
May 2013

Social Media
Visualization
Tools and
Techniques

Amalgamating Social & Factual data to provide a

comprehensive outlook on any geo-location.

Final Report

Steven Oakley
C1009109

Supervisor: Professor N.J. Avis

Moderator: Dr X. Sun

1

Abstract

My motivation for embarking on a project of this nature stems from a personal interest in

finding new and unconventional methods of finding or creating new information. The interim

report abstract outlined the overall philosophical framework of the project, whereby I stated

how I planned to combine factual and social data from a variety of sources into elegantly

constructed data sets that would help create new knowledge. I also explained that whilst

there are numerous methods of collecting data similar to that which I utilise, there are

currently few applications that effectively combine large quantities of this information in real

time, with respect to a particular geo-location.

Data prioritisation is a fundamental principle of any project that handles large quantities of

data, and so I made filtering and program efficiency a priority when developing the project

from the very beginning. Having an effective means of displaying generated information to

the end user is also critical, so as to ensure that the operator is not overwhelmed with

unnecessary data. As such I have ensured that a significant amount of time was spent on the

user interface design, which went through a series of revisions and improvements throughout

the development lifecycle. Additionally, I understood the importance of ensuring that data

could be both imported into and exported from the system in a variety of commonly-used

formats, and so I certified through appropriate research that the formats I eventually chose

were appropriate.

I believe that a system of this nature could be used in a multitude of widely varying situations,

which should be made apparent in the report. The final recorded demonstrations detailed at

the end of the report give a representation of how I personally feel the system could be used.

I have however also received a number of suggestions from third parties (both individuals and

organisations to whom I have shown the project), which indicates to me that so long as a

person fully understands the capabilities of the system, along with any potential future

capabilities, that there is a great range in the number of use-case possibilities.

2

Acknowledgements

There are a number of people without whom this project would not have been possible. I

would like to thank my supervisor Professor N.J. Avis for his continual help and guidance

throughout both semesters. I would also like to thank Professor O.F. Rana and Nicholas Horne,

who helped in the very early stages of the project and provided me with a basis on which to

develop my ideas and program.

Additionally, it is necessary to thank Weather Underground (a subsidiary of The Weather

Channel), for their support and generous sponsorship of the project by allowing me high level

access to their API and other geological information free of charge. Finally, I greatly value the

constructive feedback I received from third parties, particularly regarding comments

encouraging me to redesign the user interface – remarks which in hindsight I completely

agree with.

3

Contents

Abstract ... 1

Acknowledgements .. 2

Contents .. 3

Introduction ... 5

Specification ... 7

Data Flow Overview ... 8

Security ... 10

Saving & Loading Files .. 12

Design .. 13

Main Interface .. 13

Tweet of Interest Interface .. 17

Design Modifications .. 22

Main GUI Improvements .. 22

Tweet of Interest GUI Improvements ... 23

Miscellaneous Design Additions & Improvements ... 24

Implementation ... 25

Main GUI .. 26

Analyse Tweets Function.. 27

Tweets of Interest .. 31

Miscellaneous Features .. 34

Security ... 38

Difficulties Encountered ... 41

Demonstration & Evaluation .. 43

Large-scale demonstration: Political Analysis .. 43

Medium-scale demonstration: Event Monitoring ... 50

Real-world Usage ... 59

Future Work ... 60

Conclusions .. 63

Reflections on Learning .. 64

4

Glossary ... 65

References ... 67

Bibliography ... 69

Appendix .. 71

Figure 1: Interim Report Future Development .. 71

Figure 2: Term 1 & 2 Gantt Charts ... 73

Figure 3: Interim Report System Overview .. 74

5

Introduction

The aim of the project, as outlined in the initial plan, originally consisted of collecting and

analysing large amounts of social data and comparing this with factual data such as weather

reports in order to produce a system with similar traits to a visual ‘early warning system’. The

interim report explained in detail the specifics of what the system was capable of at the time,

and what I believed would be possible in the future. With the support of my supervisor

Professor N.J. Avis, I explained how the project was naturally beginning to move away from

explicit social data ‘visualisation’, and was instead becoming more comparable to a ‘social

data toolbox’, whereby from a single Tweet input, varying types of information could be

created. Since the interim report I have continued to develop the project with this mind-set,

and as such many new features have been implemented in addition to those originally

proposed. I believe that this modified vision for the project has greatly enhanced the final

capabilities of the system, and has turned the project into a system that I believe has genuine

value in real-world situations.

The intended end-user has also changed throughout the lifetime of the project. Initially it

would have been reasonable to assume that the user would have been a professional in their

field of expertise (for example a meteorologist for a weather warning system), and so as a

result I believed I could produce a system with complex and focused elements such as the GUI

or the format of the final outputs. However, as the project progressed and evolved into the

toolbox application it became clear that this method of thinking would not be sufficient, and

as such in the later stages of development I took the decision to redesign the entire GUI

system, along with making numerous programming alterations to the software in order to

make the system accessible to new users who may not be familiar with this type of software.

Further details as to the exact modifications I made are found later in the ‘Design’ and

‘Implementation’ sections.

Whilst both the focus of the project and the targeted end user have evolved since the project

outset, the overall theme of the project has not. There is still a very strong emphasis on

appropriately, efficiently and accurately filtering and analysing large amounts of data in order

to produce information that is capable of producing new and usable knowledge when used

appropriately. The system is capable of providing information relating to the weather, news,

photos, textual sentiment, traffic/map reports, and is even applicable (and has actually been

used) for event monitoring and political purposes. I believe that this clearly demonstrates the

wide-ranging possibilities for the system, and genuinely believe that it has a tangible use even

outside of academia.

I outlined ten areas for improvement from the status of the system in the interim report (see

appendix figure 1). Every one of these key deliverables has been addressed and successfully

completed, and through regularly discussing the development of the system with Professor

6

N.J. Avis, many further refinements & additions have been made. This is in-line with the

statements and Gantt charts presented in the interim report (appendix figure 2), whereby I

specified that this term would I focus on system refinements and further analysis of currently-

collected data.

7

Specification

The required final specification and program features have changed throughout the project,

and as such the design of the system, both at the higher user-level and at the lower code-

level, have also evolved. In this section I will discuss the lifecycle of the system - detailing

matters such as the data-flow within the project, high-level descriptions of algorithms used

and the overall design philosophy. A growing theme throughout the project life has been on

creating a modular system, capable of having a ‘plug-and-play’ functionality that would

ensure the product would be applicable to as many different subject-areas as possible. I will

attempt to illustrate how I have achieved this, and will explain in much further detail

particular sections of code of interest, later in the ‘Implementation’ section.

Figure 3 in the appendix contains the descriptive outline of how I felt the project could be

broken down into at the time of the interim report. Below is the result of an update to the

diagram, now representing the current system state. Whilst there have been functional

additions to the ‘Analyse’ stage, and a security enhancement to the later stages collectively, I

feel that the major philosophical change is in the modular nature of the ‘Filter’ stage.

Plug and

Play

System Processing Order

8

Data Flow Overview

To begin with, all data used within the system must have been harvested or ‘mined’ from

Twitter. I achieve this by making use of a modified version of previous year student Nicholas

Horne’s Twitter harvesting tool, which I use with his, his tutor Professor O.F. Rana and my

tutor Professor N.J. Avis’s permission. This application uses the Twitter API Stream to collect

Tweets and stores them in a local database – further details of this can be found in the interim

report. The illustration below helps to provide an overview of how data flows through the

system.

Populate
Database

• Uses existing Social Analytics application.

• Tweet data stored in MongoDB database in JSON (JavaScript Object Notation) format.

Access
Database

• Establish connection to Database from main application.

• Return generic database statistics i.e. total number of entries & display in interface.

Search
Database

• Search through database using predefined filters.

• Flag any potential Tweets of interest.

Find Tweets of
Interest

• Each database entry meeting filter requirements is displayed in a small unique window.

• Variables are taken from Database and stored to local Java variables, unique for each Tweet found.

Generate new
information

• Only if requested by a user clicking on 'More Information', the system will use each Tweet's unique set of
variables to generate new information, by mkaing a series of relevant API calls.

• New and improved data is added to or replaces existing variables as appropriate.

Export new
Information

• If requested, all Java variables for a selected Tweet will be elegantly combined into the selected save
format (.txt or .xml).

• Additionally, the full Tweet database entry is also extracted in JSON format to the audit trail file. Whilst not
as elegant, it will only have to be viewed by a user in exceptional circumstances.

9

To complement the above information, I believe that the following extract from one of

Professor Alun Preece’s lectures in his third year module ‘Knowledge Management’ Reference 1,

helps to demonstrate the general method of thinking that systems similar to mine often seem

to possess.

In the same lecture, data mining is defined as being “the non-trivial extraction of previously

unknown and potentially useful patterns (i.e. information) from data”. As is apparent from

the above diagram, data mining can be viewed as being a cyclic process that contributes to

generating knowledge, and whilst my project appears at first to flow purely from data mining

to filtering to processing to analysing, I wanted to try to remain true to the above cyclic

principle. This was ultimately the reason I began to seriously consider the importance of

having the ability to export and load data, which is explained in greater detail later in the

report. This feature has allowed me to analyse much larger sets of data, evidence of which is

covered later in the ‘Demonstration & Evaluation’ section, and so I feel that I do remain

faithful to this cyclic process.

10

Security

As the project was progressing towards having the toolbox functionality, Professor N.J. Avis

spoke with me about what had been discussed at his meeting with the metropolitan police

force, involving systems of a similar nature to what mine was becoming. They were very

interested in having a type of functionality where large amounts of social data could be

analysed quickly, and particular Tweets of interest brought to a user’s attention so that a

more informed (human) decision could be made. The example provided was that if there were

for instance 10 different protests taking place in London, then the system could help

determine which protest groups were more likely to require a greater police presence

through utilizing features such as sentiment analysis, immediate access to live cameras and

human inspection of highlighted information. Additionally, a robust and accurate audit trail

would be necessary to ensure that any potentially controversial decisions made with the help

of the software could be backed up with evidence of what information an operator had access

to at the precise point a decision was made.

This inspired me to implement a complete and encrypted audit trail feature that would

provide the necessary functionality for a use case such as this. Detail on how exactly this was

implemented is documented later in the report, however I believe that I have met this

requirement fully, as the table below represents all events recorded by the system that is

stored in an encrypted file, only accessible with a password.

