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Abstract 

Agent-based modelling has been widely adopted in many disciplines, such as 

economics and social psychology. It shows high practicability in forecasting trend of 

units who possess certain pattern of behaviour. This project aims to develop an agent-

based model using the ABM framework named Mesa to simulate the transmission of 

COVID-19 in a small-scale environment. The model contains a visualisation module 

and can run a single simulation configured using a GUI. It is also capable of running a 

mass of simulations in batches. The dissertation introduces some relevant background 

materials about COVID-19 and agent-based modelling. Then it goes through the 

development of the model and the instruction of each module. It also reviews the results 

and analysis of the simulations mentioned above. The project aims to offer a primary 

direction for the reader to understand how COVID-19 works and what we can do to 

control the epidemic situation. 
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Chapter 1 – Introduction 

The epidemic of COVID-19 has drawn everyone's attention since December 2019. It 

has become the most momentous global event that caused a long-term impact on all 

human beings in the world. Under this circumstance, people must learn to understand 

what it is, how it works and thereby stop it from spreading. The research regarding this 

matter has been taken in several industries like lemology, economics and manufacturing. 

This project concentrates on social psychology and proposes research using the Agent-

based Modelling framework named Mesa to create a simulation environment. The 

environment simulates transmission among people who live in a small community and 

offers a few optional configurations, such as wearing face masks and social distancing 

policy to monitor the effect caused during the simulation process. This dissertation first 

introduces some background knowledge required about COVID-19 and ABM. Then it 

discusses the aim and objectives of the project; the problem engaged in the construction 

of the model and the approach adopted to overcome the challenges. It also reviews the 

code structure and every feature of the model. The last chapter acquaints the reader with 

the tests created using the model and analyses the generated results: fatality rate, 

number of steps taken to eliminate the epidemic situation and the highest morbidity rate 

to get to the conclusion.  
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Chapter 2 – Background 

2.1 Overview 

In early December 2019, China recorded a cluster of cases of pneumonia in citizens of 

Wuhan, Hubei province, People's Republic of China. The responsible pathogen soon is 

recognised as a novel coronavirus. This virus was named SARS-CoV-2 since it can 

cause severe acute respiratory syndromes. Due to the highly infectious nature of this 

virus, the first confirmed infection case was found in Europe on January 24, 2020. In 

Europe, they named the virus as coronavirus disease 2019(COVID-19). The World 

Health Organization declared the outbreak a Public Health Emergency of international 

concern on January 30, 2020. There is plenty of evidence to show that COVID-19 is 

most closely related to known beta coronaviruses in bats. However, the role of an 

intermediate host in the infection of the earliest known human cases remains 

unclear(Andersen et al. 2020).  

2.2 Modes of transmission 

According to some early-stage research studies, the basic reproductive number of the 

coronavirus disease 2019(COVID-19) estimated to be from 2.2 to 3.3, and the mortality 

rate is around 2.3%(Correction to Lancet Infect Dis 2020; published online March 27. 

https://doi.org/10.1016/S1473-3099(20)30200-0. 2020). 

By the end of June 2020, using currently available evidence, researchers from different 

nations in the world have concluded several common routes that COVID-19 relies on 

to transmit from person to person. The first human coronaviruses primary transmission 

mode is person-to-person contact through respiratory droplets generated by breathing, 

sneezing, coughing, etc., as well as direct contact with an infected subject or surface or 

through the hand-mediated transfer of the virus from contaminated fomites to the mouth, 

nose, or eyes(La Rosa et al. 2020). For the indirect contact cases, researchers found that 

thought the COVID-19 could not survive outside the human body for too long, but it 
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can spread via fomites(e.g., elevator buttons, door handles, or water hose taps). The 

virus aerosolisation in a public space with poor ventilation or crowded indoor areas 

could spread the virus without person-to-person contact(Cai et al. 2020). Some research 

studies also suggested that the COVID-19 can spread by airborne transmission. 

Nonetheless, this transmission method is considered less robust comparing to others. 

The word 'Airborn' in public health area has a specialised meaning used to describe 

infections capable of being transmitted through exposure to those infectious, virus-

containing respiratory droplets comprised of smaller droplets and particles that can 

remain suspended in the air over long distances and time. However, the main 

transmission mode is still person-to-person contact.  

2.3 Asymptomatic and symptomatic cases 

Not all populations tested positive for COVID-19 are symptomatic. There is a review 

suggested that the proportion of positive cases that remained asymptomatic was 

estimated at 16%(La Scola et al. 2020). There are many other asymptomatic cases 

reported from different countries. This fact partially explained why the isolation of 

confirmed cases is vital in the prevention of COVID-19. What more dangerous to public 

health than an asymptomatic case is a pre-symptomatic case. While quantifying the 

asymptomatic transmission is challenging to researchers, the pre-symptomatic cases 

could be the major reason for transmission, according to some research. From the 

inferred data through modelling, pre-symptomatic transmission contributed to 48% and 

62% of transmissions in Singapore and China(Ganyani et al. 2020).  

As we already knew, people infected with COVID-19 can be infectious and be able to 

transmit the coronavirus to other individuals. However, when infected people become 

infectious is not easy to answer. There are many factors togetherly to decide when will 

an infected person become infectious to others. COVID-19 RNA could be detected in 

patients 1-3 days before symptom onset. Briefly, the infected individuals with mild to 

moderate symptoms could transmit the virus up to 8-9 days after symptom first emerged, 

and the patients with severe symptoms could be infectious for even longer(Criteria for 
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releasing COVID-19 patients from isolation. 2020). Thus, the WHO published a 

guideline on the isolation of people tested positive.  

