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1. Abstract 

 

This project presents a new algorithm to determine the shortest path from a single start node in a 

geographical graph (e.g. a road network) to one or more end nodes within the graph.   

 

Development of the algorithm begins by looking at a way of solving the shortest path problem 

using a physical model made up of strings to represent edges and knots to represent nodes.  This 

concept is then developed into a new algorithm to initially find the shortest path between a single 

start node to a single end node and then progressing to find the shortest path from a single node to 

multiple end nodes.   

 

Along with the development of the algorithm, this report also covers the development of a 

flexible test application with a user interface and the production of suitable test data to test the 

quality and performance of the new algorithm against other existing algorithms. 

 

Using output from the test application, this project then compares the test output from the new 

algorithm and the A* algorithm which is an algorithm commonly used to solve this problem.  The 

results of this comparison show a significant performance improvement to find the shortest path 

from a single node to multiple end nodes. 

 

The efficiency for the new algorithm is shown to remain constant regardless of the number of end 

nodes being searched, whereas the complexity for A* grows linearly as might intuitively be 

expected.  This consistency in the complexity is important in the context of processing large road 

networks. 

 

In the areas for further research section, a design is shown to further enhance the new algorithm to 

find the shortest path between multiple start nodes and multiple end nodes and this would be 

expected to show an even greater performance improvement.   

 

In conclusion this project successfully demonstrates a new algorithm which outperforms the 

comparison algorithms when searching for the shortest path from a single start node to multiple 

end nodes. 

 
2. Introduction 

 

The idea for this project came whilst attending a lecture on NP-Hard problems and the 

consideration as to whether any of these could be solved by physical constructs and subsequently 

whether these physical constructs could be modelled efficiently as a computer algorithm.  The 

shortest path problem involves finding the shortest path between a start point and an end point, for 

example finding the shortest path between Cardiff and Birmingham on a road map of the UK.  

Although this is not an NP-Hard problem, the shortest path problem does have a physical means 

of solving it by using strings to represent roads and knots to represent junctions and places.  By 

pulling the knots representing Cardiff and Birmingham apart, when the string becomes taut, the 

taut strings will represent the shortest path as one or more roads (providing the strings remain 

untangled).  When doing this physically, the properties of nature will ensure that all potential 

paths are tested at the same time, something that today’s computers would require a processor to 

run in parallel for each potential path which in a large graph would soon become infeasible due to 

the number of processors that would be required.  This inspired an attempt to model the knot and 

string method efficiently in a computer algorithm and program.  A huge amount of research has 

been done into shortest path problem solving and it has many real world applications.  This 

project has attempted to find a new way of tackling the problem.  This paper presents the 

development of an algorithm for this purpose from initial idea to a working version and shows 

how this is comparable to existing algorithms but has a significant advantage when expanding the 

problem to find the shortest path from one start point to any one of multiple end points.    
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3. Aim and Objectives 

 

The objective of this project is to test the viability of a new shortest path algorithm to find the 

shortest path between a start point and one or more end points on a geographical map.  The testing 

will demonstrate both the accuracy of the new algorithm and its indicative performance against an 

existing and well used shortest path algorithm (A*). 

 

4. Background Material 

 

Algorithms already exist to find the shortest path between a start node and a single end node in 

geographical maps with the most notable being Djikstra and A*.  Both of these algorithms 

calculate the shortest path by working through the nodes in a graph but use a different 

methodology to identify the next node to process.  A* is closest to the new algorithm and uses a 

heuristic calculation to prioritise node selection which calculates the shortest possible distance 

from visited nodes to the end node.  A lot research to date has focussed on different methods to 

prioritise the sequence in which nodes are processed and ways to speed shortest path algorithms 

by performing pre-calculations.   

 

Dijkstra’s algorithm to find the shortest path between two nodes  

 

Dijkstra’s algorithm (Dijkstra 1959) works by keeping track of a tentative distance from the start 

node to all other nodes.  Initially the start node’s tentative distance is set to 0 and all other nodes 

are set to infinity and marked as unvisited.  The algorithm will select the unvisited node with the 

smallest tentative distance to process.  When processing a node, each connected node will be 

checked to see if it can be reached with a distance less than that node’s current tentative distance.  

Once all nodes connected to the node being processed have been checked then the node being 

processed is marked as visited.  This approach means that nodes are generally processed outwards 

from the start node in all directions until the end node is found as in Figure 3.1.  This is inefficient 

for finding the shortest path between two nodes due to the number of nodes that need to be 

processed and can lead to very long processing times in large graphs. 

 

 
Figure 3.1.  Nodes visited and checked during Dijkstra 
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A* algorithm to find the shortest path between two nodes 

 

A* (Hart et al.  1968) uses a similar approach to Dijkstra but uses a heuristic function to select the 

next node to process.  One widely known heuristic function is to calculate the Euclidian distance 

from a neighbour node being processed to the end node.  The next node to process will always be 

the one which has the shortest overall distance from the start node to the end node.  The overall 

distance is calculated as the actual distance to the neighbour node as this is known plus the 

Euclidian (straight line distance) from the neighbour node to the end node which can be 

calculated from their known coordinate positions.  This has a big advantage over standard 

Dijkstra as the search is not carried out in all directions and once the end node has been found any 

paths where the heuristic distance is greater than the shortest path found can be ignored. 

 

 
Figure 3.2.  Processed and neighbour nodes in A* algorithm 

 

Figure 3.1 and Figure 3.2 show that Dijkstra examines many more nodes that A* to find the 

shortest path in this example. 
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Physical approach 
 

Schrijver (Schrijver 2012) discusses the history of the shortest path problem and references 

Minty’s (Minty 1957) ‘analog’ computer for the  shortest path problem using knots to represent 

nodes and the length of string imbetween knots to represent an edge and its distance (see Figure 

3.3).  An analog (or physical approach) such as this is not useful in practice as in large graphs it 

would be very time consuming and difficult to construct accurately.  However, if this approach 

could be efficiently modelled then it could offer an alternative method to solving the shortest path 

problem.  The new method may then give an advantage over existing algorithms such as faster 

processing time to find the shortest path to a single node or the ability to find the shortest path to 

one of multiple end nodes (i.e. a cluster of end nodes). 

 

 
Figure 3.3.  String method 

 

Figure 3.3 illustrates how the string method works on a smaller number of knots and strings.  As 

the start knot (green node) and end knot (red node) are moved in a straight line away (a 

translation of the node along the blue dotted line) from each other the shortest string path (edges 

highlighted in red) become taut.  As other strings connecting two nodes become taut, they are 

translated in the direction of the moving node whilst ensuring that their Euclidean distance does 

not exceed the distance of the edge (i.e. the length of the string).  It should be noted that the start 

position of the strings and the knots is unimportant and will not affect the outcome. 
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5. Problem 

 

This project aims to find a new solution to the following problem by attempting to model the 

physical approach outlined by Minty. 

 

Without pre-computing, find the shortest path from a single start node to a single end node 

or the shortest path to the nearest node in a cluster of end nodes within a geographical map.  

The geographical map will be represented by nodes where each node has a 2-dimensional 

position and edges where each edge connects two nodes and has a distance that is greater 

than or equal to the Euclidean distance between the connected nodes. 

 

The problem of finding the shortest path from a single start node to a single end node is met by 

Dijkstra’s algorithm and A* which are referred to in the Background section.  A real-world 

example of this problem would be to find the shortest travel distance from Cardiff to 

Birmingham. 

 

The problem of finding the shortest path from a single node to the nearest node in a cluster of end 

nodes can be met by calling Dijkstra’s algorithm or A* iteratively for each node in the cluster.  

This paper includes a wrapper algorithm for A* to improve its efficiency for this problem.  Some 

real-world examples of this problem are:  

 

• From Barry, find the route to any car park in Cardiff 

• From junction 35 of the M4 find the route to the nearest electric car charging point in 

Swansea 

• In a distributed computer system, find the nearest server to access a target data set that has 

been replicated over servers. 

 

Shortest path problems are simple to understand but can be computationally expensive in large 

graphs. 

 

 

  



 9 

6. Project Approach 

 

The following development stages were used in the execution of this project: 

 

1. Analysis and Design 

a. Draft an algorithm based on the physical knot / string approach to find a solution 

for the shortest path problem to find the shortest path form a start node to a single 

end node 

b. Model the algorithm in Excel 

c. Define measurement criteria to compare the efficiency of each algorithm 

2. Build and test 

a. Design and build an application in Java to execute the algorithms against test data 

for the Dijkstra, A* and a prototype of the new algorithm.  The application 

should be able to consume multiple test graphs in held in json format 

b. System Test and refine the new shortest path algorithm 

3. Enhance 

a. Enhance the new shortest path algorithm to cope with multiple (a cluster of) end 

nodes 

b. Design a wrapper algorithm to enhance A* to improve its effectiveness for 

multiple (a cluster of) end nodes, to be called ‘A* wrapper algorithm’ 

4. Comparison test and report 

a. Generate test data and a test comparison function to assess each algorithm against 

the measurement criteria  

b. Produce a report “Algorithm Comparison Report” to determine the effectiveness 

of the new algorithm  

5. Review and analyse the “Algorithm Comparison Report” 
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7. Application of the chosen approach 

 

Evolution of the algorithm 
 

String method observations 

 

The start point in developing the new algorithm was to consider the string method and how this 

works.  This was modelled in an excel prototype.  The prototype introduced the concept of slack 

in the string.  As the start and end knot are moved away from each other the slack in the string 

connecting the two knots reduces until eventually there is no slack and the string becomes taut.  

The shortest string path (including any knot ‘nodes’) will then lie on a straight line joining the 

start and end knot (see shortest string path proof in appendix).  Any knots on the taut string and 

the strings connecting them resting on the straight line is the shortest path and the solution to the 

problem. 