Action Information
Stored

Information
Stored

Information
Stored

Information
Stored

‘Analyse all new
Tweets’ button
clicked

Timestamp

File loaded into
application

Timestamp Filename File location

Tweet of Interest
found

Timestamp Tweet ID Tweet
geographical
location

‘Click for more
Information’
button clicked

Timestamp Tweet ID Tweet
geographical
location

Webcams
requested

Timestamp Webcam
title/description

Web URL address
of webcam source

Frame closure

Satellite Imagery
requested

Timestamp Web URL
address of
imagery source

Frame closure

Mapping Imagery
requested

Timestamp Web URL
address of both

Frame closure

11

Google and
Bing maps

Flickr Photo
requested

Timestamp Web URL
address of
Flickr Photo

News story
requested

Timestamp News headline Web URL address
of news article

Frame closure

User note added Timestamp Note contents

Backup made Timestamp Backup name Backup location MD5 checksum
of backup

European
Weather
information
requested

Timestamp

Web address of
image

Frame closure

Access to Audit
trail attempted

Timestamp Password used

System Reset Timestamp

Application
Closed

Timestamp

Process of accessing the encrypted audit trail file .

12

Saving & Loading Files

Having the ability to both save and load files into the system has greatly improved the

potential widespread appeal of the application. Not only is this a feature that would be

required if it was to be used by an organisation such as the police for aforementioned reasons,

but it also opens up many new possibilities. One use case I have envisioned for the system

would be that of a training simulator or test-centre device for candidates applying for a

position within a company. To test particular candidate competencies, a number of premade

test cases could be developed by the operator and then subsequently loaded onto all

candidates machines to see how the users react and prioritise data cases that are presented

to them. This would of course also make extensive use of the previously described auditing

system, whereby user actions could be analysed in extensive detail if deemed necessary.

I have provided the user with two means of saving an output file – either as a plain text file,

or as an xml file. Initially I developed the plain text saving method, and while this was

functional, it is not a format that is used regularly as a saved file format due to a lack of

advanced formatting methods. My meeting & presentation with the Social Science COSMOS

team on 30th January 2013 (presentation uploaded to ‘additional files’ project area) lead to

comments reiterating this from Dr Pete Burnap who suggested that another choice of format

would be more suitable for interoperability with other applications. As such, I began

implementing the xml saving option, which I was able to develop relatively quickly due to my

experience from reading xml files previously in the project.

Whilst it is possible to view all information by directly viewing the exported .txt and .xml files,

I decided that it would be beneficial to allow a user to directly load files into the system and

have the GUI display the information exactly as it would have originally been viewed. This

continued to advance the project toward having the specification required by the police

instance detailed previously of being able to justify decisions made by showing exactly what

information was available at the time of saving (and verifiable by the recorded MD5 checksum

of the file, saved in the encrypted Audit Trail file). This functionality also allowed me to speed

up other parts of the development process as I could export a good example case which made

use of all features, and simply load this file into the system each time to test new

features/revisions, as opposed to having to search for new Tweets each time and populate

the database. This reduced an arbitrary system development overhead, which allowed future

development and bug fixes to proceed at an improved rate.

13

Design

The user interface for the system has continued to develop in line with the evolving use case

scenarios, and in this section I will identify these changes and provide justification for the

modifications.

The increasing complexity of the software, coupled with the changing targeted end-user,

made it necessary to review the current user interface and attempt to implement a new and

more intuitive GUI that could provide more detailed user feedback. Additionally, as the

project was progressing towards becoming a product in its own right rather than an extension

to a previous project aimed solely at solving very specific academic questions, I felt it

appropriate to create a ‘brand name’ and accompanying logo. The logo below is displayed

prominently on the main user interface, and is also the executable file’s ‘splash screen’ image

that is displayed when the application is first launched.

Main Interface

I trialled various forms of GUI layouts using a multitude of different Java layout solutions,

before I settled on the final solution displayed on the following page that makes use of the

more advanced Java GridBagLayout options. I feel that this interface is a significant

improvement on the original, offering a substantial number of improvements such as

improved user feedback & help regarding the current system state, a logical button layout in

three discreet sections with differing button sizes depending on importance, and improved

coding logic to help minimise the risk of user error causing a problem to system stability.

Further details of these coding features are present in the Implementation section.

14

Above is a table describing the GUI features in sequential order for each of the three button

columns.

Database Options

Pre/Post Analysis
Options

Start / Load Analysis

Connect / Reconnect to

database.

Logo – could be a clickable
link image to possible

future website.

Begins searching through database for Tweets

of Interest.

Dynamic table information –
only shown if connected to

database.

Opens operating system
default explorer to saved

files location.

Interactive & Dynamic status button.

Disconnect from database.

Loads and displays a
weather alert map from

Wunderground.com.

Opens operating system file chooser in saved

files location.

 Prompts user for password
in order to view audit trail.

 Closes Application.

15

The image on the previous page showed the GUI when the system is fully operational, as

made clear by the green ‘Database Connection Established’ button with two tick symbols in

the right hand column. This status button is dynamic and will update automatically as

necessary to quickly alert the user to any detected problems with the system. Additionally,

clicking on the button will create a popup window giving further detail, unique for each

different system status. The table below show the various status possibilities and their

accompanying additional information windows.

No dialogue box necessary

No dialogue box necessary

No dialogue box necessary

16

The button ‘View Weather Alert Map’ in the middle column of the main GUI will load and

display a snapshot of weather alerts in Europe, as recorded by Meteoalarm Reference 1.

According to the UK Met Office, Meteoalarm is “a co-operative initiative involving more than

20 European national weather services. The web site has been developed by Eumetnet, the

Network of European Meteorological Services, and is supported by the World Meteorological

Organization (WMO).” Reference 2 The user interface generated is displayed below:

The key on the left of the above image is only displayed when the user clicks on the respective

‘Key’ button on the map image itself. One challenge that I encountered when designing this

aspect of the interface was the choice of background shade for the ‘Key’ window. I tried many

different variations of colours in order to find one in which the correct colours could be used

to represent the alert, but still ensured that all text remained legible. I finally settled on the

above solution (background colour: “Aquamarine 2” – RGB [118,238,198]) after consulting

the ‘W3C Guidelines for Colour Readability’ document Reference 3.

17

Tweet of Interest Interface

The interface shown to the right is what

is generated when a Tweet of Interest is

discovered. As the current filter focuses

on the weather, the colour of the GUI

box matches the Tweet location’s

respective Alert rating (as determined

by the Met Office or other country

equivalent), which is also displayed in the window header. The four information points below

display the specific alert, the Tweet text, the overall sentiment of the Tweet and the

originating Tweet location. The colour of the ‘Tweet Sentiment Score’ text changes as

appropriate – red for a negative value, black for neutral and green for positive.

Selecting ‘Click for more Information’ will display the interface shown below, and close the

above basic information window. This advanced window displays all information found in the

basic one, in addition to further alert, location & weather information, along with a multitude

of further analysis buttons. The colour of the interface is again defined by the alert rating

colour.

 On the following page is a descriptive list of what each of the above buttons do, along with

accompanying images of the results.

18

1. Webcams

This will display up to three of the nearest webcams found in relation to the initial Tweet

location. It will also display any assigned webcam titles, such as in the case below of ‘London,

Hyde Park’, ‘Oxford Street Webcam, London’, and ‘Paddington and Hyde Park, London’.

Additionally, the following window will be displayed specifying exactly where the three

webcams are (numbered 1 – 3, with respect to the webcams above numbered 1 – 3 from left

to right), in relation to the Tweet location labelled ‘TL’. Both satellite and road views are

displayed, with the images being returned from Google Maps Reference 4 and Bing Maps Reference

5. The map zoom level automatically scales as appropriate depending on the proximity of

webcams to the Tweet location.

19

2. Animated Satellite Imagery

This will display an animated

moving image of current and

predicted future weather, centred

on the tweet’s latitude & longitude

coordinates. The image updates

within the Java frame, with a clock

at the top right of the image

refreshing with the image in hourly

increments.

3. Tweet Location and Traffic Map of [Location Name]

The specific location text on the button itself will change depending on the location of the

Tweet. When clicked, two images will be displayed in the same Java frame - the first

showing a Microsoft Bing traffic map, and the second a Google maps version that shows

more of the surrounding area. The green lines on the Bing map show low road congestion,

while the red lines indicate that current congestion rates are high.

20

4. Current Flickr Photos

Selecting this option will load the

most recently upload public Flickr

image that was taken within the

same geographical area as the

tweet location. Images with EXIF

data specifying the original photo

taken location are prioritised over

those that contain any other kind

of coordinates, such as upload

location.

5. Historical Flickr Photos

Clicking on this button will prompt

the user to input the desired time

and date that they wish to search a

Flickr photo for. The location of the

Tweet of Interest interface that they

select the button from will

determine the coordinates used in

the search. A default date is

automatically inserted into the text field and highlighted, to make the process of conforming

to the required format easier. Clicking OK will then search for a fitting image.

6. News Articles

This will search through

Feedzilla.com’s news archive Reference 6

for the most recent news article

containing the Tweet location’s name

anywhere in the title or content, and

displays the returned information.

Clicking the link at the bottom of the

window will open a user’s default

browser and navigate to the news article’s original source location online.

21

7. Add / Edit Note

The button text will change from ‘Add note’ to ‘Edit note’ depending

on whether a note has previously been created for a particular Tweet.

Clicking on the button will generate a Java frame containing an editable

text box and a submit button. Submitting the note will add it to the

audit trail, and additionally append it to the Tweet save file if the user

goes on to save the Tweet file.

8. Export as Text file

This will prompt the user for a file save name

(automatically suggesting the tweet location as a save

name option), and then save all information, including

user added notes, as a text file into the directory

...\storedDataSets .

9. Export as XML file

This will perform the same action as described above, but as an XML file.

22

UIManager.setLookAndFeel("com.jtattoo.plaf.smart.SmartLookAndFeel")

Design Modifications

Main GUI Improvements

Alongside implementing a number of new features in to the system since the time of the

Interim report, I have also revisited a number of user-interface areas that I felt could use some

improvement. Often these areas have been sections that I initially created as a prototype and

had planned to revisit later, but some improvements were made after receiving user

feedback, both from planned feedback sessions and from actually having the project used by

a real organisation – further details of this are detailed later in the report. In this section I will

outline the improvements that have been made in the last few months.

To help with these refinements on the appearance of the system, I decided to make use of

the JTattoo LookAndFeel software Reference 7 which provides numerous options to help modify

the overall GUI theme. I settled on using the ‘SmartLookAndFeel’ option as I felt it offered the

most professional-looking theme, and helped to differentiate the application from other

standard Java user interfaces. This effect is achieved by applying the following code in my GUI

Java class, after ensuring the correct JTattoo Jar file is installed.

