although ad-blockers already

exist online they are often hard to customize for everyday users. The project aims to create

an application of some sort that can be used to block adverts. Users will be able to manually

select adverts to be blocked or opt to use predefined ad blocking lists that can be provided or

added later to the blocker.

The application will offer the user simple yet powerful tools that allow for the manipulation

of the websites they are visiting. Adverts that the user wishes to be blocked will be synced to

their Google account and therefore will persist through any of their signed-in instances of

Google Chrome. The application will offer two main streams of blocking that are element

blocking, and domain blocking. Simply put, element blocking will allow for specific items on a

web page to be hidden, while domain blocking will allow for adverts to be blocked before

they are even loaded. Combining these two approaches will allow for a flexible and effective

blocking extension.

This project will follow the development of an extension for Google Chrome that can be used

to block adverts on websites inside of their browser. The finished product will allow the user

to manually select elements on the page to be blocked as well as offer a variety of address

filtering methods for the user to block advert requests. The extension should be simple to use

and easy to understand for the everyday web user. Although similar extensions already exist,

the aim is to create a more user friendly and accessible version that will allow users to

customise their filtering more simply.

My personal aims while completing this project are to increase my knowledge of JavaScript

and to learn how to create and use the Google Chrome extension API1. This project will allow

me to greatly expand my knowledge in both through use of documentation, trial and error

and questioning. By the end I should have a clear understanding of the components that make

up a Google Chrome extension and the different functions and API endpoints I can use from

Chrome.

1 https://developer.Chrome.com/extensions/api_index

https://developer.chrome.com/extensions/api_index

8 | P a g e

1.2 Project Aims
The project being undertaken consists of a handful of complex parts that will allow for the

overall ad-blocking experience. Therefore, to effectively plan and understand the road ahead

the project has been split into concise segments. Each segment holds a key role in the overall

aim of this project therefore having detailed and well thought out acceptance criteria will help

make sure they are met properly. As the project will be using the Agile2 development process

it will not be inconveniencing to make slight changes to the projects aims as needed whenever

a major problem is encountered, or a new path discovered somewhere else.

1.2.1 First Aim
The extension allows for the manual selection, storage and blocking of elements from any

website the user wishes to block elements.

Acceptance Criteria

• It is obvious to the user which element they are selecting.

• A reference to any item the user selects is stored (across sessions).

• When a website loads, stored references are checked and applied to the

loaded website to hide elements.

• The user can edit the list of blocked elements they have selected.

1.2.2 Second Aim
Adverts can be blocked via domain filtering selections made by the user.

Acceptance Criteria

• The user can select domains on an already loaded page to be blocked upon

reload.

• The user can manually type in domains which they wish to be blocked.

• The user can edit the list of blocked elements they have selected.

1.2.3 Third Aim
Adverts can be blocked via domain filtering lists that the user can load or present to the

extension themselves.

Acceptance Criteria

• The user will be able to specify some sort of path to an already created filter

list that they wish to use in their blocker.

2 https://www.agilealliance.org/agile101/

https://www.agilealliance.org/agile101/

9 | P a g e

• The user can choose whether to enable this feature at any time.

• The provided list works without conflict towards any other filtering.

1.2.4 Fourth Aim
The user can easily and without confusion edit the settings of their application.

Acceptance Criteria

• All settiŶgs aƌe loaded iŶto the eǆteŶsioŶ’s popup window, not in additional

html files or background pages.

• The settings have a good UX and will be understandable to users.

• All settings are saved seamlessly upon change

1.3 Project Scope
The original scope for the project involved creating an extension for Chrome, porting it over

to other browsers like Internet Explorer and even looking at blocking domains through the

routers firewall. However, as the project took foot, it was quickly discovered how hard it was

going to be initially with learning another language and API. As the project ended the scope

shrunk greatly. The scope of the project changed to being blocking adverts inside of the

Google Chrome browser. Initially the project was too ambitious with what It set out to do and

reducing the scope meant; less pressure, better code, more time learning less languages and

overall being able to think about how the project could be improved. Overall, the ideas behind

the adblocker have stayed the same, with the ideas for blocking elements being implemented,

the domain filtering the project initially set for the firewall being implemented straight into

the browser.

10 | P a g e

2 Background
2.1 Existing solutions
When searching the Chrome extension store it is easy to see that there is not a shortage of

ad-blockers out there for you to download for free. But what makes them different from each

other, why is one better than another one. This short evaluation of existing solutions aims to

look at some of the features and ideas behind a few of the ad-blockers. Gathering and

evaluation these will help me make better choices when creating my own adblocker.

This short evaluation will look at some of the options available with each of the blockers as

well as carrying out some simple tests to see how well they block adverts across a couple of

websites. Most of the ad-blockers appear to use the same underlying technologies so it will

be interesting to see how they differ in action

2.1.1 AdBlock — best ad blocker3 [Fig. 2]
 http://getadblock.com/ | 10,000,000+ Users

Features: Offers a free or premium ad-blocking experience, allow non-intrusive ads, show

statistics of adds blocked, acceptable ads, custom filters, anti-circumvention measures,

cryptocurrency mining protection. Open source and has a good support suite. + many more

options. [Fig. 4]

Pros, cons, and thoughts: Firstly, there are so many options for this adblocker, this is both

good and bad. It boasts great customisation but can be a little overwhelming if you are not

totally sure what you are doing. The popup is very simple to use and understand, also quite

compact, however does not really have many options on it. [Fig. 3] The installation process

on this one also takes a little longer than the others and does prompt you to donate once

it has installed. Following on from the previous point the upgrade button is always

displayed on the popup which can be a little annoying. With this adblocker when tested on

reddit.com some ads were displayed, disappeared, and reappeared.[Fig. 5]

Blocked:

R= {Claimed: 5, Visibility: Poor}

S = {Claimed: 13, Visibility: Poor}

3 https://Chrome.Google.com/webstore/detail/adblock-%E2%80%94-best-ad-

blocker/gighmmpiobklfepjocnamgkkbiglidom

http://getadblock.com/
https://chrome.google.com/webstore/detail/adblock-%E2%80%94-best-ad-blocker/gighmmpiobklfepjocnamgkkbiglidom
https://chrome.google.com/webstore/detail/adblock-%E2%80%94-best-ad-blocker/gighmmpiobklfepjocnamgkkbiglidom

11 | P a g e

2.1.2 AdBlock Plus - free ad blocker4 [Fig. 6]
adblockplus.org | 10,000,000+ Users

Features: Whitelist website, whitelist page, basic statistics, different languages, tracking

blocking, custom filters. Extensive help suite with lots of documentation.

Pros, cons, and thoughts: This adblocker have a good amount of options, not too many nor

to few. The popup is very simple [Fig. 7] and therefore most options are hidden away in the

settings tab. [Fig. 8] The UI for the adblocker is very clean and easy to understand. The

adblocker installed fast and is totally free. When loading reddit.com no ads we are displayed

to me. Overall, this adblocker is very simple to use and has a good amount of options that

are easy to understand.

Blocked:

R = {Claimed: 3, Visibility: Poor}

S = {Claimed: 12, Visibility: Poor}

2.1.3 uBlocker - Ad Block Tool for Chrome5 [Fig. 9]
 400,000+ Users

Features: Whitelist website, pause adblocker, statistics, allow non-intrusive add items

through right click.

Pros, cons, and thoughts: This adblocker has a similar popup look to AdBlock — best ad

blocker. It is very clean and shows you exactly what you need to see. [Fig. 10] Overall, the

options available for this adblocker are very poor. However, it provides a simple adblocking

tool for the user who does not want any customisation etc. The extension has a much

smaller user base. Once again, the options panel is hidden away in another page and is not

very eye catching but cuts straight to the point. [Fig. 11]

Blocked:

R = {Claimed: 4, Visibility: Excellent}

S = {Claimed: 8, Visibility: Good}

2.2 Evaluation of the current solutions

2.2.1 The Balance of too many options and not enough options
Options are important when choosing the adblocker for you, the user needs to be in control

of the content that is being allowed and blocked from the websites they visit. Finding a

balance between needed and extra options is also something to think about as you do not

want users to be overwhelmed or confused by the options that are available to them.

4 https://Chrome.Google.com/webstore/detail/adblock-plus-free-ad-bloc/cfhdojbkjhnklbpkdaibdccddilifddb
5 https://Chrome.Google.com/webstore/detail/ublocker-ad-block-tool-fo/lmiknjkanfacinilblfjegkpajpcpjce

http://adblockplus.org/
https://chrome.google.com/webstore/detail/adblock-plus-free-ad-bloc/cfhdojbkjhnklbpkdaibdccddilifddb
https://chrome.google.com/webstore/detail/ublocker-ad-block-tool-fo/lmiknjkanfacinilblfjegkpajpcpjce

12 | P a g e

Firstly, [2.1.1] had a huge range of options available which meant that the user was going to

be able to fully customize their browsing and adblocking experience. However, it can be very

overwhelming when looking at the options as it is not clear was not sure what a lot of them

mean or what they could do for the user. Also having the premium and the options available

with it constantly pushed in the face of the user is annoying. Overall, this adblocker had too

many options available with it.

Secondly, [2.1.2] had a good amount of options, it felt like the options that were available had

been carefully curated to keep the user informed and not overwhelmed. Just like the previous

the options were tucked away in the settings page. In turn, this adblocker had a brilliant

balance between options and simplicity.

Finally, [2.1.3] lacked a lot of options but seemed very simple and intuitive to use. This

adblocker was missing a lot of features that I felt were needed such as being able to load in a

custom filter list. This adblocker could really do with a few more options but if you are looking

for something very simple and lightweight this may be a good option.

Overall, [2.1.2] had the best balance between customization and simplicity with its careful

balance of options available. It could have seen more options available on the popup though

as all three ad-blockers had them hidden away in the settings page.

2.2.2 Default adblocking effectiveness

An important factor to think about with these ad-blockers is how well they perform once they

have just been installed, so no options being changed, the program in its default state.

A small test was carried out across two websites:

R = https://www.reddit.com/

S = https://smallbusiness.chron.com/affiliate-marketing-tracking-tools-67773.html

For each website records were taken of how many adverts are supposedly being blocked by

the adblocker and then a personal view on how well it had done to remove the adverts from

the page. To do this, both pages were viewed with and without the ad-blockers to see how

well they did.

Firstly, [2.1.1] Boasted the highest numbers being blocked but failed to block the ads which

we are visible to me on the page. This happened to both websites that were tested. Taking

an educated guess this means tracking data in the background is being blocked but it has not

recognised or filtered out the adverts that were seen.

Similarly, with the second, [2.1.2], both websites reported having a high number of ads

blocked on the page, but all adverts were let though as usual. This is unfortunate for both

bigger names ad-blockers to be letting through so many adverts I rated both websites as poor

just like [2.1.1].

Finally, the smaller adblocker [2.1.3] pulled through and did a really good job at blocking the

adverts. This adblocker reported much lower number of adverts being blocked but then went

ahead and blocked all but one of the visible adverts that could be seen.

https://www.reddit.com/
https://smallbusiness.chron.com/affiliate-marketing-tracking-tools-67773.html

13 | P a g e

To conclude the results from the above test, it was discovered that the smaller of the blockers

with much less options available had come out and blocked many more adds than it is bigger

more popular competitors. There are many reasons this could be: Perhaps the other two need

some setting up to work more effectively, Block may have a newer filter list.

2.3 Constraints and Limitations
One major constraint that will be faced when undertaking this task is being less informed with

the technologies that this project will be using. To begin with my knowledge of JavaScript.

This is a language that is unfamiliar to me and was only used previously at university for a

short while. This language is used often by many people so perseverance and the guidance of

documentation that can be found online will be key. Following this previous statement, the

project will also be dabbling with jQuery6, a shorthand for JavaScript that should help make

coding simpler. Similarly, a new environment to me will be used, Chrome. This is the first time

developing a Chrome extension and working with the API, so it is unknown what is attainable

and what is realistic. Again, for all these documentation and further reading will help lessen

this constraint.

