

 1

MSc Advanced Computer Science

Supervisor: Padraig Corcoran

Student: Barrie Walker

School of Computer Science and

Informatics, Cardiff University

4th May 2020

 2

Table of Contents

TABLE OF CONTENTS ... 2

1. ABSTRACT ... 4

2. INTRODUCTION ... 4

3. AIM AND OBJECTIVES ... 5

4. BACKGROUND MATERIAL .. 5

DIJKSTRA’S ALGORITHM TO FIND THE SHORTEST PATH BETWEEN TWO NODES ... 5

A* ALGORITHM TO FIND THE SHORTEST PATH BETWEEN TWO NODES ... 6

PHYSICAL APPROACH ... 7

5. PROBLEM .. 8

6. PROJECT APPROACH .. 9

7. APPLICATION OF THE CHOSEN APPROACH .. 10

EVOLUTION OF THE ALGORITHM ... 10

REQUIREMENTS FOR THE INITIAL VIRTUAL POSITION MAPPING FOR A NEW ALGORITHM 12

MAPPING TO VIRTUAL POSITIONS ... 13

A STRAWMAN FOR THE NEW ALGORITHM ... 14

A CONCEPTUAL COMPARISON WITH A* .. 14

ENHANCING THE VIRTUAL MAPPING TO COPE WITH MULTIPLE END NODES ... 14

MAPPING TO VIRTUAL POSITIONS SUPPORTING MULTIPLE END NODES .. 15

8. PRODUCTS ... 18

THE NEW ALGORITHM ... 18

THE COMPLEXITY (ORDER) OF THE NEW ALGORITHM .. 19

A* WRAPPER ALGORITHM FOR MULTIPLE END NODES ... 20

MEASUREMENT CRITERIA ... 21

THE TEST APPLICATION ... 21

High level requirements .. 21

User Interface ... 22

Application Design .. 24

Mapping initial coordinates to virtual positions ... 24

Map data ... 25

Comparison execution output ... 26

Functional testing ... 26

GENERATING TEST DATA .. 26

Comparison results execution 1 .. 28

REASON 2 – A* WITH EFFICIENCY WRAPPER PLATEAUS .. 29

REASON 3 – THE NEW ALGORITHM IS TWICE AS EFFICIENT AS A* ... 30

Comparison results execution 2 .. 33

REASON 2 REVIEW .. 34

REASON 3 REVIEW .. 35

REASON 4 - THE NEW ALGORITHM USES LESS HITS THE MORE END NODES ARE SELECTED 36

10. CONCLUSIONS ... 38

11. AREAS FOR FURTHER RESEARCH AND DEVELOPMENT .. 39

ADD CAPABILITY FOR PRIORITY QUEUE .. 39

FINDING THE SHORTEST PATH FROM MULTIPLE START NODES TO A SINGLE END NODE 39

FINDING THE SHORTEST PATH FROM MULTIPLE START NODES TO MULTIPLE END NODES 40

FINDING THE SHORTEST PATH THROUGH MULTIPLE CLUSTERS ... 40

REVIEW THE SCORING METHOD FOR EFFICIENCY COMPARISON... 41

INCORPORATION OF REAL-WORLD TEST DATA .. 41

TESTING THE REGULARITY OF THE MAP .. 41

CLUSTER ANALYSIS .. 41

SHORTEST PATH IN 3 DIMENSIONS .. 41

MATRIX TRANSFORMATIONS .. 41

TRAVELLING SALESMAN PROBLEM ... 41

REVIEWING THE COMPLEXITY (ORDER) OF THE NEW ALGORITHM ... 41

 3

12. REFLECTION/LEARNING ... 42

THE IMPORTANCE OF MODELLING ... 42

TENACITY ... 42

AVOID MAKING ASSUMPTIONS .. 42

THE IMPORTANCE OF PROTOTYPING AND UNIT TESTING ... 42

ANALYSIS OF OUTPUT ... 42

VISUALISATION OF THE TEST DATA .. 42

FLEXIBILITY ... 43

13. REFERENCES ... 44

14. APPENDICES .. 45

SHORTEST STRING PATH PROOF ... 45

DEFINITION OF SLACK ... 46

KEY SOURCE CODE ... 48

Mapping to the virtual line .. 48

The new algorithm .. 51

A* with wrapper .. 55

Creation of test data .. 57

 4

1. Abstract

This project presents a new algorithm to determine the shortest path from a single start node in a

geographical graph (e.g. a road network) to one or more end nodes within the graph.

Development of the algorithm begins by looking at a way of solving the shortest path problem

using a physical model made up of strings to represent edges and knots to represent nodes. This

concept is then developed into a new algorithm to initially find the shortest path between a single

start node to a single end node and then progressing to find the shortest path from a single node to

multiple end nodes.

Along with the development of the algorithm, this report also covers the development of a

flexible test application with a user interface and the production of suitable test data to test the

quality and performance of the new algorithm against other existing algorithms.

Using output from the test application, this project then compares the test output from the new

algorithm and the A* algorithm which is an algorithm commonly used to solve this problem. The

results of this comparison show a significant performance improvement to find the shortest path

from a single node to multiple end nodes.

The efficiency for the new algorithm is shown to remain constant regardless of the number of end

nodes being searched, whereas the complexity for A* grows linearly as might intuitively be

expected. This consistency in the complexity is important in the context of processing large road

networks.

In the areas for further research section, a design is shown to further enhance the new algorithm to

find the shortest path between multiple start nodes and multiple end nodes and this would be

expected to show an even greater performance improvement.

In conclusion this project successfully demonstrates a new algorithm which outperforms the

comparison algorithms when searching for the shortest path from a single start node to multiple

end nodes.

2. Introduction

The idea for this project came whilst attending a lecture on NP-Hard problems and the

consideration as to whether any of these could be solved by physical constructs and subsequently

whether these physical constructs could be modelled efficiently as a computer algorithm. The

shortest path problem involves finding the shortest path between a start point and an end point, for

example finding the shortest path between Cardiff and Birmingham on a road map of the UK.

Although this is not an NP-Hard problem, the shortest path problem does have a physical means

of solving it by using strings to represent roads and knots to represent junctions and places. By

pulling the knots representing Cardiff and Birmingham apart, when the string becomes taut, the

taut strings will represent the shortest path as one or more roads (providing the strings remain

untangled). When doing this physically, the properties of nature will ensure that all potential

paths are tested at the same time, something that today’s computers would require a processor to

run in parallel for each potential path which in a large graph would soon become infeasible due to

the number of processors that would be required. This inspired an attempt to model the knot and

string method efficiently in a computer algorithm and program. A huge amount of research has

been done into shortest path problem solving and it has many real world applications. This

project has attempted to find a new way of tackling the problem. This paper presents the

development of an algorithm for this purpose from initial idea to a working version and shows

how this is comparable to existing algorithms but has a significant advantage when expanding the

problem to find the shortest path from one start point to any one of multiple end points.

 5

3. Aim and Objectives

The objective of this project is to test the viability of a new shortest path algorithm to find the

shortest path between a start point and one or more end points on a geographical map. The testing

will demonstrate both the accuracy of the new algorithm and its indicative performance against an

existing and well used shortest path algorithm (A*).

4. Background Material

Algorithms already exist to find the shortest path between a start node and a single end node in

geographical maps with the most notable being Djikstra and A*. Both of these algorithms

calculate the shortest path by working through the nodes in a graph but use a different

methodology to identify the next node to process. A* is closest to the new algorithm and uses a

heuristic calculation to prioritise node selection which calculates the shortest possible distance

from visited nodes to the end node. A lot research to date has focussed on different methods to

prioritise the sequence in which nodes are processed and ways to speed shortest path algorithms

by performing pre-calculations.

Dijkstra’s algorithm to find the shortest path between two nodes

Dijkstra’s algorithm (Dijkstra 1959) works by keeping track of a tentative distance from the start

node to all other nodes. Initially the start node’s tentative distance is set to 0 and all other nodes

are set to infinity and marked as unvisited. The algorithm will select the unvisited node with the

smallest tentative distance to process. When processing a node, each connected node will be

checked to see if it can be reached with a distance less than that node’s current tentative distance.

Once all nodes connected to the node being processed have been checked then the node being

processed is marked as visited. This approach means that nodes are generally processed outwards

from the start node in all directions until the end node is found as in Figure 3.1. This is inefficient

for finding the shortest path between two nodes due to the number of nodes that need to be

processed and can lead to very long processing times in large graphs.

Figure 3.1. Nodes visited and checked during Dijkstra

 6

A* algorithm to find the shortest path between two nodes

A* (Hart et al. 1968) uses a similar approach to Dijkstra but uses a heuristic function to select the

next node to process. One widely known heuristic function is to calculate the Euclidian distance

from a neighbour node being processed to the end node. The next node to process will always be

the one which has the shortest overall distance from the start node to the end node. The overall

distance is calculated as the actual distance to the neighbour node as this is known plus the

Euclidian (straight line distance) from the neighbour node to the end node which can be

calculated from their known coordinate positions. This has a big advantage over standard

Dijkstra as the search is not carried out in all directions and once the end node has been found any

paths where the heuristic distance is greater than the shortest path found can be ignored.

Figure 3.2. Processed and neighbour nodes in A* algorithm

Figure 3.1 and Figure 3.2 show that Dijkstra examines many more nodes that A* to find the

shortest path in this example.

 7

Physical approach

Schrijver (Schrijver 2012) discusses the history of the shortest path problem and references

Minty’s (Minty 1957) ‘analog’ computer for the shortest path problem using knots to represent

nodes and the length of string imbetween knots to represent an edge and its distance (see Figure

3.3). An analog (or physical approach) such as this is not useful in practice as in large graphs it

would be very time consuming and difficult to construct accurately. However, if this approach

could be efficiently modelled then it could offer an alternative method to solving the shortest path

problem. The new method may then give an advantage over existing algorithms such as faster

processing time to find the shortest path to a single node or the ability to find the shortest path to

one of multiple end nodes (i.e. a cluster of end nodes).

Figure 3.3. String method

Figure 3.3 illustrates how the string method works on a smaller number of knots and strings. As

the start knot (green node) and end knot (red node) are moved in a straight line away (a

translation of the node along the blue dotted line) from each other the shortest string path (edges

highlighted in red) become taut. As other strings connecting two nodes become taut, they are

translated in the direction of the moving node whilst ensuring that their Euclidean distance does

not exceed the distance of the edge (i.e. the length of the string). It should be noted that the start

position of the strings and the knots is unimportant and will not affect the outcome.

 8

5. Problem

This project aims to find a new solution to the following problem by attempting to model the

physical approach outlined by Minty.

Without pre-computing, find the shortest path from a single start node to a single end node

or the shortest path to the nearest node in a cluster of end nodes within a geographical map.

The geographical map will be represented by nodes where each node has a 2-dimensional

position and edges where each edge connects two nodes and has a distance that is greater

than or equal to the Euclidean distance between the connected nodes.

The problem of finding the shortest path from a single start node to a single end node is met by

Dijkstra’s algorithm and A* which are referred to in the Background section. A real-world

example of this problem would be to find the shortest travel distance from Cardiff to

Birmingham.

The problem of finding the shortest path from a single node to the nearest node in a cluster of end

nodes can be met by calling Dijkstra’s algorithm or A* iteratively for each node in the cluster.