The image below shows the evolution of the GUI design. Whilst the original was functional,

little thought was made to the layout of the design, and the only form of user feedback was

in the colouring of a few of the buttons and the table of information at the bottom.

23

Tweet of Interest GUI Improvements

The effects of the modified ‘look and feel’ of the overall GUI theme can again be found in the

appearance of the Tweet of Interest windows. I believe that the design of the window would

now seem more familiar with most users as it has the three classic minimise, maximise and

close buttons present – these are not the default Java icons, however through using the

Jtattoo package I have changed it as shown below.

A number of functional improvements have also been made to the advanced tweet window,

as can be seen below with the increase from two analysis operation buttons to nine,

grouped into three appropriate sections (exact location analysis, wider location analysis, and

the notes & saving section). Furthermore, Tweet sentiment and location population

information is now present in the updated version.

24

Miscellaneous Design Additions & Improvements

 As a result of user feedback, I modified some of the current GUI colours in order to

increase ease of use & readability. For example, the alert-coloured Tweet of interest

windows have potential colours of Green, Yellow, Orange or Red. Whilst having black

text on top of these backgrounds was suitable in most cases, it made the information

difficult to read when a red alert tweet had been found. As such, I modified the code

and so now when a red alert box is created, the text colour is white, resulting in a more

user-friendly reading experience.

 I have exported the application into an executable file, with the ‘Fast Forward

Analytics’ logo used for both the icon image and initial loading splash screen.

This was achieved by first exporting as a Jar file, and then using the application

‘Jar2EXE’. Reference 8

 Previously all user and system status notifications were

presented to the user in a popup box, such as that displayed

to the right. User feedback & testing resulted in comments

explaining how these felt unnecessarily intrusive, and that a

more seamless and integrated solution should be considered. This is what led to the

aforementioned dynamic button implementation, which displays information to the

user directly from within the main GUI, and also has the added benefit of providing

additional detailed information upon a press of the button.

 In the first GUI implementation I required the user to disconnect from the database

before exiting the application. I have now removed this minor additional user task,

and simply added the disconnect code to the exit button itself.

25

Implementation

I developed the Java application using the Eclipse IDE (Integrated Development Environment),

which is an application designed to increase developer productivity through offering a wide

variety of features and plugins. In this section I will detail some of the critical and interesting

sections of the code used to produce the system, however the rest of the code in the fourteen

Java classes are commented and should be relatively easy to comprehend. Some elements of

the code extracts to follow have been edited for ease of understanding or presentation – full

unedited code is included in the accompanying supporting files.

I manually coded every GUI in the Java application, using a variety of different frame layouts.

I decided against using a form of a Swing GUI builder such as NetBeans’ ‘Project Matisse’ for

a personal development reason, as I generally find that if I first learn the intricacies of a

process such as GUI designing by hand, then I should have a solid foundation of understanding

for if I encounter a problem in future projects when developing with such a tool. As a result I

feel that I now have the confidence to explain what the precise role of each element and

variable is, and whilst it is not necessary to explicitly describe every line of code in this section,

I took care to ensure that I commented any unconventional and uncommon code for my own

reference when I referred back to previously written classes.

I should state that my decision to use Java as the system’s programming language was not

always a certainty. I had previously found some of the Java syntax from previous modules

difficult to understand, and as such carefully considered the pros and cons of using another

language. The two other languages that I had strongly considered using were Matlab, which I

had experience with from the Multimedia modules, and C Sharp (C#). Whilst I had not had

any previous experience with C Sharp, I had heard positive comments about its ease of use,

and did actually began developing the system using the language.

After developing with C Sharp for a few days, I decided that it would be in the project’s best

interests to develop with Java for a number of reasons. Firstly, I had researched and

encountered a number of limitations of C Sharp that I felt could have the potential to hamper

the project in later stages, and did not want to lock myself into a programming language that

could limit future progress. Secondly, I found a noticeably smaller amount of documentation

and active user-forums discussing C Sharp than I did for Java, which again could have led to

problems further into the development process. Finally, previous student Nicholas Horne’s

project was written in Java, and so I feared that creating interfaces between the two projects

using different languages could become an otherwise unnecessary problem that could

damage both efficiency and functionality. I finally came to the decision that it would be best

to concentrate on Java for now whilst keeping the option of using Matlab open later, and so

proceeded to begin reacquainting myself with the previous Java material and examples that

I had experienced in previous modules.

26

super("Fast Forward Analytics");

setSize(1150,378);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

final Container pane = getContentPane();

pane.setLayout(new GridBagLayout());

((JComponent) pane).setBorder(new EmptyBorder(15, 15, 15, 15));

((GridBagLayout)pane.getLayout()).rowHeights = new int[] {0, 0, 10, 0, 0, 0};

Main GUI

I utilised the Java GridBagLayout manager to produce the final GUI design as I felt that it

offered me the most flexibility when it came to precise positioning options. My first user

interface made use of the more simplistic but restrictive GridLayout option, which I found

useful in the development phase due to the relatively simplistic options - it was very easy to

simply add another button and let the system manage issues such as button order and size.

Once I had decided on how I wanted the system to look and had determined roughly the

number of buttons I needed, I began to experiment with using the FlowLayout manager.

Whilst I found this more adaptable than GridLayout, I was not satisfied with the final result

and so eventually turned to the more capable GridBagLayout option, which I will now

explain in further detail.

On the following pages I will explain how I implemented the features present on the main GUI

frame. The method in which all actions are triggered is through an event listener with

appropriate ‘try’ and ‘catch’ statements, which I will not include in the code extracts in order

to keep the explanations as focused as possible.

Sets the frame title as Fast Forward

Analytics.

Will exit the entire application if this Main

interface is closed, closing all other open frames.

Sets a border of 15 pixels between the edge

of the window and the elements inside on

every side.

Sets the separation distance between each

element within the frame. Six values here

indicates that there are six rows of elements in

this frame, with a separation of 10 pixels applied

to the third element.

Sets the default size of frame in pixels. The

frame still remains user-resizable.

27

pane.setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));

weatherFilter.main(new String[0]);

int startPosition = tweetText1.indexOf(": \"") + ": \"".length();

int endPosition = tweetText1.indexOf("\" , \"date", startPosition);

String tweetText = tweetText1.substring(startPosition, endPosition);

Analyse Tweets Function

This is the most important and complex task in the system, and its operational code spans a

number of java classes that I have tried to separate into discreet files for code clarity.

The first action that occurs is the program will change the user’s mouse cursor to the

operating system’s “defaultWait” cursor: This is achieved with the following code.

It will then proceed to delete all files stored in the temporary files directory, to both increase

program efficiency and also make any form of debugging easier as the developer is not

presented with files from multiple searches. A comment stating that a search was initiated is

added to the audit trail, and then the actual searching algorithm begins.

The first class that is executed is ‘weatherFilter.java’ – this is the modifiable class that can be

used to change the filtering requirements of the application. This particular filter searches

through all Tweets and alerts the user to a Tweet of Interest if the tweet location is defined

as originating from an area with a current weather alert active. A prerequisite of meeting this

criteria is the requirement that the Tweet also has associated geo-location metadata, and so

any Tweets without this information are discarded before further analysis is performed.

The system will then search through all Tweets, returning the tweet ID, tweet text and latitude

& longitude values if present, and assigning them to Java variables. Information such as the

tweet text and data & time information is returned in the same element, and so I use the

following code in order to return only the information I desire:

 This will ‘clean’ the string, and store only the

required information.

28

URL WundergroundWeatherXml = new

URL("http://api.wunderground.com/api/205f2bb905cf8536/forecast/geolookup/q/" + latitude

+ "," + longitude + ".xml");

NodeList avewind = forecastdayElement.getElementsByTagName("avewind");

for (int h = 0; h < avewind.getLength(); h++) {

Node avewindNode = avewind.item(h);

if (avewindNode.getNodeType() == Node.ELEMENT_NODE) {

Element avewindElement = (Element) avewindNode;

NodeList mph = avewindElement.getElementsByTagName("mph");

Element mp = (Element) mph.item(0);

if(z == 1){

z = z + 1;

System.out.println(mp.getTextContent());

}

The system will then query The Weather Channel’s API partner Wunderground.com, using the

collected latitude & longitude values as parameters for each Tweet with geo-coordinates:

This request will generate data relating to both meteorological weather information such as

alerts and current conditions, and additionally returns information such as the nearest

weather station that is used in a future query. I search through this data by locating specified

parent nodes and navigating through the XML tree through child nodes until the system finds

the correct information. All elements that are useful for functionality of the program are

assigned as variables and optimised if necessary (such as in the previous example of removing

unnecessary information from a string).

My unique wunderground.com API key.

The wunderground API returns a weather forecast for the

future seven days. This ‘z counter’ line ensures only the first

(i.e. current) information is displayed, however can be

removed as necessary if the entire forecast is required.

Searches for node ‘avewind’ within the parent node, as

defined earlier within the previous NodeList.

mp.getTextContent contains the average

wind speed generated by Wunderground.

29

URL AlertXml = new URL("http://api.wunderground.com/api/205f2bb905cf8536/alerts" +

location + ".xml");

Toolkit.getDefaultToolkit().beep();

PrintWriter writer = new

PrintWriter("C:\\...\\temporaryFiles\\outputTweetsWeatherAlertsRefined" + unique +

".txt");

The code’s execution rate is heavily dependent on both the number of elements in the array

and the internet connection speed. When this section has been completed, the program

proceeds to the ‘getAlert.java’ class which is used in determining if a weather alert is active

for a given Tweet location. Whilst it may seem inefficient to search for this after gathering the

previous data, it is a necessary step in the system process due to the fact that alerts are only

capable of being determined by querying the nearest weather station directly (data which is

gathered from the previous filtering.java class at the same time as the other queries), rather

than by coordinates directly.

The first task that the getAlerts.java works on is ensuring that all tweet information is ‘clean’

by performing conformity checks and performing changes to the data format if required. This

is necessary due to data being sourced from many different organisations, depending on the

data’s country of origin – the UK Met Office’s data layout is different to that of Météo-France’s

for example.

The algorithm will then perform the following URL query, with the variable ‘location’ being

the unique identifier of a Tweet’s nearest meteorological weather station.

This station ID is often that of an airport or large governmental/military complex, and takes

the following 16-digit form: zmw:00000.283.03779. This is known as a World Meteorological

Organization (WMO) identifier – a universally adopted standard that helps to provide world-

wide interoperability for this filter.