One constraint that has been encountered that has affected this project is the coronavirus.

At the time of writing this report university has been closed for quite some time. [3]

Universities have closed, society has shut down. The resources that are available when

normally undertaking a university degree are not available. Computer labs, Libraries, and the

ability to meet up with supervisors, peers and tutors have all been removed, potentially

threatening the outcome of this project. As this project has progressed it has been noticeably

difficult, being out of routine and stuck in a weird situation where no one is safe has impacted

the ability to work properly will have had slight effects on this and many other projects.

The final constraint to this project is to do with filter lists that are used by ad-blockers. After

doing research it is apparent that ad-blockers maiŶlǇ use otheƌ people’s lists as filteƌs ƌatheƌ
than their own. [4] Some of these lists are public [5] and can be used but are written in

schemas and formats that are not fully explained and may therefore be hard to implement.

[6] It is the aim of this project to at least allow for those filter lists to be loaded and used at

least, as if they we are processing the filters correctly.

6 https://jquery.com/

https://jquery.com/

14 | P a g e

3 Approach
The approach that was taken towards the project was Setup, Research and Develop. This

approach allowed for all the core pieces of application to be put into place before cycling back

and forth through research and development. As each week came by and work began on the

aims of the project, research was made into each individual part and used to develop that

piece. This approach worked well as it worked well with the flexibility and granularity of the

Agile methodology. As the project move forward less and less research was needed, as

familiarity grew, which left more time for development.

3.1 Setup
The first part to the approach was the setup. During this time, the project had all its core

components created and setup which would allow for everything else to flow nicely. To begin

with was the task of setting up version management. Git 7was chosen as it is easy to use and

widely accessible. It was chosen that it would be hosted on a private repository on GitHub8.

Having the project hosted here meant it could be worked at from any computer on any device

and the files would never be lost. The client that was chosen to mediate this was TortoiseGit
9as it provides an easy and simple to use interface. [Fig. 12] Git played a big role in this project

and allowed for rapid development through trial and error.

Next on the setup phase was to create the initial Chrome extension. I first had to learn what

files would be needed and how they interact with each other. Over the course of a day the

barebones application was created and an understanding of what each key individual file did

was gained. Over the course of this project the skeleton evolved slightly with new discoveries

and ideas coming into play. This played an important part as gaining a better understanding

of how each component worked early allowed for progression with more pressing items.

The final Items that was part of the setup was a task board and notes page. Trello was used

as an easy way to divide the project into tasks and subtasks that would allow for progress

tracking. [Fig. 13] Trello10 is an online task board that works well with the Agile methodology.

[7] Being online, like Git it is useful because it could be accessed from any device and keep

development up to date at any point. [8] To keep notes a work in progress word document

was created where anything from failed ideas to thoughts could be placed to help aid the

writing of this report.

3.2 Research
Using a language and API that was not so familiar meant a lot of research was needed

continually throughout the development. Research was carried out and then put into practice

in the development stage before that small cycle started again with the next component.

There were three main areas of research that were carried out and are listed below.

7 https://git-scm.com/
8 https://github.com/about
9 https://tortoisegit.org/about/
10 https://trello.com/en-GB/about

https://git-scm.com/
https://github.com/about
https://tortoisegit.org/about/
https://trello.com/en-GB/about

15 | P a g e

3.2.1 WebRequests

WebRequests is a crucial part of the Chrome API that would be needed in the development

of the extension. WebRequests allows for user intervention at several locations during the life

cycle of an incoming or outgoing request. [9] Using this would mean requests could be filtered

and blocked to stop adverts from being loaded onto the webpage from external sources. On

the API documentation page there are detailed and descriptive examples of how to use the

code in a variety of scenarios. This and the overall Chrome API documentation was a big help

and made development a lot simpler.

3.2.2 Storage

The Chrome API has an easy to use storage facility located in Storage.Sync. This storage facility

allows for data to be stored inside of the browser, attached to your Google account. Using

this meant that users settings, choices and block preferences could all be saved easily and

loaded to anywhere they log in. [10] The storage API saved lots of time and effort as originally

the plan was to save these things to documents. Storage.Sync has two simple functions, Get

and Set. Get returns an object and set allows you to set an object. Combined these two

powerful snippets helped create basic foundations of how the extension would solely

function.

3.2.3 AdBlock Plus

AdBlock plus is one of the already popular ad-blockers that is available as a Chrome extension.

They host lots of material on their website that talks about how their extension works, some

of the algorithms and techniques behind the scenes. [11] [12] All their code is open source

too. [13] Combining these elements meant there was a good starting point and reference

location to help throughout. Although greatly useful some documentation and examples were

missing which meant I was not always relying on this and constantly came up with my own

solutions.

3.3 Development
The final part of the chosen approach was the actual development. Developing was straight

forward and coupled with Git, allowed me to be flexible with my attempts as branches were

there to fall back on. Development would differ per task but would normally consist of a front

end to back end style approach where possible. Since this extension is focussing on having

concise and available options to the user, there was lots of front-end options that needed

hooking up. The aim was to create one front end object first, connect it to storage and then

hook-up the background logic after. Creating each option like this meant that it would be

simple to trouble shoot and each commit was related to just a single item. Finally, as each

bigger stage would be completed an overhaul including refactoring, reordering, and minifying

could be applied to make the code better. Throughout the process there would be many

problems and challenges. Thanks to the approach set out and tools that were being used to

help preserve the projects integrity the work could be done stress free and effectively code

16 | P a g e

the project. Overall, the approach was a good fit for the extension that was being created and

worked nicely with the agile framework.

4 Specification and Design
The development process of this project is broken down into these key stages

• A popup window that allows the user to interact with the extension.

• A stoƌage sǇsteŵ that ǁill alloǁ foƌ useƌ’s settiŶgs to ďe stoƌed aŶd accessed across

all sessions.

• A script that will allow the user to interact with their current website to select items

that need to be blocked

• A script that will allow previously selected blocked items to be removed from the

website

• A script that will allow the user to select domains that need to be blocked

• An importing script that will allow the user to load in a filter that can be used to block

domains

4.1 Popup

4.1.1 Users Perspective
At the core of most Chrome extensions is the popup. The popup can be accessed by clicking

oŶ the eǆteŶsioŶ’s iĐoŶ fouŶd just afteƌ the seaƌĐh ďaƌ iŶside of Chrome. The popup is

primarily used to allow the user to interact with the back end of the extension. Often you can

find settings and statistics inside this panel. Often the popup will link to a background page

that allows the user to get further customisation.

With lots of extensions having their settings muddled between both the popup and

background page and from my research, it was decided that all the options would be kept

inside of the popup to make life simpler. This meant creating and mapping out what would

be on this popup was one of the first steps. Once each of the options had been added, each

of the scripts and code snippets that would run from and because of those options would be

coded.

The popup would be split into three smaller sub sections that would group options and

settings together. The groups are split with lines so that the distinction between them can be

made. The group of options nearest the top of the popup that the user can see contains the

options that allow whitelisting and a change of element hiding styles. The option to run on

the page is located right at the top which means upon opening the popup can quickly be used

to toggle the adblocker on and off. It uses a checkbox and is therefore easy for the user to

understand. The next item is a set of radio buttons that allows the user to select whether

blocked items are being collapsed or hidden. This small but concise group allows the user to

quickly modify how items are being displayed on the website.

The following group contains most of the actual blocking interface. These options are

primarily made up of buttons and allow the user to store items and domains that they wish

17 | P a g e

to block. Starting at the top of this group is a button that allows the user to start selecting

items on the web page to be blocked. When this button is clicked the user will see a visual

change on their website that allows them to select items. The next two options both buttons

and allow for the user to reset in bulk items that they have previously selected for either the

website they are on, or all websites they have data stored for. The next button sits next to a

textbox and allows for the user to input a domain that they would like to be blocked. The user

must first type in the textbox a domain string, before hitting the button to store it and refresh

the page. The input textbox has a placeholder string that denotes the format of the string that

needs to be entered. The penultimate option in this section allows for the user to load in an

existing filter list via a URL. The option consists of two buttons and a textbox. The textbox can

be used to enter the URL, the button on the right labelled Save, stores that URL in the storage

and finally the button on the left enables and disabled this option. The save button and input

textbox are both toggled on and off via the button to the left that enables and disables this

option. The final option in the group is the default filter checkbox. This checkbox can simply

be used to enable or disable the default domain filter list that is shipped with the extension.

The final group on the popup contains two dynamically created tables. Both tables look the

same and have a header titling each one. The first of the two lists in rows all the elements

that have manually been blocked on this page. The user can then click those elements to

unblock them and return them to the website. The second table has the same functionality

as the first but instead lists all the domains that have manually been blocked. Both tables

display a count to the user, so they do not need to manually count how many items are in the

lists. Each of the tables has a maximum height too so the tables will be scrolled more so than

the popup itself.

Overall, I believe the design is simple and easy to follow for all users. The grouping has allowed

for similar options to be put near each other in an obvious way. Coloured and bold text has

also been used to emphasis certain parts of the UI and is even used as feedback in some places.

All the options fit onto the popup as a scrollbar is used to catch the slight overflow and allow

the user to scroll once some items have been added to the tables.

4.1.2 System Behaviour
The popup works primarily through JavaScript as its back end and uses a mixture of DOM

events and the Chrome API to act. To begin with the HTML document is loaded with all the

options set in their default states. JavaScript DOM events are used to listen for the page being

fully loaded and then calls made to the Chrome API retrieve all the stored settings options. It

is at this point that all the options are populated correctly – meaning the user will see what

they have previously saved.

Similarly when the user interacts with the options on the HTML page their actions are listened

to by JavaScript, which is monitoring for certain clicks on items, or changed events on

checkboxes and will send data to the Chrome API to store these changes. When options are

changed, the page the user is currently on will be reloaded so that these modifications can

take effect. Some options will keep the popup open and therefor will actively modify the

contents of the popup when they are changed to ensure the user gets feedback from the

18 | P a g e

interaction. An example of this is when a domain is removed, the popup stays open and the

domain will be removed programmatically from the list, without the popup refreshing and

repopulating

Another way in which the popup behaves is through messaging. Messages can be sent

through Chrome to other script. These messages act as a way for the popup.js to interact with

the background.js or the JavaScript of the page that is currently loaded. This can be seen

through the reload function that will send a message from popup.js to the currently active

page and tell it to refresh. Overall, the popup works by getting and setting stored data into

Chrome storage and notifying other pages when something needs to happen.

4.1.3 Architecture

The architecture behind the extension is not to complicated and uses the traditional web

languages as well as a couple of additional packages. HTML and CSS were both used in

combination to create the basic outline for the application. Once this skeleton had been

created JavaScript was added in its own file as well as exposing the interface to jQuery to

make JavaScript coding more efficient.

JavaScript was heavily used in the popup as a means of loading in data from the storage, which

will be talked about later. JavaScript was also used as a method of adding feedback to the

user about their actions. An example being when the user enters an incorrect or accepted

string into the domain blocking textbox.

Bootstrap was later added to add a cleaner style to the popup. Bootstrap is a premade CSS

file that can be added to any project to style elements. The card class from bootstrap was

used to house the tables located in the third group of options. Combining bootstrap with our

own custom style sheet allowed for quick and simple customisation to the way the popup

looked.

4.1.4 Constraints

As this project has a short deadline and the bulk of the work will be focussing on actual logic

and code the UI is not quite as important of a task and therefore will be taking the back foot.

This means that the options available may not be as intuitive or easy to understand as I would

have liked but will still have the full functionality that I am intending. UI and UX design are

primarily driven through user feedback and immense testing and this is not a priority.