This paper includes a wrapper algorithm for A* to improve its efficiency for this problem. Some

real-world examples of this problem are:

• From Barry, find the route to any car park in Cardiff

• From junction 35 of the M4 find the route to the nearest electric car charging point in

Swansea

• In a distributed computer system, find the nearest server to access a target data set that has

been replicated over servers.

Shortest path problems are simple to understand but can be computationally expensive in large

graphs.

 9

6. Project Approach

The following development stages were used in the execution of this project:

1. Analysis and Design

a. Draft an algorithm based on the physical knot / string approach to find a solution

for the shortest path problem to find the shortest path form a start node to a single

end node

b. Model the algorithm in Excel

c. Define measurement criteria to compare the efficiency of each algorithm

2. Build and test

a. Design and build an application in Java to execute the algorithms against test data

for the Dijkstra, A* and a prototype of the new algorithm. The application

should be able to consume multiple test graphs in held in json format

b. System Test and refine the new shortest path algorithm

3. Enhance

a. Enhance the new shortest path algorithm to cope with multiple (a cluster of) end

nodes

b. Design a wrapper algorithm to enhance A* to improve its effectiveness for

multiple (a cluster of) end nodes, to be called ‘A* wrapper algorithm’

4. Comparison test and report

a. Generate test data and a test comparison function to assess each algorithm against

the measurement criteria

b. Produce a report “Algorithm Comparison Report” to determine the effectiveness

of the new algorithm

5. Review and analyse the “Algorithm Comparison Report”

 10

7. Application of the chosen approach

Evolution of the algorithm

String method observations

The start point in developing the new algorithm was to consider the string method and how this

works. This was modelled in an excel prototype. The prototype introduced the concept of slack

in the string. As the start and end knot are moved away from each other the slack in the string

connecting the two knots reduces until eventually there is no slack and the string becomes taut.

The shortest string path (including any knot ‘nodes’) will then lie on a straight line joining the

start and end knot (see shortest string path proof in appendix). Any knots on the taut string and

the strings connecting them resting on the straight line is the shortest path and the solution to the

problem.

This work led to the following observations with respect to the string method:

1. A straight line drawn through the start and end node will be the same length as the

solution path after the string method has been executed (this follows the same logic as the

shortest string path proof in the appendix). In the new algorithm the straight line passing

through the start and end node is referred to as the virtual line

2. When a knot moves in a direction that is away from a connected knot it will eventually

lead to no slack between it and a connected knot after which the connected knot will be

pulled in the same direction as the moving knot due to physical forces. This will lead to

its position changing. In the new algorithm, its new position is referred to as its virtual

position

3. The slack in a string is the difference between the actual string length and the Euclidean

distance between the knots (see the definition of slack in the appendix). In the new

algorithm, the slack is calculated using the virtual positions and the length of the string

and is referred to as the virtual slack

4. When the start and end node are connected by one or more strings with no virtual slack

then the shortest path has been found. This follows from the previous observations and

supporting material.

5. The start position of the knots and the strings does not affect the ability of the string

method to find a solution. Providing any tangles during execution are removed, the knots

and strings can be moved to any position (within the constraints of their string length) at

initiation (such as scrunched into a ball), and the method will still produce the correct

answer (see the definition of slack in the appendix which defines this for two nodes on

the virtual line)

Observations 1 to 4 are good candidates for a new algorithm to solve the problem, however

observation 5 highlights a key area of focus. If an extreme example is considered where all of the

knots including the start and end knot are initially on a single point, the string method will still

work as physically when the end knot is moved away from the start knot the position of other

knots will adjust instantly as per observations 1 to 4. However, it will be computationally

expensive and time consuming to model all of the knots in a large graph and this would produce a

similar performance and progress to Dijkstra.

 11

To understand better the performance of the above approach, a prototype was built in Java that

moved the start node away from the end node by a small amount iteratively. This then checked

nodes where slack became zero and then moved those nodes. As expected, this was inefficient

due to the number of calculations required when the node was moved by a short distance and the

number of nodes hit. A second iteration of this prototype applied the method from both the start

and the end node and checked to see where the nodes touched. Although this reduced the number

of nodes being checked, again the frequent moving of the nodes by small increments led to many

potentially unnecessary loops and when examining the output visually it appeared that some

nodes were being processed which may not be necessary (see Figure 6.1, Early prototype

example).

Key

Green node = start node

Dark grey nodes = moved nodes

Light grey nodes = nodes checked

Pink nodes = shortest path found

Figure 6.1. Early prototype output

Taking the above into account, the focus moved to the identification of which edge to process

next by prioritising them as a way to improve the efficiency of the algorithm. Given the optimal

shortest path is identified as a path with zero slack, therefore if a path exists from the start node to

the end node with no slack, then this will be the shortest path. Continuing this thought process,

then the longest path would be the one with the most slack. In conclusion, the path with the least

slack will be the shortest path and the path with the most slack will be the longest path.

Therefore, at each iteration of the algorithm, choosing an edge to process with the least slack

should result in the shortest path being found eventually. This reasoning was key to development

of the new algorithm (along with Dijkstra and A* this fits the definition of a greedy algorithm).

However, the slack in an edge is dependent on the position of the two nodes at the end of the edge

and it has been recognised earlier that the initial position of the knots in the string method would

not affect the outcome. Consequently, the success of the algorithm depends on whether nodes can

be positioned in such a way as to enable the slack to be used to efficiently prioritise the search for

the next edge to process.

 12

Requirements for the initial Virtual Position mapping for a new algorithm

The requirements should apply the observations from the string method to a new algorithm that

can be used to find the shortest path in a geographical map with nodes (rather than knots) and

edges connecting the nodes (rather than strings). The new algorithm will have the requirements

below (note that a path is defined as a sequence of connected nodes where each connected node is

joined by an edge).

1. Unlike a physical method such as a string method, computers work in a linear fashion and

therefore the new algorithm must have a means to efficiently choose a single edge to

process next

2. The shortest path will be the path with the least slack so an algorithm should look for

edges with the least slack to process next

3. The virtual distance between two connected nodes must never exceed the edge distance

connecting them

4. The initial placement of the nodes will affect the slack for each edge. In the geographical

map the default start position for any node will be its geographical coordinates.

However, since a path along the virtual line will be the shortest path, the requirement for

the new algorithm is for any edge along the virtual line to have no slack. Similarly, edges

that move away from the virtual line should have greater slack than those that move

closer to it.

 13

Mapping to virtual positions

Taking the above requirements into account, below is a method for mapping nodes to virtual

positions which has some advantages and disadvantages

Figure 6.1. Illustration of mapping to virtual positions

1. Let vl be a virtual line passing through the start node and the end node

2. Let vl be considered the x-axis for a new virtual graph with the start node at point (0,0)

3. For each node, draw a line, pn, from the node to the virtual line that is perpendicular to the

virtual line

4. Let the virtual position of the node be the point, vp, where pn intersects vl

In Figure 6.1, the distance m will be the (negative) virtual position of node A on vl. This method

proved the approach in Excel modelling (see Figure 6.2) and allowed for initial development of

an algorithm that could be developed and tested against Dijkstra and A*.

Figure 6.2. Example of Excel model

A disadvantage of this mapping is that all edges that are parallel to vl will have zero slack. In

many cases this is not the optimum route and there is potential to improve it (covered later in this

section).

 14

A strawman for the new algorithm

The strawman below is an overview of the approach which was subsequently tested to

demonstrate that it works. The full algorithm (included later) includes a number of improvements

and efficiency steps.

1. Map all nodes to a virtual position on vl

2. Choose the edge with the least slack and let ls be the least slack value

3. Move the start node away from the end node along vl a distance of ls

4. Recalculate slack for each edge connected to a node that has moved

5. For any slack that is negative, move the connected node so the edge is no longer negative

and store the number of moves made for each node

6. If the end node is moved, store the number of moves and continue the current iteration to

see if there is a smaller number of moves for any other path

7. Repeat steps 4 to 6 until no slack is negative

A conceptual comparison with A*

• Both algorithms operate iteratively

• A* prioritises nodes to process whereas the new algorithm prioritises edges to process

• Both algorithms use a function to prioritise

• The mapping to virtual positions in the new algorithm affects the output of the priority

function to determine the next edge to process

• Both algorithms tend to prioritise in the direction of the end node, however A* focuses on

a specific point so the direction of selection can change whereas the new algorithm will

continue to prioritise in the direction from the start node to the end node until a shortest

path is (or isn’t) found

Enhancing the virtual mapping to cope with multiple end nodes

The following additional requirements are necessary for handling multiple end nodes:

1. Slack should be 0 for any line passing through the start node and any end node

2. For nodes in close proximity, their virtual positions should also be in close proximity

 15

Mapping to virtual positions supporting multiple end nodes

The initial approach for mapping nodes to virtual positions was based on the earlier version.

However, to ensure that slack is zero for paths in straight lines from the start node to any end

node, then any node within the boundaries of the uppermost end node and bottom most end node

should maintain its Euclidean distance. This creates upper and lower boundary lines (see Figure

6.3). The virtual line is considered to bisect these boundary lines. Nodes outside of the

boundaries are then mapped to a boundary line using the perpendicular intersection as before.

When modelled using Excel, this approach led to some anomalies whereby nodes that were close

together geographically were moved further apart when mapping to virtual positions. This effect

is worse as the angle between the boundary line increases and can lead to the virtual distance

exceeding the edge distance which will break the approach (and in the real-world string example,

would break the string). Therefore, a mapping is required that proportionally maps to a virtual

position based on the nodes relative position between the boundary and the y-axis.

Figure 6.3. Illustration of initial mapping to support multiple end nodes

 16

The mapping in Figure 6.4 caters for multiple end nodes using a ratio to calculate the virtual

position based on the position of the node relative to the boundary line and y-axis. As found

previously, this affects the calculation of slack and therefore the prioritisation of edges in the new

algorithm without needing to change the algorithm. For simplicity, it is assumed that all of the

end nodes are contained within a segment that is less than π radians.

Figure 6.4. Illustration of mapping to support multiple end nodes (following translation and

rotation)

The steps below reflect the mapping in Figure 6.4 (the illustration is post step 4)

1) Map two lines, boundary1 and boundary2, such that they pass through the start node and that

all of the end nodes sit either on the boundary line or imbetween boundary1 and boundary 2

and the angle at the origin between boundary1 and boundary2 is < π radians

2) Let vl be the line that bisects boundary1 and boundary2

3) Translate the start node to coordinate (0,0) and translate all other nodes using the same

translation

4) Rotate vl and all nodes so that vl sits on the x-axis and all end nodes have x >= 0

5) For each node within and on boundary1 and boundary2 (the shaded area in Figure 6.4) set

virtual position, vp, to be the Euclidean distance from the start node

6) For all other nodes where x>=0 and y>0, use the relationship a/b = m/n to find m as follows

and then set the virtual position, vp, to be n – m

a) Let nl be the line passing through the origin and the node

b) Let a be the angle between boundary1 and nl

c) Let b be the angle between boundary1 and the y-axis

d) Let n be the Euclidean distance between the start node and the node

7) For all other nodes apply similar rules as per bullet 6.