 

This work led to the following observations with respect to the string method: 

 

1. A straight line drawn through the start and end node will be the same length as the 

solution path after the string method has been executed (this follows the same logic as the 

shortest string path proof in the appendix). In the new algorithm the straight line passing 

through the start and end node is referred to as the virtual line 

2. When a knot moves in a direction that is away from a connected knot it will eventually 

lead to no slack between it and a connected knot after which the connected knot will be 

pulled in the same direction as the moving knot due to physical forces.  This will lead to 

its position changing.  In the new algorithm, its new position is referred to as its virtual 

position 

3. The slack in a string is the difference between the actual string length and the Euclidean 

distance between the knots (see the definition of slack in the appendix).  In the new 

algorithm, the slack is calculated using the virtual positions and the length of the string 

and is referred to as the virtual slack 

4. When the start and end node are connected by one or more strings with no virtual slack 

then the shortest path has been found.  This follows from the previous observations and 

supporting material. 

5. The start position of the knots and the strings does not affect the ability of the string 

method to find a solution.  Providing any tangles during execution are removed, the knots 

and strings can be moved to any position (within the constraints of their string length) at 

initiation (such as scrunched into a ball), and the method will still produce the correct 

answer (see the definition of slack in the appendix which defines this for two nodes on 

the virtual line) 

 

Observations 1 to 4 are good candidates for a new algorithm to solve the problem, however 

observation 5 highlights a key area of focus.  If an extreme example is considered where all of the 

knots including the start and end knot are initially on a single point, the string method will still 

work as physically when the end knot is moved away from the start knot the position of other 

knots will adjust instantly as per observations 1 to 4.  However, it will be computationally 

expensive and time consuming to model all of the knots in a large graph and this would produce a 

similar performance and progress to Dijkstra.  
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To understand better the performance of the above approach, a prototype was built in Java that 

moved the start node away from the end node by a small amount iteratively.  This then checked 

nodes where slack became zero and then moved those nodes.  As expected, this was inefficient 

due to the number of calculations required when the node was moved by a short distance and the 

number of nodes hit.  A second iteration of this prototype applied the method from both the start 

and the end node and checked to see where the nodes touched.  Although this reduced the number 

of nodes being checked, again the frequent moving of the nodes by small increments led to many 

potentially unnecessary loops and when examining the output visually it appeared that some 

nodes were being processed which may not be necessary (see Figure 6.1, Early prototype 

example). 

 

 
Key 

Green node = start node 

Dark grey nodes = moved nodes 

Light grey nodes = nodes checked 

Pink nodes = shortest path found 

 

Figure 6.1.  Early prototype output 

 

Taking the above into account, the focus moved to the identification of which edge to process 

next by prioritising them as a way to improve the efficiency of the algorithm.  Given the optimal 

shortest path is identified as a path with zero slack, therefore if a path exists from the start node to 

the end node with no slack, then this will be the shortest path.  Continuing this thought process, 

then the longest path would be the one with the most slack.  In conclusion, the path with the least 

slack will be the shortest path and the path with the most slack will be the longest path.  

Therefore, at each iteration of the algorithm, choosing an edge to process with the least slack 

should result in the shortest path being found eventually.  This reasoning was key to development 

of the new algorithm (along with Dijkstra and A* this fits the definition of a greedy algorithm).  

However, the slack in an edge is dependent on the position of the two nodes at the end of the edge 

and it has been recognised earlier that the initial position of the knots in the string method would 

not affect the outcome.  Consequently, the success of the algorithm depends on whether nodes can 

be positioned in such a way as to enable the slack to be used to efficiently prioritise the search for 

the next edge to process. 
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Requirements for the initial Virtual Position mapping for a new algorithm  
 

The requirements should apply the observations from the string method to a new algorithm that 

can be used to find the shortest path in a geographical map with nodes (rather than knots) and 

edges connecting the nodes (rather than strings).  The new algorithm will have the requirements 

below (note that a path is defined as a sequence of connected nodes where each connected node is 

joined by an edge).   

 

1. Unlike a physical method such as a string method, computers work in a linear fashion and 

therefore the new algorithm must have a means to efficiently choose a single edge to 

process next 

2. The shortest path will be the path with the least slack so an algorithm should look for 

edges with the least slack to process next 

3. The virtual distance between two connected nodes must never exceed the edge distance 

connecting them 

4. The initial placement of the nodes will affect the slack for each edge.  In the geographical 

map the default start position for any node will be its geographical coordinates.  

However, since a path along the virtual line will be the shortest path, the requirement for 

the new algorithm is for any edge along the virtual line to have no slack.  Similarly, edges 

that move away from the virtual line should have greater slack than those that move 

closer to it. 
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Mapping to virtual positions 
 

Taking the above requirements into account, below is a method for mapping nodes to virtual 

positions which has some advantages and disadvantages  

 

 
Figure 6.1.  Illustration of mapping to virtual positions 

 

1. Let vl be a virtual line passing through the start node and the end node 

2. Let vl be considered the x-axis for a new virtual graph with the start node at point (0,0) 

3. For each node, draw a line, pn, from the node to the virtual line that is perpendicular to the 

virtual line 

4. Let the virtual position of the node be the point, vp, where pn intersects vl 

 

In Figure 6.1, the distance m will be the (negative) virtual position of node A on vl.  This method 

proved the approach in Excel modelling (see Figure 6.2) and allowed for initial development of 

an algorithm that could be developed and tested against Dijkstra and A*.   

 

 
 

Figure 6.2.  Example of Excel model 

 

 

A disadvantage of this mapping is that all edges that are parallel to vl will have zero slack.  In 

many cases this is not the optimum route and there is potential to improve it (covered later in this 

section). 
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A strawman for the new algorithm 
 

The strawman below is an overview of the approach which was subsequently tested to 

demonstrate that it works.  The full algorithm (included later) includes a number of improvements 

and efficiency steps. 

 

1. Map all nodes to a virtual position on vl 

2. Choose the edge with the least slack and let ls be the least slack value 

3. Move the start node away from the end node along vl a distance of ls 

4. Recalculate slack for each edge connected to a node that has moved 

5. For any slack that is negative, move the connected node so the edge is no longer negative 

and store the number of moves made for each node 

6. If the end node is moved, store the number of moves and continue the current iteration to 

see if there is a smaller number of moves for any other path  

7. Repeat steps 4 to 6 until no slack is negative 

 

A conceptual comparison with A* 
 

• Both algorithms operate iteratively 

• A* prioritises nodes to process whereas the new algorithm prioritises edges to process  

• Both algorithms use a function to prioritise  

• The mapping to virtual positions in the new algorithm affects the output of the priority 

function to determine the next edge to process 

• Both algorithms tend to prioritise in the direction of the end node, however A* focuses on 

a specific point so the direction of selection can change whereas the new algorithm will 

continue to prioritise in the direction from the start node to the end node until a shortest 

path is (or isn’t) found 

 

Enhancing the virtual mapping to cope with multiple end nodes 
 

The following additional requirements are necessary for handling multiple end nodes: 

 

1. Slack should be 0 for any line passing through the start node and any end node 

2. For nodes in close proximity, their virtual positions should also be in close proximity 
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Mapping to virtual positions supporting multiple end nodes 
 

The initial approach for mapping nodes to virtual positions was based on the earlier version.  

However, to ensure that slack is zero for paths in straight lines from the start node to any end 

node, then any node within the boundaries of the uppermost end node and bottom most end node 

should maintain its Euclidean distance.  This creates upper and lower boundary lines (see Figure 

6.3).  The virtual line is considered to bisect these boundary lines.  Nodes outside of the 

boundaries are then mapped to a boundary line using the perpendicular intersection as before.   

 

When modelled using Excel, this approach led to some anomalies whereby nodes that were close 

together geographically were moved further apart when mapping to virtual positions.  This effect 

is worse as the angle between the boundary line increases and can lead to the virtual distance 

exceeding the edge distance which will break the approach (and in the real-world string example, 

would break the string).  Therefore, a mapping is required that proportionally maps to a virtual 

position based on the nodes relative position between the boundary and the y-axis. 

 

 
Figure 6.3.  Illustration of initial mapping to support multiple end nodes 
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The mapping in Figure 6.4 caters for multiple end nodes using a ratio to calculate the virtual 

position based on the position of the node relative to the boundary line and y-axis.  As found 

previously, this affects the calculation of slack and therefore the prioritisation of edges in the new 

algorithm without needing to change the algorithm.  For simplicity, it is assumed that all of the 

end nodes are contained within a segment that is less than π radians. 

 

 
Figure 6.4.  Illustration of mapping to support multiple end nodes (following translation and 

rotation) 

 

The steps below reflect the mapping in Figure 6.4 (the illustration is post step 4) 

 

1) Map two lines, boundary1 and boundary2, such that they pass through the start node and that 

all of the end nodes sit either on the boundary line or imbetween boundary1 and boundary 2 

and the angle at the origin between boundary1 and boundary2 is < π radians 

2) Let vl be the line that bisects boundary1 and boundary2 

3) Translate the start node to coordinate (0,0) and translate all other nodes using the same 

translation 

4) Rotate vl and all nodes so that vl sits on the x-axis and all end nodes have x >= 0 

5) For each node within and on boundary1 and boundary2 (the shaded area in Figure 6.4) set 

virtual position, vp, to be the Euclidean distance from the start node 

6) For all other nodes where x>=0 and y>0, use the relationship a/b = m/n to find m as follows 

and then set the virtual position, vp, to be n – m 

a) Let nl be the line passing through the origin and the node 

b) Let a be the angle between boundary1 and nl 

c) Let b be the angle between boundary1 and the y-axis 

d) Let n be the Euclidean distance between the start node and the node 

7) For all other nodes apply similar rules as per bullet 6.  

 

In addition to coping with multiple end nodes, the above approach also better handles edges that 

are parallel to the optimum solution but in a non-optimum position. 
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This approach was validated using Excel worksheets with a visual representation on an X Y 

scatter graph.  Figure 6.5 shows the progression from coordinates initially following the 

translation of the start node to the origin, to a rotation aligning the virtual line to the x-axis and 

finally to virtual positions along the x-axis.  End nodes are highlighted in red. 