If a tweet is found to be of interest, the program outputs a system ‘beep’ to signify the finding,

and the tweet’s elements are stored in a unique temporary text file through appending the

appropriate variables to a file created through executing the following code:

Additionally, all database JSON data stored on that particular file is copied from the database

and into the Tweet file through the ‘readFile.java’ class. I decided to include this data so that

in the event of any kind of database error, the potentially crucial information that had been

recorded could still be found in the temporary files directory - until a system reset is

performed which removes these files.

30

File file = new File("C:\\...\\temporaryFiles\\forpopUp1.txt");

boolean exists = file.exists();

if (!exists) {

nothingToReport.add(new JLabel(" No Tweets of interest found "));

ScheduledExecutorService s = Executors.newSingleThreadScheduledExecutor();

s.schedule(new Runnable() {

public void run() {

nothingToReport.setVisible(false);

nothingToReport.dispose();

}

}, 3, TimeUnit.SECONDS);

} else {

popupBox notify = new popupBox(counterForpopupBox, 400, 100, 1);

}

After this operation has been completed for each tweet, the system will search the temporary

files directory for the file ‘forpopUp1.txt’. If a tweet of interest has not been found then this

file will not be present, and so the system will display a notification informing the user that

no tweets of interest have been found. If the file is found, then the class ‘popupBox.java’ is

executed, and the system passes necessary arguments, such as the number of tweets found,

to this next class.

The class ‘popupBox.java’ then displays the retrieved information in a new window, as

described in the ‘Design’ section and again displayed below.

If file doesn’t exist, show popup box via a new thread

informing the user that no tweets of interest were found.

If file does exist then proceed to

popupBox.java class.

Display popup for three seconds

before removing.

31

frame.setTitle(alertRatingLine);

frame.setLayout(new GridLayout(5, 1));

TextArea textArea = new TextArea("", 10, 20);

frame.add(new JLabel(alert));

frame.add(new JLabel("Tweet: " + tweetText));

frame.add(new JLabel("Tweet Sentiment Score: " + sentimentScore));

frame.add(new JLabel("Location: " + locationText));

frame.getContentPane();

frame.add(infoButton);

frame.pack();

if (alertRatingLine.equals("Alert Rating: Green") || alertRatingLine.equals("Alert

Rating: Grün")) {

frame.getContentPane().setBackground(Color.GREEN);

frame2.getContentPane().setBackground(Color.GREEN);

Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();

frame.pack();

frame2.pack();

frame.setVisible(true);

} else if (alertRatingLine.equals("Alert Rating: Yellow") ||

alertRatingLine.equals("Alert Rating: Gelb"))

{

 ...

}

Tweets of Interest

The class popupBox.java is responsible for displaying notable data in an easy to read format,

querying other APIs with the stored data, and recording any new data into the existing

database. It has to be modular in the sense that there will often be multiple Tweets being

displayed simultaneously, and if the user clicks to view information such as location info, a

map for the location of that particular Tweet must be presented, whilst keeping other Tweet

processes in view and ready to be processed as well.

The majority of the GUI layout and presentation code was covered in the interim report for

the basic and advanced views, and whilst a number of amendments have been made since

then, the overall operation has not changed and so will only be briefly commented on in this

section.

The basic user interface is generated with the following code, which should be relatively easy

to comprehend.

The code will then set the background colour of the Jframe, depending on the alert rating for

the Tweet location. Due to the alert data being sourced from multiple countries it is necessary

for the program to translate alerts from different languages, as shown below with the system

checking for a ‘Green’ alert with the German equivalent ‘Grün’.

32

The code that performs the webcam search and satellite imagery was covered in the interim
report. I will now summarise the additional analysis options added since then to the advanced
view shown below. The actual code for these operations (found in the popupBox.java class)
is adequately commented for a developer to follow if required.

 Tweet Location and Traffic Map

The system will query Google and Microsoft Bing maps, using the latitude and longitude

values as variables within the URL request address.

 Current Flickr Photos

This feature operates by utilising the Yahoo Flickr API Reference 9, using the Tweet location

as a variable (gained through the previous Wunderground.com query), and returning the

most recently uploaded image. The API is however more complex in its operation, as only

the photo ID value is initially returned. In order to retrieve the image automatically

without requiring the user to manually search Twitter, the system will use this photo ID

as a key in another API request in order to return the server farm that the image is stored

on in Flickr’s database of images, and gain a variable titled by Flickr as ‘secret’. Only with

this ‘secret’ variable can the image actually be returned through a final third API call.

 Historical Flickr Photos

This is a similar operation to the summary above, but using a user-defined date in the

original query instead of searching for the most recently uploaded.

 News Articles

This operation queries Feedzilla.com via their developer API and returns news articles that

contain the tweet location anywhere in either the title or the text of the article.

33

Default columns & rows value

for text area.

final JTextArea textArea = new JTextArea("Comments:", 10, 20);

JButton submitTextButton = new JButton("Submit Note");

...

submitTextButton.addActionListener(new ActionListener() {

 ...

dialog.add(new JLabel(" Note stored successfully "));

}

 Add / Edit Note

This code works by firstly creating a new Jframe window, and then (depending on whether

a note had previously been added), will fill the text edit area with the previously-made

comments.

 Export as Text / XML file

This saving function utilises the Java Document Builder feature, and appends variables

directly to a file for the text version, and via a more sophisticated element & node layout

for the XML version.

Confirmation of the note save command is
displayed after clicking ‘Submit’ within the
note window.

Checks to ensure the user has

entered a filename.

String userInput = JOptionPane.showInputDialog("Save file as...", locationForNews);

if ((userInput != null) && (userInput.length() > 0)) {

xmlSaveName = userInput;

}

Document doc = docBuilder.newDocument();

Element rootElement = doc.createElement("Tweet");

doc.appendChild(rootElement);

Defaults to tweet location as a

save name suggestion.

Saves element stored in ‘rootElement’ as a child to its parent’s root node.

34

Desktop.getDesktop().open(new File("C: ... \\storedDataSets"));

Runtime.getRuntime().exec("TASKKILL /F /IM mongod.exe")

System.exit(0);

Process proc = Runtime.getRuntime().exec("C:\\mongodb\\bin\\mongod.exe");

Thread.sleep(100);

proc2 = Runtime.getRuntime().exec("C:\\mongodb\\bin\\mongo.exe");

Mongo = new Mongo("localhost", 27017);

DB db = mongo.getDB("test");

DBCollection collection = db.getCollection("tweets");

analyseButton.setBackground(Color.GREEN);

disconnectButton.setEnabled(true);

analyseButton.setEnabled(true);

Miscellaneous Features

 Main GUI – Show Stored Files

The code required for this operation is relatively easy to understand, and results in the

operating system’s default file explorer opening at the specified directory:

 Main GUI - Close Application

Along with simply closing the application, this button will also disconnect from the

database and ‘kill’ that system process in order to save resources for the user.

 Main GUI - Connect to Database

Will search for the process ‘mongod.exe’ as a running

process, and ‘kill’ it if it is found. This is the process

that connects the application to the database.

The 0 in the brackets is used for

debugging purposes, and indicates a

successful and planned system exit.

These commands will enable the ‘analyse’ and ‘disconnect’ buttons only when

the processes are running, as both require an active database connection.

This will ensure that the processes ‘mongod’

and ‘mongo’ are running – both are required

for a connection to the database.

Connects to Mongo Database, located on the

local host (port 27017), and then finds the

collection ‘tweets’ within the database ‘test’.

35

final JFrame mapFrame = new JFrame();

mapFrame.addWindowListener(new WeatherAlertFrameClose());

mapFrame.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);

URL europeMapURL = new URL("http://icons-

sf.wunderground.com/data/640x480/2xeu_severe.gif");

ImageIcon image = new ImageIcon(europeMapURL);

JButton keyButton = new JButton(" Key ");

mapFrame.add(keyButton);

mapFrame.add(new JLabel(image));

mapFrame.pack();

 Main GUI - Weather Alert Map

 Main GUI - Dynamic Status Indicator

The code for the status indicator that details information such as if a database connection

has been established, or if a tweet of interest has been found, operates under a process

of elimination. The system first checks if a Tweet has been found – if it has, then it displays

the appropriate status. If not, then it will check for another status and only stop checking

when a status has been determined. There is no possible system status that is not

represented by one of the conditions below in the system hierarchy check.

The WindowListener allows for later detection of

window closure – for appending details to the

audit trail.

Stores the image URL as a URL variable.

Converts the URL variable into an image.

Adds the ‘Key’ button and alert map image to the

window.

Tweet
Found

Searching
for Tweets

System
Ready

No
Internet

Connection

No
Database

Connection

Database
Empty

36

URL url = new URL("http://www.google.com");

HttpURLConnection urlConnect = (HttpURLConnection)url.openConnection();

Object objData = urlConnect.getContent();

} catch (UnknownHostException e) {

e.printStackTrace();

return false;

}

catch (IOException e) {

e.printStackTrace();

return false;

}

return true;

The program checks for an internet connection by executing the following code by attempting

to access http://www.google.com. If an error is returned then an internet connection is

deemed to be unavailable, else the code will return true. This code is clearly dependant on

Google’s homepage being active, however if in the unlikely event that Google was

unreachable, the system would still operate as normal - it would just produce the ‘No Internet

Connection’ system status error.

The string in the popup box triggered by the user clicking on the system status box (as

explained in the Design section), is also created and changed at the same time through the

use of a simple actionListener.

 Saving

The save feature will combine all collected information, including user added notes, and

store them in a correctly-formatted file such as the XML example output below.

37

int confirmed = JOptionPane.showConfirmDialog(null,

"<html><p align=center><u>title</u>

text1
text2 </html>", "User

Confirmation", JOptionPane.YES_NO_OPTION);

if (confirmed == JOptionPane.YES_OPTION){

File f2 = new File("C:\\Users\\Steven\\Documents\\University\\Year 3\\Project

Code\\Tests\\temporaryFiles");

 String[] myFiles;

 if(f2.isDirectory()){

 myFiles = f2.list();

 for (int i=0; i<myFiles.length; i++) {

 File myFile = new File(f2, myFiles[i]);

 myFile.delete();

 }

 }

 Main GUI - Reset Button

The reset button will (after a user ‘confirmation’ popup box is displayed and accepted),

remove all Tweet entries from the database, and delete all stored temporary files. The

following code displays the key elements necessary in completing this action.

Navigates to the directory

‘temporyFiles’, and

sequentially deletes each file.

found.

Displays confirmation box – only

proceed if ‘Yes’ option selected.