In addition to coping with multiple end nodes, the above approach also better handles edges that

are parallel to the optimum solution but in a non-optimum position.

 17

This approach was validated using Excel worksheets with a visual representation on an X Y

scatter graph. Figure 6.5 shows the progression from coordinates initially following the

translation of the start node to the origin, to a rotation aligning the virtual line to the x-axis and

finally to virtual positions along the x-axis. End nodes are highlighted in red.

Figure 6.5. Illustration of approach for virtual mapping

 18

8. Products

The new algorithm

// Walkers algorithm finds the shortest path from a single start node to one or more

// end nodes

function Walkers (start_node, {end_node1, end_node2…}, {node1, node2…}, {edge1, edge2…})

// The nodes are mapped to virtual positions using function mapNodes

nodes := {node1, node2…}

edges := {edge1, edge2…}

mappedNodes := mapNodes[nodes]

// The hit nodes set contains a list of nodes that have been moved

hitNodes := {start_node}

startNode := startNode

endNodes := {end_node1, end_node2…}

nextEdge := findNextEdge[]

// The algorithm will continue execution until no edge is returned from the

// findNextEdge function

while nextEdge is not null

// Check whether the moves already made for the node at the start of

// the edge and moves required (i.e. the slack) to remove slack from the edge

// being processed are less the moves made for the node at the end of the

// edge. If so, this is a valid move.

if moves[edgeStartNode] + slack[nextEdge] < moves[edgeEndNode] or

moves[edgeEndNode] is null

// Set the moves at the edge end node to the new lower figure

moves[edgeEndNode] = moves[edgeStartNode] + slack[nextEdge]

// Since we are virtually moving the start node, make the edge

// start node active

for each edge connected to edgeStartNode

active[edgeStartNode] = true

visited[edgeStartNode] = true

// If the edge end node is a desired end node then set the

// shortest move amount, otherwise add the edge end node

// to the set of hit nodes. The edge start node could be saved

// at this point to track the shortest path.

if edgeEndNode is an end node

shortestMovesToEndNode = moves[edgeEndNode]

else

// Add the edge end node to the set of moved nodes

add edgeEndNode to hitNodes

else

// If this is not a valid move, make the edge inactive

active[nextEdge] = false

nextEdge := findNextEdge[]

function findNextEdge ()

 19

// Check each moved node. Further research is required to enable a priority queue

// to be used within this function

for each currentNode in hitNodes

visited(currentNode) := true

leastMovesAndSlack := infinity

nextEdge := null

// For each connected edge recalculate the total move distance required

// as the moves already made plus the slack for this edge

for each currentEdge connected to currentNode where active[currentEdge] = true

movesAndSlack := moves[currentNode] + slack

if movesAndSlack >= shortestMovesToEndNode

active(currentEdge) = false

if movesAndSlack < leastMovesAndSlack

nextEdge := currentEdge

if nextEdge is null

 // if no edge is found the node can be removed from further searches

remove currentNode from hitNodes

else

// Set the edge to inactive so it isn’t searched again. Note, it could

// subsequently made active again

active[nextEdge] := false

The Complexity (Order) of the new algorithm

The time complexity of the new algorithm depends on the ability of the next edge function to

find the next edge on the shortest path. However, this is similar to A* in that it uses a

heuristic to select the next edge. In the case of A* the heuristic is based on prioritising nodes

based on the lowest Euclidean distance to the end node whereas in the new algorithm the

heuristic is based on prioritising edges with the least slack. Since each edge starts and ends

with a node, the number of edges will depend on the number of nodes and the number of

edges connected to the nodes. The branching factor is the number of edges that need to be

tested at each iteration. The lower the branching factor (and therefore the better the edge

selection) the more efficient the algorithm.

The order of the new algorithm for a solution is calculated as follows:

Let n = the number of nodes in the graph

Let e = the number of edges in the graph

Let b = the branching factor (the number of edges connected to a node)

Let d = the depth of the search required to find the end node where a depth of 1 is the edges

and nodes connected to the start node and a depth of 2 is all of the edges and nodes connected

to those and so on.

Let t = the total number of edges and nodes checked at each iteration

Let T = the total number of edges and nodes checked to find the shortest path to the end node

To calculate the average branching factor for a graph, since each edge connects to 2 nodes,

then b = (e*2)/n.

Iteration 1: t = 1 + b

Iteration 2: t = b + (b*b)

 20

Iteration 3: t = (b*b) + (b*b*b)

Iteration i: t = b(d-1) + bd

Therefore T = 1 + b + b + b2 + b2 + b3 + b(d-1) + bd

 = 1 + 2b + 2b2 + 2b3 + bd

Taking the most significant value, the order of the new algorithm is therefore O(bd) where b is

the branching factor and i is the number of iterations required to find the shortest path. This

is normally written as O(xn) where x is the branching factor and d is the depth to the end

node.

However, this assumes that at each iteration each connected node and edge needs to be

processed, however, in the new algorithm the concept of slack I sused to reduce the number

of connected edges to be processed. To better understand the Order of complexity, this will

also need to take into account the impact of the new algorithm’s prioritisation logic on the

branching number for each iteration. This is included within this report as an area for further

research.

A* wrapper algorithm for multiple end nodes

To test the efficiency of the new algorithm it will be tested against A*. The simplest method

would be to execute A* to find the shortest path from the start node to each end node.

However, with a large number of end nodes this is likely to be inefficient. To provide a better

comparison a wrapper algorithm for A* has been developed to improve the efficiency and

remove any unnecessary calculations.

Consequently, this wrapper algorithm adapts A* to more efficiently find the shortest path

between a single start node and multiple end nodes. The approach is to first calculate the

Euclidean distance from the start node to each end node; sort these into ascending order and

then perform an A* search on each starting with the closest end node. After processing each

iteration, the shortest path found so far should be stored. As soon as the Euclidean distance to

an end node exceeds the least path distance found so far then the remaining end nodes can be

discarded. This algorithm depends on the presumption that it is more likely that the shortest

path will be to an end node closer to the start node.

// Function to wrap A* to improve its efficiency by discarding end nodes when it becomes

// impossible for them to hold the shortest path

function AStarWrapper (start_node, {end_node1, end_node2…}, {node1, node2…}, {edge1,

edge2…})

nodes := {node1, node2…}

edges := {edge1, edge2…}

startNode := startNode

endNodes := {end_node1, end_node2…}

// Calculate the Euclidean distance from the start node to each end node

for each endNode in endNodes

euclidDist[endNode] := dist[startNode, endNode]

// Sort the end nodes by Euclidean distance so the closest can be processed first

sort endNodes by euclidDist into sortedEndNodes

leastPathDistance := infinity

// Process the end nodes in Euclidean distance order

for each endNode in sortedEndNodes

 21

// If the Euclidean distance for this end node is greater than the

// least path distance already found, then it is not possible for this

// end node to be a sorter path than the one already found. Since

// the end nodes are sorted in Euclidean distance the algorithm can

// now stop

if euclidDist[endNode] > leastPathDistance

 stop

// Calculate the shortest path using A*

aStarDist := aStar (startNode, endNode)

// Check if the shortest path distance is less than the currently

// held least path distance. The end node and the actual path

// should also be stored here if required.

if aStarDist < leastPathDistance

leastPathDistance := aStarDist

Measurement criteria

There are two key measurement criteria to test the effectiveness of the new algorithm:

1. Accuracy

2. Efficiency

Accuracy

A* will be used to test the accuracy of the new algorithm. Multiple test data will be executed

against both A* and the new algorithm. The shortest path distance from the start node to the

selected end node will be compared between both algorithms. Note that to ensure the A*

algorithm has been correctly implemented, this will initially be checked against Dijkstra.

Efficiency

Ideally, processing time would be used to compare the processing efficiency of both algorithms,

however, early tests calculating the CPU time used within the executing thread have shown

significant differences on repeat executions for the same test data, so this is considered unreliable

and likely caused by background applications and operating system activity.

Both A* and the new algorithm work through nodes and edges so for this project efficiency will

be approximated by counting the total number of nodes and edges used in each algorithm’s

calculations. However, this can only be an indicator of efficiency and more research is required

to determine a better and more accurate measure. For example, the new algorithm needs to map

each node before it is processed whereas A* does not.

The test application

Given the complexity of calculations especially in large graphs a sophisticated tool is required to

develop and test the algorithms. Listed below are the high-level requirements used to develop a

test application to support this project.

High level requirements

1. The application should be able to handle multiple maps

2. Maps should be held in a format that can be easily generated

3. The application should be able to execute different algorithms to find the shortest path

 22

4. There should be a visual representation of map data to aid analysis

5. A start node and multiple end nodes should be selectable

6. The visual representation should be movable and zoomable to make it easy to work with

larger graphs

7. The visual representation should have nodes and distances marked

8. Diagnostic output showing key values should be output at key points in the execution of

an algorithm

9. As the algorithm is executed the visual representation should be updated with progress

10. It should be possible to step through the algorithm so progress can be seen both in the

diagnostics and visually

11. The test application should count the number of nodes and edges visited

12. The test application should allow a comparison to be made between A* and the new

algorithm and output the measurement criteria in a format that can be consumed by Excel

for reporting

User Interface

Figure 7.1 shows the test application user interface with key elements marked with numbers in an

amber circle. Each of these elements are described in more detail below.

Figure 7.1. Test application user interface

Element 1

The start node is highlighted in green and is selected by pressing the left mouse button whilst it is

near a node. The application calculates the Euclidean distance from the mouse to each node and

will select the nearest node to the mouse pointer. Only one start node can be selected.

Element 2

End nodes are highlighted in red and can be selected by pressing the right mouse button. More

than one end node can be selected. An end node can be unselected by clicking on it again.

Similar to the start node selection, the application will choose the nearest node to the mouse

pointer.

Element 3

 23

This list shows the available graphs. A different graph can be selected by clicking on it.

Element 4

The details area shows diagnostic information output during the running of the algorithms such as

the node being process, the position of the virtual line.

Element 5

The show labels checkbox will remove labels from the visual representation to give a clearer view

of visual progress as in the image below (see Figure 7.2).

Figure 7.2. Visual representation without labels

Unchecking the Full Details checkbox will stop the diagnostics in the Details box being

displayed. This speeds processing.

Element 6

These buttons allow the results of the algorithm to be stepped through. To accomplish the

algorithm executes in full, but at each iteration it stores its main object state (see application

design). ‘<<<’ and’>>>’ buttons go straight to the start or the end of the process.

Element 7

These labels show the names of the selected start and end node(s).

Element 8

This drop down allows the shortest path algorithm to be selected. Currently the following options

are available.

Walkers (the new algorithm)

Full Dijkstra

Dijkstra

A*

COMPARE

COMPARE is a special function that will execute both Walkers and A*, do a comparison and

output the results to a results file.

Element 9

 24

These buttons allow the algorithm to be executed and reset (press RESET prior to re-executing).

Additionally, following execution, if the Play button is pressed the visual representation will show

an animation of progress in the search for the shortest path.

Element 10

The final diagnostic is the result (if a path is found). The end node, total distance, nodes visited,

edges visited, and the full path are shown.

Element 11

The graph can be explored by clicking and dragging to move the view position and the mouse

wheel can be used to zoom in and zoom out whilst exploring.