 

 
Figure 6.5.  Illustration of approach for virtual mapping 
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8. Products 

 

The new algorithm 
 

// Walkers algorithm finds the shortest path from a single start node to one or more 

// end nodes 

function Walkers (start_node, {end_node1, end_node2…}, {node1, node2…}, {edge1, edge2…}) 

 

// The nodes are mapped to virtual positions using function mapNodes 

nodes := {node1, node2…} 

edges := {edge1, edge2…} 

mappedNodes := mapNodes[nodes] 

// The hit nodes set contains a list of nodes that have been moved 

hitNodes := {start_node} 

startNode := startNode 

endNodes := {end_node1, end_node2…} 

 

nextEdge := findNextEdge[] 

 

// The algorithm will continue execution until no edge is returned from the 

// findNextEdge function 

while nextEdge is not null 

 

// Check whether the moves already made for the node at the start of 

// the edge and moves required (i.e. the slack) to remove slack from the edge 

// being processed are less the moves made for the node at the end of the 

// edge.  If so, this is a valid move. 

if moves[edgeStartNode] + slack[nextEdge] < moves[edgeEndNode] or 

moves[edgeEndNode] is null 

 

// Set the moves at the edge end node to the new lower figure 

moves[edgeEndNode] = moves[edgeStartNode] + slack[nextEdge] 

 

// Since we are virtually moving the start node, make the edge 

// start node active 

for each edge connected to edgeStartNode 

active[edgeStartNode] = true 

visited[edgeStartNode] = true 

 

// If the edge end node is a desired end node then set the  

// shortest move amount, otherwise add the edge end node 

// to the set of hit nodes.  The edge start node could be saved 

// at this point to track the shortest path. 

if edgeEndNode is an end node 

shortestMovesToEndNode = moves[edgeEndNode] 

else 

// Add the edge end node to the set of moved nodes 

add edgeEndNode to hitNodes 

 

else 

// If this is not a valid move, make the edge inactive 

active[nextEdge] = false 

 

nextEdge := findNextEdge[] 

 

function findNextEdge () 
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// Check each moved node.  Further research is required to enable a priority queue 

// to be used within this function 

for each currentNode in hitNodes  

 

visited(currentNode) := true 

leastMovesAndSlack := infinity 

nextEdge := null 

 

// For each connected edge recalculate the total move distance required 

// as the moves already made plus the slack for this edge 

for each currentEdge connected to currentNode where active[currentEdge] = true 

 

movesAndSlack := moves[currentNode] + slack 

 

if movesAndSlack >= shortestMovesToEndNode 

active(currentEdge) = false 

 

if movesAndSlack < leastMovesAndSlack 

nextEdge := currentEdge 

  

if nextEdge is null 

 // if no edge is found the node can be removed from further searches 

remove currentNode from hitNodes 

else  

// Set the edge to inactive so it isn’t searched again. Note, it could  

// subsequently made active again 

active[nextEdge] := false 

 

 

The Complexity (Order) of the new algorithm 
 

The time complexity of the new algorithm depends on the ability of the next edge function to 

find the next edge on the shortest path.  However, this is similar to A* in that it uses a 

heuristic to select the next edge.  In the case of A* the heuristic is based on prioritising nodes 

based on the lowest Euclidean distance to the end node whereas in the new algorithm the 

heuristic is based on prioritising edges with the least slack.  Since each edge starts and ends 

with a node, the number of edges will depend on the number of nodes and the number of 

edges connected to the nodes.  The branching factor is the number of edges that need to be 

tested at each iteration.  The lower the branching factor (and therefore the better the edge 

selection) the more efficient the algorithm. 

 

The order of the new algorithm for a solution is calculated as follows: 

 

Let n = the number of nodes in the graph 

Let e = the number of edges in the graph 

Let b = the branching factor (the number of edges connected to a node) 

Let d = the depth of the search required to find the end node where a depth of 1 is the edges 

and nodes connected to the start node and a depth of 2 is all of the edges and nodes connected 

to those and so on. 

Let t = the total number of edges and nodes checked at each iteration 

Let T = the total number of edges and nodes checked to find the shortest path to the end node 

 

To calculate the average branching factor for a graph, since each edge connects to 2 nodes, 

then b = (e*2)/n.   

 

Iteration 1: t = 1 + b 

Iteration 2: t = b + (b*b) 
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Iteration 3: t = (b*b) + (b*b*b) 

Iteration i: t = b(d-1) + bd 

 

Therefore T = 1 + b + b + b2 + b2 + b3 + b(d-1) + bd 

                    = 1 + 2b + 2b2 + 2b3 + bd 

 

Taking the most significant value, the order of the new algorithm is therefore O(bd) where b is 

the branching factor and i is the number of iterations required to find the shortest path.  This 

is normally written as O(xn) where x is the branching factor and d is the depth to the end 

node. 

 

However, this assumes that at each iteration each connected node and edge needs to be 

processed, however, in the new algorithm the concept of slack I sused to reduce the number 

of connected edges to be processed.  To better understand the Order of complexity, this will 

also need to take into account the impact of the new algorithm’s prioritisation logic on the 

branching number for each iteration.  This is included within this report as an area for further 

research. 

 

A* wrapper algorithm for multiple end nodes 
 

To test the efficiency of the new algorithm it will be tested against A*.  The simplest method 

would be to execute A* to find the shortest path from the start node to each end node.  

However, with a large number of end nodes this is likely to be inefficient.  To provide a better 

comparison a wrapper algorithm for A* has been developed to improve the efficiency and 

remove any unnecessary calculations. 

 

Consequently, this wrapper algorithm adapts A* to more efficiently find the shortest path 

between a single start node and multiple end nodes.  The approach is to first calculate the 

Euclidean distance from the start node to each end node; sort these into ascending order and 

then perform an A* search on each starting with the closest end node.  After processing each 

iteration, the shortest path found so far should be stored.  As soon as the Euclidean distance to 

an end node exceeds the least path distance found so far then the remaining end nodes can be 

discarded.  This algorithm depends on the presumption that it is more likely that the shortest 

path will be to an end node closer to the start node. 

 

// Function to wrap A* to improve its efficiency by discarding end nodes when it becomes 

// impossible for them to hold the shortest path 

function AStarWrapper (start_node, {end_node1, end_node2…}, {node1, node2…}, {edge1, 

edge2…}) 

 

nodes := {node1, node2…} 

edges := {edge1, edge2…} 

startNode := startNode 

endNodes := {end_node1, end_node2…} 

 

// Calculate the Euclidean distance from the start node to each end node 

for each endNode in endNodes 

euclidDist[endNode] := dist[startNode, endNode] 

 

// Sort the end nodes by Euclidean distance so the closest can be processed first 

sort endNodes by euclidDist into sortedEndNodes 

 

leastPathDistance := infinity 

 

// Process the end nodes in Euclidean distance order 

for each endNode in sortedEndNodes 
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// If the Euclidean distance for this end node is greater than the  

// least path distance already found, then it is not possible for this  

// end node to be a sorter path than the one already found.  Since 

// the end nodes are sorted in Euclidean distance the algorithm can 

// now stop 

if euclidDist[endNode] > leastPathDistance 

 stop 

 

// Calculate the shortest path using A* 

aStarDist := aStar (startNode, endNode) 

 

// Check if the shortest path distance is less than the currently  

// held least path distance.  The end node and the actual path 

// should also be stored here if required. 

if aStarDist < leastPathDistance 

leastPathDistance := aStarDist 

 

 

Measurement criteria 
 

There are two key measurement criteria to test the effectiveness of the new algorithm: 

 

1. Accuracy 

2. Efficiency 

 

Accuracy 

 

A* will be used to test the accuracy of the new algorithm.  Multiple test data will be executed 

against both A* and the new algorithm.  The shortest path distance from the start node to the 

selected end node will be compared between both algorithms.  Note that to ensure the A* 

algorithm has been correctly implemented, this will initially be checked against Dijkstra. 

 

Efficiency 

 

Ideally, processing time would be used to compare the processing efficiency of both algorithms, 

however, early tests calculating the CPU time used within the executing thread have shown 

significant differences on repeat executions for the same test data, so this is considered unreliable 

and likely caused by background applications and operating system activity. 

 

Both A* and the new algorithm work through nodes and edges so for this project efficiency will 

be approximated by counting the total number of nodes and edges used in each algorithm’s 

calculations.  However, this can only be an indicator of efficiency and more research is required 

to determine a better and more accurate measure.  For example, the new algorithm needs to map 

each node before it is processed whereas A* does not. 

 

The test application 
 

Given the complexity of calculations especially in large graphs a sophisticated tool is required to 

develop and test the algorithms.  Listed below are the high-level requirements used to develop a 

test application to support this project. 

 

High level requirements 

 

1. The application should be able to handle multiple maps 

2. Maps should be held in a format that can be easily generated 

3. The application should be able to execute different algorithms to find the shortest path 
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4. There should be a visual representation of map data to aid analysis 

5. A start node and multiple end nodes should be selectable 

6. The visual representation should be movable and zoomable to make it easy to work with 

larger graphs 

7. The visual representation should have nodes and distances marked 

8. Diagnostic output showing key values should be output at key points in the execution of 

an algorithm 

9. As the algorithm is executed the visual representation should be updated with progress 

10. It should be possible to step through the algorithm so progress can be seen both in the 

diagnostics and visually 

11. The test application should count the number of nodes and edges visited 

12. The test application should allow a comparison to be made between A* and the new 

algorithm and output the measurement criteria in a format that can be consumed by Excel 

for reporting 

 

User Interface 

 

Figure 7.1 shows the test application user interface with key elements marked with numbers in an 

amber circle.  Each of these elements are described in more detail below. 

 

 
Figure 7.1.  Test application user interface 

 

Element 1 

 

The start node is highlighted in green and is selected by pressing the left mouse button whilst it is 

near a node.  The application calculates the Euclidean distance from the mouse to each node and 

will select the nearest node to the mouse pointer.  Only one start node can be selected. 