4.2 Storing Data

4.2.1 Users Perspective

Storing data will be straightforward to the user. They will not have to worry about what data

is currently stored behind the scenes. This data will be viewed by the user regularly but in its

finalised format instead of raw items. This means the user will see settings inside of the

settings window, checkboxes ticked etc, rather than interfacing directly with the data itself

(seeing a stored true or false etc.) The user may store data only through the provided outlets,

again, checkboxes, textboxes, and gestures such as clicks. This means the user is not able to

compromise the data by accident or mess with the settings in a way which was not intended.

19 | P a g e

Data about stored domains and stored elements can be seen through the popup. Buttons are

also available in the popup to help modify what is stored.

4.2.2 System Behaviour

The system will work by pushing and pulling data using the Chrome storage API. Data in

Chrome can be stored using Storage.Sync which allows data to be synced to the Google

account it came from, assuming extension syncing is enabled. The first method is the get

method. When using the get method we can provide a string that we would like to look for.

This means if the user clicks a button that needs one item, we do not have to get everything

and can just retrieve the value they are looking for. All of this can be done using a call back

function that will run once the request of data has been retrieved. This process is simple and

easy to understand. If retrieving all data from the storage a JSON object will be retrieved,

however if it is a specific item it will come in its stored format.

The other way in which the storage API will be used is to store data. Data can be stored by

calling the set function and providing it with an object to store. An optional call back can be

added to allow extra code execution to be done once the data has been fully set. It is

important to note that most of this API is asynchronous and will therefor continue executing

other code while it waits for its results. When setting data, we cannot just modify an item that

is already stored. To modify an item that we have previously stored we will have to call the

get function with a call back. Once this call back happens, we can call the set method and pass

in a modified version of the data we received from the get function. This can be very annoying

but is not very taxing overall.

4.2.3 Architecture

The architecture behind the storage of data is mainly how we format of the data we are

storing. Data is stored inside of Chrome using JSON objects. JSON works seamlessly with

JavaScript and will be easy to index and extract the items I need. The basic Idea is to store

three main objects inside of the initial JSON object. These objects will be the blacklist, whitelist,

and settings objects. Dividing the initial object up into these three sub objects should allow

better data retrieval and a simple to use structure. It is important to note in JSON anything

can be stored and nested, so objects in objects is fine.

The blacklist will be split up into two sections. The first section of the blacklist will denote

which domains should not be allowed access from the browser and should be an array. The

second item will be the elements that need to be blocked on a web page, another array.

“toƌiŶg theŵ like this ǁill ŵeaŶ it is siŵple to gatheƌ all the iteŵs ǁhiĐh aƌe ͞ďlaĐklisted͟ oƌ
bad and we do not want.

The second part is the whitelist. The whitelist will be used to store which websites and

elements should be allowed to run on certain websites. This is important as we need to allow

the user to select elements to be blocked but may need to be allowed on another website. It

will be connected to the option that asks the user if they want the adblocker to run on this

page.

20 | P a g e

The final part of the storage is the settings object. Quite simply this will be used to store the

different settings data. These will primarily be true and false options that allow the user to

switch things on and off. Such as using the default filter list or using a web filter list. Other

options may use strings for storage or any form they see fit.

4.2.4 Constraints
There are a few constraints when it comes to data storage. Firstly, is the amount of data I can

store. The Chrome API boasts a few limitations as to how many items can be stored and how

often. These limitations will shape the way in which filters are used by my application and

ŵaǇ ƌesult iŶ usiŶg eǆteƌŶal API’s as a ŵaiŶ foƌŵ of iŶput ƌatheƌ thaŶ saǀiŶg iteŵs diƌeĐtlǇ.
Another constraint that arises from what was mentioned in the system behaviour is call backs.

Call backs are slightly outdated, and a better option is promises which is unfortunately not

what the Chrome API uses. [14] Call back hell exists and means watching how and where call

backs are being used will be important to maintain the quality and readability of my code. [15]

4.3 Selecting Elements

4.3.1 Users Perspective

Selecting elements is a key part of the adblocking experience for the user. Selecting elements

allows for the user to manually click an item on the webpage they are viewing to render it

blocked. Creating and intuitive and simple interface for this was tricky at first but has turned

out well.

For the user to be able to select and element to be blocked they must first open the popup.

Once the popup is opened, they must select the setting that toggles element selection on,

from the second group of options. Once this option has been selected the user will now see

their current web page modified as they move their mouse around. As the user moves their

cursor over the web page a border will appear around their currently hovered element. As

the user moves their cursor around the border is programmatically removed and applied to

whichever element they are not hovering over.

When the user is ready to block an element, they may click to add the classes and, or ids to

the list of elements to be blocked on that website. During this time, the user may also want

to block an element that is a link or has functionality attached to it. This is not a problem as

when the user is in this selection mode links are blocked and therefore will not redirect the

user. To further this the cursor will be the normal pointer rather than the hand which indicates

a link. Once the selection has been made and the web page will reload, and the selection

mode will be taken off revealing the normal website once again. This script is only designed

to allow for the selection and storing of elements and blocking will be done by another

component.

4.3.2 System Behaviour

When a web page is loaded the script Select Element is automatically loaded in as stated in

the extensions manifest. This script is injected before any of the DOM has begun to load. This

script sits idle with a listener waiting for a message telling it to begin. This message will be

21 | P a g e

sent when the user clicks the option in the popup. Once this message has been received the

script will be activated.

The sĐƌipt ǁill listeŶ to ŵoǀeŵeŶts of the useƌ’s ŵouse aŶd ideŶtifǇ ǁhiĐh eleŵeŶt theǇ aƌe
currently hovering over. Whenever the mouse moves this function will be recalled and the

domain object recalculated. Every time a new object is found it will be highlighted in an

obvious manner for the user so they can see which element the script has calculated they are

hovering over. The user is now stuck in this mode until the web page is refreshed which can

be achieved by manually refreshing the page or continuing and selecting an element which

will automatically trigger the refresh.

4.3.3 Architecture

The element selection consists of JavaScript and jQuery spread across two files. Once is the

SelectElement.js file which houses all the code that allows the user to select items. The other

file is the popup.js file which tells the current page when to go into selection mode.

SelectElement.js also interacts with the Chrome API to store items. CSS is also dynamically

injected into the webpages to stop links from being clicked when in selection mode.

4.3.4 Constraints

One constraint for the current design means that elements without a class or id will not have

the ability to be blocked. Currently the plan is to store a reference to the class and or id that

the selected element has. This involved going up the DOM until the hovered item has either

oŶe. UsiŶg this stƌategǇ, it ŵeaŶs seleĐtioŶs ďiggeƌ thaŶ the useƌ’s iŶitial iŶteŶt ŵaǇ haǀe to
be blocked.

4.4 Blocking Elements

4.4.1 User Perspective

The user perspective for blocking elements should be simple. The process should be done

seamlessly upon items they have previously selected. This system should shy away from any

extra user interaction and instead this should be handled by the previous, element selection.

There should be two related options available to the user. The first is the whitelist option

which will allow the user to toggle the adblocker on and off for the current web page they are

viewing. And the second denotes how elements are hidden on the page. This second option

will allow the user to choose whether the space of the adverts is to be left as it was, but blank,

or for it to be collapsed. These options keep the process simple but offer two powerful choices

for the user to make.

4.4.2 System Behaviour

As the script runs on every page it will always have the most up to date version of the stored

elements that need to be blocked. This script will begin to run before the web page has even

began loading properly. During this time, it will prepare all the CSS that needs to be injected.

This should be done by creating one CSS rule that is applied to all the stored elements. Once

This is ready and the page has begun loading it should be added straight to the page allowing

it to block all the elements. As this should be done right at the start it should mean the adverts

22 | P a g e

do not get seen at all. Everything to do with this script is automatic and does not need any

interaction from the user. A condition will wrap this code firstly telling it whether to run, this

will be based on whether the website is on the whitelist or not. Secondly another code snippet

will check the settings to either place the visibility or display property on it correctly. An

important tag can also be applied add extra presidency onto the generated CSS statement.

4.4.3 Architecture

The architecture to this script is very simple. As previously mentioned, it loads at the start of

the page. It will generate its own custom CSS rule that includes all the items it loaded from

the storage. The script will contain a listener that waits for the document to begin loading

properly, and a function that will be ran when this happens. This script is the easier part of

blocking items and does exactly as you would expect.

4.4.4 Constraints

A constraint for this system will be to do with how elements were previously stored. As

mentioned in the storing of elements, the class and id will be stored of the selected element,

or first parent with one of these attributes. This could mean that only a child of the advert is

being blocked and that the parent frame will have its own height and width. Although this

parent may be blank it will not be collapsible in line with the setting to do so. Another

constraint related to other elements with the same name or class. With the current design

the blocker will do as it is told and block the ids and classes it has been given. However, this

does not mean some elements on the page will not have the same class or id and get blocked

by accident.

4.5 Selecting Domains

4.5.1 User Perspective
Selecting domains will allow the user to manually block entire websites they do not like. The

user will be able to either type or select domains that they wish to stop traffic from loading

from. There will be three ways in which the user is able to do this. Selecting, typing, and

loading. Each of these three ways allows for a different interaction between the user and

extension but ultimately end with the same goal of blocking domains. Having multiple ways

is important as it will allow for a greater convenience top the user.

The first of the three ways that the user will be able to interface with domain selecting will be

through a manual selection. The user should be able to identify an advert themselves and add

it to the block list much like they can do with elements. With domains it is much easier for the

user to see what they are selecting as Chrome displays the currently hovered URL against the

bottom of the window. The user should then have the option to select the item and mark it

as blocked, adding it to the storage.

The second way in which the user will be able to interface with domain selecting will be

through typing it out and having it added to storage. Inside of the popup there is a textbox

and button combo that allows the user to type in a domain they do not wish to receive traffic

from and block it. Domains to be filtered require a specific format with the Chrome API and

23 | P a g e

there for a placeholder and entry feedback system will be in place to help the user type an

acceptable string.

The third and final way the user will be able to select domains is through an external source.

An option will be available to the user allowing them to save and load in a list of filters from

a website. This option again will be displayed to the user inside the popup menu. The user

will only need to supply a URL for this to work. The plan is that the user can use lists already

created and used by other ad-blockers. Once the user hits save and ensures the toggle is

enabled the loaded domains will be blocked.

4.5.2 System Behaviour

Afteƌ aŶǇ ĐhaŶges aƌe ŵade to the doŵaiŶ’s lists, eitheƌ thaŶ ďe a Ŷeǁ eŶtƌǇ is added oƌ
loaded the page will refresh so that the domain blockers may take effect on the updated list.

Upon the user selecting a domain to be blocked manually the script will automatically convert

the URL that was collected into the right format for the Chrome API and add it into storage.

When the user selects to add their own URL to the block list and types it in the format will be

verified and then added once again to the block list. When loading from a web page, the user

will first have to enable the option before they enter the URL and hit save. Behind the scenes

seamlessly the data will be collected and stored inside of the local session, to be used until

the browser is closed. When the browser is reopened the data will be redownloaded from the

saved site.

4.5.3 Architecture

The architecture behind domain selecting is varied per each method previously stated. With

the method of manually selecting elements the Chrome API can be very handy. Using the

Chrome API will allow for a custom context menu to be created and used. Using a custom

context menu will allow for an extra option to be added to the right click menu. Clicking this

item can run code which will allow the domain the click came from to be blocked. This is a

simple process and is majorly handled by the Chrome API.

When it comes to typing out domains, we are instead restricted by the Chrome API. It only

accepts domain strings in a specific matching format that it uses. Therefore, the user will have

to type it correctly and Regex can be used to ensure this. With little space it is important to

make it as obvious as possible what format the domains need to be in for the user.

The final method will use a form of built in request sending that is shipped with JavaScript.