Following successful execution of an algorithm the view will show the shortest path by

highlighting edges in red and circling nodes on the shortest path in red (see Figure 7.3). All nodes

that have been hit are in dark blue, edges that have been active are marked in dark blue and nodes

that have been checked (the end node of an active edge) are in light blue.

Figure 7.3. Visual representation of the shortest path

Application Design

The applications primary purpose is to support development and testing of the algorithm. To

achieve this the interim state of the algorithm as it goes through each cycle is important for

validation and debugging. One key design decision was the creation of a class ‘ControlData’ to

allow the interim state to be saved during processing. The ControlData object is serialised and

saved in an array at each iteration. It is this that allows execution to be stepped through with each

object’s state available at any point in the execution.

Since the application is user responsive a number of threads run concurrently to manage the visual

representation, animation and user interface commands.

Visual representation of the data is handled through 3 different objects as follows:

a) Initial coordinates. This holds the starting coordinates for each node

b) View coordinates. This holds a representation of the viewing space taking into account

any clicking and dragging and zooming of the view space

c) Display coordinates. This maps the view coordinates to the display

Mapping initial coordinates to virtual positions

An instance of translate class will perform a translation of the start node to the origin. This object

can then be used to perform the same translation on all other nodes. After the translation, the

boundary lines and virtual line can be calculated. A Vector class measure the angle between the

 25

vector (0,1) and the virtual line (Vector class is based on Vector class source code (Eggen 2017)).

All nodes are then rotated by this angle so the virtual line will lie on the x-axis. Following this all

information to complete the mapping of a node to the virtual line is available. In the test

application this is performed before the algorithm is executed. However, in a practical

application it is only necessary to map points to their virtual positions when the node or edge is

required which will significantly improve efficiency in a large graph. Additionally, the

transformations required could be performed using matrices to further improve efficiency.

Map data

Available maps are checked at application launch. A list of available maps is held in a file as a

simple string list. For each map there are two separate files containing node and edge data. One

file contains a list of nodes in json objects along with their geographical coordinates and the other

file contains a list of edges also in json objects (see examples below) along with the edge start

node, end node and distance.

Available maps

"France"

"France_test"

"A"

"B"

"C_Multi"

Extract from node file for France map

{"name":"Dunkerque","x":392.0,"y":685.0}

{"name":"Calais","x":367.0,"y":680.0}

{"name":"Boulogne-sur-Mer","x":356.0,"y":666.0}

{"name":"Lille","x":427.0,"y":657.0}

{"name":"Arras","x":412.0,"y":630.0}

Extract from edge file for France map

{"node1Name":"Lille","node2Name":"Arras","distance":52.29999923706055}

{"node1Name":"Abbeville","node2Name":"Arras","distance":77.30000305175781}

{"node1Name":"Abbeville","node2Name":"Dieppe","distance":68.19999694824219}

{"node1Name":"Arras","node2Name":"Amiens","distance":61.599998474121094}

{"node1Name":"Dieppe","node2Name":"Le Havre","distance":100.0}

This format allows for extracts of a map to be easily created for bug fixing. For example, the map

in Figure 7.4 was created to investigate a bug in finding the nearest node in multiple end node

request. This took only a few minutes to create by extracting the relevant nodes and edges from

the France data files.

Figure 7.4. Extract from France map files for debugging

 26

Comparison execution output

When the COMPARE function is executed it reads in a file of test conditions (see later in this

section). When each algorithm is executed for a test condition it will output an instance of class

AlgorithmOutput which includes the following attributes:

 public S tring closes tNode; // the clos es t node found

public Integer aS tarP lus NodesHit; // the nodes tes ted for A* wrapper algorithm

 public double dis tance; // the s hortes t path dis tance found

 public Integer nodesHit; // the total number of nodes hit

 public Integer edgesHit; // the total number of edges hit

 public Integer totalHits ; // the total hits (nodes + edges)

All of the AlgorithmOutput instances are combined into an instance of the CompareResult class

which includes the following attributes.

public S tring s tartNode; // the name of the s tart node

public S tring endNodes ; // a concatenation of all of the end nodes

public Integer numberOfE ndNodes ; // T he number of end nodes in this tes t

public double minDis t; // the geographical dis tance to neares t node

public double maxDis t; // the geographical dis tance to furthes t node

public double medianDis t; // maxDis tNode les s minDistNode to give the breadth of the node

pool

public AlgorithmOutput aS tarAlgorithmOutput;

public AlgorithmOutput aS tarP lus AlgorithmOutput;

public AlgorithmOutput walkers AlgorithmOutput;

public boolean match; // do the algorithms agree

Each test condition will output the CompareResult object to a results file in csv format. An

example of one test condition is below:

"Colmar","Cannes,Arles,Basel,Geneve,Aix-les-Bains,Digne,Aix-en-

Provence",7,44.94441010848846,397.24677468797654,221.0955923982325,"Basel",0,64.19

999694824219,610,1035,1645,"Basel",1,64.19999694824219,4,3,7,"Basel",0,64.1999969482

4219,1,3,4,"true"

Functional testing

In addition to the user interface a class TestMapInitialisation has been built to test each of the

transformation functions in isolation. The output from these tests was used to compare with the

excel models to ensure the accuracy of the input to the algorithms.

Generating test data

To check against the measurement criteria a significant amount of test data is required. All

testing has been performed against a summarised view of the road network in France with 156

nodes and 283 edges.

A function has been built to take two inputs – the maximum number of end nodes, x, and the

number of test cases, y, per end node. The function will then generate x*y test cases.

Test data is generated using the following method:

for 1…number of end nodes (x)

for 1…number of test cases (y)

 27

Choose a random start node

Choose a direction for the virtual line

Calculate boundary lines

Randomly choose x end nodes that are within the boundary lines

In creation of the test data the maximum, median and minimum distance from the start node to the

end nodes is calculated. This is to allow the relative size of the cluster to be used in analysis if

necessary. Each test case is saved as json in an instance of a TestDataInput class.

 public Integer s tartNode; // T he s tart node

 public ArrayLis t<Integer> endNodeAL; // T he end node array

 public double minDis t; // the geographical dis tance to neares t node

 public double maxDis t; // the geographical dis tance to furthes t node

public double medianDis t; // the median dis tance

Each test is saved as an array element within an instance of a TestData class.

public int maxNumE ndNodes ; // T he maximum number of end nodes in tes t data i.e. 1..n

where n is maxNumE ndNodes

public int numberC as es ; // T he number of tes t cas es for each number of end nodes e.g. 100

cas es for 10 end nodes

public ArrayLis t<T es tDataInput> tes tC as e;

 28

9. Algorithm comparison reports and analysis

Comparison results execution 1

After performing initial testing to prove the quality of the test reports, test cases were created for

1 to 20 end nodes with 100 test cases in each resulting in 2,000 test cases overall. The results of

these tests are below.

Figure 8.1. Average hits per number of end nodes

The graph in Figure 8.1 shows total number of hits (nodes plus edges) on the y-axis against the

number of end nodes in the shortest path execution along the x-axis.

• A* represented by the blue line

• A* wrapper represented by the yellow line

• The new algorithm (Walkers) represented by the grey line

Results from the above 3 algorithms were executed and compared and it should be noted that for

every test case all 3 algorithms agreed on the shortest path thereby satisfying the quality

requirement.

These results are highlight some very interesting areas for the following reasons:

1. A* seems to follow a predictable linear growth. It seems intuitive that the number of hits

increase linearly with each additional end node and this is evidenced in the graph.

2. A* with an efficiency wrapper also increases as the number of end nodes increases but

then plateaus at about 6 end nodes and from there on appears to follow a straight line path

3. The new algorithm (Walkers) has roughly half of the hit nodes as A* for one end node

which indicates using this metric that it is more efficient as A*

 29

4. The new algorithm (Walkers) uses less hits the more end nodes are selected, so it actually

becomes more efficient the more end nodes to search for

Given reason 1 is as expected, reasons 2 to 4 are investigated in the rest of this section.

Reason 2 – A* with efficiency wrapper plateaus

The A* wrapper algorithm depends on the likelihood that one of the nearest end nodes is more

likely to be the shortest path. Figure 8.1 therefore looks to be an indication of the probability of

this being the case. Figure 8.2 shows the number of end nodes on the x-axis and the average

number of executions of A* required for each test case to find the shortest path. This does appear

to support this hypothesis, but it doesn’t appear to fully explain it as the trend still appears to be

upwards whereas in Figure8.1 it plateaus.

Figure 8.2. Average number of end nodes tested for A* with efficiency wrapper

One other factor that influences the A* with efficiency wrapper execution total number of hits is

how far away the end node is from the start node. With more end nodes, the likelihood is that

more of the end nodes will be closer to the start node. Taking this into account alongside the

number of end nodes hit may explain the shape of the trend line.

 30

The plateau is not the whole story though as this could hide some extreme variation in the hits per

test case. Figure 8.3 shows the variation in nodes and edges hit (on the y-axis) for the 100 test

cases (on the x-axis) where there are 20 end nodes. Even with the A* wrapper algorithm there is

huge variation in hits with a minimum nodes hit value of 3 and a maximum nodes hit value of

3,573 (1,191 times bigger). For comparison, in Walkers the minimum is 2 and the maximum is

152 (76 times bigger).

Figure 8.3. Average number of end nodes tested for A* with efficiency wrapper for 20 end

nodes.

This would seem to indicate that the new algorithm will be more consistent in terms of efficiency.

Reason 3 – The new algorithm is twice as efficient as A*

Note that this is based on the given measurement criteria. The below graphs give a visual

comparison between A* and the new algorithm for the same search. Although at first glance, A*

looks to have covered a larger area, closer examination of the Walkers output shows that edges to

the light blue coloured nodes on the A* picture are shaded red. This may indicate that an

anomaly in the scoring approach is skewing the result for one end node in favour of Walkers

algorithm.

Figure 8.4. Visual map output comparison of A* versus the new algorithm

 31

To understand in this in more detail, Figure 8.5 explores more fully the relationship between

nodes and edges hit with each of the 100 test cases on the x-axis and the y-axis showing total

nodes and edges hit for that test case (nodes are the blue line and edges the amber line). The

graphs look at the one end node data only and are sorted by increasing total nodes hit.

Figure 8.5. Ordered nodes hit for one end node of A* versus the new algorithm

The above charts are very illuminating. Looking at the A* graph, both the node hits and the edge

hits seem to plateau at the 78th test case. The plateau is at 156 for nodes and 283 for edges which

corresponds to the total number of nodes and edges in the graph. So from the 78th test case (c

20%) of the test cases A* has needed to examine every node and edge to find the shortest path.

Looking at the Walkers graph, the graph keeps growing in a smooth curve and doesn’t reach the

total number of nodes or edges in any test case. This seems to reflect a smooth growth and no

anomaly in the reporting data for the new algorithm. To investigate this further, Figure 8.6

contains the search output for the 78th test case (Digne to Carcassone) which is the first test case

to plateau in A*.