 

Element 2 

 

End nodes are highlighted in red and can be selected by pressing the right mouse button.  More 

than one end node can be selected.  An end node can be unselected by clicking on it again.  

Similar to the start node selection, the application will choose the nearest node to the mouse 

pointer. 

 

Element 3 
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This list shows the available graphs.  A different graph can be selected by clicking on it. 

 

Element 4 

 

The details area shows diagnostic information output during the running of the algorithms such as 

the node being process, the position of the virtual line.  

 

Element 5 

 

The show labels checkbox will remove labels from the visual representation to give a clearer view 

of visual progress as in the image below (see Figure 7.2). 

 

 
Figure 7.2.  Visual representation without labels 

 

Unchecking the Full Details checkbox will stop the diagnostics in the Details box being 

displayed.  This speeds processing. 

 

Element 6 

 

These buttons allow the results of the algorithm to be stepped through.  To accomplish the 

algorithm executes in full, but at each iteration it stores its main object state (see application 

design).  ‘<<<’ and’>>>’ buttons go straight to the start or the end of the process. 

 

Element 7 

 

These labels show the names of the selected start and end node(s). 

 

Element 8 

 

This drop down allows the shortest path algorithm to be selected.  Currently the following options 

are available. 

 

Walkers (the new algorithm) 

Full Dijkstra 

Dijkstra 

A* 

COMPARE 

 

COMPARE is a special function that will execute both Walkers and A*, do a comparison and 

output the results to a results file. 

 

Element 9 
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These buttons allow the algorithm to be executed and reset (press RESET prior to re-executing).  

Additionally, following execution, if the Play button is pressed the visual representation will show 

an animation of progress in the search for the shortest path. 

 

Element 10 

 

The final diagnostic is the result (if a path is found).  The end node, total distance, nodes visited, 

edges visited, and the full path are shown. 

 

Element 11 

 

The graph can be explored by clicking and dragging to move the view position and the mouse 

wheel can be used to zoom in and zoom out whilst exploring. 

 

Following successful execution of an algorithm the view will show the shortest path by 

highlighting edges in red and circling nodes on the shortest path in red (see Figure 7.3).  All nodes 

that have been hit are in dark blue, edges that have been active are marked in dark blue and nodes 

that have been checked (the end node of an active edge) are in light blue. 

 

 
Figure 7.3.  Visual representation of the shortest path 

 

 

Application Design 

 

The applications primary purpose is to support development and testing of the algorithm.  To 

achieve this the interim state of the algorithm as it goes through each cycle is important for 

validation and debugging.  One key design decision was the creation of a class ‘ControlData’ to 

allow the interim state to be saved during processing.  The ControlData object is serialised and 

saved in an array at each iteration.  It is this that allows execution to be stepped through with each 

object’s state available at any point in the execution. 

 

Since the application is user responsive a number of threads run concurrently to manage the visual 

representation, animation and user interface commands. 

 

Visual representation of the data is handled through 3 different objects as follows: 

a) Initial coordinates.  This holds the starting coordinates for each node 

b) View coordinates.  This holds a representation of the viewing space taking into account 

any clicking and dragging and zooming of the view space 

c) Display coordinates.  This maps the view coordinates to the display 

 

Mapping initial coordinates to virtual positions 

 

An instance of translate class will perform a translation of the start node to the origin.  This object 

can then be used to perform the same translation on all other nodes.  After the translation, the 

boundary lines and virtual line can be calculated.  A Vector class measure the angle between the 
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vector (0,1) and the virtual line (Vector class is based on Vector class source code (Eggen 2017)).  

All nodes are then rotated by this angle so the virtual line will lie on the x-axis.  Following this all 

information to complete the mapping of a node to the virtual line is available.  In the test 

application this is performed before the algorithm is executed.  However, in a practical 

application it is only necessary to map points to their virtual positions when the node or edge is 

required which will significantly improve efficiency in a large graph.  Additionally, the 

transformations required could be performed using matrices to further improve efficiency. 

 

Map data 

 

Available maps are checked at application launch.  A list of available maps is held in a file as a 

simple string list.  For each map there are two separate files containing node and edge data.  One 

file contains a list of nodes in json objects along with their geographical coordinates and the other 

file contains a list of edges also in json objects (see examples below) along with the edge start 

node, end node and distance. 

 

Available maps 

 

"France" 

"France_test" 

"A" 

"B" 

"C_Multi" 

 

Extract from node file for France map 

 

{"name":"Dunkerque","x":392.0,"y":685.0} 

{"name":"Calais","x":367.0,"y":680.0} 

{"name":"Boulogne-sur-Mer","x":356.0,"y":666.0} 

{"name":"Lille","x":427.0,"y":657.0} 

{"name":"Arras","x":412.0,"y":630.0} 

 

Extract from edge file for France map 

 

{"node1Name":"Lille","node2Name":"Arras","distance":52.29999923706055} 

{"node1Name":"Abbeville","node2Name":"Arras","distance":77.30000305175781} 

{"node1Name":"Abbeville","node2Name":"Dieppe","distance":68.19999694824219} 

{"node1Name":"Arras","node2Name":"Amiens","distance":61.599998474121094} 

{"node1Name":"Dieppe","node2Name":"Le Havre","distance":100.0} 

 

This format allows for extracts of a map to be easily created for bug fixing.  For example, the map 

in Figure 7.4 was created to investigate a bug in finding the nearest node in multiple end node 

request.  This took only a few minutes to create by extracting the relevant nodes and edges from 

the France data files. 

 

 
Figure 7.4.  Extract from France map files for debugging 
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Comparison execution output 

 

When the COMPARE function is executed it reads in a file of test conditions (see later in this 

section).  When each algorithm is executed for a test condition it will output an instance of class 

AlgorithmOutput which includes the following attributes:    

 

 public S tring closes tNode; // the clos es t node found 

public Integer aS tarP lus NodesHit; // the nodes  tes ted for A* wrapper algorithm 

 public double dis tance; // the s hortes t path dis tance found 

 public Integer nodesHit; // the total number of nodes  hit 

 public Integer edgesHit; // the total number of edges  hit 

 public Integer totalHits ; // the total hits  (nodes  + edges) 

 

All of the AlgorithmOutput instances are combined into an instance of the CompareResult class 

which includes the following attributes. 

 

public S tring s tartNode; // the name of the s tart node 

public S tring endNodes ; // a concatenation of all of the end nodes 

public Integer numberOfE ndNodes ; // T he number of end nodes  in this  tes t 

public double minDis t; // the geographical dis tance to neares t node 

public double maxDis t; // the geographical dis tance to furthes t node 

public double medianDis t; // maxDis tNode les s  minDistNode to give the breadth of the node 

pool 

public AlgorithmOutput aS tarAlgorithmOutput; 

public AlgorithmOutput aS tarP lus AlgorithmOutput; 

public AlgorithmOutput walkers AlgorithmOutput; 

public boolean match; // do the algorithms  agree 

 

Each test condition will output the CompareResult object to a results file in csv format.  An 

example of one test condition is below: 

 

"Colmar","Cannes,Arles,Basel,Geneve,Aix-les-Bains,Digne,Aix-en-

Provence",7,44.94441010848846,397.24677468797654,221.0955923982325,"Basel",0,64.19

999694824219,610,1035,1645,"Basel",1,64.19999694824219,4,3,7,"Basel",0,64.1999969482

4219,1,3,4,"true" 

 

Functional testing 

 

In addition to the user interface a class TestMapInitialisation has been built to test each of the 

transformation functions in isolation.  The output from these tests was used to compare with the 

excel models to ensure the accuracy of the input to the algorithms. 

 

Generating test data 
 

To check against the measurement criteria a significant amount of test data is required.  All 

testing has been performed against a summarised view of the road network in France with 156 

nodes and 283 edges. 

 

A function has been built to take two inputs – the maximum number of end nodes, x, and the 

number of test cases, y, per end node.  The function will then generate x*y test cases. 

 

Test data is generated using the following method: 

 

for 1…number of end nodes (x) 

for 1…number of test cases (y) 
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Choose a random start node 

Choose a direction for the virtual line 

Calculate boundary lines 

Randomly choose x end nodes that are within the boundary lines 

 

In creation of the test data the maximum, median and minimum distance from the start node to the 

end nodes is calculated.  This is to allow the relative size of the cluster to be used in analysis if 

necessary.  Each test case is saved as json in an instance of a TestDataInput class. 

 

 public Integer s tartNode; // T he s tart node  

 public ArrayLis t<Integer> endNodeAL; // T he end node array 

 public double minDis t; // the geographical dis tance to neares t node 

 public double maxDis t; // the geographical dis tance to furthes t node 

public double medianDis t; // the median dis tance 

 

Each test is saved as an array element within an instance of a TestData class. 

 

public int maxNumE ndNodes ; // T he maximum number of end nodes  in tes t data i.e. 1..n 

where n is  maxNumE ndNodes   

public int numberC as es ; // T he number of tes t cas es  for each number of end nodes  e.g. 100 

cas es  for 10 end nodes  

public ArrayLis t<T es tDataInput> tes tC as e; 
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9. Algorithm comparison reports and analysis 

 

Comparison results execution 1 

 

After performing initial testing to prove the quality of the test reports, test cases were created for 

1 to 20 end nodes with 100 test cases in each resulting in 2,000 test cases overall.  The results of 

these tests are below. 

 

 

 
Figure 8.1.  Average hits per number of end nodes 

 

The graph in Figure 8.1 shows total number of hits (nodes plus edges) on the y-axis against the 

number of end nodes in the shortest path execution along the x-axis.  

 

• A* represented by the blue line 

• A* wrapper represented by the yellow line 

• The new algorithm (Walkers) represented by the grey line 

 

Results from the above 3 algorithms were executed and compared and it should be noted that for 

every test case all 3 algorithms agreed on the shortest path thereby satisfying the quality 

requirement. 

 

These results are highlight some very interesting areas for the following reasons: 

 

1. A* seems to follow a predictable linear growth.  It seems intuitive that the number of hits 

increase linearly with each additional end node and this is evidenced in the graph. 