This will allow us send and receive data from other web addressed. The user should enter a

URL that loads a list of domains they would like to filter against. The request can be used to

load the URL and retrieve the contents of the page. Once the data has been retrieved it can

be formatted correctly and then applied as a filter to the incoming requests.

4.5.4 Constraints
A major constraint lies with this part of the project and that is using external filter lists. Many

lists of predefined domains already exist but can be hard to implement. To begin with as lists

grow the time it takes for them to be filtered and compared will increase making the whole

adblocker and browsing experience slower. Another constraint that goes with these lists is

24 | P a g e

implementing them. They all come in their own format with schemes etc and it may not be

possible to parse the lists correctly if the documentation of how to do so does not already

exist. A final constraint on selection could be making sure the user is selecting the right one.

4.6 Blocking Domains

4.6.1 User Perspective

The user is not going to see much when it comes to domain blocking, only really that the

domains they have selected will not appear. There will be one related option inside of the

popup that will allow the user to make changes to blocking. The User will be able to see a list

of the domains they have manually chosen to block. This means domains they have typed in

or entered through the context menu. The table these are in will allow the user to release

domains they no longer wish to be blocked.

4.6.2 System Behaviour
When Chrome loads so does the background script. This is where the domain filter API will be

attached to incoming requests. These listeners will take in a list of URLs to check against and

block ones that match. These listeners take in a copy of the list so any changes will mean the

listeners need to be refreshed. As the user makes changes to the settings, loads more URLS

or removes some the background will update its listeners with updated versions of the lists.

The blocking can be done in multiple ways. The blocking can either filter out entire domains

or filter out domains that match certain character strings etc. This is something I will consider

when I begin implementing.

4.6.3 Architecture

The architecture behind this part of the extension is primarily going to be focussed on the

Chrome API. The Chrome API has a whole toolkit that allows you to work with incoming and

outgoing web requests. These tools will be used to allow the filtering of domains being let in.

the blocking will be done in the background script which is persistent throughout the duration

of your session on Chrome.

4.6.4 Constraints

Blocking domains can come with a few constraints. To begin with there is an issue where the

popup itself could become filtered, therefore rendering the whole extension useless until re-

installed. As blocking domains can use pattern matching small parts of the URL could match

and therefore make it filtered. Another constraint is just the overall war between ad-blockers

and advert makers. Blocking domains on a basic level is not so tough but advert makers are

making it harder to do so. There are many ways in which adverts are bypassing domain blocks

and it will be hard to work against and combat them all. There is a lot of unknown and only

working on this project will help reveal the effectiveness.

25 | P a g e

5 Implementation
5.1 Popup

5.1.1 Interface

The interface that has been created for the popup has been done so using traditional HTML

and CSS with the bootstrap CSS style sheet also applied. The popup follows a very simplistic

design and does not overly complicate what it is trying to display. [Fig. 52] The popup makes

use of the following files which are all referenced for use in the head of the html file itself:

• Interface/popup.html

• Interface/bootstrap.min.css

• Interface/popup.css

• Interface/popup.js

• Jquery.js

The HTML document has been divided into easy to identify sections using the <section> tag.

[Fig. 16] The section tag is part of HTML5 and is a block style element. Being a block type

element means the sections will stack up nicely in the window. Each of the sections has a

unique class identifier allowing styling to be applied directly to children of a given class.

Between each of the four sections a <hr/> tag has been used to create a boundary. [Fig. 14]

The first section simply used two tags to display information. [Fig. 17]

Between the following two sections unique ids are applied to all interactable elements so that

additional processing may be done by the popup.js script later. The HTML makes use of

<input> with the attribute type and values checkbox, radio, and text. <Button> is also used to

allow a straightforward way to capture user clicks. [Fig. 18] The final section contains two

<div> elements with the class card. [Fig. 19] This class comes from the bootstrap file and

creates a nice-looking area. Inside each of the cards lies some text and the outline of a <table>

element that will later be filled. [Fig. 15]

As mentioned previously the design also uses its own style sheet that has primarily been used

to create a better layout for the elements. Padding has been applied to the body to keep all

elements away from the edge and a Margin applied to all the buttons to keep them from

touching each other vertically. Making good use of the correct elements, being block or inline

has saved the need for extra formatting through CSS.

5.1.2 Data population

Data population of the popup and HTML interface is all handled by the popup.js file. This file

as previously mentioned is referenced by the HTML file and therefore has full access to its

DOM. When the user clicks onto the extension and the popup opens the options will all be

set with their default values. The popup.js file will then go through and set the correct values

after retrieving them from the Chrome storage API. Code that has been written in this file

varies between vanilla JavaScript and jQuery. A mixture of both has been used as while jQuery

provides some easy to use functions, I am not too familiar with all aspects.

26 | P a g e

To begin with everything inside the popup.js file is wrapped around a document ready event,

with call back. [Fig. 21] This means the popup.js will sit and wait until the document, which is

the HTML page has fully loaded before executing any of its code. This has been done so that

values will only be set when the elements exist. There are five elements that will be set initially

via the popup.js file.

The five items to be set are: Whether the blocker should run on this page, What type of

blocking should be done(collapse / hide), Whether to use an external URL filter, What the

external URL filter is and finally whether to use the default block list. These five parts are all

wrapped inside the call back of a call to the Chrome storage API requesting the information

needed. [Fig. 20] Four of these options are toggle style options and use IF statements to

switch their state depending on the retrieved value. IF statements have been used as they are

clean and simple to use although ternary operators could be used to save lines. Using

JavaScript DOM selectors on the ID of each element is then used to set its values. [Fig. 22] All

of this should happen without the user ever seeing the initial default values.

5.1.3 Events
Events are used inside of the popup to run code when something happens. The events that

have been used inside of popup.js are click and change. [Fig. 23] Using these events allows us

to have code executed when the user performs an action. Each of the options that are located

inside of the options menu has a unique ID that can be used within an events listener. Event

listeners can be applied directly to an element so an event like a click can be captured from

just a specific element. The listeners execute a call back function when the event happens.

The contents of each event function differ greatly depending on what element called it. Some

of the events will post a message through the Chrome extension API to the background script,

telliŶg it to ƌefƌesh a pieĐe of data ;this Ŷeeded as it’s a peƌsisteŶt sĐƌiptͿ, ǁhile otheƌs ǁill
check what the current stored value is and make a change to it. [Fig. 24] Example of this are

when a setting is changed from true to false or when an item is being removed from the filter

list. Events are the backbone of all user interaction on this page.

5.1.4 Tables

The tables at the bottom of the user interface are loaded in as empty tables to begin with.

Once the document has loaded code will be executed to populate them. To begin with data

is collected from storage. Once this data is retrieved the call back function starts. Inside of the

call back function, button elements are created and stored in JavaScript. The name of the item

is added as the text of the button and an on click event is added that removes the item from

storage and the table when clicked. Once the button is made, a <td> element is made, and

the button added. Following this a <tr> element made and the <td> added to this. Now the id

of the table is located and added as a child. [Fig. 25]

27 | P a g e

5.2 Storing data

5.2.1 Data Structures
Data storage is used all over this extension. Data is constantly being stored and retrieved from

different script and it is important it is stored in a manner that is easy to work with. The data

structure that Chrome works with and is used in the Chrome storage API is JSON. Throughout

the development of this project the storage structure was changed many times and now uses

a mixture of arrays and objects. The data structure is first created when the application is

installed. [Fig. 26] This means that the data will always be accessible when called and will not

need generating on each first call.

The overall object that stored data contains three objects itself. The first object named

Weďsites stoƌes all the Đlasses aŶd id’s the useƌ has pƌeǀiouslǇ seleĐted to ďloĐk. The data
structure inside of this object is KvP where the key is the domain to store data for and the

value another object. This object then stores two KvP. In this the key is either ids or classes

and the value both arrays of the data. The structure looks like this

{͞Google.Đoŵ͟ : {ids : [], Đlasses : []}, ͞ƌeddit.Đoŵ͟ : {ids : [], Đlasses : []}}; This stƌuĐtuƌe alloǁs
for data to be classified as its stored. It makes retrieval of specific items much easier. [Fig. 27]

The next object is named Settings. This object contains five KvP. Two are strings, two are

Booleans and the final are an array. [Fig. 26] Keeping the settings together in this way means

the settings can be retrieved without pulling tonnes of extra data in the form of user selected

items for blocking. The final object named Blocked is another KvP that stores an array. The

array is used to store user selected domains. The array stores these domains as strings. Arrays

are ideal and allow for lots of built in functionality for searching and sorting.

5.2.2 Setting Data
Default values for data are initially set when the program is first installed. This all takes place

in the background.js file. [Fig. 26] As previously mentioned, this makes setting data later

easier as the basic data structure will already be in place. Data is set in many places of the

extension and done so in different ways. The Chrome storage API is very powerful and allows

for quick and easy data manipulation in the storage. To begin with when setting data, we must

ensure we are modifying the data that already exists. When we can

Chrome.Storage.sync.set(variable) variable will overwrite everything that is already being

stored.

Inside the extension whenever we want to make modifications to data, we first call the

Chrome.storage.sync.get(data, call back) method. This will return us all the data that is

currently being stored. Now we have this data we can make modifications. Some parts of the

application will index to a specific item inside the data structure and change its value whereas

others will use the delete keyword to remove whole sets of data from within. For other bits

of data like arrays, Push and pop and splice have been used to manipulate the array with new

values etc. [Fig. 28] once the data has been manipulated a call is once again made to the

storage API to set the data. An optional call back is used throughout the application to

communicate these changes to other parts of the extension.

28 | P a g e

5.3 Selecting Elements

5.3.1 Highlighting elements
The process of highlighting and selecting an element was not to tricky. This mode can be

activated by the user clicking on the Select an element option from the menu. A message is

then sent through the come API to the script which has a listener waiting. Once the message

is received code will begin executing. [Fig. 29][Fig. 30] Firstly, a custom style is appended to

the head of the document that stops links from being clicked. [Fig. 31] This allows the user to

click any element on the page without worrying about a redirect.

A mousemove event is attached through jQuery that will listen for and execute every time

the useƌ’s Đursor moves. Firstly, the current style is removed. This just takes off any inline

styles the element may have. This is done to remove the border from the element if it was

the previous selected one. A variable it set to the element the mouse is currently hovering

over. At this point since we are blocking elements by either a class or id we loop continuously

calling the parent of the element until we reach an element either a class or Id or ready the

body, which is the top level element. This loop ensures we have an element with either a class

oƌ ID. At this poiŶt aŶ iŶliŶe stǇle is applied diƌeĐtlǇ to the eleŵeŶt that the useƌ’s ŵouse is
over. [Fig. 32]

Another event is also attached when the selection mode begins. This event is placed on the

document and listens for a click. Since this click is on the document level it will be caught

wherever it is on the page. When the click happens both itself and the mouseover event will

be unbound to ensure the click is captured correctly and another event cannot fire. Next the

red border is removed the data sent to a function to be formatted and stored before reloading

the page. [Fig. 33] Overall, the process of highlighting an element was not too difficult and

works nicely.

5.3.2 Preparing elements for storage

Preparing elements for storage took a long time to figure out. Initial attempts involved trying

to store entire elements in storage and eventually worked somewhat. After going through the

pain of making this work, extra research was done into how the other ad-blockers did this and

discovered they simply blocked via ID and classes. With this new idea in mind a quick re-work

to the existing code was made and resulted in this much cleaner solution. [Fig. 34]

Whenever the selection is made by the user of the element they would like to block a function

called StoreElements() is run. This function will firstly create two variables and attempt to

store the value from the class and id in them, respectively. If the element they are taking from

does not haǀe oŶe of theŵ theŶ the ǀaƌiaďle is set to ͟͞. [Fig. 35] One problem that occurred

was illegal characters in CSS names. Initially It was believed that the code worked fine until

there was an element unable to be blocked. After investigating with other ad-blockers it

became apparent they had escaped certain characters. This led to the discovery of

CSS.escape(). [Fig. 36] This library that is built into JavaScript allows you to parse CSS strings

easily and automatically without having to worry about illegal characters. [16]

29 | P a g e

Next a call will be made to the storage API asking for the currently stored data. Once this has

been retrieved and the call back execute the new ids and classes are appended into the array

of currently stored items. Now the set API will be called and add the modified gotten value

back into storage.