• For symptomatic patients, 10-days long isolation after symptom onset, plus at 

least three additional days without symptoms.   

• For asymptomatic patients, ten days after a positive test for COVID-19. 

2.4 Demographic characteristics 

Though the COVID-19 has a relatively moderate death rate, the range of symptoms 

reported is quite wide, ranging from mild symptoms like coughing, headache, fatigue, 

etc., to severe illness, such as fever or diarrhoea(CDC 2020). In one of the most 

significant reviews on symptoms of COVID-19, a study conducted by five universities, 

researchers combined data from 148 independent studies and 24,000 patients from nine 

countries to figure out the most common symptoms of this disease. The study found 

that 78 per cent of people had a fever; 57 per cent reported a cough; 31 per cent said 

they had suffered fatigue; 25 per cent lost the ability to smell; 23 per cent reported 

shortness of breathing(Grant et al. 2020). While the COVID-19 infection has been 

confirmed from almost every demographic group, the incidence of COVID-19 infection 

is mostly seen in adult male patients with the median age between 34 to 59 years 

old(Huang et al. 2020). The COVID-19 disease is also deemed to impact people with 

pre-existing respiratory, cardi-vascular, or diabetes conditions. 

Furthermore, among all demographic groups, patients older than 60 years old tend to 

develop severe symptoms. Comparing to the old age group, the impact of COVID-19 

seems less significant in the age group of less than 15. Fewer cases have been recorded 

from this age group (Huang et al. 2020). In conclusion, children under 15 may be less 

infected, and even if infected, they tend to have milder symptoms comparing to other 

age groups. There are many other studies showing evidence to support the conclusion 

we made before. In one of the research on mortality among different countries, the 

researcher found that even though the definition and counting approaches varied from 

nation to nation, the death rate increase with age(Goldstein and Lee 2020). This 
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research found that in the United States, people older than 70 contribute about 70% of 

the deaths related to COVID-19. 

Moreover, researchers found the same pattern in other countries; all of this suggests 

that this global epidemic is much more fatal for the elderly age group than for the young 

age group. Similar evidence from Italy also supports the former conclusion. From one 

of the research conducted in Italy, researchers have found that children are most 

probably contact COVID-19 from their family members. Most of these children have 

developed mild symptoms(Parri et al. 2020).  

2.5 Transmission risk in different settings 

After the outbreak, many doctors and researchers dedicated to figuring out the 

transmission model of the COVID-19. Nevertheless, there are still many questions 

related to the transmission method of the COVID-19 remained. After many independent 

research studies in different countries, researchers gradually understand the different 

settings of the transmission. Several reviews of outbreak reports show that COVID-19 

could transmit effectively in a crowded space with poor ventilation. We could treat such 

a place as the ideal incubator of the COVID-19 transmission(Leclerc et al. 2020). Some 

researchers also find that some specific activities could also contribute to the 

transmission. Those activities include a close door choir session or a dancing 

practice(Hamner et al. 2020).  

Another most vulnerable public places are health care facilities or nursing homes. 

Residents in nursing homes usually need close contact services, and most of them are 

from the elderly population, which means they tend to develop severe symptoms if they 

were infected. Front-line health works are the other most vulnerable group since they 

exposure to the contaminated environment for a longer time than other people. In a 

study targeted on front-line health-care workers, researchers found that the health-care 

workers were at increased risk for reporting a positive test result, comparing with the 

general population(Nguyen et al. 2020). They also found that adequate PPE 

supplements, clinical environment, and even ethnic background are the contributing 
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factors to this research. People's occupation background can also determine the chances 

they get infected by the COVID-19. There were multiple outbreaks reported in UK, EU, 

or the United States are from slaughterhouses, mines, building sites, or meat processing 

plants. So, some scientists believe that the working environment could also contribute 

to COVID-19 transmission(Leclerc et al. 2020). The possible factors including but not 

limited to are working in confined indoor spaces, lack of social distancing, close/direct 

contact with COVID-19 cases, and Insufficient or incorrect use of personal protective 

equipment. 

2.6 Prevention and isolation  

Up to date, there is still no specific treatment for COVID-19; doctors could only using 

isolation and supportive care methods to treat the patients. Therefore, it is vital to timely 

recognise the suspect pathogen carrier and to adopt immediate actions to control the 

potential outbreak. In a community setting, isolating a known tested positive person is 

essential to prevent a massive outbreak. So, a large-scale test and early intervention are 

vital to stop spreading in the local community. In many communities, a 2-meter social 

distance is required to prevent COVID-19 transmission. Many authorities and 

governments also command to shut down all the crowded places for entertaining use. 

For example, many film theatres, live houses, and restaurants are required to keep close 

to prevent transmission of COVID-19. If large-scale community transmission has 

occurred, a temporal shutdown of schools and other public places, home isolation, 

personal hand hygiene, or even wearing face masks are the right strategies to adopt 

during the special situation. 

However, for the health care settings, only isolation or recognising is not enough. 

Adequate supplement of PPE is essential to keep the front-line health-care workers safe, 

and an effective ventilation system is required to prevent large outbreaks.  