2. A* with an efficiency wrapper also increases as the number of end nodes increases but 

then plateaus at about 6 end nodes and from there on appears to follow a straight line path 

3. The new algorithm (Walkers) has roughly half of the hit nodes as A* for one end node 

which indicates using this metric that it is more efficient as A* 
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4. The new algorithm (Walkers) uses less hits the more end nodes are selected, so it actually 

becomes more efficient the more end nodes to search for  

 

Given reason 1 is as expected, reasons 2 to 4 are investigated in the rest of this section. 

 

Reason 2 – A* with efficiency wrapper plateaus 
 

The A* wrapper algorithm depends on the likelihood that one of the nearest end nodes is more 

likely to be the shortest path.  Figure 8.1 therefore looks to be an indication of the probability of 

this being the case.  Figure 8.2 shows the number of end nodes on the x-axis and the average 

number of executions of A* required for each test case to find the shortest path.  This does appear 

to support this hypothesis, but it doesn’t appear to fully explain it as the trend still appears to be 

upwards whereas in Figure8.1 it plateaus. 

 

 

 
Figure 8.2.  Average number of end nodes tested for A* with efficiency wrapper 

 

One other factor that influences the A* with efficiency wrapper execution total number of hits is 

how far away the end node is from the start node.  With more end nodes, the likelihood is that 

more of the end nodes will be closer to the start node.  Taking this into account alongside the 

number of end nodes hit may explain the shape of the trend line. 
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The plateau is not the whole story though as this could hide some extreme variation in the hits per 

test case.  Figure 8.3 shows the variation in nodes and edges hit (on the y-axis) for the 100 test 

cases (on the x-axis) where there are 20 end nodes.   Even with the A* wrapper algorithm there is 

huge variation in hits with a minimum nodes hit value of 3 and a maximum nodes hit value of 

3,573 (1,191 times bigger).  For comparison, in Walkers the minimum is 2 and the maximum is 

152 (76 times bigger). 

 

 
Figure 8.3.  Average number of end nodes tested for A* with efficiency wrapper for 20 end 

nodes.   

 

This would seem to indicate that the new algorithm will be more consistent in terms of efficiency. 

 

Reason 3 – The new algorithm is twice as efficient as A* 
 

Note that this is based on the given measurement criteria.  The below graphs give a visual 

comparison between A* and the new algorithm for the same search.  Although at first glance, A* 

looks to have covered a larger area, closer examination of the Walkers output shows that edges to 

the light blue coloured nodes on the A* picture are shaded red.  This may indicate that an 

anomaly in the scoring approach is skewing the result for one end node in favour of Walkers 

algorithm.   

 

 
Figure 8.4.  Visual map output comparison of A* versus the new algorithm 
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To understand in this in more detail, Figure 8.5 explores more fully the relationship between 

nodes and edges hit with each of the 100 test cases on the x-axis and the y-axis showing total 

nodes and edges hit for that test case (nodes are the blue line and edges the amber line).  The 

graphs look at the one end node data only and are sorted by increasing total nodes hit.   

 

 

 

 
 

Figure 8.5.  Ordered nodes hit for one end node of A* versus the new algorithm 

 

 

The above charts are very illuminating.  Looking at the A* graph, both the node hits and the edge 

hits seem to plateau at the 78th test case.  The plateau is at 156 for nodes and 283 for edges which 

corresponds to the total number of nodes and edges in the graph.  So from the 78th test case (c 

20%) of the test cases A* has needed to examine every node and edge to find the shortest path. 

 

Looking at the Walkers graph, the graph keeps growing in a smooth curve and doesn’t reach the 

total number of nodes or edges in any test case.  This seems to reflect a smooth growth and no 

anomaly in the reporting data for the new algorithm.  To investigate this further, Figure 8.6 

contains the search output for the 78th test case (Digne to Carcassone) which is the first test case 

to plateau in A*.    

 

 
Figure 8.6.  Example case with one end node with large difference 
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The above graphs show a remarkable difference between A* and Walkers which this time points 

to a possible anomaly in the A* algorithm result.  Running the same search using Dijkstra brings 

up the following result: 

 

 
Figure 8.6.  Visual comparison of A* versus the new algorithm 

 

Figure 8.6 seems to show Dijkstra outperforming A* and therefore strongly points to a bug in the 

implementation of A*.  Investigation identified the problem to be a condition in the code to check 

for the end node being found: 

 

if (currentNode.nodeIndex == mycd.endNode) 

 

The above code is failing to work in all cases as the node index and endNode are being held as 

Integer objects and this is attempting to find if they are referring to the same object and therefore 

causing an unreliable result.  This code line was replaced with the following line to ensure the 

value of the Integer object is compared and not the object: 

 

if (currentNode.nodeIndex.equals (mycd.endNode)) 

 

Retesting Digne to Carcassone for A* then produces the following result in Figure 8.7. 

 

 
Figure 8.7.  Visual comparison of A* versus the new algorithm 

 

This looks more reasonable.  This potentially invalidates the previous findings.  Therefore, the 

comparison tests have been re-executed as follows and referred to as execution 2.  
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Comparison results execution 2 

 

Re-running the comparison with the updated code produces similar results but with improved 

efficiency for A* and A* wrapper.  However, the new algorithm now appears to have a similar 

performance to A* for one end node.  See Figure 8.8 to show execution 2 against execution 1 for 

comparison and also a large image of execution 2 for detail.  As before the number of end nodes 

is on the x-axis and the y-axis shows the number of executions.  

 

 

 

 
Figure 8.8.  Comparison results execution 1 versus execution 2 
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Reason 2 review 
 

Rerunning the graphs produces a similar result as follows: 

 

 
Figure 8.9.  Rerun on Figure 8.3, Average number of end nodes tested for A* with efficiency 

wrapper for 20 end nodes 

 

 

The analysis of Reason 2 in execution 1 remains correct.  Figure 8.9 shows a rerun of the 

variation graphs for 20 end nodes.  The variation for A* remains unchanged with a range from  3 

to 3,510 (1,171 times bigger as before).  For comparison, in Walkers the minimum is 2 and the 

maximum is 152 (76 times bigger).  Therefore, the new algorithm still appears to be much more 

consistent for multiple end nodes. 
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Reason 3 review 
 

Continuing the investigation as to whether results are skewed in favour of the new algorithm, 

Figure 8.10 is an updated version of Figure 8.5 but with both algorithms plotted on the same 

graph.  The graphs look at one end node data only and are sorted by increasing total nodes and 

edges hit for A* and the corresponding nodes and edges hit for the new algorithm.  The graph 

then shows a breakdown of nodes hit and edges hit for each test case.  The updated results show 

that the new algorithm and A* are performing with similar efficiency for a single end node.  This 

invalidates reason 3 and means the new algorithm is not more efficient than A* for 1 end node. 

 

 
Figure 8.10.  Visual comparison of A* versus the new algorithm 

 

It is interesting that the lines on the graph in Figure 8.10 are curved.  The graph contains the set of 

100 test cases for one end node sorted in order of total number of nodes hit.  Given that the test 

data is randomly selected, the reason for a curve rather than a straight line is not immediately 

obvious.  However, this can be explained by the structure of the map.  As the number of nodes hit 

is growing there is the potential for each hit node to impact on the number of edges and connected 

nodes and therefore the curve of this graph may be containing reflecting information about the 

number and regularity of edges within the map.  This is referred to as the branching factor which 

influences the efficiency of the algorithm as described earlier in this report. 
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Reason 4 - The new algorithm uses less hits the more end nodes are selected 
 

The new algorithm prioritises a search along paths in the direction of a segment containing all of 

the end nodes.  The more end nodes there are, the greater the probability that there is an end node 

closer to the start node thereby reducing the number of nodes and edges that need to be searched.  

If this assumption holds true, then a graph showing the average distance to the nearest node for 

each number of end nodes should show this distance decreasing for each end node. 

 

 

 
Figure 8.11.  Visual comparison of A* versus the new algorithm 

 

 

Figure 8.11 maps the number of end nodes on the x-axis against the average distance to the 

geographically closest end node on the y-axis and this confirms that the nearest end node is 

becoming closer to the start node as the number of end nodes increases.  This seems to satisfy 

reason 4 and also highlights an issue with the creation of the test data.  The random selection of 

end nodes in a directional segment is successfully testing the quality, but it does not seem to 

satisfy some of the use cases such as the nearest car park in a nearby city.  In this use case the 

requester is likely to be distant from the city and the end nodes are likely to be more closely 

located in a cluster. 

 

To attempt to better simulate the above use case, the existing data will be filtered to select only 

those test cases where the closest end node is in the furthest quartile and where the gap between 

the nearest and furthest end node is in the smallest quartile.   
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Only a small number of test cases fit this criteria as shown in Figure 8.12 graph below.  In Figure 

8.12 the x-axis is the number of end nodes and the y-axis is the number of test cases that meet the 

above filter. 

 

 
Figure 8.12.  Visual comparison of A* versus the new algorithm 

 

 

Figure 8.13, with trend lines added, shows a different story to the previous graphs for A*.  Now 

that the end nodes are more clustered the graph on the left shows the number of nodes hit growing 

linearly with the number of end nodes selected and this is not plateauing as before.  This removes 

any advantage in using the A* wrapper algorithm.   

 

Additionally, the number of nodes hit reflects the number of end nodes being evaluated with A* 

and consequently also indicates a linear growth (see the right graph in Figure 8.13).  However, the 

new algorithm continues to maintain a relatively low hit count that appears to remain constant 

regardless of the number of end nodes. 

 

 

 
Figure 8.13.  Visual comparison of A* versus the new algorithm 

 

This indicates for a clustered set of end nodes (i.e. a set of end nodes relatively close together) the 

new algorithm is significantly more efficient than A* and A* with a wrapper and that this 

efficiency increases linearly based on the number of end nodes in the search. 
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10. Conclusions 

 

The testing carried out has demonstrated that the new algorithm will find the shortest path to a 

single or multiple end nodes that is consistent with the results from A* and therefore it meets the 

quality measurement criterion. 