Figure 8.6. Example case with one end node with large difference

 32

The above graphs show a remarkable difference between A* and Walkers which this time points

to a possible anomaly in the A* algorithm result. Running the same search using Dijkstra brings

up the following result:

Figure 8.6. Visual comparison of A* versus the new algorithm

Figure 8.6 seems to show Dijkstra outperforming A* and therefore strongly points to a bug in the

implementation of A*. Investigation identified the problem to be a condition in the code to check

for the end node being found:

if (currentNode.nodeIndex == mycd.endNode)

The above code is failing to work in all cases as the node index and endNode are being held as

Integer objects and this is attempting to find if they are referring to the same object and therefore

causing an unreliable result. This code line was replaced with the following line to ensure the

value of the Integer object is compared and not the object:

if (currentNode.nodeIndex.equals (mycd.endNode))

Retesting Digne to Carcassone for A* then produces the following result in Figure 8.7.

Figure 8.7. Visual comparison of A* versus the new algorithm

This looks more reasonable. This potentially invalidates the previous findings. Therefore, the

comparison tests have been re-executed as follows and referred to as execution 2.

 33

Comparison results execution 2

Re-running the comparison with the updated code produces similar results but with improved

efficiency for A* and A* wrapper. However, the new algorithm now appears to have a similar

performance to A* for one end node. See Figure 8.8 to show execution 2 against execution 1 for

comparison and also a large image of execution 2 for detail. As before the number of end nodes

is on the x-axis and the y-axis shows the number of executions.

Figure 8.8. Comparison results execution 1 versus execution 2

 34

Reason 2 review

Rerunning the graphs produces a similar result as follows:

Figure 8.9. Rerun on Figure 8.3, Average number of end nodes tested for A* with efficiency

wrapper for 20 end nodes

The analysis of Reason 2 in execution 1 remains correct. Figure 8.9 shows a rerun of the

variation graphs for 20 end nodes. The variation for A* remains unchanged with a range from 3

to 3,510 (1,171 times bigger as before). For comparison, in Walkers the minimum is 2 and the

maximum is 152 (76 times bigger). Therefore, the new algorithm still appears to be much more

consistent for multiple end nodes.

 35

Reason 3 review

Continuing the investigation as to whether results are skewed in favour of the new algorithm,

Figure 8.10 is an updated version of Figure 8.5 but with both algorithms plotted on the same

graph. The graphs look at one end node data only and are sorted by increasing total nodes and

edges hit for A* and the corresponding nodes and edges hit for the new algorithm. The graph

then shows a breakdown of nodes hit and edges hit for each test case. The updated results show

that the new algorithm and A* are performing with similar efficiency for a single end node. This

invalidates reason 3 and means the new algorithm is not more efficient than A* for 1 end node.

Figure 8.10. Visual comparison of A* versus the new algorithm

It is interesting that the lines on the graph in Figure 8.10 are curved. The graph contains the set of

100 test cases for one end node sorted in order of total number of nodes hit. Given that the test

data is randomly selected, the reason for a curve rather than a straight line is not immediately

obvious. However, this can be explained by the structure of the map. As the number of nodes hit

is growing there is the potential for each hit node to impact on the number of edges and connected

nodes and therefore the curve of this graph may be containing reflecting information about the

number and regularity of edges within the map. This is referred to as the branching factor which

influences the efficiency of the algorithm as described earlier in this report.

 36

Reason 4 - The new algorithm uses less hits the more end nodes are selected

The new algorithm prioritises a search along paths in the direction of a segment containing all of

the end nodes. The more end nodes there are, the greater the probability that there is an end node

closer to the start node thereby reducing the number of nodes and edges that need to be searched.

If this assumption holds true, then a graph showing the average distance to the nearest node for

each number of end nodes should show this distance decreasing for each end node.

Figure 8.11. Visual comparison of A* versus the new algorithm

Figure 8.11 maps the number of end nodes on the x-axis against the average distance to the

geographically closest end node on the y-axis and this confirms that the nearest end node is

becoming closer to the start node as the number of end nodes increases. This seems to satisfy

reason 4 and also highlights an issue with the creation of the test data. The random selection of

end nodes in a directional segment is successfully testing the quality, but it does not seem to

satisfy some of the use cases such as the nearest car park in a nearby city. In this use case the

requester is likely to be distant from the city and the end nodes are likely to be more closely

located in a cluster.

To attempt to better simulate the above use case, the existing data will be filtered to select only

those test cases where the closest end node is in the furthest quartile and where the gap between

the nearest and furthest end node is in the smallest quartile.

 37

Only a small number of test cases fit this criteria as shown in Figure 8.12 graph below. In Figure

8.12 the x-axis is the number of end nodes and the y-axis is the number of test cases that meet the

above filter.

Figure 8.12. Visual comparison of A* versus the new algorithm

Figure 8.13, with trend lines added, shows a different story to the previous graphs for A*. Now

that the end nodes are more clustered the graph on the left shows the number of nodes hit growing

linearly with the number of end nodes selected and this is not plateauing as before. This removes

any advantage in using the A* wrapper algorithm.

Additionally, the number of nodes hit reflects the number of end nodes being evaluated with A*

and consequently also indicates a linear growth (see the right graph in Figure 8.13). However, the

new algorithm continues to maintain a relatively low hit count that appears to remain constant

regardless of the number of end nodes.

Figure 8.13. Visual comparison of A* versus the new algorithm

This indicates for a clustered set of end nodes (i.e. a set of end nodes relatively close together) the

new algorithm is significantly more efficient than A* and A* with a wrapper and that this

efficiency increases linearly based on the number of end nodes in the search.

 38

10. Conclusions

The testing carried out has demonstrated that the new algorithm will find the shortest path to a

single or multiple end nodes that is consistent with the results from A* and therefore it meets the

quality measurement criterion.

In terms of efficiency the new algorithm appears to be significantly more efficient than A* and

the A* wrapper algorithms in finding multiple end nodes. This efficiency increases in relation to

the number of end nodes and the relative proximity of the end nodes with the greatest efficiency

where the end nodes are closest together. In addition, the new algorithm has much lower

variation in the least and greatest number of nodes hit so is more consistent. These findings were

dependent on the test data and the efficiency scoring method. Given that the efficiency increase is

so large it is likely any anomalies in the node and edge counting will not affect the conclusion that

the new algorithm is more efficient than A* wrapper under these conditions. To confirm these

findings, the efficiency scoring method should be reviewed and improved test data should be used

based on one of the real-world use cases, such as finding the nearest electric car charging point in

a city being visited.

 39

11. Areas for Further Research and Development

During the development of this project the following areas have been identified as candidates for

more development and / or research:

Add capability for priority queue

To improve the efficiency of the algorithm, a method for implementing a priority queue should be

investigated. This is an efficient way of handling an ordered set of values such as the lowest or

the highest can be selected for processing. For the new algorithm this is made more difficult as

the values in the ordered list are recalculated at selection.

Finding the shortest path from multiple start nodes to a single end node

The simplest method to find the shortest path from multiple start nodes to a single end node

would be to reverse the start and end nodes and therefore the end node will become the start node

the multiple start nodes will be the multiple end nodes. However, this could become more

difficult in a travel application where distances are directional and affected by travel conditions

such as accidents and congestion. An alternative approach is to introduce the concept of a single

virtual start node.

Figure 10.1. Approach for multiple start nodes to single end node

Figure 10.1 shows how the new algorithm might be adapted to find the shortest path from

multiple start nodes to a single end node. A virtual start node (start_node 4) is mapped to the

virtual line and this replaces the start node used in the algorithm. Virtual edges are created from

the virtual start node to each start node. These edges are initialised to have zero slack and an

effective distance of zero for calculation in the shortest path. The shortest path will have to pass

through one of the start nodes as the virtual start node is only connected to these.

 40

Finding the shortest path from multiple start nodes to multiple end nodes

Figure 10.2 develops the idea above further to enable the shortest path from multiple start nodes

to multiple end nodes to be calculated.

Figure 10.2. Approach for multiple start nodes to multiple end nodes

This continues with the concept of a virtual start node as a start point. The boundary lines

become lines joining the outermost start and end nodes with the virtual line bisecting these as

before. Finally the virtual line is rotated to the x-axis. Mapping to the virtual line should be

researched further and will be based on the single start node to multiple end node approach.

Finding the shortest path through multiple clusters

Taking this idea even further, it may then be possible to find the shortest path from multiple start

nodes through a cluster of multiple interim nodes to multiple end nodes where the shortest path is

from any start node through any interim node to any end node.

Figure 10.3. Approach for multiple start nodes to single end node

The above illustration shows how this might be developed. In this case the boundary lines change

direction at the interim cluster. As previously mapping will be based on the original virtual line

mapping, however mapping will be affected by the change in direction of the boundary and

virtual lines and would need to handle cases where direction reversed. When an interim node is

hit, each hit interim node will need to track a duplicate set of nodes and edges to allow for

backtracking along edges should the end nodes be in the direction of the start nodes.

 41

Review the scoring method for efficiency comparison

A more sophisticated scoring system that takes into account statements executed and ideally

processor time executed should be explored. This could incorporate an error range that would

allow the efficiency of the new algorithm to be better evidenced.

Incorporation of real-world test data

Openstreetmap can be used to integrate real world maps into testing. The data in openstreetmap

is held as nodes and ways. Each way holds a path of connected nodes. Each node has a longitude

and latitude. The geographical distance can be calculated by calculating the distance between

each node in a way. Code can then be written to identify the nodes where ways connect. Using

this data, openstreetmap data can be integrated into the test application for this project and used to

provide bigger and more realistic map data for further testing.

Testing the regularity of the map

A regular map might be described by a set of regularly spaced nodes each with the same edges

connecting the nodes to neighbours. Comparison of multiple tests to find the shortest path could

lead to inferences about the graph by comparing results to expected results from a regular map.

For example the number of times the A* wrapper algorithm needs to execute A* could indicate

unconnected areas of the map. This could be used make inferences from maps which contains

some unknown data.

Cluster analysis

The new algorithm could be used to find the minimum and maximum distances between clusters

of nodes.

Shortest path in 3 dimensions

The new algorithm could be expanded to work on 3 dimensional maps.

Matrix transformations

Coordinates and transformations could be done using matrices. This could allow transformations

to be combined and much faster execution time by making use of hardware optimised for matrix

calculations.

Travelling salesman problem

The travelling salesman problem is one that describes the problem of a salesman trying to work

out the shortest journey for him to visit multiple destinations. This is described as an NP-hard

problem. The ability of the new algorithm to find shortest paths from multiple nodes to multiple

nodes and passing through multiple nodes could lead to a new approach for finding solutions to

the travelling salesman problem.

Reviewing the complexity (order) of the new algorithm

The success of the new algorithm will depend on its complexity and the number of nodes and

edges it needs to examine to find a solution. Currently, this is exponential and more work is

required to ensure the new algorithm is defined to perform at least as well as A*.

 42

12. Reflection/Learning

The importance of modelling

The idea for this project formed during a lecture, however it was modelling on a whiteboard and

Excel that gave it substance and indicated it might work in practice. After the whiteboard and

Excel modelling I tried to replicate this in code, however I was unable to make this work until I

had revisited Excel and created sample data allowing me to step through an example until a

shortest path had been found. This reinforced to need to ensure I have spent sufficient time in

completing and understanding the design before coding.

Tenacity

There were several times when it looked like the new algorithm wouldn’t work. At these times I

needed to step away from the problem and do something else. When I came back methodically

re-tracing my steps enabled me to come up with a solution. This reinforced the need to persevere

even when a solution does not appear to exist.