Except for vaccine, specific cures, and isolations, there is another tool we can count on 

in terms of stopping the propagating of COVID-19. That tool is the immune system of 

human bodies, and the antibody produced after infected. In some early research, 
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scientists believed that most people's immune systems would respond to the COVID-

19 by producing antibodies to prevent second-time infection(Wajnberg et al. 2020). If 

the result of this research holds, we would expect a plateau period for the pandemic 

transmission. Eventually, there might be a chance we defeat this virus since the majority 

of the population has developed antibodies to this virus. However, some recent studies 

challenged that finding. In a recent study, researchers found that while most patients 

will develop antibodies, this immunity might not last long(Liu et al. 2020).  

2.7 Agent-based model and COVID-19 

COVID-19 has affected more than 170 countries and millions of individuals around the 

world. The number of confirmed cases and deceased patients is still increasing at an 

alarming rate in many nations. As we mentioned before, neither specific treatment nor 

effective vaccine is available for COVID-19 at this moment. Therefore, forecasting and 

tracing the potential risk is quite important. A good quality forecasting model can help 

the authorities in the world to make better decisions to prevent and control this novel 

virus. Generally speaking, we can coarsely categorise forecasting models into two 

categories; the first one is the traditional mathematical models based on stochastic 

theory; the second method has been evolving rapidly in the past decade, it is the 

machine learning techniques. Agent-based modelling is one of the models that cross 

statistical modelling and machine simulation. Agent-based models(ABMs) can provide 

researchers with statistical power and control tools to observe the interactions and 

behaviours of any number of agents(Jackson et al. 2017). Agent-based models are 

computational simulations that can simulate the interactions and behaviours of agents 

under a customised setting. ABMs are wildly used in many disciplines, such as 

economics, sociology, and political science(Jackson et al. 2017). Agent-based models 

have been used in a pandemic simulation too. Agent-based models designed for 

infectious disease rely on a realistic population comprised of different demographic 

groups, a social network among the individuals in the population, and the disease model 

itself(Hoertel et al. 2020). For our research, we can simulate the transmission of 
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COVID-19 in different settings. For example, we include changeable rules in our 

simulation model so that people can see different simulation outcomes under a specific 

combination of controls. The benefit of using ABMs to simulate the transmission of 

COVID-19 is that it allows policymakers to measure the social impact when they have 

a limited understanding of this disease. However, all the forecasting techniques have 

their limits and challenges, which will be detailed later. 
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Chapter 3 - Aim and objectives 

This project is aiming to develop an agent-based model to simulate and analyse the 

transmission between a certain amount of people under different conditions. Thus there 

are a few objectives set below to regulate the development: 

1. The model should be set up using a highly-scalable environment. 

2. All the components of the model should be established with explicit attributes and 

functions. 

3. The model should include as many factors as possible to form a fully-integrated 

simulation. 

4. The model should provide the user with a lucid visualisation to understand the 

progress of the simulation. 

5. There should be a user-friendly approach for the user to configure each simulation. 

6. The model should be able to conduct multiple tests running in batches for data 

collection and generate appropriate diagrams for data analysis. 
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Chapter 4 - Problem 

4.1 Framework selection 

Currently, there are many ABM simulation frameworks available on the Internet, which 

are written in different programming languages and have various capability. It is 

essential to find a proper one that could meet the requirement while being simple 

enough to learn considering the limited time given. There are some dominant 

frameworks listed below for the reader's reference: 

 

NetLogo: NetLogo(Wilensky 1999) is a multi-agent programmable modelling 

environment written in Lisp. Students, teachers and researchers have widely used 

NetLogo for years, so the environment possesses well-developed documentation and 

loads of existing scientific models. 

 

FLAME: The FLAME framework(Chin 2013) concentrates on creating agent-based 

models that run on high-performance computers (HPCs). Models of this framework are 

created based upon a model of computation called (extended finite) state machines, 

which determines the behaviour of the software execution. 

 

MASON: MASON(Luke et al. 2003) is a discrete-event multi-agent simulation library 

core in Java contributed by the George Mason University's Evolutionary Computation 

Laboratory and the GMU Center for Social Complexity together, designed for both 

light-weight and large-scale simulations. It contains both a model library and an 

optional suite of visualisation tools in 2D and 3D. 

 

SPARK: SPARK (Simple Platform for Agent-based Representation of Knowledge) 

(Solovyev 2010) is a cross-platform, free software for multi-scale agent-based 

modelling (ABM) by the team at CIRM at the University of Pittsburgh. It has 

advantages for the field of biomedical model development at the systems level. SPARK 
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aims to provide a light-weight, convenient, extensible and computationally efficient 

platform for ABM modellers. 
 

4.2 Factor selection 

According to the background material introduced in chapter 2 regarding the COVID-

19 outbreak, it is imperative to abstract the simulation model from all the complicated 

situations. The question of which factors should be considered into the scene then 

becomes an essential concern to be figured out in the first place, for it could influence 

the final results of the simulation extensively. 
 

4.3 Simulation customisation 

Since it would not be enough to run the model for only once, the way to provide the 

user with an easy-configured simulation needs to be settled as well. Should the user 

configure each run by executing some code? Or should all the parameters be stored in 

a file separated from the code? This issue, in some sense, determines the target users of 

this project. 
 