 

In terms of efficiency the new algorithm appears to be significantly more efficient than A* and 

the A* wrapper algorithms in finding multiple end nodes.  This efficiency increases in relation to 

the number of end nodes and the relative proximity of the end nodes with the greatest efficiency 

where the end nodes are closest together.  In addition, the new algorithm has much lower 

variation in the least and greatest number of nodes hit so is more consistent.  These findings were 

dependent on the test data and the efficiency scoring method.  Given that the efficiency increase is 

so large it is likely any anomalies in the node and edge counting will not affect the conclusion that 

the new algorithm is more efficient than A* wrapper under these conditions.  To confirm these 

findings, the efficiency scoring method should be reviewed and improved test data should be used 

based on one of the real-world use cases, such as finding the nearest electric car charging point in 

a city being visited. 
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11. Areas for Further Research and Development 

 

During the development of this project the following areas have been identified as candidates for 

more development and / or research: 

 

Add capability for priority queue 
 

To improve the efficiency of the algorithm, a method for implementing a priority queue should be 

investigated.  This is an efficient way of handling an ordered set of values such as the lowest or 

the highest can be selected for processing.  For the new algorithm this is made more difficult as 

the values in the ordered list are recalculated at selection. 

 

Finding the shortest path from multiple start nodes to a single end node 
 

The simplest method to find the shortest path from multiple start nodes to a single end node 

would be to reverse the start and end nodes and therefore the end node will become the start node 

the multiple start nodes will be the multiple end nodes.  However, this could become more 

difficult in a travel application where distances are directional and affected by travel conditions 

such as accidents and congestion.  An alternative approach is to introduce the concept of a single 

virtual start node. 

 

 
 

Figure 10.1.  Approach for multiple start nodes to single end node 

 

Figure 10.1 shows how the new algorithm might be adapted to find the shortest path from 

multiple start nodes to a single end node.  A virtual start node (start_node 4) is mapped to the 

virtual line and this replaces the start node used in the algorithm.  Virtual edges are created from 

the virtual start node to each start node.  These edges are initialised to have zero slack and an 

effective distance of zero for calculation in the shortest path.  The shortest path will have to pass 

through one of the start nodes as the virtual start node is only connected to these.   
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Finding the shortest path from multiple start nodes to multiple end nodes 
 

Figure 10.2 develops the idea above further to enable the shortest path from multiple start nodes 

to multiple end nodes to be calculated. 

 

 
Figure 10.2.  Approach for multiple start nodes to multiple end nodes 

 

This continues with the concept of a virtual start node as a start point.  The boundary lines 

become lines joining the outermost start and end nodes with the virtual line bisecting these as 

before.  Finally the virtual line is rotated to the x-axis.  Mapping to the virtual line should be 

researched further and will be based on the single start node to multiple end node approach. 

 

Finding the shortest path through multiple clusters 
 

Taking this idea even further, it may then be possible to find the shortest path from multiple start 

nodes through a cluster of multiple interim nodes to multiple end nodes where the shortest path is 

from any start node through any interim node to any end node.   

 

 
Figure 10.3.  Approach for multiple start nodes to single end node 

 

The above illustration shows how this might be developed.  In this case the boundary lines change 

direction at the interim cluster.  As previously mapping will be based on the original virtual line 

mapping, however mapping will be affected by the change in direction of the boundary and 

virtual lines and would need to handle cases where direction reversed.  When an interim node is 

hit, each hit interim node will need to track a duplicate set of nodes and edges to allow for 

backtracking along edges should the end nodes be in the direction of the start nodes. 
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Review the scoring method for efficiency comparison 
 

A more sophisticated scoring system that takes into account statements executed and ideally 

processor time executed should be explored.  This could incorporate an error range that would 

allow the efficiency of the new algorithm to be better evidenced. 

 

Incorporation of real-world test data 
 

Openstreetmap can be used to integrate real world maps into testing.  The data in openstreetmap 

is held as nodes and ways.  Each way holds a path of connected nodes.  Each node has a longitude 

and latitude.  The geographical distance can be calculated by calculating the distance between 

each node in a way.  Code can then be written to identify the nodes where ways connect.  Using 

this data, openstreetmap data can be integrated into the test application for this project and used to 

provide bigger and more realistic map data for further testing. 

 

Testing the regularity of the map 
 

A regular map might be described by a set of regularly spaced nodes each with the same edges 

connecting the nodes to neighbours.  Comparison of multiple tests to find the shortest path could 

lead to inferences about the graph by comparing results to expected results from a regular map.  

For example the number of times the A* wrapper algorithm needs to execute A* could indicate 

unconnected areas of the map.  This could be used make inferences from maps which contains 

some unknown data. 

 

Cluster analysis 
 

The new algorithm could be used to find the minimum and maximum distances between clusters 

of nodes. 

 

Shortest path in 3 dimensions 
 

The new algorithm could be expanded to work on 3 dimensional maps. 

 

Matrix transformations 
 

Coordinates and transformations could be done using matrices.  This could allow transformations 

to be combined and much faster execution time by making use of hardware optimised for matrix 

calculations. 

 

Travelling salesman problem 
 

The travelling salesman problem is one that describes the problem of a salesman trying to work 

out the shortest journey for him to visit multiple destinations.  This is described as an NP-hard 

problem.  The ability of the new algorithm to find shortest paths from multiple nodes to multiple 

nodes and passing through multiple nodes could lead to a new approach for finding solutions to 

the travelling salesman problem. 

 

Reviewing the complexity (order) of the new algorithm 
 

The success of the new algorithm will depend on its complexity and the number of nodes and 

edges it needs to examine to find a solution.  Currently, this is exponential and more work is 

required to ensure the new algorithm is defined to perform at least as well as A*. 
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12. Reflection/Learning 

 

The importance of modelling 
 

The idea for this project formed during a lecture, however it was modelling on a whiteboard and 

Excel that gave it substance and indicated it might work in practice.  After the whiteboard and 

Excel modelling I tried to replicate this in code, however I was unable to make this work until I 

had revisited Excel and created sample data allowing me to step through an example until a 

shortest path had been found.  This reinforced to need to ensure I have spent sufficient time in 

completing and understanding the design before coding. 

 

Tenacity 
 

There were several times when it looked like the new algorithm wouldn’t work.  At these times I 

needed to step away from the problem and do something else.  When I came back methodically 

re-tracing my steps enabled me to come up with a solution.  This reinforced the need to persevere 

even when a solution does not appear to exist. 

 

Avoid making assumptions 
 

Although I had read through the Dijkstra and A* algorithms and thought I understood them, I 

didn’t really understand them until I worked through the algorithms, developed my own code and 

ran through some examples.  It takes strong self-discipline to take the time to work through 

existing knowledge prior to building something new and this is a lesson I will take forward in 

future research. 

 

The importance of prototyping and unit testing 
 

As soon as the design was understood I found it very valuable to write some code.  This enabled 

examples to be executed quickly, however I was slowed by some code defects.  To overcome 

these, I wrote mini test packs for the individual functions in use and then tested input data against 

output from Excel.  This then gave confidence in integrating these functions together and enabled 

debugging to focus on only the new code.  This worked very well for the initial mapping of 

coordinates to virtual positions and the different iterations of code versions and is an approach I 

will continue to use when developing software. 

 

Analysis of output 
 

As highlighted in the comparison report section above, when looking through the initial output I 

found an unexpected result in one of the graphs.  Initially I thought it was easy to explain but I 

looked for further evidence to support this.  The test example didn’t support my initial 

assumption, and this led me to find a bug in my implementation of A*.  I was really pleased I 

investigated further and reinforced to need to provide evidence for any inference made from the 

data even when this creates a lot more work.   

 

Visualisation of the test data 
 

From past experience and also working on modelling in Excel I knew that it would be really hard 

to understand what was happening during execution of the algorithm.  Although it required a lot 

more work, this is why I developed an application with a user interface and the ability to step 

through execution with a visual display of progress along with detailed debugging output.  This 

was invaluable in the test and analysis phase and reinforced the need to consider the test 

requirements in the initial development requirements. 
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Flexibility 
 

The aim of the new algorithm was initially to rival A*.  Although it does do this, it is unlikely to 

be as efficient for single node to single node shortest paths.  After careful consideration though, I 

realised that the approach would lend itself to multiple node problems and therefore after 

discussion with my supervisor I updated to the project to include multiple end nodes.  This 

created more design and development work but enabled me to explore new opportunities to test 

the algorithm’s efficiency.  This reinforced the need to be open to opportunities for use which 

may lead in a slightly different direction. 
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14. Appendices 

 

Shortest String Path Proof 
 

Theorem 

 

This theorem concerns a geographical graph with 2 or more nodes and with 1 or more edges with a 

weight equal to the Euclidean distance between the connecting nodes.  Given any start and end node 

where edges exist that connect the start and end node and which lie on a straight line from the start 

node to the end node and there are no overlapping edges, then the sum of the edge weights will be the 

shortest distance between the nodes.  

 

Statement of Proof 

 

 
Figure A1.  Shortest String Path Proof 

 

Consider a path that lies on the straight line connecting the start node to the end node and the path 

consists of 0 or many interim nodes.  For example, in Figure A1, this path is N1 -> N2 -> N3 -> N4.  

Suppose that this path is the shortest path, then the distance of this path will be a+b+c. 

 

Suppose that there is a shorter path that does not lie along the straight line from the start node to the 

end node.  In Figure 1, this is represented by the path N1 -> N5 -> N4.  Using Pythagorus’s theorem 

the length d can also be calculated as the square root of (a+b)2 + f2.  Similarly the length e can be 

calculated as the square root of c2 + f2. 