38

PrintStream auditOut = new PrintStream(new

FileOutputStream("...\\security\\AuditTrail.txt",true));

System.setOut(auditOut);

java.util.Date date2 = new java.util.Date();

System.out.println(new Timestamp(date2.getTime())+ " - System Reset");

auditOut.close();

Security.main(null);

FileInputStream fis = new FileInputStream("...\\security\\AuditTrail.txt");

FileOutputStream fos = new FileOutputStream("...\\security\\encrypted_Audit_Trail.txt",

true);

encrypt(key, fis, fos);

File file = new File("...\\security\\AuditTrail.txt");

file.delete();

public static void encrypt(String key, InputStream is, OutputStream os) throws Throwable

{

encryptOrDecrypt(key, Cipher.ENCRYPT_MODE, is, os);

}

Security

Each time an event occurs that is recorded in the audit trail, the following code is executed

(following the action itself is performed, for efficiency purposes).

The (unencrypted) file AuditTrail.txt file is created and populated with the above text, and is

then subjected to the following code, within the Security.java class.

Text describing event.

Generates times stamp.

Executes Security.java

class.

Take previously created

AuditTrail.txt as input file.

Deletes previously created

unencrypted file.

This function computes the encryption,

utilising DES (Data Encryption Standard).

See full code upload for further details.

Set encrypted_Audit_Trail.txt as new output

file. ‘true’ indicates that new data will be

appended to the file, rather than replacing it.

39

String userInput = JOptionPane.showInputDialog("Enter Decryption Password");

SecurityDecrypt.main(null, userInput);

Desktop d = Desktop.getDesktop();

d.open(new File("C:\\...\\security\\AuditTrailDecrypted.txt"));

Thread.sleep(1000);

File file = new File("C:\\...\\security\\AuditTrailDecrypted.txt");

file.delete();

I believe that the DES encryption method used is currently sufficient for this version of the

software. Should the system be developed further and rolled out to real-world organisations,

a more secure encryption method – for example one of DES’s successors Triple DES, should

be used. I used DES as it was relatively simple to implement as a means of showing that the

application is capable of such features, and whilst not as sophisticated as some other

methods, is still relatively secure for most use case scenarios.

The outcome of the security element of the code is that there is one file

(encrypted_audit_trail.txt) that remains on the system within the project ‘security’ directory.

The only way to legibly access this file is via the application through entering the correct

decryption password (as shown in the Design – Security section). The code for this user input

box is displayed below.

The decrypted file is only present on the machine for

a short period (to allow time for the operating system

to open the file), and is then immediately deleted.

This ensures that the only way the decrypted file can

be retained is through a direct user saving action

within the default text file reader application.

The ‘userInput’ variable is set to the password that

the user entered, and is sent to the

SecurityDecrypt.java class to be used as the

decryption key. If the correct key is sent, the file

‘AuditTrailDecrypted.txt’ will be decrypted, else it will

remain encrypted.

The third line simply ensures

that the operating system’s

default .txt application is

used to open the text file.

File.delete() will delete the file completely,

bypassing the operating system’s recycle bin.

40

If a user tries to access the file outside of the application, they will be shown the following

illegible encrypted document.

If the user enters the correct decryption password, the audit trail will be displayed to the user,

as shown below.

Another security feature that I have included in the application is the generation of an MD5

hash of every saved file, and saving this checksum value to the audit trail. This would be useful

if for example the authenticity of a saved file was to come into question – cross referencing

the file’s MD5 hash value with the value in the encrypted audit trail would confirm or deny

any allegation that a file had been modified after the initial save. The Java class ‘MD5.Java’ is

the class in which the computation is performed, and the key operations are performed using

MessageDigest. Reference 10

41

ScheduledExecutorService s = Executors.newSingleThreadScheduledExecutor();

s.schedule(new Runnable() {

public void run() {

...

}

}

Difficulties Encountered

In this subsection I will detail a number of problems I encountered throughout the

development phase, and attempt to convey how I overcame these issues. This could either

be through using an alternate method of thinking in order to solve the problem directly, or

an attempt to change the problem itself into a more easily manageable one.

The primary and reoccurring problem that I encountered with regard to the user interface,

was that of the Java GUI Event Dispatcher. The Event Dispatcher Thread is the thread on which

non thread-safe Java Swing Events are managed and executed on, and without correct

planning can result in a variety of irregular glitches, crashes and other unexpected behaviour.

I faced problems with this aspect of Java whilst I was designing the updated GUI, when I

wanted to implement a number of advanced features such as the dynamically updating

system-status images, along with retrieving and displaying information from a live and

changing database. To further complicate matters I intended for these actions to be occurring

at the same time as when the user was performing other tasks in a multitude of other GUI

windows, each containing unique actions and variables which the system would have to

process simultaneously.

Implementing a reliable GUI with as many different elements as this, all integrated so closely

together, was a difficult and time consuming challenge. After a large amount of research and

trial & error I eventually began to make progress by utilising Java executors, scheduling,

‘runnable’ commands, Swing workers and event queues that are only invoked when explicitly

specified. Some of the code extracts below demonstrate how I used these relatively complex

methods in order to achieve the current GUI, which did eventually solve the problems I had

been encountering.

This code extract guarantees that the task to be executed will not use more than one thread,
and so helps to contain certain elements and keep them away from other aspects of code
which it could otherwise interfere or be interfered with.

42

Runnable r = new Runnable()

{

public void run()

{

...

}

EventQueue.invokeLater(r);

System.setProperty("java.net.preferIPv4Stack", "true");

- Djava.net.preferIPv4Stack=true

Another problem I encountered that was very time consuming to solve, was an error in which

occasionally and seemingly randomly the GUI would simply not return a requested image such

as the weather map or Flickr images via a URL request. If I closed and re-launched the

application, the button would then work. This issue persisted for a number of months during

development, as I found it impossible to recreate the problem to properly debug it.

Eventually, through extensive research, I discovered that the problem was related to Java

trying to connect to an IPv4 Internet IP via IPv6, and would occasionally fail to connect and

subsequently ‘hang’ on returning a URL ImageIcon. Fortunately there was a simple one-line

solution, displayed below.

This is equivalent to inputting the following text directly into a command window, and forces

Java to use IPv4 rather than IPv6.

This simplified code extract keeps all JFrames displaying correctly simultaneously. Without this

code, when updating one JFrame all others would become inactive, unresponsive and ‘greyed out’

which was both aesthetically unpleasing and functionally inefficient.

43

Demonstration & Evaluation

As there is a wide range of potential uses for a project of this nature, I have decided to

demonstrate two different use case scenarios of varying scale. Firstly, I will exhibit the large-

scale analytical possibilities that the system is capable of on a national and even international

level. I will then perform a medium-scale analysis in order to showcase the type of

functionality that enables extensive monitoring of a situation, event or even a particular

person. I believe that this evaluation method will help to validate the relevance of the system,

with particular emphasis on illustrating how versatile the application is.

Large-scale demonstration: Political Analysis

I was aware from the project’s beginning that recording large amounts of Twitter data at

times of national or global interest could be beneficial for later analysis. As such, I decided to

capture a significant amount of data on the US Presidential Election on November 6, 2012. I

believed that this could provide me with interesting analysis opportunities in the future, and

I will now discuss my findings after post-processing the results.

Background Information

The two major US presidential candidates were the incumbent Democrat Barack Obama, and

the Republican contender Mitt Romney. It was largely accepted that the US state of Ohio

would be a key voting state that would likely indicate who would win the election across the

rest of the USA. The final results are displayed below, and they show that Ohio was indeed

representative of the rest of the USA’s overall vote, as the differences are within 0.6% of the

national average for both candidates.

Candidate National Vote Share Ohio Vote Share

Barack Obama 51.1% 50.67%

Mitt Romney 47.2% 47.69%

44

In total I harvested 5584 tweets from 8:46pm – 10:54pm EDT local time (01:46am – 03:54am

GMT), applying four different filters, as displayed below.

Time (EDT) Location Criteria Tweets recorded

20:46 – 21:01 Ohio All tweets 1409

21:05 – 21:10 Ohio Keywords ‘Mitt’,
‘Barack’, ‘Romney’,

‘Obama’

472

21:22:05 – 21:22:55 All states Keyword ‘Election’ 786

21:35 – 22:54 Ohio All Tweets 2917

My hypothesis was that the number of Tweets for the Republican & Democratic candidates

would not be in line with the final result. My justification for this prediction is based upon the

statistically founded differing characteristics of the two political party’s different voting

groups. I have gathered a number of statistical comparisons on voter demographics and

displayed them below.

Republican & Democratic voter Demographics

Characteristic Republican Democrat Difference
(Republican to Democrat)

Average Age 50 years 47 years + 3 years

Male 51% 41% + 10%

Female 49% 59% - 10%

Ethnicity: White 87% 55% + 32%

Ethnicity: Black 2% 24% - 22%

Reference 11

45

Twitter User Demographics

Twitter Usage Demographics

 Male

Female

Total average Tweets per
user

567 Tweets 610 Tweets

Reference 12

Characteristic

Users

Age: 15 – 25 73.7%

Age: 26 - 35 14.9%

Age: 36 - 45 5.5%

Age: 46 + 5.9%

Male 47%

Female 53%

Ethnicity: White 39%

Ethnicity: Black 61%

46

Analysis

I believed that the statistics above would surely result in an overrepresentation of pro-

democrat supporters. Every category detailed, including age, gender and ethnicity, suggests

that there would be a strong link between Democrat voters and their presence on Twitter.

For example, it is reported that there are 18% more female Democrat voters than there are

female Republican voters. This, coupled with the statistic that 53% of Twitter users are

female, and that on average female users tweet more than their male counterparts, would

suggest a more vocal Democrat collective Twitter ‘voice’.

The pie chart below is displaying the keywords found in all 4326 Tweets harvested from Ohio,

which had no keyword filter applied to the initial data gathering. Whilst it was encouraging to

see that even without any keyword filtering the election was still clearly the major topic of

conversation on Twitter, I was surprised that ‘Romney’ was the most tweeted keyword for

this 94 minute harvesting period.

As this was not the result I had expected, nor one I could explain, I decided to analyse the

data sample further to try to find a logical explanation. Through performing sentiment

analysis on each of the Tweets via the Tweet harvesting program, I produced the chart on the

following page showing the average overall positive, negative and neutral connotations for

the harvested Tweets.