4.4 Visualisation design 

Another problem worth thinking is how the simulation should be presented to the users 

to help them directly get to the conclusion. Proceeding technical data analysis 

afterwards is one thing, however, making the simulation accessible to regular users 

when running it on site could be a different story. The fact is that some current ABM 

environments do generate the visualisation like the one shown in Figure 1, which is 

quite hard to comprehend. 
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Figure 1: Visualisation that is hard to comprehend 
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Chapter 5 – Approach 

5.1 Framework selection - Mesa 

After thoroughly investigating the most frequently used ABM frameworks, Mesa is 

selected to establish the simulation for this project. Mesa(Project Mesa Team 2016) is 

a modular framework written in Python to build, analyse and visualise agent-based 

models. It consists of three primary modules which are the modelling module, the 

analysis module and the visualisation module. The modelling and analysis modules are 

written in pure Python. The visualisation module is established based on the Python 

web framework named Tornado, resulting in the feasibility to upgrade the visualisation 

by adding JavaScript features to the front-end code. The reason to choose Mesa is that 

Python and Java are the two programming languages taught during the MSc Computing 

programme, between which Python has more flexibility and is easier to get the 

environment started. On the contrary, frameworks like NetLogo which are written in 

other languages like Lisp would be difficult for the coder who has the coding experience 

in Java/Python to understand since their syntax would look quite peculiar. Furthermore, 

the framework is still at the embryonic stage and has plenty of room for improvement. 

5.2 Factor selection 

5.2.1 Fatality rate by age group 

Dividing the infected agent by the age group is the first factor taken into consideration. 

As stated in chapter 2, the statistics show that the fatality rate of the COVID-19 varies 

in age. It would make the model more emulational by adding the age from 0 to 89 as an 

attribute of the agent. 

5.2.2 Face mask 

We can learn from the shortage of face mask supply at the beginning of the COVID-19 
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outbreak that whether people wear face masks is another significant measure to cease 

the passing probability of the virus. To test if this factor does have a macroscopical 

impact for preventing the virus from spreading, the agents are also offered the options 

of wearing face masks (or not). 

5.2.3 Incubation and symptomatic stage 

It is not enough to only distinguish the agent by the healthy/infected state. One of the 

features of the COVID-19 that horrifies people is that if a person got infected, the virus 

has an incubation period that the carrier would show no symptoms. So both incubation 

and symptomatic stage have been taken into account to extend more possibility for the 

agent’s behaviour. 

5.2.4 Hospital 

The medical level cannot be neglected when concerning a virus outbreak like COVID-

19. For this ABM model, a simplified hospital feature is created to simulate real-world 

medical treatment. It also has a maximum capacity and could overload when there are 

too many agents infected. 

5.2.5 Social distancing policy 

According to the real-world situation, nations like the United Kingdom have conducted 

a social-distancing policy to wind down the spread of the virus. This simulation can test 

whether a self-isolation measure is useful and to what extent it could achieve the best 

results. A toggle to switch the automatic mode is also coded for this feature. When the 

toggle is off, the simulation will run under one solitary social distancing level from the 

beginning to the very end. In contrast, when the auto-mode is on, the simulation 

becomes more pliable. Stricter social distancing pattern will be adopted when the 

infected rate reaches a certain level. 
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5.2.6 Immunity loss 

Several cases have been reported recently of people who recovered from the COVID-

19 and got a second infection. The model has been simplified as the agent will gain 

immunity after recovery, and the probability of losing immunity again becomes an 

intriguing area to explore, which may reveal the potential risks after the outbreak is 

controlled in the future. 

5.3 Simulation customisation - GUI configuration 

There are several attempts proposed to improve user experience. At first, an individual 

Python module named const.py was created to store all the parameters. However, it was 

not clear enough for the user without Python experience to read and change the 

elements within the code. Then there goes the idea of collecting all the configuration 

data in a .ini file (Initialisation File), which is a default format for the Windows system 

to configure settings. To manage this feature, the project adopted a built-in Python 

module called ConfigParser. With decent annotations, the users can change the 

configuration of the simulation by editing config.ini with the default editor Notepad. 

Still, asking users to edit the .ini file manually leaves some uncertainty. Unexpected 

input without validation could cause unknown errors. Hence the last step to perfect this 

approach is by designing a graphical user interface using the built-in Python module 

Tkinter. With the GUI shown in Figure 2, the user can configure the simulation by 

filling a few blanks, and all the data entered will be validated by the code first. 
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Figure 2: The GUI for simulation configuration 

 

5.4 Visualisation design 

5.4.1 Single trials of the simulation 

For single runs of the simulation, the grid visualisation has been upgraded by replacing 
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the default circles with stick icons(Xu 2019) to improve the accessibility of the 

simulation. Figure 3 displays the icon group applied to distinguish the agents in 

different states. It gives the user a more straightfoward view to note the overview 

developments of the simulation. In the meantime, there are some critical figures 

calculated and presented in the visualisation module as line charts to make sure that the 

user can quickly check the changing trends of the statistics. 

 

Figure 3: Stick icons representing different states of the agent 

5.4.2 Multiple simulation and data analysis 

The project offers a grid visualisation module for the user to run a single simulation and 

observe the process thoroughly. Besides, it also supports the function of running 

multiple simulations in batches, using the module BatchRunner and the library named 

matplotlib. With this module, the user can run tests of a large number of simulations 

and get the key results displayed in scatter plots. 
  



 18 

Chapter 6 – Implementation 

6.1 Code structure 

The code structure of the project is displayed in Figure 4. The covid_simulation 

package contains the kernel of the model: covid_agent.py for the agent construction; 

model.py for the model construction and data_compute.py for storing the essential 

figures calculations. The test_2_batch_run.ipynb starts a Jupyter server to run 

simulation tests in batches using the BatchRunner module of Mesa. Lastly, the 

visualisation directory has all the components for visualisation of single simulations. 