5.4 Blocking Elements

5.4.1 CSS injection
The implementation of blocking elements in this extension is quite simple. All the logic for

this resides in the file named BlockElement.js [Fig. 37] This file is loaded before the web page

begins. The script first gets the whitelist from within Settings > Whitelist in storage and checks

to see whether the domain is contained in the array. If the domain is not stored in the whitelist,

then a listener is stored that checks for changes to the web page. This listener is set to

DOMSubtreeModified. [Fig. 38] This event is fired anytime that something is changed on the

web page. Because this script is being loaded before the web page, we will get an event for

every small change as the page begins to load.

The function injectCSS() is ran whenever the event is fired. This function firstly retrieved the

stored arrays for classes and ids of elements to be blocked related to the domain of the

current page. Once these have been retrieved a style element is created in memory. At this

point a string variable that will hold the blocking statement begins to be formed. Each item

that was retrieved from the storage is added to the string with a comma and space after it. In

CSS terms this will mean for each of these items. Once all the items have been added another

check is made against the stored settings to see whether the user has opted for collapsing or

hiding of elements. The correct CSS statement is then added at the end of the string. [Fig. 39]

Now we have our CSS statement stored we can place it into the web page. Wrapped around

all this logic is a check to see which element changed on the page when the

DOMSubtreeModified event was fired. If the change was the head of the document loading,

then all this logic was executed. At this point the script knows the head has been loaded into

the web page. With this knowledge the script will now append the style into the header

blocking all the elements in the string in the manner the user selected. The string to collapse

the elements is display: none, and the string to hide the elements is visibility: hidden. The

string !important is placed right after the previous statement to add extra precedence to it.

Once this tag has been injected into the head the scripts job is done and the listener detached

to stop this code from executing again.

5.5 Selecting Domains

5.5.1 Context menu
The selection of domains to block needed to be as simple and convenient and possible for the

user therefore the Context menu seemed like a perfect option. The context menu is part of

the Chrome API and therefore requires little work to implement. [17] Located in the

background.js script the context menu is added programmatically whenever the browser is

opened. The API location is Chrome.contextMenus.create({title: , contexts: , onclick: }). An

30 | P a g e

object is taken in as its only argument. The object contains a title, context and onclick function.

The title is ͞BloĐk this doŵaiŶ͟ aŶd is ǁhat is displaǇed iŶside the ĐoŶteǆt ŵeŶu. The ĐoŶteǆts
are an array of strings that denotes when this option should be visible in the context menu.

Foƌ this iŵpleŵeŶtatioŶ, the stƌiŶg ͞LiŶks͟ so the option is only displayed when right clicking

links (to note most adverts have a surrounding <a> tag). [Fig. 40]

The onclick function is used to run code whenever the option is used from the context menu.

Firstly, the data from the context menu is processed, converting the URL into a domain, and

formatting it into the Chrome pattern matching format. Once this has been done a get request

is sent to storage and a check is done to make sure the value does not already exist in storage.

Assuming it does not the program will then push it into the stored array and set the value

ďaĐk to stoƌage. OŶĐe it’s stoƌed the Đall ďaĐk ǁill tƌiggeƌ aŶd ResetMaŶualDoŵaiŶListeŶeƌs;)
[Fig. 41] will be called before the page reloads with ReloadPage().

Once ResetManualDomainListeners() has been called the program will once again make a call

to stoƌage aŶd get the DoŵaiŶ List to eŶsuƌe it’s up to date. The ďloĐk list ǁill theŶ ďe ŵade
by optionally adding in the default blocklist if that option is enabled. To finish this process the

original WebRequest onBeforeRequest listener will be released and a new one attached with

the new array of domains. [Fig. 41] This is important as when the listener is attached it takes

a copy of the array not a reference, therefore the only way to update the array being used is

to reattach the listener.

5.5.2 XMLHttpRequest

The user has been given the option to import a filter from an external address. This will save

them time by not having to find or enter each one manually. Initially the idea was to

implement something like EasyList. After spending time on this and not managing to get it

working, instead it was opted to just load in any text file. EasyList contains a set of domains

and search terms that use special characters to denote how they should be interpreted. For

now, the current implementation just allows for any URL to be loaded in. It is intended that

this URL will contain simple text stored line by line. A good example of this the raw view of a

text file on pastebin. The current implementation uses the include filter to check whether the

URL ĐoŶtaiŶs at all aŶǇ iteŵs fƌoŵ the filteƌ. I.e. Reddit.Đoŵ/ads ĐoŶtaiŶs .Đoŵ/ads, Re, etĐ…

The method ResetWebBlock [Fig. 42] handles the creation and blocking of domains loaded

from an external URL. The method is called once when the browser launcher and then again

whenever the option is toggled on or off or the URL to load from is changed. Firstly, a call is

made to retrieve the settings, the settings are checked to know whether to use the filter. If

the settings are true, then an object of type XMLHttpRequest is created and stored under the

variable req. [Fig. 43] A call is then made on req.open() that named a get request to the URL

we had retrieved from storage. A function is then applied on req.onload() that denotes what

is to be returned. We tell the request that an array should be returned and use

req.responseText to get all of the text from the page. The split function is then used on the

string at \r\n. Splitting it on these characters will split the string whenever a new line is found.

This will store straight into the array with each line being a new array item.

31 | P a g e

5.6 Blocking Domains

5.6.1 Blocking domains from external list
Following on from Domain Selecting Domain Blocking from an external list is also achieved

through the method ResetWebBlock. [Fig. 42] Once the previous XMLHttpRequest has

finished and the filter array has been stored a call is first made to remove any previous

listeners. This call is made because this function is also called later to reset the listeners when

a new URL is chosen, or the toggle of this setting is hit.

A call is next made to Chrome.webRequest.onBeforeRequest. [Fig. 44] The listener runs

before any request is made by the web page. This means right before every request is about

to be sent out our call back function will run. To begin we need to supply three items. A call

back function, an array of URLs to apply this to and finally the context. For this case context

ǁill ďe [͞BloĐkiŶg͟] as that is what we intent to do with these requests. Our array of URLs will

siŵplǇ ďe [͞<all_uƌls>͟] as ǁe ǁould like to ƌuŶ this filteƌ oŶ all tƌaffiĐ. LastlǇ, ouƌ Đall ďaĐk
function is where we are going to check the URL against our filter list. The call back function

named WebDomainBlock() takes in the URL that was passed and then checks over all items in

the filteƌ list to see if theǇ’ƌe loĐated iŶside the URL. If oŶe is found, then an object of {cancel:

true} is returned signalling for this request to be blocked. The using Array.find(e =>

url.includes(e) !== undefined) will let us know whether any of the filters were matched within

the URL. [Fig. 45]

The function ResetWebBlock() also contains an else if check to stop any loading or blocking

from the external list if the settings are not enabled. This function is also called from the

popup.js at two different locations. If either the setting to enable is changed or the URL itself

is changed a message is sent via the Chrome API to the background script where a listener

will intercept it and run the ResetWebBlock() method again.

5.6.2 Blocking domains from manual input

The blocking of manually selected domains and domains that are pre-loaded with the default

domains list take place inside of the ResetManualDomainListeners() [Fig. 46] function. As

mentioned before here the list of domains is created by loading from storage and

concatenating with the default domain list if set to do so. Just like the function from web

domain blocking we first detach any listener as this function is used to refresh the list later.

Chrome.webRequest.onBeforeRequest [Fig. 48] is used again to attach another function

when a call is about to go out from the page.

The big difference this time is instead of applying this function to every domain we are just

going to apply it to the domains we have already stored. So, in this instance the context is still

[͞ďloĐkiŶg͟] ďut the aƌƌaǇ of filteƌs is iŶstead set to the ǀaƌiaďle ŵaŶualFilteƌList. The method

we use to execute the check is called ManualDomainBlock. [Fig. 47] This method will just

evaluate whether or not the filter list has values in it and then return the object {cancel:

true/false} accordingly. This evaluation is done as if the domain list is empty every request

from any domain will be blocked including loading the actual page itself.

32 | P a g e

ResetManualDomainBlock() is also called from the popup.js file. Like previous a message is

sent through the Chrome API to the background page where this function is located telling

the function to run again (a value has changed, and the listeners need an update). The

function is called whenever the user: Changes their selection of whether or not to use the

default list, they add an additional domain through the context menu, add a domain by typing

it out or whenever the user removes a domain from the list through the table interface in the

popup.html window.

33 | P a g e

6 Results and Evaluation
This project was carried out and completed using the agile development methodology. Using

this method means that each individual component was tested as working before the next

component was ever worked on. This type of development meant that functionality testing

was always happening. As previously mentioned, worked was divided up and assigned to

sprints using Trello, an online task board management system. Trello allowed to me keep

track of my progress and prepare for future sprints. When each component was completed it

was tested, as well as testing the previously added components to ensure that no changes

disturbed the already working parts.

The manual functionality testing that was carried out on the application as each component

added was great and easy relatively easy to do on this smaller-scale project. However, one

way in which this whole process could have been improved would be using unit tests. Unit

tests can be used to test a program programmatically. These tests can either be run manually

by the user or ran when code is pushed to the version management server. In previous

projects I have used tests and believe it would be a good addition to the project. However,

working with JavaScript meant that I was not so familiar with the route of action to achieve

this. Furthering this entire point converting the entire development method to Test Driven

Development would have allowed for an even more concise and accurate development cycle.

In the continuation of this section I will begin to look at how well my application compares to

other similar products. I will also be looking at how my overall outcome has changed from my

initial ideas and explore the main reasons behind this. Finally, I will look at how the original

aims of this project held out and test to see how well they were met in the finished application.

6.1 The realisation of how ad-blockers work and what

that means for this project
Throughout the development of this project I actively explored and developed using

information I had, and continually gathered from existing ad-blocking extensions. Many of my

initial attempts and approaches to blocking ads fell through after long coding sessions that

ultimately led to lacklustre results. As the development of my project grew and I began to

implement some of the later features such as domain blocking. It was at this stage of the

project that the real challenge and deeper research came into play and shed light on how ad-

blockers really work.

The previous statement is slightly exaggerated but conveys the point greatly. Of course, I had

previously researched and knew a filter list of some kind was used, I knew of a few and I knew

how to at least load them into my project. Ad-blockers, to be blunt are just systems that can

stop adverts from being displayed on a website. This can be done in a variety of different ways

but ultimately that is all they can do. Ad-blockers do not automatically detect, they do not

guess, they are told precisely what to block.

Implementing an already existing blocklist became the biggest challenge for me and

ultimately did not pull through. The most used list is EasyList. EasyList which has previously

34 | P a g e

been mentioned in this report uses a unique schema in it is list that allows for precise and

complex pattern matching to take place. After spending a good amount of time reading

through the documentation and making many attempts to convert their schema into Regex,

I had to make the decision to not implement the block list. However, I do not believe this

count as a defeat. The adblocker that has been created still blocks adverts, by domain, by

element just like other ad-blockers. Without their third-party domain list, they would be in

the same situation as me.

I still believe at the end of this project I have been able to make an ad-blocker that is equipped

with a handful of useful options. While I have not implemented the block list, I have however

made a short but precise list of powerful options available to the user. I believe my success

lies with the more concise and prompter list of options that are available all through the come

extension window. When previously reviewing other ad-blockers one of the most apparent

things was that the options we are too few, to many and always overly complicated.