47

This still however did not explain why the results were not in line with both my initial

hypothesis, and the actual Ohio election result. Through inspection of the sentiment analysis

computation however, I realised that the election-related words ‘win’, ‘wins’ and ‘winner’

were improperly skewing the result and making the average Tweet connotations appear more

positive than they really were. As such, I removed these keywords from the AFINN list used

for the semantic score computation, which resulted in the graph below.

This result logically complemented the first keyword pie chart, and was the first scientific step

that lead towards my final conclusions detailed later in this section.

48

My next step was to again analyse the keywords and semantic sentiment score of the tweets,

but this time with sensitivity to the point in time they were captured. The first bar chart below

is a representation of the three Ohio datasets, and shows the changing frequency of keywords

‘Obama’ and ‘Romney’ in harvested Tweets as the election night progressed. The bar chart

shows that Twitter conversations discussing Romney (the eventual looser in the presidential

race) was initially higher than that of his competitor, however as the event progressed the

topic of conversation reversed and Obama was the most Tweeted topic.

The next bar chart is displaying data I gathered from the historical archives of Betfair, the

world’s largest betting exchange Reference 13. This data shows the fluctuation of decimal odds

over the period that my Tweets were harvested. The further below 2 (or ‘evens’) a decimal

odds value is, the more likely an event is deemed to occur. Conversely, odds higher than 2 are

deemed unlikely to occur, with a rising value indicating a further decreasing probability.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

20:46 - 21:01 21:05 - 21:10 21:35 - 22:54

O
C

C
U

R
EN

C
E

IN
 T

W
EE

TS

TIME OF HARVEST (EDT)

Frequency of Keyword in Tweets
Romney Obama

1.22 1.29 1.32 1.34 1.29 1.21

6

4.5
4.1 3.9

4.4

5.1

0

1

2

3

4

5

6

7

09:36:00 21:06 22:04 22:48:00 19:12:00 00:00:00

D
EC

IM
A

L
O

D
D

S

TIME (EDT)

Historical odds of Election betting
Obama Romney

49

As you can see, over the first 13 hours of Election Day the odds for Romney to win decreased

while Obama’s increased, therefore indicating that the markets were gaining confidence in

Romney’s potential to win the election. However later on into the evening this odds trend

reversed, and by midnight the markets were almost unchanged from where they had begun

that morning. I believe that this information is useful in analysing why we saw the reversal in

discussion topics between Romney and Obama, as I will explain below.

Collectively and as a result of the above analysis, I have concluded that my initial hypothesis

was an oversimplification of the data, whereby I predicted that as there should statistically

speaking be a higher proportion of Democratic (Obama) supporters on twitter, that there

should also be more tweets containing the keywords Obama and Democrat. On the contrary,

I found that in my sample of tweets there was actually more conversation about Romney,

however interestingly the majority of this discussion was semantically marked as containing

negative connotations.

This unexpected outcome made me eager to research the topic of Twitter user’s posts

globally, and whether on average all Tweets across Twitter were generally positive or

negative, and to what degree. This led me to discover a number of recent academic journals

on the subject, including most notably the paper ‘Semantic Sentiment Analysis of Twitter’,

written by Hassan Saif, Yulan He & Harith Alani from the Open University Reference 14. They

analysed much larger Tweet samples and came to the conclusion that generally Twitter users

are more likely to Tweet about things they don’t like than things they do, particularly when it

comes to politics (interestingly, they conducted one of their research samples on the 2008 US

Presidential election where they found that there was on average 1.5 times as many negative

tweets as positive ones).

The combination of my own findings, which are consistent with other studies such as the

Open University paper detailed above, has led me to the following overall conclusion:

My sample of Ohio US Election night tweets, which should be a strong indication of overall US

sentiment due to the similarity of results there and across the nation, shows that Twitter users

are more likely to discuss and comment on subjects or ideologies that they disagree with,

rather than simply harmonizing with similarly-minded Twitter users on topics they do agree

with. Additionally, in this example there also appeared to be a relationship between a section

of society’s political beliefs/ideologies, and their resulting activity on Twitter when it

appeared to be coming under threat. This is suggested by the increase in negative Romney

tweets as he was (according to the markets), making progress toward beating Obama, and an

almost immediate reduction in the number of such Tweets once the markets (linked strongly

to news coverage) had changed and were again predicting their own political/ideological

leader’s victory.

50

Medium-scale demonstration: Event Monitoring

To demonstrate the system’s monitoring and live analysis capabilities on a real-world event,

I decided to monitor proceedings occurring on Wednesday 17 April 2013 for Baroness

Thatcher’s funeral in London. I chose this event as I believed that there would likely be a large

amount of Twitter conversation surrounding the event due to the strong divisive views that

many of the public hold regarding her policies when in office. Additionally the event will be

widely televised, and so any information that I gain should be verifiable by various reputable

sources.

I was not sure how successful the investigation would be, however with information such as
live webcams, news articles, traffic reports, regular Flickr images and the geographical
mapping of positive and negative tweets at my disposal, I believed that it would prove to be
at the very least an interesting showcase of the system’s real-time monitoring ability on a
national event.

Background Information

Baroness Thatcher was the first female British prime minister, serving from 4 May 1979 – 28

November 1990, and passed away on the 8 April 2013, aged 87. She is widely regarded as a

deeply divisive political figure, and her public ceremonial funeral that took place on 17 April

2013 was expected to be viewed by millions around the world. The event is due to be very

controversial for a number of political reasons, and as a result of the Boston marathon

bombings just three days before, security surrounding the event is expected to be very high.

Preparation

As the procession through London was planned to last just 19 minutes I had to ensure that I

was fully prepared for the analysis. My plan was to monitor the situation in London

throughout the period, and use my system to alert me to any potentially interesting tweets. I

achieved this by modifying the filter alert of the system from weather alerts to instead detect

predefined tweet keywords. The keyword comments that have been rated as containing

either strongly positive or negative connotations would then be displayed.

Keyword Reasoning / Explanation

Thatcher

Maggie

Margaret

Funeral

Protest

Respect

Tory Slang for Conservative

Witch Protestors have been known to call Thatcher a witch

Riot Small but nonetheless present potential for riot

51

Police

Kettle A police strategy of controlling protestors

Kettling Verb of above

Strike

Milk Reports of protester plans to throw milk

Coal Reports of protester plans to throw coal

Great

Greatest

Prior to the day of the funeral, I researched the exact roads that would be used and searched

for any publically accessible webcams along the route. Following are two images - firstly of

the official planned route, and secondly of a map displaying known webcam locations in the

area.

1

2

3

4

5

52

In total there are five webcam locations along the route that should prove useful, with two

webcams at Trafalgar Square (location 2). Whilst this isn’t as many webcam feeds that I would

have liked along the procession, I am aware that there may be areas of interest throughout

other parts of London (from for example a protest group rally), and so I may be alerted to

interesting tweets from other areas with additional cameras. In the analysis section I will refer

to webcam locations by the ID numbers I have assigned above.

Analysis & Event Diary

On the morning of the funeral the first thing I did was

proceed to check the availability of the above webcams.

Unfortunately all of the above marked webcams, along with

the vast majority of surrounding ones, were all unavailable

and instead displaying the message shown to the right. This

was a disappointing problem that was out of my control, as

confirmed by the ITV news article ‘Thatcher funeral security

tight’ Reference 14, whereby information on security measures

such as the monitoring of London cameras were detailed.

Interestingly one of the images shown in

the article was actually my above-marked

‘Camera 5’, so whilst it was frustrating that

I could not gain access to the camera video

feeds, it was reassuring to know that the

cameras I had chosen to monitor closely

were the very same that the Metropolitan

Police’s ‘Specialist Operations Room’ were

monitoring.

My next step was to determine the weather outlook for the area, which I performed by

loading into the system a generic tweet from the area and selecting the ‘Animated Satellite

Imagery’ option in my application. From this I discovered that there were large rain clouds

over London, and so periodic rain was likely. This again was a disappointment as I believed

that the turnout of onlookers - both those there to pay their last respects and those there to

protest, would likely be comparatively lower than if it was a warm and dry morning.

Camera 5

(Ludgate Hill)

53

The event officially began at 10:00am, and the slow military procession to St Paul’s Cathedral

was due to begin at 10:31 and arrive at 11:00. In total I made three separate tweet harvests,

with the first collection occurring between 10:06 and 10:11. The twitter harvest filter was set

to only receive tweets from within the area shown below, and no additional specified

keywords were added to the filter at this stage.

In total 106 tweets were recorded in this five minute period, suggesting that there was a new

geo-tagged tweet being created every 2.83 seconds. However, the fact that officially only

10.3% of Tweets are geo-enabled Reference 15, and that the Twitter live stream API will limit

popular topic requests to a maximum of 1% of total Twitter conversation, I can estimate that

the actual number of tweets in this period was around one thousand, therefore giving a true

rate of around 3 tweets per second in the area.

54

The filter for my analysis application was set to display tweets containing messages of non-

neutral sentiment. I will now describe some of the more interesting tweets that were brought

to my attention via the program.

Tweet text: “Mixed reception @ Ludgate Circus, protestors chant “what a waste of money”,

“get a job” comes reply from offices above”

Time of tweet: 10:04

Tweet text: “At Ludgate Circus. Pavements rammed. Anti-Thatcher protestors one side,

Falklands veterans the other. But mostly people who are neither.”

Time of tweet: 10:08

These highlighted tweets of interest are promising, as my system detected them at 10:04 and

10:08, and only at 10:11 did the BBC report the following: Reference 16

If the system had full access to the webcams at Ludgate Circus as it normally would, I could

have immediately and visually verified this information up to seven minutes before the BBC

reported it, and without having a correspondent ‘on the ground’.

55

From 10:18 – 11:00 I harvested Tweets with the same filter of being within the predefined

area, and had the system alert me to tweets with positive or negative sentiment. In this period

I recorded 870 tweets, giving a geo-tagged tweet per second rate of 2.89 per second – this is

almost identical to the first harvest’s rate. The figure below shows the sentiment timeline of

these 870 tweets for the 42 minute period.

The overall average sentiment score of Tweets for the funeral was overwhelmingly positive,

with the only period of consistent overall negative sentiment being between 10:43 –

10:47am. This result intrigued me, and after watching a recording of the funeral back, I

realised that this happened to be the four minute period of the event where the Queen

arrived and entered into St Paul’s cathedral, and so I decided to analyse further to discover if

there was a connection.

I analysed the content of negative Tweets in this period, however I found that they did not

appear to make comment on the attendance of the monarch more so than any other section

of the hour. In actuality, I discovered that the reason for the recorded negative sentiment was

not due to an increase in negative tweets, but rather a decrease in positive ones. My theory

is that perhaps this could be linked to mourners, observers and other non-protestors wanting

to saviour the moment of seeing the Queen instead of tweeting, however I have no conclusive

evidence to prove or disprove this observation.