The sub-folder /img stores all the icons for agents in different conditions. The file 

config.py is the initial version for generating configurations to config.ini while 

gui_config.py is the upgraded version with a GUI which is more user-friendly. 

Visualisation.py holds all the elements for initiating a Tornado server to run the web 

simulations. All the major modules will be introduced below. 
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Figure 4: Code structure of the project 

6.2 Covid agent module 

Class CovidAgent is a subclass of the Agent class of the Mesa framework. It configures 

the behaviours of the agent. 

6.2.1 __init__() 

The constructor of the class defines all the attributes of an agent, as shown in Figure 5. 

It takes four parameters which are the ID of the agent, the model the agent belongs to, 

whether the agent is infected and whether it wears a face mask. The age attribute calls 

self.set_age() method to assign a random age to each agent. The other four attributes 
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state that whether the agent is symptomatic/in hospital/immune/dead, respectively. The 

self.immunity_loss_toggle and the self.social_distancing_toggle, on the other hand, are 

the trigger for starting a countdown for the agent's immunity loss and switching the 

agent to the self-isolated mode. 

 

Figure 5: Constructor of the CovidAgent class 

6.2.2 set_age() 

This method assigns an age attribute to the agent, as displayed in Figure 6. In the 

beginning, it calls the random.randint() method to generate random ages. However, the 

statistics for age distribution in the United Kingdom (Clark 2020) and other countries 

show that the age distribution turns out to be a bell-shaped curve in Figure 7. Hence, 

the model considers using an edge-constrained normal distribution to imitate an 

approximate age distribution. Since the number of new-borns does not reach the bottom 

of the bell-shaped curve, the user could move the curve to the left by reducing the Mu 
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of the normal distribution to get the right shape. The method will then check if the age 

generated is between the section of 0 to 89, if it does, the method will assign it to the 

agent. 

 

Figure 6: Code of set_age() 

 

Figure 7: Population of the UK in 2019 by age group 

6.2.3 check_quarantine_status() 

The method check_quarantine_status() displayed in Figure 8 is for checking and 

changing the current status of the automatic social distancing mode for the agent. It 

verifies the auto_social_distancing attribute of the model module to confirm whether 
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the model is running in the automatic mode or the manual one. If the model is running 

in automatic mode, for each step, the agent would call the two methods of the model 

module to update the list to see whether itself should be self-isolated for the current 

step. 

 

Figure 8: Code of check_quarantine_status() 

6.2.4 hospital_treatment() 

This method shown in Figure 9 builds the core structure of the medical treatment 

feature. It first checks whether the model is running with a hospital. If the hospital is 

activated, it takes the agents who show symptoms out of the grid if the hospital still has 

room for more patients. Since there is still no vaccine or specific medicine to treat 

COVID-19, the hospital does not increase the chance of recovery; it only provides a 

quarantine environment for those who are removed from the grid.  

 

Figure 9: Code of hospital_treatment() 

6.2.5 move() 

The move() method shown in Figure 10 decides where the agent moves in the grid. It 
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checks all the eight cells nearby and appends all the empty cells to a list. Then the agent 

randomly chooses one cell as its new position for that particular step. 

 

Figure 10: Code of move() 

6.2.6 pass_covid() 

If the agent is infected with COVID-19, the method shown in Figure 11 determines 

whether it could pass the virus to its neighbour agents. It has a for-loop to loop through 

all the nearby agents and a few if-else to check whether either agent is in self-isolation 

or wear a face mask. Then it compares the relevant passing probability with a randomly 

generated integer to get the passing result. 
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Figure 11: Code of pass_covid() 

6.2.7 get_infected() and infection_count() 

These two methods displayed in Figure 12 generate the incubation and symptomatic 

period after an agent is confirmed infected, and start a countdown for both periods. 

When the incubation ends, the self.has_symptom toggle changes to True to state that 

the agent starts to show symptoms. Besides, there is a self.infection_toggle set to make 

sure that the pass_covid() method does not reset the countdown. 
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Figure 12: Code of get_infected() and infection_count() 

6.2.9 infection_end() 

This method shown in Figure 13 determines the agent's fate after the 

self.infection_coundown attribute reaches 0. It compares a randomly generated integer 

with the fatality rate configured by the agent's age to decide whether the agent dies from 

the COVID-19 or survives and gains immunity. If the agent survives and is currently in 

the hospital, the model will place the agent back into the grid. Otherwise, the agent will 

be removed from both the grid and the schedule if it is dead. 
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Figure 13: Code of infection_end() 

6.2.10 immunity_loss_check() and immunity_loss() 

These two methods which are shown in Figure 14 complete the immunity loss feature 

of the agent. They first make a comparison to decide whether the agent will lose its 
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immunity. If the answer is yes, the method assigns the agent with another countdown 

to calculate the time left. When the countdown reaches 0, the immune agent will be 

reset to a normal healthy one. Like the get_infected() method, this one also switches 

the self.immunity_loss_toggle to prevent repetitious countdown. 

 

Figure 14: Code of immunity_loss_check() and immunity_loss() 

6.3 Covid model module 

Class CovidModel is a subclass of the Model class of Mesa framework. It assigns all 

the agent to a grid and controls their behaviour. All the critical components are 

introduced below. 