Furthering these points, the ad-blockers I tested did not even perform greatly when tasked

with removing adverts from the webpage. Therefore, I believe that giving the user the power

to load their own blocklist will allow for a more powerful blocking experience.

Lastly to note the project does ship with a file named Blocked.js. This file is intended to contain

a default blocklist that would have already been curated for the user. This file however has

not been curated and instead with the finalisation of the project contain a few test URLs that

can be used to prove the functionality of this feature. [Fig. 49]

6.2 Comparison against other similar software

6.2.1 Blocking comparison

As previously just mentioned the project I have created does not directly ship will a full ad-

blocking list. Therefore, I believe it would not be right to make a proper comparison about

how many ads are blocked. Really a blocking comparison would not make sense as each ad-

blockers score would be based upon their list and not the actual extension.

One way in which we could measure the effectiveness of the ad-blockers would be to measure

the speeds in a website takes to load with the adblocker turned on. Again, this test would

potentially be affected by the lists behind them. This however could work by disabling all pre-

entered lists and adding a baseline of rules. I will not be conducting an evaluation on the

speeds as after using all three ad-blockers and the one that has been created it is easy to see

visually there is not a difference. There is not an extra hang time, or any noticeable lag created

by any of the ad-blockers. It is hard to make a real comparison against each of the competitor.

Instead of speeds it is proposed by this project that functionality and ease of use is instead

the better measurement. In the next section I will look at how ad-blockers compare in terms

of clicks needed to perform an action from the options available.

6.2.2 UX & UI comparison

With adblocker it is important that the user can quickly and efficiently navigate through the

options menu to whatever they are looking for. This for example could be the user trying to

35 | P a g e

disable a setting or even block an ad they have spotted. I will therefore carry out and

showcase the results of tests that relate to these UX features.

Pre-Conditions:

• Extension has just been installed.

• Restart the browser.

• Naǀigate to ͞“taĐkoǀeƌfloǁ.Đoŵ͟.
Ad-blockers Clicks to do:

Block

element

Unblock an

element

Whitelist

website

Block a

domain

Add/Change

filter list

Project 3 2 2 2 4

AdblockPlus 4 5 3 5+ ? 5

Adblock-Best 5 really 3 3 really 2 2 6 5

uBlocker 5 really 3 3 really 2 2 N/A N/A

With the application I have created all the options are as close and convenient to you as they

could be. To begin with for the user to block an element they must click the popup, click the

element blocking option and then simply click the element on the page. For the user to

unblock an element its even easier and just requires a click to open the popup and a click on

the item they wish to bring back, noting a downward scroll could be required. Next the ability

to whitelist a website once again involves a click on the popup and a click on the checkbox

that disables it for the current page. Blocking a domain does not use the popup and instead

requires a right click and then a left click on the opened context menu, simple. Lastly is

changing the external filter list. This takes slightly longer as it requires the user to open the

popup, enable the option, click the textbox to begin entry and then finalising their entry with

the save button. [Mean – 2.6, Median - 2, Mode - 2].

AdBlock Plus hosts a few useful options in the popup window and then a mixture of other

options in the settings panel. Firstly, when blocking an element, you have 3 initial clicks, open

the popup, block and element and then selecting the element before clicking the refresh

button manually. To unblock an element, you must open the popup, click the settings button

then navigate to the advanced page and remove it from the table. This is only a few extra

clicks, but it is hidden away quite well. Similarly, to blocking an element the whitelist is an

initial 2 clicks, popup and the option followed by a refresh. Blocking a domain was not obvious

to me and I was not actually able to do so. I managed to navigate to the page I believed it

would be in 5 clicks but ultimately did not manage to accomplish it. Finally, to change a filter

it was five clicks again, the option hidden away in the back settings. [Mean – 4.4, Median - 5,

Mode - 5]

AdBlock – Best AdBlock has the most options available to it. One major thing to note with this

addon is the amount of verification. I have recorded clicks with two numbers, the first is how

many it took, and the second is without pressing, yes, confirm etc. Firstly, to block an add

took 5/3, the option can be done from the popup or by right clicking, there are then two

verification menus to confirm which item you selected. [Fig. 50][Fig. 51] Next for unblocking

it is 3/2, simply open the popup and then press the option, again one verification clicks.

36 | P a g e

Whitelisting is a low 2, just open the popup and select not to run on this page. Blocking a

domain is hard to find in the options menu in the background and boasts a larger 6 clicks.

Some useful information is provided to help make the entry in their required format. Finally,

to add an external link is 5 clicks once again located in the back. [Mean – 4.2, Median - 5,

Mode - 5]

uBlocker is the last adblocker that was tested. This addon is very similar to AdBlock Plus and

takes the saŵe Ŷuŵďeƌ of ĐliĐks foƌ all thƌee of the fiƌst tests. Hoǁeǀeƌ, this addoŶ’s settiŶgs
page is much smaller and does not offer an option to either block a specific domain or change

the filter list. This will not be scored as it is results would skew the others.

After having time to use and evaluate each of the ad-blockers mentioned above I believe the

product I have created stands up well in terms of having key options available and the ease

of use. Other ad-blockers seem to have confusing options that are jumbled up in the settings

window. Their options are often overwhelming and confusing. The application I have

developed is concise and straight to the point. I believe some extra settings could be added

and some of the existing ones fine-tuned for a better experience. With the right

implementation of the EasyList added this adblocker could be just as good as some of the top

ones available on the Chrome store.

6.3 Evaluation against requirements and Test Cases
When I began planning this project there were four main major requirements that were set

to ensure the worthiness of the application. The four requirements would allow the user to:

Selected and block elements on a web page, Selected domains to be blocked, Load domains

to be blocked and for there to be an easy to access and use settings menu available to the

user. I will now detail some test cases that can be used to show how well, if it all, these aims

have been met by my finished project. The aims will be broken down further to show each

smaller part works correctly. The tests will be correct as of May 2020 and cannot guarantee

their results as permanent.

All the aĐĐeptaŶĐe Đƌiteƌia foƌ eaĐh aiŵ ǁas passed eǆĐept foƌ the Đƌiteƌia ͞The settings have

a good UX and will be understandable to users.͟ At this poiŶt it is easǇ to see soŵe ǁoƌk ĐaŶ
be done to increase the clarity of the popup to help users better understand how each option

works and what its role is. Find below the Test cases.

6.3.1 Test Cases for First Aim

Test #: 1 Aim: The extension allows for the manual selection, storage and blocking

of elements from any website the user wishes to block elements.

Acceptance Criteria(s): It is obvious to the user which element they are

selecting.

Pre-Conditions:

• Extension has just been installed.

• Restart the browser.

• Navigate to a website ͞staĐkoǀeƌfloǁ.Đoŵ͟.
Steps:

• Open the popup for the extension (click the icon for it)

37 | P a g e

• Pƌess the ďuttoŶ laďelled ͞BloĐk aŶ EleŵeŶt͟

• Hover the mouse over the stack overflow logo

• Hover the mouse over the search bar

Expected: Both elements should

have a red border around them

when hovered over respectively.

Actual: A red dashed border is

displayed around the element.

PASS

Test #: 2 Aim: The extension allows for the manual selection, storage and blocking

of elements from any website the user wishes to block elements.

Acceptance Criteria(s): A reference to any item the user selects are

stored (across sessions).

AND

When a website loads, stored references are checked and applied to the

loaded website to hide elements.

Pre-Conditions:

• Extension has just been installed.

• Restart the browser.

• Naǀigate to a ǁeďsite ͞staĐkoǀeƌfloǁ.Đoŵ͟.
Steps:

• Open the popup for the extension (click the icon for it)

• Pƌess the ďuttoŶ laďelled ͞BloĐk aŶ EleŵeŶt͟

• Hover the mouse over the stack overflow logo

• Click the stack overflow logo

• Close the browser fully

• Naǀigate to ͞staĐkoǀeƌfloǁ.Đoŵ͟
Expected: The stackoverflow logo

should be missing from the web

page

Actual: The logos web page is no

longer displayed

PASS

Test #: 3 Aim: The extension allows for the manual selection, storage and blocking

of elements from any website the user wishes to block elements.

Acceptance Criteria(s): The user can edit the list of blocked elements

they have selected.

Pre-Conditions:

• Extension has just been installed.

• Restart the browser.

• Navigate to a website ͞staĐkoǀeƌfloǁ.Đoŵ͟.
Steps:

• Open the popup for the extension (click the icon for it)

• Press the button laďelled ͞BloĐk aŶ EleŵeŶt͟

• Hover the mouse over the stack overflow logo

• Click the stack overflow logo

• Open the popup for the extension (click the icon for it)

• CliĐk all ďuttoŶs displaǇed iŶ the ͞MaŶuallǇ ďloĐked eleŵeŶts͟ taďle.

38 | P a g e

Expected: The buttons should

disappear and the page load to

display the now un-stored element

Actual: The page refreshes as

expected, and the elements are no

longer stored.

PASS

6.3.2 Test Cases for Second Aim

Test #: 4 Aim: Adverts can be blocked via domain filtering selections made by the

user.

Acceptance Criteria(s): The user can select domains on an already

loaded page to be blocked upon reload.

Pre-Conditions:

• Extension has just been installed.

• Restart the browser.

• Navigate to a website ͞staĐkoǀeƌfloǁ.Đoŵ͟.
Steps:

• Scroll to the bottom of the page

• Right ĐliĐk oŶ the teǆt ͞ FaĐeďook͟, oďseƌǀeƌ the uƌl is ͞ faĐeďook.Đoŵ͟ ;“hoǁŶ iŶ the
ďottoŵ left of the ďƌoǁseƌ iŶ a sŵall alt teǆt͟

• “eleĐt ͞BloĐk this doŵaiŶ͟ oŶ the ĐoŶteǆt ŵeŶu.
• When the page reloads -> scroll to the bottom again

• Click facebook

Expected: The page should try and

load but instead display a blocked

message

Actual: a screen loads notifying

you that facebook is blocked.

PASS

Test #: 5 Aim: Adverts can be blocked via domain filtering selections made by the

user.

Acceptance Criteria(s): The user can manually type in domains which

they wish to be blocked.

Pre-Conditions:

• Extension has just been installed.

• Restart the browser.

• Navigate to a website ͞staĐkoǀeƌfloǁ.Đoŵ͟.
Steps:

• Open the popup for the extension (click the icon for it)

• IŶside the teǆtďoǆ ǁith a plaĐeholdeƌ teǆt tǇpe ͞*://*.Google.Đoŵ/*͟

• Pƌess the ďuttoŶ to the left ͞BloĐk DoŵaiŶ͟

• Naǀigate to the ǁeď page ͞Google.Đoŵ͟

Expected: The page should try and

load but instead display a blocked

message

Actual: a screen loads notifying

you that Google is blocked.

PASS

39 | P a g e

Test #: 6 Aim: Adverts can be blocked via domain filtering selections made by the

user.

Acceptance Criteria(s): The user can edit the list of blocked elements

they have selected.

Pre-Conditions:

• Extension has just been installed.

• Restart the browser.

• Navigate to a website ͞staĐkoǀeƌfloǁ.Đoŵ͟.
• Test #5 has just been completed

Steps:

• Open the popup for the extension (click the icon for it)

• Scroll to the bottom of the popup

• CliĐk all ďuttoŶs displaǇed iŶ the ͞MaŶuallǇ ďloĐked doŵaiŶs͟ taďle.
• Refresh the url in the browser

Expected: Google.com should

display and load correctly.

Actual: Google loads.

PASS

6.3.3 Test Cases for Third Aim

Test #: 7 Aim: Adverts can be blocked via domain filtering lists that the user can

load or present to the extension themselves.

Acceptance Criteria(s): The user will be able to specify some sort of path

to an already created filter list that they wish to use in their blocker.