56

The map below is a visual representation of where each of the 870 London-area tweets

originated from. As you can see the most densely populated tweet areas are along the funeral

route (represented by the orange line), as would be expected.

Just after the procession finished at 11:02, I recorded a further 2000 tweets with the keywords

outlined in the table on pages 50-51. I did not perform real-time analysis on these tweets as

they originated from across the globe and were harvested regardless of if they had geo-data

present or not. The most distant tweet from Britain came from user EugeneH67 from

Brisbane, Australia, who said ‘#auspol Baroness Thatcher dedicated her life to serving Britain

whilst Juliar dedicates hers to serving herself!!’, likely referring to the Australian Prime

Minister Julie Gillard.

I have included a number of screenshot images on the following pages that I captured whilst

performing the analysis, which illustrates how I believe the system would be put to best use

for monitoring events such as this.

57

I was alerted to the tweet on the right of page, and was at this point making a note in the

comment box (visible at the top left of the screen), stating ‘A few boos at 10:37, overall very

positive though’. The tweet text was ‘Saw just the one protestor around Parliament St earlier.

Polite applause as #Thatcher hearse passed. Crowds four or five deep.’

I did manage to very briefly gain access to the two Trafalgar square cameras at 10:16am and

10:26am, after being alerted to a tweet reading ‘more police than public at Traf Square!’. As

you can see from the rightmost image there was indeed a large police presence, and whilst

these still images do not convey it clearly, there was no sense of protest or any other

unexpected activity at the time the webcams were live.

58

In this screen capture taken at 11:09 I was searching for any locally uploaded Twitter photos,

and the image of St Paul’s Cathedral was returned.

These are two google map

images that I generated at

10:50 showing the

location of webcams in

both images, and

additionally a live traffic

overlay on the right image.

59

Real-world Usage

Throughout the summer of 2012 (before starting the project), I worked for the Member of

Parliament for Kingswood, Chris Skidmore MP, and during this time I discussed at length with

him my plans for the project. Whilst the project has evolved considerably from these initial

discussions, he was nonetheless intrigued in finding out how he could make use of the

software to increase his team’s efficiency in campaigning and other related activities. I

presented the system to him over the Christmas period and he was very interested in its

capabilities. Since then he has informed me that his team have used the prototype system

that I supplied them with a number of times in order to gauge public opinion at events that

Mr Skidmore has spoken at.

He plans to have his team use the program again at the upcoming political local elections on

2 May 2013, and so I am looking forward to hearing of how he utilises the updated program

this time. Whilst it will unfortunately be too late to include information on his feedback in this

report, I am nonetheless proud that I have managed to develop a system with a real tangible

use.

60

Future Work

I believe that there is a very large number of potential features that could be added to the

application, particularly when considering the modular nature of the filter stage where

changes that modify the entire search algorithms of the database could be changed. However,

I have also outlined a number of features that I feel could add value to the system, some of

which I began to research and implement myself, but could not complete due to the time

constraints of the project.

 Radio API Implementation:

I spent a considerable amount of time researching possibilities of how I could develop

a feature that would immediately and reliably begin playing (or at least provide a user

with a list of and links to) nearby radio stations to the tweet location. This would

provide the user with another form of information gathering which could be listened

to whilst performing other analysis activities as an additional and concurrent sensory

information source. For example, if a user was interested in finding out why there was

an unusually large number of people tweeting about being stuck in Cardiff, then a

quick connection to a local radio station detailing traffic information could quicken the

user’s decision to check webcams along a particular motorway to find out the cause

of the delay.

I found that there was very little support for development of location-based

automated radio stations, which I was initially surprised at. I did begin to develop a

rudimentary solution which involved querying the site www.radiofeeds.com, and

modifying the request URL as appropriate for a location (for example,

http://www.radiofeeds.co.uk/query.asp?feedme=bristol). From here my solution

would then search through all text on the page for the string ‘Listen Live’, and attempt

to access a feed this way. This was of course a very inelegant, inefficient and unreliable

process, so I decided not to include it in the final code of the project. I have very

recently discovered an Android Application titled ‘Scanner Radio Pro’ Reference 17, which

appears to offer similar functionality to that which I require. Whilst there is no

documentation on how the developers gain access to these radio streams, it is

nonetheless promising and suggests that with further research and development, a

solution may be possible.

61

Mongo m = new Mongo("localhost", 27017);

DB db = m.getDB("test");

DBCollection coll = db.getCollection("tweets");

 Betfair API implementation:

Betfair (the world’s largest betting exchange) has a sophisticated API that can be used

to monitor a large variety of betting markets, ranging from traditional sports to

political events across the world, such as the US election where I demonstrated the

potential uses of Betfair’s historical data. I believe that having real-time access to

information such as this could help provide further analytical opportunities to gain a

clearer outlook on a particular tweet of interest, and could provide supporting

evidence for a range of investigations which can be measured quantitatively with

precise timing information.

 Google Maps Street View Implementation:

This feature would be relatively easy to implement, as it would just require taking the

respective coordinates from a Tweet, and inserting them into a string that a button

press would take as a link and direct the user to via their browser. The format would

appear as follows:

https://maps.google.com/maps?f=q&q=”latitude”,-

“longitude&t=k&ie=UTF8&ll=”latitude”,-

“longitude&spn=0.001627,0.004849&z=18&layer=c&cbll=”latitude,-

“longitude”&panoid=n-BlkcbnAChlU3KO5yI_Qg&cbp=12,152.93,,1,6

This would then take the user directly into Google Street View mode at the exact

location (or as close as possible) to the Tweet origin location. The only reason this has

not been implemented is due to time constraints, and a focus on attempting to

implement other features such as the effective saving & loading mechanism.

 Remote database access:

Due to Mongo Database’s interface with Java, it should be relatively easy to access a

non-locally-stored database on a host machine that numerous clients could access.

This would be achieved by modifying the current database connection Java properties

in the code shown below to appropriate values.

62

 Geographical Markup Language Support:

I believe that it would be both a useful and relatively simplistic task to modify the XML

saving feature to enable a GML-supported (Geographical Markup Language) saving

option. This would enable interoperability with numerous other software services such as

KML mapping software, and CityGML (used in creating mapping 3D models) as GML is a

universally-recognised markup language Reference 19. GML’s format is similar to that of XML,

and for clarity and material for any future developer, I have created a GML adaptation of

an example of the system’s current XML output, that I feel would be appropriate to be

outputted from the system.

<Data:Tweet gml: id=”284786336509091840”>

 <Data:name> “username” </Tweet:name>

 <Data:when> “date” </Data:when>

 <gml:location>

 <gml:Point srcName = “Another day another $$$ #work”>

 <gml:coordinates>

 51.508360

 -0.162952

 </gml:coordinates>

 </gml:Point>

 </gml:location>

</Data:Tweet>

 HTTP Compression:

I have conducted a small amount of research into HTTP Compression when searching

for ways to further optimise the program, and believe that if implemented correctly it

could have a noticeable impact on system performance when performing network

queries.

XML

GML

63

Conclusions

Overall I feel that the project has evolved and progressed at a significant rate since both the

initial plan and the interim report. All tasks outlined in the interim report have been

completed, in addition to a large number of further features and improvements, which I

believe demonstrates the multitude of use-cases in which the system could be applied to - in

many cases with only minor modifications necessary.

The meeting and presentation that was held between myself, my supervisor and four

members of the Cardiff Social Science Department on January 30th 2013 was a very useful

experience. It provided me with a number of ideas and concepts that lead to a combination

of direct new code implementation into the software, the ‘future work’ section, or modified

the overruling theme behind the project by deliberating new and interesting use-case

possibilities.

The two demonstrations that I tested the system with were both very successful and gave

quantifiable outlooks on events which could have otherwise only had qualitative opinions

made about them. Due to the large scope of the project it would have been interesting to

analyse other events, however it was not feasible to do so within the time constraints of the

module.

There is one limitation of the system, however this is not a constriction that can currently be

remedied whilst the product is in the development stage. This constraint is the arbitrary

restriction that Twitter applies to its live stream API, whereby the interface will only return

roughly 1% of all Tweets. Additionally, as previously mentioned official statistics show that

only 10.3% of Twitter users have their ‘share geo-location’ option enabled – as such, the

actual usable tweet output that the system can geographically analyse is realistically around

0.1% of total tweets. The percentage of tweets sharing geo-location is however increasing on

a regular basis, and the advent of new technologies such as Google Glass and other integrated

and location-aware network devices should help to further accelerate the location-sharing

tweet ratio.

64

Reflections on Learning

Before I began developing the project I considered using a number of programming languages

other than Java, due to previously finding some of the Java syntax difficult to fully grasp.

However I am very pleased that I eventually decided to put the extra effort in to really

understand the language, as the skills learnt will unquestionably be useful in my future career

due to my graduate workplace making extensive use of Java.

I feel that the initial open-ended nature of the project ensured that I could tailor it to my

particular interests and ensure that the system was something which genuinely excited me

with its’ potential future uses. The interest from third parties again encouraged me to strive

to be as creative as possible, trying to cater for multiple use-case scenarios. However, the

creation of a more formal set of required specifications during meetings with my supervisor

in the second semester also helped me with the inevitable task of eventually narrowing down

the project’s focus to ensure I could present a usable product within the timeline of the

module.

I believe that whilst my understanding of the practical areas of the project such as Java

programming has improved considerably throughout the lifecycle of the project, I feel that

the more adaptable scientific approach to problem solving that I have gained will provide me

with a solid foundation for many future areas of my working life.

65

Glossary

API – Application Programming Interface

A protocol used as an interface by an application to communicate with another external

application or service.

DES – Data Encryption Standard

An algorithm used in the encryption of data. More secure successors (such as Triple DES) have

since been developed.

EXIF – Exchangeable image File Format

This image file format stores metadata about an associated image, and is capable of storing

location-data such as GPS coordinates.

GML: Geographical Markup Language

A universally recognised format used for storing geographical information, and often also for

geographical mapping purposes. Similar to XML in its layout and readability traits.

GPS: Global Positioning System

A global system of orbital satellites used to pinpoint a given location onto a map or chart.

GUI: Graphical User Interface

An interface that allows a user to interact with a computer system through images and

options presented by the system to the user.

HTML – HyperText Markup Language

A standardised web-programming language used to present information to a user via a web

browser.