6.3.1 __init__() 

The constructor of CovidModel is displayed in Figure 15. It requires a few key 

parameters such as the total number of the agents N; the number of initially infected 

agents M; the number of healthy/infected agents who wear face masks J and K and the 

capacity of the hospital L. It also necessitates the size of the grid and the flag for 

activating the hospital and social distancing policy. The user can set all the figures 
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mentioned above in the configuration module. For the COVID-19 simulation, each 

agent is regarded as one person, so multiple agents can not exist in a single cell. Thus 

the self.grid attribute of the model is set to SingleGrid. As for the scheduler, it needs to 

activate each agent once per step in random order, resulting in the RandomActivation 

class adopted for the schedule attribute. The last attribute the constructor has is 

self.data_collector, which is an instance of the DataCollector class for collecting all the 

real-time simulation figures calculated in data_compute.py. 

 

Figure 15: Constructor of the CovidModel class 

6.3.2 check_all_agents() and get_end_time() 

These two methods which are shown in Figure 16 check when there is no agent infected 

any more and then assign the time stamp to the self.schedule_end_steps attribute to 
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record the number of steps that the simulation takes to control the epidemic situation. 

 

Figure 16: Code of check_all_agents() and get_end_time() 

6.3.3 auto_quarantine_get/update/reset_quarantine_list() 

These three methods shown in Figure 17 are the core method for the automatic social-

distancing mode.The auto_quarantine_get_quarantine_list() method calculate the rate 

of symptomatic agents for each step. Next, the 

auto_quarantine_update_quarantine_list() method checks whether the rate reaches 

either threshold to trigger a different level of social-distancing policy. If it does, the 

method randomly picks a set of agents using random.sample() and set them to the self-

isolated status. 
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Figure 17: Code of quarantine methods 

6.3.4 manual_quarantine() 

If the auto-mode is switched off, this method presented in Figure 18 will be called to 

pick a specific amount of agents according to the social-distancing level entered as a 

parameter to proceed self-isolation. 
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Figure 18: Code of manual_quarantine() 

6.4 Configuration module 

6.4.1 config.py 

The model selects the built-in module of Python named ConfigParser to set up all the 

configurations. At first, all the settings are coded in a Python file called config.py. 

According to the official documentation, an instance of the ConfigParser class is 

announced as config in Figure 19. The syntax for creating a standard .ini file is similar 

to the way of creating a dictionary using Python, which is like "config[section] = {key: 

value}". Furthermore, the .ini file takes a semicolon as a symbol to start a line of 

annotation, for which can be hard-coded as a line of string in Python. So the final code 

for this module is presented as in Figure 20. 

 

Figure 19: Instantiate ConfigParser as config 
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Figure 20: Syntax of ConfigParser in Python 

6.4.2 gui_config.py 

A Graphical User Interface presented in Figure 21 is added to this feature using the 

built-in module of Python called Tkinter to make this module more user-friendly. The 

GUI uses radio buttons and Comboboxes to prevent the user from entering the wrong 

input for the primary settings. As for the rest of the entries, they all have a default value 

for the users' reference. Other than that, the submission button is linked to the method 

update_btn_pressed(), and it calls the validate_data() method to make sure that all the 

data submitted is in the correct format and range. If all the data passes the validation, 

they will be written into the config.ini file, and there will be a message box popping out 

as a success hint (Figure 22). Otherwise, if any of the data goes wrong, the GUI will 
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raise an error message box (Figure 23). 

 

Figure 21: GUI of the configuration module 
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Figure 22: Success message box 

 

Figure 23: Error message box as exception handling 

6.5 Visualisation module 

In this module, there is a method named agent_portrayal() (Figure 24) coded to select 

the relevant icon for each agent according to its status. The visualisation consists of 

three components, a CanvasGrid instance for drawing the grid with agents acting inside 

and two ChartModule instances for displaying two line charts with key data calculated 

in data_compute.py. The ChartModule collects the data from the data collector created 

in the model module. When the user runs this module, it establishes a web server using 

its ModularServer feature, which is an adaption of the Tornado web framework. The 

ModularServer picks the configurations from the config.ini file. The final visualisation 
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of the simulation is shown in Figure 25. The user can watch the whole simulation, 

check the data for each step and control the speed of its process. 

 

Figure 24: Method agent_portratal() 
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Figure 25: Visualisation of the simulation 

6.6 Batch run module 

This module is coded in a Jupyter Notebook file. It is constructed using the 

BatchRunner module of Mesa, which requires a few parameters to proceed with a 

simulation. The module provides the user with a few pre-configured tests. The syntax 



 37 

of the code is shown in Figure 26. For each test, BatchRunner takes a Mesa model class 

as well as two dictionaries with both constant and variable parameters stored in them. 

It also needs to take the number of iterations and maximum steps per run as input. As 

for output, it expects a model_reporter parameter which takes methods from the 

data_compute.py to calculate the results wanted, and then it can present the results in 

scatter plots with the matplotlib.pyplot module, as displayed in Figure 27. 

 

Figure 26: Basic syntax for BatchRunner 
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Figure 27: Scatter plot generated by matplotlib  
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Chapter 7 - Results and analysis 

7.1 Overview 

The batch run module simulates a testing environment. In short, the environment 

creates a 50*50 grid and initially places 200 agents in it. There are six tests in total and 

20 iterations for each test. The fatality rate, the number of steps taken to end the 

epidemic situation and the highest morbidity rate the model reaches are displayed as 

the data on the Y-axis of the scatter plots, respectively. The maximum step of each 

simulation is set to 300, which means if there is still agent infected by the point the step 

reaches 300, the simulation will terminate, and the number of steps taken will be set to 

300. Other configurations are set, as shown in Figure 28. 

 

Figure 28: Other configurations for the tests 

7.2 Batch run 1 - Without additional conditions 

The first test is to simulate a basic environment in which no agents wear face masks, 
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and every agent moves around continuously no matter what status it is in (manual social 

distancing level set to 0). There is also no hospital established, and the government does 

not implement any social-distancing policy. The parameters are listed in Figure 29, for 

which the number of the initially infected agent is set as the variable on the X-axis. The 

fatality rate, number of steps taken and the highest morbidity rate are presented in the 

scatter plot in Figure 30/31/32. 