Avoid making assumptions

Although I had read through the Dijkstra and A* algorithms and thought I understood them, I

didn’t really understand them until I worked through the algorithms, developed my own code and

ran through some examples. It takes strong self-discipline to take the time to work through

existing knowledge prior to building something new and this is a lesson I will take forward in

future research.

The importance of prototyping and unit testing

As soon as the design was understood I found it very valuable to write some code. This enabled

examples to be executed quickly, however I was slowed by some code defects. To overcome

these, I wrote mini test packs for the individual functions in use and then tested input data against

output from Excel. This then gave confidence in integrating these functions together and enabled

debugging to focus on only the new code. This worked very well for the initial mapping of

coordinates to virtual positions and the different iterations of code versions and is an approach I

will continue to use when developing software.

Analysis of output

As highlighted in the comparison report section above, when looking through the initial output I

found an unexpected result in one of the graphs. Initially I thought it was easy to explain but I

looked for further evidence to support this. The test example didn’t support my initial

assumption, and this led me to find a bug in my implementation of A*. I was really pleased I

investigated further and reinforced to need to provide evidence for any inference made from the

data even when this creates a lot more work.

Visualisation of the test data

From past experience and also working on modelling in Excel I knew that it would be really hard

to understand what was happening during execution of the algorithm. Although it required a lot

more work, this is why I developed an application with a user interface and the ability to step

through execution with a visual display of progress along with detailed debugging output. This

was invaluable in the test and analysis phase and reinforced the need to consider the test

requirements in the initial development requirements.

 43

Flexibility

The aim of the new algorithm was initially to rival A*. Although it does do this, it is unlikely to

be as efficient for single node to single node shortest paths. After careful consideration though, I

realised that the approach would lend itself to multiple node problems and therefore after

discussion with my supervisor I updated to the project to include multiple end nodes. This

created more design and development work but enabled me to explore new opportunities to test

the algorithm’s efficiency. This reinforced the need to be open to opportunities for use which

may lead in a slightly different direction.

 44

13. References

Schrijver, A. 2012. On the History of the Shortest Path Problem. University of Washington.

Available at: https://www.math.uni-bielefeld.de/documenta/vol-ismp/32_schrijver-alexander-

sp.pdf

Minty, GJ. 1957. Letter to the Editor—A Comment on the Shortest-Route Problem. Operations

Research 5(5):724-724. Available at: https://doi.org/10.1287/opre.5.5.724

Dijkstra, EW. 1959. A note on two problems in connexion with graphs. Numerische Mathematik

1: 269-271

Hart, P et al. 1968. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE

Transactions on Systems Science and Cybernetics. 4 (2): 100–107.

Eggen, J. 2017. Vector class source code. [Source code]. Available at:

https://codereview.stackexchange.com/questions/181384/making-math-vector-implementation-

using-java [Accessed: 13 April 2020].

 45

14. Appendices

Shortest String Path Proof

Theorem

This theorem concerns a geographical graph with 2 or more nodes and with 1 or more edges with a

weight equal to the Euclidean distance between the connecting nodes. Given any start and end node

where edges exist that connect the start and end node and which lie on a straight line from the start

node to the end node and there are no overlapping edges, then the sum of the edge weights will be the

shortest distance between the nodes.

Statement of Proof

Figure A1. Shortest String Path Proof

Consider a path that lies on the straight line connecting the start node to the end node and the path

consists of 0 or many interim nodes. For example, in Figure A1, this path is N1 -> N2 -> N3 -> N4.

Suppose that this path is the shortest path, then the distance of this path will be a+b+c.

Suppose that there is a shorter path that does not lie along the straight line from the start node to the

end node. In Figure 1, this is represented by the path N1 -> N5 -> N4. Using Pythagorus’s theorem

the length d can also be calculated as the square root of (a+b)2 + f2. Similarly the length e can be

calculated as the square root of c2 + f2.

Since N1 -> N5 -> N4 is the shortest path then √((a+b)2 + f2) + √(c2 + f2) must be less than a + b + c

√((a+b)2 + f2) can be rewritten as follows:

√((a+b)2 + f2) = √((a+b)2(1 + (f2/(a+b)2)) = √((a+b)2) * √ (1 + f2/(a+b)2))

= (a+b) * √ (1 + f2/(a+b)2))

√ (1 + f2/(a+b)2)) must be >= 1 since √ (1 + x) >= 1 where x >= 0

Similarly, √(c2 + f2) can be rewritten as follows:

√(c2 + f2) = √(c2(1 + f2/c2))

= c * c2(1 + f2/c2)

The length N1 -> N5 ->N4 can be rewritten as

 46

((a+b) * x) + (c * y) where x>=1 and y >= 1 - Statement 1

QED

Given statement 1, ((a+b) * x) + (c * y) >= a + b + c and therefore the length N1 -> N5 ->N4 cannot

be shorter than the length N1 -> N2 -> N3 -> N4 (note however, if f=0, then this distance N1 -> N5 -

>N4 could equal the shortest path)

Definition of slack

Figure A2. Definition of slack

Consider Figure A2.

There are two nodes, A and B.

Let the Euclidian distance between node A and B is m.

Let the distance along the edge A -> B (marked in red) be ed.

Let AB be the straight line passing through nodes A and B.

Let f(A, B, Z, ed) be a function that translates the point A in the following manner:

• Node A is translated a distance of Z units along AB such that the Euclidean distance, m,

between the two points increases by m

• If following the translation, m is greater than the edge distance between node A and node B,

ed, then node A will be moved to a point on AB such that m is equal to ed.

The slack is the maximum distance that node A can move along AB without m being greater than ed.

Therefore, the slack is ed – m

If the above function is called repeatedly with a small amount for Z eventually m will be equal to ed.

Rather than call the translation function repeatedly, the translation may be executed with one function

call by initially calculating the slack as ed-m and then passing this value in a parameter Z. This will

result in node A moving along the line AB, ed-m units as shown in Figure A3.

Figure A3. Translation by the slack amount

 47

Given that the distance from node A to B will always result in a value ed, then the start

position of A along the line AB will not affect the end position and therefore the start position

is arbitrary providing m <= ed.

 48

Key source code

Mapping to the virtual line

 public void walkers S etupV irtualC ontext () {

 // New code caters for multiple end nodes

 // F irs t, create a trans lation to map the s tart node to the origin

 mycd.tn = new T rans late(new C oord(mycd.nodeArray.get(mycd.s tartNode).myNodeInit.x,

mycd.nodeArray.get(mycd.s tartNode).myNodeInit.y) , new C oord(0.0, 0.0));

 // T rans late all points us ing the above trans lation

 C oord oldC oord, newC oord;

 for (int i=0; i<=mycd.nodeArray.s ize()-1; i++) {

 oldC oord = new C oord(mycd.nodeArray.get(i).myNodeInit.x,

mycd.nodeArray.get(i).myNodeInit.y);

 newC oord = mycd.tn.trans late(oldC oord);

 mycd.nodeArray.get(i).myNodeInitV L = new NodeInit(mycd.nodeArray.get(i).myNodeInit.name,

newC oord.x, newC oord.y);

 }

 // Us ing s elected end nodes , calculate V irtual Line, boundary lines and rotation to place virtual line

along the +ve x-axis

 ArrayLis t<C oord> endNodeAL;

 endNodeAL = new ArrayLis t<C oord>();

 for (int i=0; i<=mycd.endNodeAL.s ize()-1; i++) {

 endNodeAL.add(mycd.nodeArray.get(mycd.endNodeAL.get(i)).myNodeInitV L.getC oord());

 }

 Line.findV LAndB oundaries (mycd, endNodeAL, (9.0/10.0 * Math.P I));

 // Loop through all points and map to virtual line coordinates . T his is done up front in this example

code,

 // but to improve efficiency the virtual line coordinates only need to be calculated once when a node is

evaluated.

 // C oordinates are copied to an intermediate array to allow for reus e by tes t methods

 ArrayLis t<C oord> nodeAL;

 nodeAL = new ArrayLis t<C oord>();

 for (int i=0; i<=mycd.nodeArray.s ize()-1; i++) {

 nodeAL.add(mycd.nodeArray.get(i).myNodeInitV L.getC oord());

 }

 C oord myC oord, myC oordR otated;

 boolean iwb;

 for (int i=0; i<=nodeAL.s ize()-1; i++) {

 myC oord = nodeAL.get(i);

 myC oordR otated = myC oord.rotate(mycd.rotV lAngle);

 iwb = myC oordR otated.coordWithinB oundaries (mycd, true);

 newC oord = myC oordR otated.mapC oordT oV l(mycd, iwb);

 mycd.nodeArray.get(i).myNodeInitV L.s etC oord(newC oord);

 }

 // T o s implify the s earch (as a tes t), map all of the end points to the s ame virtul pos ition

 // F irs t find the lowes t x value (i.e. the clos es t to the s tartnode)

 double lowes tE ndNodeXV alue = Double.MAX_V ALUE ;

 for (int i=0; i<=mycd.endNodeAL.s ize()-1; i++) {

 if (mycd.nodeArray.get(mycd.endNodeAL.get(i)).myNodeInitV L.x < lowes tE ndNodeXV alue) {

 lowes tE ndNodeXV alue =

mycd.nodeArray.get(mycd.endNodeAL.get(i)).myNodeInitV L.x;

 49

 }

 }

 // Next update all of the endNode x values to the found low value

 for (int i=0; i<=mycd.endNodeAL.s ize()-1; i++) {

 mycd.nodeArray.get(mycd.endNodeAL.get(i)).myNodeInitV L.x = lowes tE ndNodeXV alue;

 }

 }

 public s tatic void findV LAndB oundaries (C ontrolData inC D, ArrayLis t<C oord> inC oordAL, double maxAngle) {

 // T his method will calculate the maximum boundary line, the minimum boundary line and

 // V L (the V irtual Line) which bis ects them. T he angle between the maximum and the minimum

 // boundary line mus t be within the input maxAngle. All angles are in radians .

 double maxG apAllowed = (Math.P I*2.0) - maxAngle;

 if (maxAngle > Math.P I) {

 S ys tem.out.print("Line.findV L : : E R R OR - maxAngle exceeds P I (180 degrees) and is invalid");

 S ys tem.exit(0);

 }

 ArrayLis t<Line> outLineAL;

 ArrayLis t<Double> angleAL;

 outLineAL = new ArrayLis t<Line>();

 angleAL = new ArrayLis t<Double>();

 C oord myC oord;

 Line myLine;

 V ector vectorY Axis = new V ector (0,1,0);

 V ector myV ector;

 double angle;

 // F irs t find the angles between x-axis and lines going through the origin and input C oordinates

 for (int i=0; i<= inC oordAL.s ize()-1; i++) {

 myC oord = inC oordAL.get(i);

 if (myC oord.x == 0 && myC oord.y == 0) { // If at the origin, ignore

 angleAL.add(null);

 }

 els e {

 myV ector = new V ector(myC oord.x, myC oord.y, 0);

 angle = vectorY Axis .angleC lockwis eF rom0(myV ector);

 angleAL.add(angle);

 }

 }

 // Next work out the minimum s egment angle from the origin that will include all coordinates

 // T his is done by looking for a gap between angles greater than 2*P I (a full circle) les s than maxAngle

 // S tart from the lowes t angle and then look for a gap between each s ucces s ive angle. S tart by adding

the firs t

 // angle to the end of the arraylis t with the addition of 2*P I to ens ure that the gap cros s ing the s tart

point

 // is als o cons idered.