66

IDE – Integrated Development Environment

An application such as Eclipse or Netbeans that is designed to increase productivity when

developing software applications.

JSON – JavaScript Object Notation

A text-based data format used to represent a document’s hierarchy and data structure in a

human-readable form.

MongoDB – Mongo Database

A ‘NoSQL’ database allowing for efficient integration with Java.

XML – Extensible Markup Language

A markup language with similar uses to that of JSON. Data can be stored in nodes, with child

and parent nodes used to show document hierarchies. Can be used to show data structures

in a human-readable form, and parsed using the DOM method.

(XML) DOM – (Extensible Markup Language) Document Object Model

An API form used to parse data from an XML document by accessing node values.

67

References

1. Preece, P. A. (2012, November). Data Mining Processes. Lecture 6, Slide 14. Cardiff

University, UK.

2. MeteoAlarm. (n.d.). Alerting Europe for extreme weather. Retrieved from:

http://www.meteoalarm.eu/

3. Met Office. (2007, March 23). Meteoalarm. Retrieved from Met Office:

http://www.metoffice.gov.uk/weather/europe/meteoalarm/

4. W3C. (2008, December 11). W3C Guidelines for colour readability. Retrieved from

W3C: http://www.w3.org/TR/WCAG/

5. Google. (n.d.). Google Maps. Retrieved from https://www.maps.google.co.uk/

6. Microsoft. (n.d.). Bing Maps. Retrieved from Bing: http://www.bing.com/maps/

7. Feedzilla. (n.d.). Feedzilla News. Retrieved from http://news.feedzilla.com/

8. JTattoo. (2012). JTattoo GUI LookAndFeel. Wanfried, Germany.

9. Jar2Exe. (2012, October). Jar2Exe Application. Retrieved from

http://www.jar2exe.com/

10. Flickr. (n.d.). The App garden. Retrieved from Flickr Developer API Services:

http://www.flickr.com/services/api/flickr.photos.getWithGeoData.html

11. Oracle. (n.d.). MessageDigest. Retrieved from Java Documentation:

http://docs.oracle.com/javase/6/docs/api/java/security/MessageDigest.html#getIns

tance%28java.lang.String%29

12. Ohio Secretary of State. (2012, November 8). Ohio Secretary of State. Retrieved from

Ohio Secretary of State:

http://www.sos.state.oh.us/sos/upload/elections/2012/gen/FinalResults.xlsx

13. beevolve. (2012, October 10). An Exhaustive Study of Twitter Users Across the World.

Retrieved from beevolve: http://www.beevolve.com/twitter-statistics/#e1

14. Betfair. (2012, November 6). Betfair Historical Data. Retrieved from Betfair:

http://data.betfair.com/ *

15. ITV. (2013, April 17). Massive police surveillance operation underway. Retrieved from

ITV London: http://www.itv.com/news/london/story/2013-04-17/thatcher-funeral-

security-tight/

68

16. Semiocast. (2012). Geolocation analysis of Twitter accounts and tweets. Paris,

France: Retrieved from Semiocast SAS:

http://semiocast.com/en/publications/2012_07_30_Twitter_reaches_half_a_billion

_accounts_140m_in_the_US

17. BBC. (2013, April 17). Baroness Thatcher funeral as it happened. . Retrieved from BBC

News: http://www.bbc.co.uk/news/uk-22151589

18. Edwards, G. (2013, March 11). Scanner Radio Pro. Retrieved from

https://play.google.com/store/apps/details?id=com.scannerradio_pro&hl=en

19. Jones, P. C. (2013, April 16). Advanced Database Topics. Cardiff University, UK.

* The raw data used to create the Presidential Election historical odds timeline diagram on

page 48 can be found in the additional submission document Election Raw Data.xlsx, on lines

552, 533, 542, 543, 624, 722, 731 and 743.

69

Bibliography

BBC. (2013, April 16). Thatcher funeral: Guide to the day. Retrieved from BBC News - Politics:

http://www.bbc.co.uk/news/uk-politics-22096613

beevolve. (2012, October 10). An Exhaustive Study of Twitter Users Across the World.

Retrieved from beevolve: http://www.beevolve.com/twitter-statistics/#e1

Daily Mail. (2013, January 17). Airports and motorways closed as blizzard moves in from the

west bringing huge blanket of snow set to cover Britain by this evening . Retrieved

from Mail Online: http://www.dailymail.co.uk/news/article-2263837/UK-snow-

forecast-Airports-motorways-closed-blizzard-moves-west.html

Doan, S., Ho Vo, B.-K., & Collier, N. (2011, May 31). National Institute of Informatics.

Retrieved 12 06, 12, from National Institute of Informatics:

http://arxiv.org/ftp/arxiv/papers/1109/1109.1618.pdf

Fracsoft. (2013). Electronic Market Trade and Analysis. Retrieved from

http://www.fracsoft.com/

Goetz, B., Peuerls, T., Bloch, J., Bowbeer, J., Holmes, D., & Lea, D. (2006). Java Concurrency

in Practise. Addison Wesley.

Hamilton, G. (2004, October 19). Multithreaded toolkits: A failed dream? Retrieved from

Java.net: http://weblogs.java.net/blog/kgh/archive/2004/10/multithreaded_t.html

National Geographic. (2006, October 19). Disaster Prediction, Social Networking Boosted by

Geo-Data Feeds. Retrieved November 3, 2012, from National Geographic News:

http://news.nationalgeographic.co.uk/news/2006/10/061019-tsunami-maps.html

NOAA - National Oceanic and Atmospheric Administration. (2012, August 27). New NOAA

awards to fund studies of weather warnings, social media, Internet tools and public

response. Retrieved November 3, 2012, from National Oceanic and Atmospheric

Administration:

http://www.noaanews.noaa.gov/stories2012/20120827_oarsocalscienceawards.htm

l

Oracle. (n.d.). The Java Tutorials. Retrieved from Java Documentation:

http://docs.oracle.com/

Pew Research Center. (2012, June 4). Partisan Polarization Surges in Bush, Obama Years.

Washington DC, United States of America. Retrieved from http://www.people-

press.org/2012/06/04/partisan-polarization-surges-in-bush-obama-years/

70

Simon Thompson. (2011, December 6). International Geospatial Geocoding Conference.

Retrieved 11 22, 2012, from GeoCoding Conference:

http://geocodingconference.com/proceedings/pdfs/2011_iggc_geocoding_locationp

recision.pdf

Stack Overflow. (n.d.). Java Forums. Retrieved from stackoverflow:

 http://stackoverflow.com

The Guardian. (2013, April 15). Margaret Thatcher funeral dress rehearsal takes place.

Retrieved from http://www.guardian.co.uk/politics/2013/apr/15/margaret-thatcher-

funeral-dress-rehearsal

Tindal, S. (n.d.). The University of Edinburgh. Retrieved 10 23, 2012, from CPC - Centre for

Population Change:

http://cpc.geodata.soton.ac.uk/resources/downloads/Tindal_social_network_analys

is.pdf

Webcams.travel. (n.d.). Webcam Map. Retrieved from Webcams Worldwide:

http://www.webcams.travel/map/

71

Appendix

Figure 1: Interim Report Future Development

“I have a number of aspirations for how the project will develop in the second term, and have

designed the system thus far with these in mind. Following is a description of the various

features I feel would be possible, and that I plan to incorporate.

 Advanced plotting of elements such as the originating Tweet location and Webcam

coordinates onto a mapping platform such as Google Maps or Bing Maps. Allowing

options such as selecting satellite or aerial imagery, or overlaying additional data such

as traffic information, will be considered.

 I will attempt to harvest other types of data given specific coordinate values. This could

be in the form of photo images uploaded to a photo-sharing service such as Flickr,

provided metadata such as geographical location is publically available.

 Returning news stories alongside this information may be useful, as it could provide

further context for the overall Tweet alert, especially for overseas Tweet analysis which

my project now permits.

 The ability to store and export collected information in a clear and human-readable

format, accessible independently of the program running, is crucial if the project is to

be viable for a multitude of third-party uses.

 Semantic Analysis was a large part of Nick Horne’s original project, so I believe it may

be possible to integrate some of this data into my project without too much difficulty.

 It has been suggested that incorporating an accurate and secure audit trail for what

actions have been taken by an operator would be useful, particularly if the system was

to be adopted and customised by any kind of law-enforcement or analysis institution.

Considering how I could hash or encrypt an audit trail will be necessary, and provided

time constraints are not a problem, this should be feasible.

72

 Extensive testing of the software in multiple countries, languages and even continents

is necessary. Currently certain aspects of the system work fully with the United States

of America’s Weather Service Alert System (The National Oceanic And Atmospheric

Administration), however further refinement is needed to ensure full compatibility.

 ‘Stress testing’ the software to ensure it can cope with real-world situations is required.

I anticipate that a significant amount of optimization will be necessary to ensure the

system can maintain its real-time full functionality when dealing with potentially

thousands of tweets per minute. I have however ensured that throughout the

development this far I have commented my code effectively to allow any future

optimization process to proceed relatively easily.

 User testing of the GUI aspects of the software will be important towards the end of

the project, to ensure that it is both aesthetically pleasing and usable to an outsider

without explicit knowledge of the system.

 As shown in the Term 2 Gantt chart (see Appendix figure 2), I have a meeting with the

Cardiff University Social Science department on 30th January 2013. This will act as both

a milestone/deadline for my software to ensure it works correctly, and also act as a

form of guidance as to what the focus of the project should be for the remainder of the

year.”

73

Figure 2: Term 1 & 2 Gantt Charts

Term 1 Gantt chart

Term 2 Gantt chart

The two Gantt charts above were presented in my initial plan and interim report respectively.

All objectives outlined in both plans have been achieved, along with a number of additional

tasks that were conceived throughout the development process.

 Task Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11

Implement advanced mapping features

Research & Implement photo-gathering features

Add News API service for Tweet location

Meeting with Social Science Department ☆ Milestone ☆
Finalise storage & saving functionality

Create effective & robust audit trail functionality

Testing + Buffer space

Implementation Complete ☆ Milestone ☆
User GUI & functionality testing

Analysis of collected data

Production of Final Report

 Task Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11

Initial Meeting + Planning

Research Existing Data Mining Solutions

Begin integrating exisintg data with Weather APIs

Submit Intial Plan ☆ Milestone ☆
Create a draft GUI + popup box notifications

Add visual data to notifications

Weather Integration complete ☆ Milestone ☆
Research other APIs

Implement new API into existing program

Produce Interim Report

Submit Interim Report ☆ Milestone ☆

74

Figure 3: Interim Report System Overview

System Processing Order