 

Figure 29: Parameters for test 1 
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Figure 30: Scatter plot of fatality rate of test 1 

 

Figure 31: Scatter plot of steps taken for test 1 
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Figure 32: Scatter plot of the highest morbidity rate of test 1 

According to the plot above, if there is no additional condition added, the fatality rate 

of agents floats between 50.0% to 68.0%, and it usually takes more than 220 steps for 

the COVID outbreak to subside. Besides, as the number of initially infected agents 

grows, the highest morbidity rate increases from 65% to over 90%, which means almost 

all the agents have been infected during the epidemic. 

7.3 Batch run 2 - Wearing face masks 

The second test reveals the effect of wearing face masks. The parameters of this test are 

listed in Figure 33. It assumes all the 30 initially infected agents wear face masks and 

get the changing trend of the fatality rate by increasing the number of the rest of agents 

who wear face masks. The scatter plots of the results are shown in Figure 34/35/36. 
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Figure 33: Parameter for test 2 

 

Figure 34: Scatter plot of fatality rate of test 2 
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Figure 35: Scatter plot of steps taken for test 2 

 

Figure 36: Scatter plot of the highest morbidity rate of test 2 

According to the test results, wearing face masks has a positive impact on controlling 

the outbreak. When over half of the population wear masks, the fatality rate starts to 

drop and finally reaches around 7%. Moreover, when the total number of agents who 

wear masks reaches 190, in other words, when over 95% of agents wear face masks, 

the number of steps to eliminate the epidemic suddenly drops below 150 steps. 
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Moreover, the advantage of face masks also shows in the morbidity rate, as the number 

of agents who wear masks grows, the highest morbidity rate drops linearly from 75% 

to only 18%. Most of the agents have not been infected before the situation is under 

control. 

7.4 Batch run 3 - Hospital activated 

This test reveals the effect of establishing a hospital. As declared in section 6.2.4, it is 

assumed that the hospital does not accelerate the recovery in this model, it is more like 

setting up a quarantine zone. The code for this test is displayed in Figure 37, in which 

the capacity of the hospital is assigned as the only variable. The scatter plots of the 

results are shown in Figure 38/39/40. 

 

Figure 37: Parameters for test 3 
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Figure 38: Scatter plot of fatality rate of test 3 

 

Figure 39: Scatter plot of steps taken for test 3 
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Figure 40: Scatter plot of the highest morbidity rate of test 3 

We can learn from the plots that both the fatality rate and the steps show a dropping 

trend as the capacity of the hospital rises. When the capacity of the hospital get to 35 

(17.5% of the population), the fatality rate is lowered by 20%, and it only takes about 

110 steps for the model to end the outbreak. However, setting up a quarantine zone(the 

hospital) does not reduce the highest morbidity rate which is still ranging from 75% to 

92.5%. Even though it does help to control the epidemic from spreading, most of the 

agents have been infected during the process. 

7.5 Batch run 4 - Flexible social distancing policy 

This test has the same parameters as Batch Run 1, except for the automatic social 

distancing feature, as displayed in Figure 41. The auto-mode is on for the test, which 

means when more than 10% of the agents show symptoms (to simulate the condition 

that the government detects the outbreak), 60% of the agents will begin self-isolation; 

when the symptomatic rate reaches 20%, 90% of the agents will be self-isolated. The 

scatter plots of the results are shown in Figure 42/43/44. 
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Figure 41: Parameters for test 4 

 

Figure 42: Scatter plot of fatality rate of test 4 
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Figure 43: Scatter plot of steps taken for test 4 

 

Figure 44: Scatter plot of the highest morbidity rate of test 4 

The results do not look bright. Even though the fatality rate seems to decrease by 10% 

than the first test, it should be noticed that all the 140 tests have reached the maximum 

number of steps, which means during all these tests, the epidemic situation has not 

ended within 300 steps. The flexible policy only temporarily postpones the spreading 

of COVID-19; there are still agents infected in the model. The linearly growing 
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morbidity rate is also telling the same conclusion: as time goes by, the fatality rate will 

rise as more agents will die from the virus. 

7.6 Batch run 5 - strict social distancing policy 

This test is similar to the last one, but with a stringent social-distancing level that 90% 

of the agents are self-isolated from the very beginning of the simulation to the end. It is 

actually an ideal assumption to examine the effect of a strict social-distancing policy. 

The parameters set are shown in Figure 45, and the results are displayed in Figure 

46/47/48. 

 

Figure 45: Parameters for test 5 
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Figure 46: Scatter plot of fatality rate of test 5 

 

Figure 47: Scatter plot of steps taken for test 5 
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Figure 48: Scatter plot of the highest morbidity rate of test 5 

The results explain that this policy does have an influential impact on controlling the 

epidemic. The fatality rate plummets to the level below 10%, and for most of the tests, 

it only takes about 50 to 130 steps for the outbreak to be eliminated. Furthermore, even 

with 30 infected agents in the grid, the highest morbidity rate stops at about 22%, which 

indicates that the strict policy does prevent the virus from spreading. 