Pre-Conditions:

• Extension has just been installed.

• Restart the browser.

Steps:

• Open the popup for the extension (click the icon for it)

• CliĐk the ďuttoŶ laďelled ͞EŶaďled Eǆt͟

• Enter the text into teǆtďoǆ to the ƌight ͞https://pastebin.com/raw/8JHHkDZa͟

• Hit the save button

• Naǀigate to ͞staĐkoǀeƌfloǁ.Đoŵ͟

Expected: The page should try and

load but instead display a blocked

message

Actual: the page does not load and

displays the block message

PASS

Test #: 8 Aim: Adverts can be blocked via domain filtering lists that the user can

load or present to the extension themselves.

Acceptance Criteria(s): The user can choose whether to enable this

feature at any time.

Pre-Conditions:

• Extension has just been installed.

• Restart the browser.

• Test #7 has just been completed

https://pastebin.com/raw/8JHHkDZa

40 | P a g e

Steps:

• Open the popup for the extension (click the icon for it)

• Click the button labelled ͞Disaďle Eǆt͟

• Reload the web page

Expected: stackoverflow should

load correctly.

Actual: stackoverflow does load

correctly.

PASS

Test #: 9 Aim: Adverts can be blocked via domain filtering lists that the user can

load or present to the extension themselves.

Acceptance Criteria(s): The provided list works without conflict towards

any other filtering.

Pre-Conditions:

• Extension has just been installed.

• Restart the browser.

Steps:

• Open the popup for the extension (click the icon for it)

• Click the ďuttoŶ laďelled ͞EŶaďled Eǆt͟

• EŶteƌ the teǆt iŶto teǆtďoǆ to the ƌight ͞https://pastebin.com/raw/8JHHkDZa͟

• Hit the save button

• EŶteƌ iŶ the teǆtďoǆ ǁith the plaĐeholdeƌ teǆt ͞*://*.Google.com/*͟

• Hit button laďelled ͞BloĐk DoŵaiŶ͟

• Navigate to Google.com -> observe

• Navigate to stackoverflow.com -> observe

Expected: Both websites should

fail to load and display the block

message

Actual: both pages fail to load

PASS

6.3.4 Test Cases for Fourth Aim

Test #: 10 Aim: The user can easily and without confusion edit the settings of their

application.

Acceptance Criteria(s): All settiŶgs aƌe loaded iŶto the eǆteŶsioŶ’s
popup window, not in additional html files or background pages.

Pre-Conditions:

• Extension has just been installed.

• Restart the browser.

Steps:

• Open the popup for the extension (click the icon for it)

• View settings -> observe

Expected: All settings should be

shown. No links to other pages etc

Actual: All settings are indeed in

the popup window.

PASS

https://pastebin.com/raw/8JHHkDZa

41 | P a g e

Test #: 11 Aim: The user can easily and without confusion edit the settings of their

application.

Acceptance Criteria(s): The settings have a good UX and will be

understandable to users.

Pre-Conditions:

• Extension has just been installed.

• Restart the browser.

Steps:

• Open the popup for the extension (click the icon for it)

• View settings -> observe

Expected: Settings should be clear

and easy to use

Actual: The settings are slightly

confusing and could use additional

information to help understand

them

FAIL

Test #: 12 Aim: The user can easily and without confusion edit the settings of their

application.

Acceptance Criteria(s): All settings are saved seamlessly upon change

Pre-Conditions:

• Extension has just been installed.

• Restart the browser.

Steps:

• Open the popup for the extension (click the icon for it)

• CliĐk the ƌadio ďuttoŶ laďelled ͞Collapse Iteŵs͟

• CliĐk the ĐheĐkďoǆ laďelled ͞RuŶ oŶ this page͟

• CliĐk the ButtoŶ laďelled ͞EŶaďle Eǆt͟

• Close the popup window by clicking the page

• Open the popup for the extension (click the icon for it)

Expected: The following settings

should be visible:

Run on this page: unticked

Collapse Items: checked

Button Disable Ext : shown

Actual: These settings are shown

and the textbox and save button

next to disable ext are also active.

PASS

42 | P a g e

7 Future Work
As the project has progressed code has become messy, comments lost, and bits of code

duplicated. Some features did not make it in because of time restrictions and difficulty to

implement them so this section will look at some of the things that were missed out on and

would benefit being added. The program currently works well and does not have any really

pressing issues. As my knowledge of JavaScript and the Chrome API as the project has

progressed earlier bits of code still lie around and could easily be improved.

7.1 Full validation
Validation is something that was only touched on slightly during the project. Currently there

is only validation when a user enters a domain string to be added to the domain block list.

This validation works well and gives decent feedback to the user in the form of a green or red

outline to explain the result of their entry. There is also some validation behind the scenes to

stop duplicate items being added to the blocklists but not under all circumstances. Validation

like this would be useful in all scenarios and help the user understand how their actions are

impacting the extension. Luckily, this application does not have to many points of entry for

the user so there are not tonnes of things that need validating.

7.1.1 Domain Loading

The option to load domains straight from a URL is very important and useful in the extension.

However, this feature can be quite dangerous and easily break the application if not used

correctly. It would be a good start and important point to add perhaps a limit to which sites

the URLS can be from. Perhaps limit it to only pastebin files that are raw (so it is just plain text)

or as some other ad-blockers do, provide a drop down of premade lists. If the option to allow

any sort of URL was kept then ensuring that all the contents of the file are acceptable would

be a good form of validation. This would stop errors happening during parsing.

7.1.2 Manual Domain Typing
Currently the user must type in a domain following the schema that is displayed in the

placeholder text. This is then validated once entered. It would be better if instead the user

could enter any domain and that be validated and then converted into the correct format.

Although the format is obvious as it is shown, it would be easier and be less error prone if the

user just needed to type a normal domain. The current validation could also be updated to

reflect the acceptability of the string on each keypress.

7.2 Error handling
Currently the extension does not have any error handling in it. There have not been any

ground-breaking or application stopping bugs yet. As we are primarily storing items and

retrieving them any data that breaks the application while running could probably be solved

by a browser restart.

43 | P a g e

7.2.1 Error logging

Error logging could add to the application to allow the user to see what errors they are having.

These errors could be displayed in a custom debugger window and will allow for advanced

users to fix problems themselves. Error logging could also be used to send important

information about problems straight to the developer if the user has opted in for their data

to be shared. Having error logs can benefit everyone. Currently the application does not

record or alert the user of any problems and this can be confusing and could be frustrating if

it breaks entirely.

7.2.2 Try Catch

Currently most of the code runs as normal in the flow it has been created for. It is assumed

that the data going in will be right but not every entry point or condition has been through

out. Try catch allows for code to be executed without breaking a program. The try statement

allows for code to be ran and if nothing is wrong it continues as normal. The catch can be used

to alert an error or fix an issue if the try has failed. JavaScript does not rely on user typed data

types and therefore works well to cast and convert datatypes where it can but can sometimes

fail, this is a scenario where try and catch is useful. Another place could be when connecting

to a supplied URL if it is inaccessible, to try again or alert the user.

7.3 Code optimisations
As this project progressed old code and new code have collided and been made to work.

Existing structures that were put into place have remained but could be done better. Some

components could do with a complete rewrite and may be better off with one. Code however

has been refactored where possible and therefore is efficient still. It is believed that further

optimisation would help increase the effectiveness of this adblocker. As many parts of this

are dealing with requests and run before pages are loaded every millisecond of improvement

will help make the extension better.

7.3.1 Core components

As stressed previously this project has been a giant learning curve and many things have been

built upon the initial code. Currently many parts of the code are being duplicated and are

jumbled up. Much like an object-oriented language this project could benefit from having its

core and reusable components stripped out and added to their own JavaScript files. JavaScript

is very robust and allows for code to be split up very easily. Doing this would help make code

more readable and the overall structure of files in the extension more concise. Having less

duplicated code would also mean a smaller file size of the overall extension.

7.3.2 Improved data fetching

Currently in the project data is being get and set all over the place. Most methods pull data

whenever they are called. While this works well it means that code is being duplicated

constantly and fetching data that is likely already being stored in the extensioŶ’s ĐuƌƌeŶt
memory. It would be much more efficient to pull the data in once and pass it to every script

that needs to use it. Then updating it at any location and setting the original getter to update

its values. Finding a way to implement data fetching with promises would allow for a better

44 | P a g e

code structure too. Currently there have been race conditions and problems with call backs

that have made other parts of the code structure less clear. Finding a better solution to these

race conditions and call back problems would help the tidiness and efficiency of the code.

7.4 Integrating with EasyList
EasyList is one of many free to use lists that contains bad domains and elements for websites.

Currently the list is around 2MB and contains hundreds of thousands of entries. During my

project I tried to implement this into the program but was not able to after having troubles

understanding the full schema it uses. EasyList has its own format for URLs to be written in

which allows it to filter domains precisely, with specific attributes, letter patterns, extensions

etc. This list would allow domain blocking that is much more on par with the current solutions

that implement this. Implementing with EasyList would however mean adding major

optimisation onto how each filter is checked. With tens of thousands of potential matches,

and this happening before every request goes out it would need to have no major impact to

the performance of the web page.

45 | P a g e

8 Conclusion
After the completion of this project and writing this report during the second semester of

university, it can be concluded that the task of creating an Adblocker has been a success. The

Chrome extension that has been created allows the user to easily select and block adverts

through either an in page of elements or through the user selecting domains. As this project

progressed and the realisation of how ad-blocking really works was made the focus of this

project changed slightly. When the project started identifying adverts on a webpage was the

focus I had in mind. Towards the end of the project the focus instead switched towards having

a concise and useful selection of options available to the user.

The ad-blocker has a long way to go before it would be Chrome-store ready and could benefit

from some re-structing and refactoring. Overall, the code that has been written manages to

do the tasks it was created for without having any negative impacts on the users browsing

experience. With the addition of a big-name filter list such as EasyList the application would

soon be able to compete with other well-known ad-blockers that are already available on

Chrome.

After the extension that was created from this project was tested against other extensions

available online it was easy to see that this extension was much easier to use. The UX allowed

for users to perform actions more easily when compared to other extensions. Other

extensions did however still have good UX, but their options were more overwhelming,

sometimes more confusing, and always locked away behind more clicks. To better improve

the UX of the finished extension, some final front end work could help make the interface

even easier to understand.

Overall, this project has been a success and has completed the task it set out to do.

46 | P a g e

9 Reflection on Learning
Throughout the duration of this project I have been able to further develop and familiarise

myself with JavaScript and the Chrome extension API. JavaScript, a language that I previously

had little knowledge of, began with a steep learning curve. Being used to object oriented

programming and strict typing JavaScript proved very different but overtime became more

inherent and its usefulness increased. Using the Chrome API was also a very tough start as I

had previously never touched it. Thanks to hard work and good research skills I was able to

make good use of the documentation provided online by Google and gain knowledge from

otheƌ people’s ƋuestioŶs oŶliŶe. CoŵiŶg out of this pƌojeĐt I ǁould iŶdeed saǇ that ŵǇ
programming knowledge and diversity has increased in many ways. Some notable gains of

knowledge include but is not limited to, Using JSON effectively, Manipulating the DOM, using

call back functions and making requests to websites.

While on this project I have been able to make use of skills I already had, reinforcing them,

and furthering my affirmation of knowledge. To begin with using GIT has made the project

much easier to handle and has allowed me to rekindle knowledge I do not use so often.

Working with HTML and CSS is something I enjoy and has been a fun part of the project.

Having not worked with them this year it was an enjoyable experience to play around the

styles and see what I could create. Alternatively, while I still used bootstrap for some of the

style, I was exposed to new bootstrap classes I had not previously touched.