 S hortes tP athUtility.s ort(angleAL);

 angleAL.add(angleAL.get(0) + (Math.P I*2.0));

 double angleV L = 0, angleB oundary1 = 0, angleB oundary2 = 0, index1 = 0, index2 = 0;

 boolean valid = true;

 int maxIndex = -1;

 double maxG apF ound = -1;

 for (int i=0; i<=angleAL.s ize()-2 && valid; i++) {

 if ((angleAL.get(i+1) - angleAL.get(i)) > maxG apF ound) {

 maxG apF ound = (angleAL.get(i+1) - angleAL.get(i));

 maxIndex = i;

 50

 }

 }

 if (maxG apF ound < maxG apAllowed) {

 // C orrect gap found s o calculate lines

 valid = fals e;

 S ys tem.out.println("INV ALID, gap: "+maxG apF ound+" < "+maxG apAllowed);

 inC D.multiE ndNodeV alid = fals e;

 S ys tem.out.print("Line.findV L : : E R R OR - maxAngle exceeded");

 S ys tem.exit(0);

 }

 if (valid) {

 index1 = angleAL.get(maxIndex);

 index2 = angleAL.get(maxIndex+1);

 if (index2 >= (Math.P I*2.0)) {

 index2 = index2 - (Math.P I*2.0);

 }

 if (index1 <= index2) {

 angleB oundary1 = index1;

 angleB oundary2 = index2;

 }

 els e {

 angleB oundary2 = index1;

 angleB oundary1 = index2;

 }

 // C heck if there is a s horter bis ection as it cros s es 0 degrees

 double tmpAngleB oundary1 = angleB oundary1;

 if ((angleB oundary2 - tmpAngleB oundary1) > Math.P I) {

 tmpAngleB oundary1 = tmpAngleB oundary1 + (Math.P I*2.0);

 }

 angleV L = tmpAngleB oundary1 + ((angleB oundary2 - tmpAngleB oundary1) / 2);

 if (angleV L >= (Math.P I*2.0)) {

 angleV L = angleV L - (Math.P I*2.0);

 }

 inC D.boundary1Angle = angleB oundary1;

 inC D.boundary2Angle = angleB oundary2;

 inC D.vlAngle = angleV L;

 inC D.boundary1Line = Line.findLineF romAngle(angleB oundary1);

 inC D.boundary2Line = Line.findLineF romAngle(angleB oundary2);

 // C alculate the angle to rotate vlAngle to pos itive x-axis

 inC D.rotV lAngle = ((2.0*Math.P I) + (Math.P I/2.0) - inC D.vlAngle);

 if (inC D.rotV lAngle >= (2.0*Math.P I)) {

 inC D.rotV lAngle = inC D.rotV lAngle - (2.0*Math.P I);

 }

 inC D.boundary1AngleR otated = inC D.boundary1Angle + inC D.rotV lAngle;

 if (inC D.boundary1AngleR otated >= (Math.P I*2.0)) {

 inC D.boundary1AngleR otated = inC D.boundary1AngleR otated - (Math.P I*2.0);

 }

 inC D.boundary2AngleR otated = inC D.boundary2Angle + inC D.rotV lAngle;

 if (inC D.boundary2AngleR otated >= (Math.P I*2.0)) {

 inC D.boundary2AngleR otated = inC D.boundary2AngleR otated - (Math.P I*2.0);

 }

 }

 }

 51

The new algorithm

 public void walkers () {

 // T his function will find the s hortes t path from a s ingle s tart node to one or multiple end nodes

 T hreadMXB ean threadMXB ean;

 long cpuS tartT ime, cpuE ndT ime;

 threadMXB ean = ManagementF actory.getT hreadMXB ean();

 cpuS tartT ime = threadMXB ean.getC urrentT hreadUs erT ime();

 G s on myG s on = new G s on();

 S tring gs onS tring;

 DecimalF ormat df = new DecimalF ormat("####0");

 boolean found;

 this .hitNodes = new ArrayLis t<Integer>();

 this .walkers S etupV irtualC ontext();

 // B lock 0

 this .hitNodes .add(mycd.s tartNode);

 mycd.nodeArray.get(mycd.s tartNode).moves = (double) 0;

 // B lock 1

 boolean conditionHit;

 // F ind the next edge to proces s

 this .walkersF indNextE dge();

 while (this .nextE dge != null) { // loop until no more edges are found

 conditionHit = fals e;

 // if firs t time in or a s horter path is found to the next node then the condition is hit

 if (this .nextNode.moves == null) {

 conditionHit = true;

 }

 els e if ((this .thisNode.moves +

 (this .nextE dge.myE dgeInit.dis tance + this .walkers C alcV Dis t(this .thisNode,

this .nextNode)))

 < this .nextNode.moves) {

 conditionHit = true;

 }

 // If condition hit, update the next node details

 if (conditionHit) {

 this .nextNode.moves = (this .thisNode.moves +

 (this .nextE dge.myE dgeInit.dis tance + this .walkers C alcV Dis t(this .thisNode,

this .nextNode)));

 this .nextNode.pathDis tance = this .this Node.pathDis tance + this .nextE dge.myE dgeInit.dis tance;

 this .nextNode.fromNode = this .this Node.nodeIndex;

 // Make all connected edges active (i.e. available for s election)

 for (int j=0; j<=this .this Node.myE dgeAL.s ize()-1; j++) {

 this .this Node.myE dgeAL.get(j).active = true;

 this .this Node.myE dgeAL.get(j).edgeC olour = C olor.B LUE ;

 this .this Node.myE dgeAL.get(j).vis ited = true;

 }

 this .nextE dge.active = fals e;

 this .nextE dge.edgeC olour = C olor.R E D ;

 // Determine if nextNode is an endNode

 boolean nextNodeIs E ndNode = fals e;

 for (int enLoop=0; enLoop<=mycd.endNodeAL.s ize()-1; enLoop++) {

 if (this .nextNode.nodeIndex.equals (mycd.endNodeAL.get(enLoop))) {

 52

 nextNodeIs E ndNode = true;

 }

 }

 // If not an end node add it to the nodes hit

 if (!nextNodeIs E ndNode) {

 this .hitNodes .add(this .nextNode.nodeIndex);

 }

 els e {

 s hortes tMoves T oE ndNode = nextNode.moves ;

 mycd.endNodeF ound = this .nextNode.nodeIndex;

// S ys tem.out.println("E nd node found: node=

"+mycd.nodeArray.get(this .nextNode.nodeIndex).myNodeInit.name+", moves = "+nextNode.moves);

 }

 this .this Node.nodeC olour = C olor.B LUE ;

 this .this Node.vis ited = true;

 }

 els e {

 // if not hit deactivate the edge

 this .nextE dge.active = fals e;

 this .nextE dge.edgeC olour = C olor.R E D ;

 }

 if (myP layC ontrol.s howDetails) {

 myP layC ontrol.addInfo(true, "- P roces s ing node: "+this .this Node.myNodeInit.name);

 myP layC ontrol.addInfo(fals e, "- V irtual line pos ition x:

"+this .walkers C alcV lP os ition(this .this Node).x);

 myP layC ontrol.addInfo(fals e, "- V irtual line pos ition y:

"+this .walkers C alcV lP os ition(this .this Node).y);

 myP layC ontrol.addInfo(fals e, "- moves : "+this .thisNode.moves);

 gs onS tring = myG s on.toJ s on(mycd);

 myP layC ontrol.s trC ontrolDataAL.add(gs onS tring);

 }

 this .walkers F indNextE dge(); // look for the next edge

 if (myP layC ontrol.s howDetails) {

 if (this .nextNode != null) {

 myP layC ontrol.addInfo(fals e, "- Next node:

"+this .nextNode.myNodeInit.name);

 myP layC ontrol.addInfo(fals e, "- moves : "+this .nextNode.moves);

 myP layC ontrol.addInfo(fals e, "- S lack: "+(this .nextE dge.myE dgeInit.dis tance

+

 this .walkers C alcV Dis t(this .this Node, this .nextNode)));

 myP layC ontrol.addInfo(fals e, "- T his to next node vDis t: "+

 this .walkers C alcV Dis t(this .this Node, this .nextNode));

 this .nextE dge.edgeAdditionalT ext =

"("+df.format(this .nextE dge.myE dgeInit.dis tance +

 this .walkers C alcV Dis t(this .this Node,

this .nextNode))+")";

 }

 this .this Node.additionalNodeT ext = "(" +

df.format(this .walkers C alcV lP os ition(this .this Node).x) + "," + df.format(this Node.moves) + ")";

 myP layC ontrol.addInfo(fals e, "- Number in hit nodes : "+this .hitNodes .s ize());

 S tring hitNodes S tr = "";

 for (int f=0; f<=this .hitNodes .s ize()-1; f++) {

 hitNodes S tr =

hitNodes S tr.concat(mycd.nodeArray.get(this .hitNodes .get(f)).myNodeInit.name+" ");

 }

 myP layC ontrol.addInfo(fals e, "- Hit nodes : "+hitNodes S tr);

 }

// ii++;

 53

// if (ii>50) this .nextE dge = null;

 } // while (this .nextE dge != null)

 myP layC ontrol.algorithmT hreadR unning = fals e;

 }

 public void walkers F indNextE dge () {

 // T his method finds the next edge for proces s ing in Walkers algorithm

 double moves AndS lack;

 boolean found = fals e;

 Node myNode, neigbourNode;

 E dge myE dge = null;

 boolean activeE dgeF ound;

 ArrayLis t<Node> removeHitNodes = new ArrayList<Node>();

 this .leas tMoves AndS lack = null;

 this .nextNode = null;

 this .nextE dge = null;

 // loop through all of the hit nodes

 for (int i=0; i<=this .hitNodes .s ize()-1; i++) {

 myNode = mycd.nodeArray.get(this .hitNodes .get(i));

 myNode.vis ited = true;

 activeE dgeF ound = fals e;

 // loop through the edges connected to the hit node

 for (int j=0; j<=myNode.myE dgeAL.s ize()-1; j++) {

 myE dge = myNode.myE dgeAL.get(j);

 myE dge.vis ited = true;

 if (myE dge.active) {

 neigbourNode =

mycd.nodeArray.get(myE dge.getC onnectedNode(myNode.nodeIndex));

 // C alculate the moves and s lack and look for a new edge with leas t s lack

 moves AndS lack = myNode.moves + (myE dge.myE dgeInit.dis tance +

 this .walkers C alcV Dis t(myNode, neigbourNode));

 if (s hortes tMoves T oE ndNode!= null && movesAndS lack >=

s hortes tMoves T oE ndNode) {

 myE dge.active = fals e;

 myE dge.edgeC olour = C olor.R E D;

 }

 els e {

 found = fals e;

 if (this .leas tMoves AndS lack == null) {

 found = true;

 }

 els e if (moves AndS lack < this .leas tMoves AndS lack) {

 found = true;