7.7 Batch run 6 - All measures adopted 

The last test simulates an optimistic situation in which every agent wears a face mask, 

and there is a hospital with increasing capacity set as the variable for the X-axis. 

Moreover, to simulate the real-world situation, the automatic social distancing policy is 

switched on as well. All the parameters are coded in Figure 49. The scatter plots of the 

results are shown in Figure 50/51/52. 
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Figure 49: Parameters for test 6 

 

Figure 50: Scatter plot of fatality rate of test 6 
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Figure 51: Scatter plot of steps taken for test 6 

 

Figure 52: Scatter plot of the highest morbidity rate of test 6 

With all the measures taken, this test presents the best result so far. The fatality rate has 

dropped below 9%, and the number of steps to end the COVID-19 outbreak is down to 

about 75 steps and even less. When the hospital capacity reaches 35 (17.5%), the model 

eliminates the epidemic situation in less than 55 steps. The highest morbidity rate is 

also steadily below 20%, which looks quite promising.  
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Chapter 8 – Conclusion 

The COVID-19 epidemic has been the most important event happened in 2020. It has 

caused millions of death, and exceedingly impacted the global economy and people's 

life. This project has built a simplified ABM model and formulate a few controlled 

experiments to preliminarily validate the influence of the measures adopted for 

controlling the outbreak. According to the results, wearing face masks, establishing 

quarantine zones and proceeding proper social-distancing policy have all shown an 

advantageous effect regarding the issue. Furthermore, the simulation shows better 

results when these methods stack with each other. These tests have shown their 

significance for reference. As a typical example, the result of the fourth test is quite 

similar to the second wave coming to some of the European countries in September 

2020. Nations like the United Kingdom have adopted a social-distancing policy from 

May to the end of August, and the situation did grow better for a short period. 

Nevertheless, once the government loosened the lockdown level, the number of 

confirmed cases suddenly rose again in September 2020(Triggle 2020). Accordingly, 

researchers could take this project as a reference for further lucubration. The readers, 

on the other hand, could learn from the simulation and raise the awareness of prevention.  

In addition, there is still plenty of room for improvement of this model; factors like 

personal health condition, history of respiratory illness and different daily routine have 

not been taken into consideration. Agents could be categorised into groups to simulate 

people with different identities. Geographical modification regarding the grid is also 

feasible as there could be individual sectors set as school, hospital, cinema and 

restaurant. The framework Mesa could also use some upgrade on its source code to 

improve the visualization module and add more features. 
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Chapter 9 – Reflection 

"Making study serves the practical purpose." is a Chinese idiom which I took as my life 

motto. For this dissertation project, I have used every single thing I learnt from the 

lessons in the MSc Computing programme. 

Merely understanding the basic syntax of the programming languages is just a 

beginning. The first essential ability is to read and learn from other people's project. In 

this case, of course, it refers to the Mesa framework. Although Mesa has provided the 

user with a tutorial on its official website, there are a lot of brilliant features hidden in 

the source code. I have to read through all the code behind the scene to figure out which 

I should use to construct the ABM of my own, and there are, indeed, some tricky details 

which require extra attention. For example, for the "space.py" of the Mesa source code, 

there are two methods named get_neighborhood() and get_neighbors() which look 

similar but return different values; get_neighborhood() returns a list of cells of a certain 

point, while get_neighbors() returns a list of non-None objects of a given coordinate. 

Distinctions like this helped me to gain a better understanding of the concepts defined 

in the framework such as cell, grid and schedule, and of course, led me to the correct 

coding. 

The other ability sharpened during the project is always to keep thinking and upgrade 

the current work. I will take the configuration module as an example. At first, I hard-

coded all the parameters into a file named "const.py". Considering the possibility of 

releasing the project for other users to share in the future, it was not enough using pure 

Python to achieve the configuring feature. Therefore I started to go through the official 

documentation of Python and then found one module which was precisely what I 

needed: ConfigParser. I not only learnt the instruction from the documentation but also 

studied through the material of how ".ini" file functions in the system. After I finished 

config.py, the idea of "why not make a GUI like what you did in the CMT303 Software 

Engineering class" came into my mind. This time I decided to use the tool I was familiar 

with, Tkinter, to perfect this feature. All the work mentioned above formed the final 
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version of gui_config.py, which is a lot more user-friendly. 

The last thing I would like to mention is to be creative and have fun. I have watched a 

few ABM projects on GitHub made by other developers after I started coding, and they 

all designed their simulations with simple geometric shapes like circle, rectangle or dot, 

which looks quite dull to me. So, I decided to add some fun elements to draw my users' 

attention and improve their user experience. Emoji was the first thing I considered, but 

it was still too colourful and intricate which could cause visual ambiguity; I eventually 

picked the stick-drawing icons with a single colour as my way to distinguish the agents 

in different states. This move did support me with fun every time I run the simulation. 

I could now proudly say that I completed the project with pleasure. 

However, due to the limited time given, and in some sense, my laziness, I still left some 

work undone. The Mesa module is still under development, and its visualisation 

component is built based on a template of the Tornado framework, which makes it a bit 

disfigured without further modification on the layout and interaction. It was one of the 

things I should have fixed. Furthermore, I should have added geographical boundary 

for the feature to construct certain areas in the grid. The lack of awareness in time 

management and self-discipline leaves the work unfinished as a pity. But it has become 

a valuable lesson for my future career: time slips through our fingers like sand, and we 

must make the best of it. 
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