It is important to note that many of my general and soft skills have been improved through

this project. To begin with I have had to do lots of research from start to finish. Previously I

had not undertaken much research or research on this scale but now feel much more

confident in working alone on a big project. My time management has been tested and

improved. Overall, this project has been a good opportunity for me to develop skills by myself

and see a project through from start to finish. I am glad I have had this opportunity and will

make use of all lessons learnt along the way.

My final thoughts and advice for anyone who is about to undertake their final year project is

to plan and be proactive. You have a loŶg peƌiod of tiŵe iŶ ǁhiĐh Ǉou’ƌe aďle to do this pƌojeĐt
and the quicker you work out a schedule, the less pressure you will have and the better your

end result will be.

47 | P a g e

10 References

[1] C. Elliott, ͞Yes, Theƌe Aƌe Too MaŶǇ Ads OŶliŶe. Yes, You CaŶ “top Theŵ. Heƌe’s
Hoǁ.,͟ Ϭϵ ϬϮ ϮϬϭϳ. [OŶliŶe]. Aǀailaďle: https://ǁǁǁ.huffpost.Đoŵ/eŶtƌǇ/Ǉes-there-

are-too-many-ads-online-yes-you-can-stop_b_589b888de4b02bbb1816c297.

[Accessed 05 04 2020].

[2] ͞MalǀeƌtisiŶg: What It Is aŶd Hoǁ to PƌoteĐt Youƌself,͟ ϭϳ Ϭϲ ϮϬϭϳ. [OŶliŶe]. Aǀailaďle:
https://www.pandasecurity.com/mediacenter/malware/malvertising/. [Accessed 05

04 2020].

[3] ͞CoƌoŶaǀiƌus ;COVID-ϭϵͿ,͟ [OŶliŶe]. Aǀailaďle: https://www.cardiff.ac.uk/coronavirus.

[Accessed 13 05 2020].

[4] R. CassidǇ, ͞Hoǁ to use Đustoŵ filteƌs,͟ Ϭϴ ϬϮ ϮϬϭϵ. [OŶliŶe]. Aǀailaďle:
https://help.getadblock.com/support/solutions/articles/6000161377-how-to-use-

custom-filters. [Accessed 21 04 2020].

[5] ͞Aďout,͟ [OŶliŶe]. Aǀailaďle: https://easǇlist.to/pages/aďout.htŵl. [AĐĐessed ϮϬ Ϭϰ
2020].

[6] ͞AdďloĐk Plus filteƌs eǆplaiŶed,͟ [OŶliŶe]. Aǀailaďle: https://adďloĐkplus.oƌg/filteƌ-

cheatsheet. [Accessed 25 04 2020].

[7] L. MooŶ, ͞AŶ Agile Woƌkfloǁ That Keeps Tasks Fleǆiďle IŶ Tƌello,͟ ϭϲ ϭϬ ϮϬϭϳ. [OŶliŶe].
Available: https://blog.trello.com/an-agile-trello-workflow-that-keeps-tasks-flexible.

[Accessed 25 04 2020].

[8] ͞Aďout ƌeŵote ƌepositoƌies,͟ [OŶliŶe]. Aǀailaďle:
https://help.github.com/en/github/using-git/about-remote-repositories. [Accessed 25

04 2020].

[9] ͞ǁeďReƋuest,͟ [OŶliŶe]. Aǀailaďle:
https://developer.chrome.com/extensions/webRequest. [Accessed 02 05 2020].

[10] ͞ Đhƌoŵe.stoƌage,͟ [OŶliŶe]. Aǀailaďle:
https://developer.chrome.com/extensions/storage. [Accessed 02 05 2020].

[11] W. PalaŶt, ͞AdďloĐk Plus aŶd ;a littleͿ ŵoƌe,͟ ϮϮ Ϭϴ ϮϬϬϲ. [OŶliŶe]. Aǀailaďle:
https://adblockplus.org/blog/investigating-filter-matching-algorithms. [Accessed 05 05

2020].

[12] ͞ Hoǁ to ǁƌite filteƌs,͟ [OŶliŶe]. Aǀailaďle:
https://help.eyeo.com/en/adblockplus/how-to-write-filters. [Accessed 03 05 2020].

48 | P a g e

[13] ͞ AdďloĐk plus,͟ [OŶliŶe]. Aǀailaďle: https://githuď.Đoŵ/adďloĐkplus. [AĐĐessed Ϯϴ Ϭϰ
2020].

[14] A. Rai, ͞CallďaĐks Vs Pƌoŵises aŶd ďasiĐs of J“,͟ Ϭϯ Ϭϳ ϮϬϭϳ. [OŶliŶe]. Aǀailaďle:
https://medium.com/@theflyingmantis/callbacks-vs-promises-and-basics-of-js-

80d3d1515e81#a99f. [Accessed 07 05 2020].

[15] ͞ CallďaĐk Hell,͟ [OŶliŶe]. Aǀailaďle: http://ĐallďaĐkhell.Đoŵ/. [AĐĐessed 13 05 2020].

[16] ͞ C““,͟ [OŶliŶe]. Aǀailaďle: https://deǀelopeƌ.ŵozilla.oƌg/eŶ-US/docs/Web/API/CSS.

[Accessed 02 05 2020].

[17] ͞ Đhƌoŵe.ĐoŶteǆtMeŶus,͟ [OŶliŶe]. Aǀailaďle:
https://developer.chrome.com/apps/contextMenus. [Accessed 01 05 2020].

49 | P a g e

11 Terminology
[Term. 1] Advert – an advertisement added onto a web page. This could come in a variety of

multimedia forms.

[Term. 2] Ab-blocker – an application of some sort that stops adverts from being displayed.

[Term. 3] Google Chrome – A browser that can be used to access the internet, created by

Google

[Term. 4] Google Chrome Extension – An additional piece of software that can be installed

into the Google Chrome browser.

[Term. 5] API – Application Programming Interface, allows programming accessing features

or data of another service.

[Term. 6] Agile – A short cycled methodology that is used for software development. This

methodology allows frequent changes to the sprint (calendar)

[Term. 7] Whitelist – A list of allowed items

[Term. 8] Blacklist – A list of unallowed items

[Term. 9] JavaScript – A programming language primarily used in web development.

[Term. 10] jQuery – A superset of the JavaScript language that allows for easier

development.

[Term. 11] Git – A version management software that allows collaboration and version

control.

[Term. 12] GitHub – A website that allows you to host Git repositories (files).

[Term. 13] TortoiseGit – A graphical interface for Git.

[Term. 14] Trello – An online task board used to plan out agile workloads.

[Term. 15] WebRequest – A sub section of the Chrome API that allows viewing and

manipulation of requests from a web page.

[Term. 16] Storage.Sync – A sub section of the Chrome API that allows storing data across

google accounts.

[Term. 17] URL – The web address of a website.

[Term. 18] Domain – The web address of a website without anything else. google.com etc.

[Term. 19] HTML – Hyper Text Markup Language is the language in which web pages are

written.

[Term. 20] DOM – Document Object Model is an interpretation of the HTML webpage that

can be interacted with via JavaScript.

50 | P a g e

[Term. 21] CSS – Cascading Style Sheet can be used to style a web page visually.

[Term. 22] UI – User interface.

[Term. 23] UX – User experience, how easy it is to use.

[Term. 24] JSON – JavaScript Object Notation a format in which data can be stored in and

interacted with via JavaScript.

[Term. 25] function – A defined piece of code.

[Term. 26] Filter – A list of items that can be used to compare to an item and either accept

or reject.

[Term. 27] Element – An item on a web page.

[Term. 28] Bootstrap – A CSS stylesheet that has already been created and can be imported

to the project to have styles already available.

[Term. 29] Class – An attribute that can be added to an Element to group it together.

[Term. 30] ID – An attribute that can be added to an Element to give it a distinct identifier.

[Term. 31] <div><section> etc – examples of HTML elements.

[Term. 32] popup – The inbuilt extension interface that developers can customise.

[Term. 33] EasyList – A list of predefined rules that can be used freely as a filter list.

[Term. 34] uBlocker, AdBlock and AdBlocker – Other ad-blocking extensions.

51 | P a g e

13 Figures

[Fig. 1] A website covered in malicious adverts with the intent on tricking the

user.

[Fig. 2] The AdBlock Chrome extension store listing.

[Fig. 3] The AdBlock extension popup.

52 | P a g e

[Fig. 4] The AdBlock settings page overview.

[Fig. 5] The AdBlock still showing some adverts on "reddit.com"

53 | P a g e

[Fig. 6] The Adblock Plus Chrome extension store listing

[Fig. 7] The Adblock Plus extension popup

54 | P a g e

[Fig. 8] The Adblock Plus settings page overview.

[Fig. 9] The uBlocker Chrome extension store listing

55 | P a g e

[Fig. 10] The uBlocker extension popup

[Fig. 11] The uBlocker settings overview

56 | P a g e

[Fig. 12] Overview of TortoiseGit

[Fig. 13] Screenshot of my Trello boards during development

[Fig. 14] Display of <hr/> tag used to divide sections in extensions popup

57 | P a g e

[Fig. 15] Display of <tables> used to display blocked elements and domains

[Fig. 16] Code showing HTML sections being used inside popup.html

58 | P a g e

[Fig. 17] Code showing HTML first section inside of popup.html

[Fig. 18] Code showing HTML second and third section inside of popup.html

59 | P a g e

[Fig. 19] Code showing HTML fourth section inside of popup.html

60 | P a g e

[Fig. 20] Code showing initially set values from storage inside popup.js

[Fig. 21] Code showing callback via document ready event inside popup.js

61 | P a g e

[Fig. 22] Code showing example of DOM selection and value setting inside

popup.js

[Fig. 23] Code showing example of click and change handlers inside popup.js

[Fig. 24] Code showing message being sent and a value updated inside popup.js

62 | P a g e

[Fig. 25] Code showing table generation inside popup.js

[Fig. 26] Code showing initial data structure being generated on extension install

inside background.js

[Fig. 27] Code showing element storage data structure being created inside

SelectElement.js

[Fig. 28] Code showing Get Set technique to modify data inside popup.js

63 | P a g e

[Fig. 29] Code showing popup.js sending a message to the SelectElement.js

[Fig. 30] Code showing SelectElement.js Listening for messages

[Fig. 31] Code showing custom CSS being added to the head of the current web

page from SelectElement.js

[Fig. 32] Code showing mousemove jQuery event in SelectElement.js

[Fig. 33] Code showing SelectElement.js click event

64 | P a g e

[Fig. 34] Code showing overview of SelectElement.js StoreElements() function

[Fig. 35] Code showing SelectElement.js variables being assigned

[Fig. 36] Code showing CSS.escape() in SelectElement.js

65 | P a g e

[Fig. 37] Code showing BlockElement.js

66 | P a g e

[Fig. 38] Code showing BlockElement.js DOMSubtreeModified listener

[Fig. 39] Code showing BlockElement.js injectCSS function

67 | P a g e

[Fig. 40] Code showing context menu creation in background.js

[Fig. 41] Code showing ResetManualDomainListeners() function in

background.js

68 | P a g e

[Fig. 42] Code showing ResetWebblock() from background.js

[Fig. 43] Code showing request being made to external web page from

background.js

[Fig. 44] Code showing onBeforeRequest in background.js

[Fig. 45] Code showing background.js function WebDomainBlock used by

onBeforeRequest

69 | P a g e

[Fig. 46] Code showing ResetManualDomainListeners inside of background.js

[Fig. 47] Code showing ManualDomainBlock function used in onBeforeRequest

for manual domain filtering in background.js

[Fig. 48] Code showing background.js onBeforeRequest for manual domain

filtering

70 | P a g e

[Fig. 49] Code showing Blocked.js a file used to ship a default domain blocklist

[Fig. 50] AdBlocker verification example 1

[Fig. 51] AdBlocker verification example 2

71 | P a g e

[Fig. 52] Finished Interface of Chrome extension