 }

 if (found) { // S et the s tored objects to objects in arrays s o

reference won't change

 this .leas tMoves AndS lack = movesAndS lack;

 this .this Node =

mycd.nodeArray.get(this .hitNodes .get(i));

 this .nextE dge = this .this Node.myE dgeAL.get(j);

 54

 this .nextNode =

mycd.nodeArray.get(myE dge.getC onnectedNode(this .this Node.nodeIndex));;

 }

 }

 activeE dgeF ound = true;

 } // if (myE dge.active)

 } // for (int j=0; j<=myNode.myE dgeAL.s ize()-1; j++)

 if (!activeE dgeF ound) {

 removeHitNodes .add(myNode);

 }

 } // for (int i=0; i<=this .hitNodes .s ize()-1; i++)

 if (this .nextE dge != null) {

 this .nextE dge.active = fals e;

 }

 // R emove any hitNodes which don't have an active edge

 for (int i=0; i<=removeHitNodes .s ize()-1; i++) {

 this .hitNodes .remove(removeHitNodes .get(i).nodeIndex);

 }

 }

 55

A* with wrapper

 // 2. E xecute for A*P lus

 ArrayLis t<AS tarP lus E ndNodes > as penAL;

 as penAL = new ArrayLis t<AS tarP lus E ndNodes >();

 AS tarP lus E ndNodes as pen;

 double xDis t, yDis t;

 C oord s n = new

C oord(this .myC ontrolData.nodeArray.get(this .myC ontrolData.s tartNode).myNodeInit.x,this .myC ontrolData.

nodeArray.get(this .myC ontrolData.s tartNode).myNodeInit.y);

 // F or each end node s tore in an array and calculate the dis tance from the s tart node

 for (int i=0; i<=this .myC ontrolData.endNodeAL.s ize()-1; i++) {

 as pen = new AS tarP lus E ndNodes ();

 as pen.endNode = this .myC ontrolData.endNodeAL.get(i);

 C oord cen = new

C oord(this .myC ontrolData.nodeArray.get(this .myC ontrolData.endNodeAL.get(i)).myNodeInit.x,this .myC ontr

olData.nodeArray.get(this .myC ontrolData.endNodeAL.get(i)).myNodeInit.y);

 xDis t = cen.x - s n.x;

 yDis t = cen.y - s n.y;

 as pen.dis t = Math.s qrt((xDis t*xDis t) + (yDis t*yDis t));

 as penAL.add(as pen);

 }

 // S ort the end nodes into order of clos es t end nodes firs t

 S hortes tP athUtility.s ortAs pen(as penAL);

 double firs tE lementDis tance = Double.MAX_V ALUE ;

 s hortes tDis tance = Double.MAX_V ALUE ;

 aggregatedAlgorithmOutput = new AlgorithmOutput();

 aggregatedAlgorithmOutput.edges Hit = 0;

 aggregatedAlgorithmOutput.nodes Hit = 0;

 aggregatedAlgorithmOutput.totalHits = 0;

 aggregatedAlgorithmOutput.aS tarP lus Nodes Hit = 0;

 // loop through the end nodes

 for (int i=0; i<=aspenAL.s ize()-1; i++) {

 // only execute this block if the dis tance is les s than the firs t element dis tance

 if (as penAL.get(i).dis t < firs tE lementDis tance) {

 this .res et();

 this .myC ontrolData.endNode = as penAL.get(i).endNode;

 myAlgorithmOutput = this Window.executeAlgorithm("A*", fals e);

 if (i==0) {

 firs tE lementDis tance = myAlgorithmOutput.dis tance;

 }

 // check if a new s hortes t path has been found

 if (myAlgorithmOutput.dis tance < s hortes tDis tance) {

 aggregatedAlgorithmOutput.clos es tNode = myAlgorithmOutput.clos es tNode;

 aggregatedAlgorithmOutput.dis tance = myAlgorithmOutput.dis tance;

 s hortes tDis tance = myAlgorithmOutput.dis tance;

 }

 aggregatedAlgorithmOutput.edges Hit = aggregatedAlgorithmOutput.edges Hit +

myAlgorithmOutput.edges Hit;

 56

 aggregatedAlgorithmOutput.nodes Hit = aggregatedAlgorithmOutput.nodes Hit +

myAlgorithmOutput.nodes Hit;

 aggregatedAlgorithmOutput.totalHits = aggregatedAlgorithmOutput.totalHits +

myAlgorithmOutput.totalHits ;

 aggregatedAlgorithmOutput.aS tarP lus Nodes Hit ++;

// S ys tem.out.println("A*P lus " + myAlgorithmOutput.writeC s v());

 }

 }

 57

Creation of test data

 public s tatic void createC ompareT es tData() {

 C ontrolData mycd = new C ontrolData();

 mycd.res et();

 // S E T UP DAT A

 int maxNumE ndNodes = 20; // T he maximum number of end nodes in tes t data i.e. 1..n where n is

maxNumE ndNodes

 int numberC as es = 100; // T he number of tes t cas es for each number of end nodes e.g. 100 cas es for 10

end nodes

 S tring graph = "F rance";

 double boundaryAngleAllowed = (Math.P I / (double) 2.0) * ((double) 1.0 / (double) 2.0);

 // R ead in bas e node data and populate node and edge arrays

 mycd.nodeArray = Node.getNodeAL(graph);

 mycd.edgeArray = E dge.getE dgeAL(graph, mycd.nodeArray, fals e);

 // C reate connections in node array to edges

 Node.createNodeC onnections (mycd.nodeArray, mycd.edgeArray);

 // G enerate tes t data

 int numNodes = mycd.nodeArray.s ize();

 // loop until numberC as es found

 int numC as es F ound;

 int numC as es T ried;

 T es tData td = new T es tData();

 T es tDataInput tdi;

 td.maxNumE ndNodes = maxNumE ndNodes ;

 td.numberC as es = numberC as es ;

 for (int numE ndNode=1; numE ndNode<= maxNumE ndNodes ; numE ndNode++) {

 numC as es F ound = 0;

 numC as es T ried = 0;

 tdi = new T es tDataInput();

 do {

 tdi = new T es tDataInput();

 // 1. R andomly s elect a s tart node

 int s tartNode = T hreadLocalR andom.current().nextInt(0, numNodes);

 C oord fromC oord = new

C oord(mycd.nodeArray.get(s tartNode).myNodeInit.x,mycd.nodeArray.get(s tartNode).myNodeInit.y);

 C oord toC oord = new C oord (0,0);

 T rans late tn = new T rans late (fromC oord, toC oord);

 // 2. R andomly s elect a vl direction

 int vlDirectionInt = T hreadLocalR andom.current().nextInt(0, 361);

 double vlDirection = ((double) vlDirectionInt / (double) 360.0) * ((double) 2.0 *

Math.P I);

 // 3. Determine upper boundary and lower boundary

 double vlR otation;

 if (vlDirection < (Math.P I / (double) 2.0)) {

 vlR otation = (Math.P I / (double) 2.0) - vlDirection;

 }

 58

 els e {

 vlR otation = (Math.P I * (double) 2.0) + (Math.P I / (double) 2.0) - vlDirection;

 }

 mycd.boundary1AngleR otated = (Math.P I / (double) 2.0) - boundaryAngleAllowed;

 mycd.boundary2AngleR otated = (Math.P I / (double) 2.0) + boundaryAngleAllowed;

 // 4. Loop and randomly s elect nodes and s elect any within the boundaries until criteria

met

 int numE ndNodes F ound = 0;

 int numT ried = 0;

 int randomNode;

 C oord myC oord, myC oord2, myC oord3;

 boolean iwb;

 boolean alreadyS elected;

 do {

 randomNode = T hreadLocalR andom.current().nextInt(0, numNodes);

 myC oord = new

C oord(mycd.nodeArray.get(randomNode).myNodeInit.x,mycd.nodeArray.get(randomNode).myNodeInit.y);

 myC oord2 = tn.trans late(myC oord);

 myC oord3 = myC oord2.rotate(vlR otation);

 iwb = myC oord3.coordWithinB oundaries (mycd, fals e);

 // check random node s elected is not the s tart node and als o not already

been s elected

 alreadyS elected = fals e;

 for (int ii=0; ii<=tdi.endNodeAL.s ize()-1; ii++) {

 if (tdi.endNodeAL.get(ii) == randomNode) {

 alreadyS elected = true;

 }

 }

 if (iwb && randomNode != s tartNode && !alreadyS elected) {

// S ys tem.out.println("s tart node:

"+mycd.nodeArray.get(s tartNode).myNodeInit.name+" -> "+mycd.nodeArray.get(randomNode).myNodeInit.name);

 numE ndNodes F ound++;

 tdi.endNodeAL.add(randomNode);

 }

 numT ried ++;

 } while (numE ndNodes F ound < numE ndNode && numT ried <= (numE ndNode*1000));

 if (numE ndNodes F ound == numE ndNode) { // F ound a tes t cas e

 numC as es F ound ++;

 tdi.s tartNode = s tartNode;

 // calculate neares t and farthes t nodes

 double minDis t = Double.MAX_V ALUE ;

 double maxDis t = Double.MIN_V ALUE ;

 double dis t;

 double xDis t, yDis t;

 C oord s n = new

C oord(mycd.nodeArray.get(s tartNode).myNodeInit.x,mycd.nodeArray.get(s tartNode).myNodeInit.y);

 for (int endNodeALloop=0; endNodeALloop<=tdi.endNodeAL.s ize()-1;

endNodeALloop++) {

 C oord cen = new

C oord(mycd.nodeArray.get(tdi.endNodeAL.get(endNodeALloop)).myNodeInit.x,mycd.nodeArray.get(tdi.endNodeAL.get(endNo

deALloop)).myNodeInit.y);

 xDis t = cen.x - s n.x;

 yDis t = cen.y - s n.y;

 dis t = Math.s qrt((xDis t*xDis t) + (yDis t*yDis t));

 59

 if (dis t < minDis t) {

 minDis t = dis t;

 }

 if (dis t > maxDis t) {

 maxDis t = dis t;

 }

 }

 tdi.maxDis t = maxDis t;

 tdi.minDis t = minDis t;

 tdi.medianDis t = ((maxDis t - minDis t) / (double) 2.0) + minDis t;

 td.tes tC as e.add(tdi);

 }

 numC as es T ried ++;

// S ys tem.out.println("---------------");

// S ys tem.out.println("maxNumE ndNodes : "+numE ndNode);

// S ys tem.out.println("numF ound: "+numE ndNodes F ound);

// S ys tem.out.println("numT ried: "+numT ried);

// S ys tem.out.println("numC as es F ound: "+numC as es F ound);

 } while (numC as es F ound < numberC as es);

// td.tes tC as e.add(tdi);

 S ys tem.out.println("*****************");

 S ys tem.out.println("maxNumE ndNodes : "+numE ndNode);

 S ys tem.out.println("numC as es F ound: "+numC as es F ound);

 S ys tem.out.println("numC as es T ried: "+numC as es T ried);

 } // for numE ndNode loop

 G s on myG s on = new G s on();

 S tring myJ s on = myG s on.toJ s on(td);

 try (P rintWriter out = new P rintWriter("tes tData.js on")) {

 out.println(myJ s on);

 } catch (F ileNotF oundE xception e) {

 // T ODO Auto-generated catch block

 S ys tem.out.println("E R R OR - can't create js on file");

 }

 }