 

Since  N1 -> N5 -> N4 is the shortest path then √((a+b)2 + f2) + √(c2 + f2) must be less than a + b + c 

 

√((a+b)2 + f2) can be rewritten as follows: 

 

√((a+b)2 + f2) = √((a+b)2(1 + (f2/(a+b)2)) = √((a+b)2) * √ (1 + f2/(a+b)2))  

 

= (a+b) * √ (1 + f2/(a+b)2)) 

 

√ (1 + f2/(a+b)2)) must be >= 1 since √ (1 + x) >= 1 where x >= 0 

 

Similarly, √(c2 + f2) can be rewritten as follows: 

 

√(c2 + f2) = √(c2(1 + f2/c2))  

 

= c * c2(1 + f2/c2) 

 

The length N1 -> N5 ->N4 can be rewritten as  
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((a+b) * x) + (c * y) where x>=1 and y >= 1       - Statement 1 

 

QED 

 

Given statement 1, ((a+b) * x) + (c * y) >= a + b + c and therefore the length N1 -> N5 ->N4 cannot 

be shorter than the length N1 -> N2 -> N3 -> N4 (note however, if f=0, then this distance N1 -> N5 -

>N4 could equal the shortest path)  

 

Definition of slack 
 

 
 

Figure A2.  Definition of slack 

 

Consider Figure A2. 

 

There are two nodes, A and B. 

Let the Euclidian distance between node A and B is m. 

Let the distance along the edge A -> B (marked in red) be ed. 

Let AB be the straight line passing through nodes A and B. 

Let f(A, B, Z, ed) be a function that translates the point A in the following manner: 

• Node A is translated a distance of Z units along AB such that the Euclidean distance, m, 

between the two points increases by m 

• If following the translation, m is greater than the edge distance between node A and node B, 

ed, then node A will be moved to a point on AB such that m is equal to ed. 

 

The slack is the maximum distance that node A can move along AB without m being greater than ed. 

 

Therefore, the slack is ed – m 

 

If the above function is called repeatedly with a small amount for Z eventually m will be equal to ed. 

 

Rather than call the translation function repeatedly, the translation may be executed with one function 

call by initially calculating the slack as ed-m and then passing this value in a parameter Z. This will 

result in node A moving along the line AB, ed-m units as shown in Figure A3. 

 

 
 

Figure A3.  Translation by the slack amount 
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Given that the distance from node A to B will always result in a value ed, then the start 

position of A along the line AB will not affect the end position and therefore the start position 

is arbitrary providing m <= ed. 
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Key source code 
 

Mapping to the virtual line 

 
 public void walkers S etupV irtualC ontext () { 

    

  // New code caters  for multiple end nodes  

  // F irs t, create a trans lation to map the s tart node to the origin 

   

  mycd.tn = new T rans late(new C oord(mycd.nodeArray.get(mycd.s tartNode).myNodeInit.x, 

mycd.nodeArray.get(mycd.s tartNode).myNodeInit.y) ,  new C oord(0.0, 0.0));  

   

  // T rans late all points  us ing the above trans lation 

   

  C oord oldC oord, newC oord; 

  for (int i=0; i<=mycd.nodeArray.s ize()-1;  i++) { 

   oldC oord = new C oord(mycd.nodeArray.get(i).myNodeInit.x, 

mycd.nodeArray.get(i).myNodeInit.y); 

   newC oord = mycd.tn.trans late(oldC oord);  

   mycd.nodeArray.get(i).myNodeInitV L = new NodeInit(mycd.nodeArray.get(i).myNodeInit.name, 

newC oord.x, newC oord.y);     

  } 

   

  // Us ing s elected end nodes , calculate V irtual Line, boundary lines  and rotation to place virtual line 

along the +ve x-axis  

   

  ArrayLis t<C oord> endNodeAL; 

  endNodeAL = new ArrayLis t<C oord>();  

   

  for (int i=0; i<=mycd.endNodeAL.s ize()-1; i++) { 

   endNodeAL.add(mycd.nodeArray.get(mycd.endNodeAL.get(i)).myNodeInitV L.getC oord());  

  } 

 

  Line.findV LAndB oundaries (mycd, endNodeAL, (9.0/10.0 * Math.P I));  

 

  // Loop through all points  and map to virtual line coordinates .  T his  is  done up front in this  example 

code, 

  // but to improve efficiency the virtual line coordinates  only need to be calculated once when a node is  

evaluated. 

  // C oordinates  are copied to an intermediate array to allow for reus e by tes t methods  

   

  ArrayLis t<C oord> nodeAL; 

  nodeAL = new ArrayLis t<C oord>();  

   

  for (int i=0; i<=mycd.nodeArray.s ize()-1;  i++) { 

   nodeAL.add(mycd.nodeArray.get(i).myNodeInitV L.getC oord());  

  } 

   

  C oord myC oord, myC oordR otated; 

  boolean iwb; 

   

  for (int i=0; i<=nodeAL.s ize()-1;  i++) { 

   myC oord = nodeAL.get(i);  

   myC oordR otated = myC oord.rotate(mycd.rotV lAngle);  

   iwb = myC oordR otated.coordWithinB oundaries (mycd, true); 

   newC oord = myC oordR otated.mapC oordT oV l(mycd, iwb);  

   mycd.nodeArray.get(i).myNodeInitV L.s etC oord(newC oord);  

  } 

   

  // T o s implify the s earch (as  a tes t), map all of the end points  to the s ame virtul pos ition 

  // F irs t find the lowes t x value (i.e.  the clos es t to the s tartnode) 

  double lowes tE ndNodeXV alue = Double.MAX_V ALUE ;  

  for (int i=0; i<=mycd.endNodeAL.s ize()-1; i++) { 

   if (mycd.nodeArray.get(mycd.endNodeAL.get(i)).myNodeInitV L.x < lowes tE ndNodeXV alue) { 

    lowes tE ndNodeXV alue = 

mycd.nodeArray.get(mycd.endNodeAL.get(i)).myNodeInitV L.x;  
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   } 

  } 

  // Next update all of the endNode x values  to the found low value 

  for (int i=0; i<=mycd.endNodeAL.s ize()-1; i++) { 

   mycd.nodeArray.get(mycd.endNodeAL.get(i)).myNodeInitV L.x = lowes tE ndNodeXV alue; 

  } 

 

 } 

 
 public s tatic void findV LAndB oundaries  (C ontrolData inC D, ArrayLis t<C oord> inC oordAL, double maxAngle) { 

   

  // T his  method will calculate the maximum boundary line, the minimum boundary line and  

  // V L (the V irtual Line) which bis ects  them.  T he angle between the maximum and the minimum 

  // boundary line mus t be within the input maxAngle.  All angles  are in radians . 

   

  double maxG apAllowed = (Math.P I*2.0) - maxAngle; 

   

  if (maxAngle > Math.P I) { 

   S ys tem.out.print("Line.findV L : :  E R R OR  - maxAngle exceeds  P I (180 degrees ) and is  invalid"); 

   S ys tem.exit(0);  

  } 

   

  ArrayLis t<Line> outLineAL; 

  ArrayLis t<Double> angleAL; 

   

  outLineAL = new ArrayLis t<Line>();  

  angleAL = new ArrayLis t<Double>();  

  C oord myC oord; 

  Line myLine; 

  V ector vectorY Axis  = new V ector (0,1,0);  

  V ector myV ector;  

  double angle; 

   

  // F irs t find the angles  between x-axis  and lines  going through the origin and input C oordinates  

  for (int i=0; i<= inC oordAL.s ize()-1; i++) { 

    

   myC oord = inC oordAL.get(i);  

   if (myC oord.x == 0 && myC oord.y == 0) { // If at the origin, ignore 

    angleAL.add(null);  

   } 

   els e { 

    myV ector = new V ector(myC oord.x, myC oord.y, 0);  

    angle = vectorY Axis .angleC lockwis eF rom0(myV ector);  

    angleAL.add(angle); 

   } 

    

  } 

   

  // Next work out the minimum s egment angle from the origin that will include all coordinates  

  // T his  is  done by looking for a gap between angles  greater than 2*P I (a full circle) les s  than maxAngle 

  // S tart from the lowes t angle and then look for a gap between each s ucces s ive angle.  S tart by adding 

the firs t 

  //  angle to the end of the arraylis t  with the addition of 2*P I to ens ure that the gap cros s ing the s tart 

point 

  //  is  als o cons idered. 

  S hortes tP athUtility.s ort(angleAL);  

  angleAL.add(angleAL.get(0) + (Math.P I*2.0));  

   

  double angleV L = 0, angleB oundary1 = 0, angleB oundary2 = 0, index1 = 0, index2 = 0; 

  boolean valid = true; 

  int maxIndex = -1; 

  double maxG apF ound = -1;  

   

  for (int i=0; i<=angleAL.s ize()-2 && valid; i++) { 

   if ( (angleAL.get(i+1) - angleAL.get(i)) > maxG apF ound) {     

    maxG apF ound = (angleAL.get(i+1) - angleAL.get(i));  

    maxIndex = i;  
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   }    

  } 

   

  if ( maxG apF ound < maxG apAllowed) { 

   // C orrect gap found s o calculate lines  

   valid = fals e; 

   S ys tem.out.println("INV ALID, gap: "+maxG apF ound+" < "+maxG apAllowed);  

   inC D.multiE ndNodeV alid = fals e; 

   S ys tem.out.print("Line.findV L : :  E R R OR  - maxAngle exceeded");  

   S ys tem.exit(0);  

  } 

   

  if (valid) { 

    

   index1 = angleAL.get(maxIndex);  

   index2 = angleAL.get(maxIndex+1);  

   if (index2 >= (Math.P I*2.0)) { 

    index2 = index2 - (Math.P I*2.0);  

   } 

   if (index1 <= index2) { 

    angleB oundary1 = index1; 

    angleB oundary2 = index2; 

   } 

   els e { 

    angleB oundary2 = index1; 

    angleB oundary1 = index2; 

   } 

    

   // C heck if there is  a s horter bis ection as  it cros s es  0 degrees  

   double tmpAngleB oundary1 = angleB oundary1; 

   if ((angleB oundary2 - tmpAngleB oundary1) > Math.P I) { 

    tmpAngleB oundary1 = tmpAngleB oundary1 + (Math.P I*2.0); 

   } 

 

   angleV L = tmpAngleB oundary1 + ((angleB oundary2 - tmpAngleB oundary1) / 2);  

   if (angleV L >= (Math.P I*2.0)) { 

    angleV L = angleV L - (Math.P I*2.0);  

   } 

    

   inC D.boundary1Angle = angleB oundary1; 

   inC D.boundary2Angle = angleB oundary2; 

   inC D.vlAngle = angleV L; 

   inC D.boundary1Line = Line.findLineF romAngle(angleB oundary1);  

   inC D.boundary2Line = Line.findLineF romAngle(angleB oundary2);  

    

   // C alculate the angle to rotate vlAngle to pos itive x-axis  

   inC D.rotV lAngle = ( (2.0*Math.P I) + (Math.P I/2.0) - inC D.vlAngle);  

   if (inC D.rotV lAngle >= (2.0*Math.P I)) { 

    inC D.rotV lAngle = inC D.rotV lAngle - (2.0*Math.P I);   

   } 

    

   inC D.boundary1AngleR otated = inC D.boundary1Angle + inC D.rotV lAngle; 

   if (inC D.boundary1AngleR otated >= (Math.P I*2.0)) { 

    inC D.boundary1AngleR otated = inC D.boundary1AngleR otated - (Math.P I*2.0); 

   } 

    

   inC D.boundary2AngleR otated = inC D.boundary2Angle + inC D.rotV lAngle; 

   if (inC D.boundary2AngleR otated >= (Math.P I*2.0)) { 

    inC D.boundary2AngleR otated = inC D.boundary2AngleR otated - (Math.P I*2.0); 

   } 

    

  } 

   

 } 
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The new algorithm 

 
 public void walkers  () { 

   

  // T his  function will find the s hortes t path from a s ingle s tart node to one or multiple end nodes  

   

  T hreadMXB ean threadMXB ean; 

  long cpuS tartT ime, cpuE ndT ime; 

   

  threadMXB ean = ManagementF actory.getT hreadMXB ean();  

  cpuS tartT ime = threadMXB ean.getC urrentT hreadUs erT ime();  

   

  G s on myG s on = new G s on();  

  S tring gs onS tring; 

  DecimalF ormat df = new DecimalF ormat("####0"); 

  

  boolean found; 

  this .hitNodes  = new ArrayLis t<Integer>();  

  this .walkers S etupV irtualC ontext();  

         

        // B lock 0 

        this .hitNodes .add(mycd.s tartNode);  

        mycd.nodeArray.get(mycd.s tartNode).moves  = (double) 0; 

         

        // B lock 1 

        boolean conditionHit;  

         

        // F ind the next edge to proces s  

        this .walkersF indNextE dge();  

         

        while (this .nextE dge != null) { // loop until no more edges  are found 

         

         conditionHit = fals e; 

          

         // if firs t time in or a s horter path is  found to the next node then the condition is  hit 

      if (this .nextNode.moves  == null) { 

       conditionHit = true; 

      } 

      els e if ( (this .thisNode.moves  +  

        (this .nextE dge.myE dgeInit.dis tance + this .walkers C alcV Dis t(this .thisNode, 

this .nextNode)))  

        < this .nextNode.moves ) {       

       conditionHit = true;        

      } 

       

      // If condition hit, update the next node details  

      if (conditionHit) { 

        this .nextNode.moves  = (this .thisNode.moves  +  

            (this .nextE dge.myE dgeInit.dis tance + this .walkers C alcV Dis t(this .thisNode, 

this .nextNode)));  

        this .nextNode.pathDis tance = this .this Node.pathDis tance + this .nextE dge.myE dgeInit.dis tance; 

       this .nextNode.fromNode = this .this Node.nodeIndex; 

        

       // Make all connected edges  active (i.e. available for s election) 

       for (int j=0; j<=this .this Node.myE dgeAL.s ize()-1;  j++) { 

        this .this Node.myE dgeAL.get(j).active = true; 

        this .this Node.myE dgeAL.get(j).edgeC olour = C olor.B LUE ;  

        this .this Node.myE dgeAL.get(j).vis ited = true; 

       } 

        

       this .nextE dge.active = fals e; 

       this .nextE dge.edgeC olour = C olor.R E D ;  

        

       // Determine if nextNode is  an endNode 

       boolean nextNodeIs E ndNode = fals e; 

       for (int enLoop=0; enLoop<=mycd.endNodeAL.s ize()-1; enLoop++) { 

        if (this .nextNode.nodeIndex.equals (mycd.endNodeAL.get(enLoop))) { 
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         nextNodeIs E ndNode = true; 

        } 

       } 

        

       // If not an end node add it to the nodes  hit 

       if (!nextNodeIs E ndNode) { 

        this .hitNodes .add(this .nextNode.nodeIndex);  

       } 

       els e { 

        s hortes tMoves T oE ndNode = nextNode.moves ; 

        mycd.endNodeF ound = this .nextNode.nodeIndex; 

//        S ys tem.out.println("E nd node found: node= 

"+mycd.nodeArray.get(this .nextNode.nodeIndex).myNodeInit.name+", moves = "+nextNode.moves );  

       }   

        

       this .this Node.nodeC olour = C olor.B LUE ;  

       this .this Node.vis ited = true; 

               

      } 

      els e { 

       // if not hit deactivate the edge 

       this .nextE dge.active = fals e; 

          this .nextE dge.edgeC olour = C olor.R E D ;  

      } 

                 

      if (myP layC ontrol.s howDetails ) { 

        

    myP layC ontrol.addInfo(true, "- P roces s ing node: "+this .this Node.myNodeInit.name); 

    myP layC ontrol.addInfo(fals e, "- V irtual line pos ition x: 

"+this .walkers C alcV lP os ition(this .this Node).x);  

    myP layC ontrol.addInfo(fals e, "- V irtual line pos ition y: 

"+this .walkers C alcV lP os ition(this .this Node).y);  

    myP layC ontrol.addInfo(fals e, "- moves : "+this .thisNode.moves );  

       gs onS tring = myG s on.toJ s on(mycd); 

       myP layC ontrol.s trC ontrolDataAL.add(gs onS tring);  

       } 

       

      this .walkers F indNextE dge(); // look for the next edge 

 

      if (myP layC ontrol.s howDetails ) { 

    if (this .nextNode != null) { 

     myP layC ontrol.addInfo(fals e, "- Next node: 

"+this .nextNode.myNodeInit.name); 

     myP layC ontrol.addInfo(fals e, "- moves : "+this .nextNode.moves );  

     myP layC ontrol.addInfo(fals e, "- S lack: "+(this .nextE dge.myE dgeInit.dis tance 

+  

       this .walkers C alcV Dis t(this .this Node, this .nextNode)));  

     myP layC ontrol.addInfo(fals e, "- T his  to next node vDis t: "+  

       this .walkers C alcV Dis t(this .this Node, this .nextNode));  

     this .nextE dge.edgeAdditionalT ext = 

"("+df.format(this .nextE dge.myE dgeInit.dis tance +  

       this .walkers C alcV Dis t(this .this Node, 

this .nextNode))+")";  

    } 

    this .this Node.additionalNodeT ext = "(" + 

df.format(this .walkers C alcV lP os ition(this .this Node).x) + "," + df.format(this Node.moves ) + ")";  

    myP layC ontrol.addInfo(fals e, "- Number in hit nodes : "+this .hitNodes .s ize());  

    S tring hitNodes S tr = "";  

    for (int f=0; f<=this .hitNodes .s ize()-1; f++) { 

     hitNodes S tr = 

hitNodes S tr.concat(mycd.nodeArray.get(this .hitNodes .get(f)).myNodeInit.name+" ");  

    } 

    myP layC ontrol.addInfo(fals e, "- Hit nodes : "+hitNodes S tr);  

     

      } 

       

//      ii++; 



 53 

//      if (ii>50) this .nextE dge = null;  

    

        } // while (this .nextE dge != null)  

         

  myP layC ontrol.algorithmT hreadR unning = fals e; 

 

  

 } 

  

 public void walkers F indNextE dge () { 

  

  // T his  method finds  the next edge for proces s ing in Walkers  algorithm 

   

  double moves AndS lack; 

  boolean found = fals e; 

  Node myNode, neigbourNode; 

  E dge myE dge = null; 

  boolean activeE dgeF ound;  

  ArrayLis t<Node> removeHitNodes  = new ArrayList<Node>();  

   

  this .leas tMoves AndS lack = null; 

        this .nextNode = null; 

        this .nextE dge = null; 

 

        // loop through all of the hit nodes  

  for (int i=0; i<=this .hitNodes .s ize()-1; i++) { 

    

   myNode = mycd.nodeArray.get(this .hitNodes .get(i));  

   myNode.vis ited = true; 

    

   activeE dgeF ound = fals e;  

   // loop through the edges  connected to the hit node 

   for (int j=0; j<=myNode.myE dgeAL.s ize()-1; j++) { 

        

    myE dge = myNode.myE dgeAL.get(j);  

    myE dge.vis ited = true; 

 

    if (myE dge.active) { 

 

     neigbourNode = 

mycd.nodeArray.get(myE dge.getC onnectedNode(myNode.nodeIndex));  

 

     // C alculate the moves  and s lack and look for a new edge with leas t s lack 

     moves AndS lack = myNode.moves  + (myE dge.myE dgeInit.dis tance +  

       this .walkers C alcV Dis t(myNode, neigbourNode));  

 

     if (s hortes tMoves T oE ndNode!= null && movesAndS lack >= 

s hortes tMoves T oE ndNode) { 

      myE dge.active = fals e; 

      myE dge.edgeC olour = C olor.R E D;  

     } 

     els e { 

      found = fals e; 

       

      if (this .leas tMoves AndS lack == null) { 

       found = true; 

      } 

      els e if ( moves AndS lack < this .leas tMoves AndS lack ) { 

       found = true; 

      } 

   

      if (found) { // S et the s tored objects  to objects  in arrays  s o 

reference won't change 

       this .leas tMoves AndS lack = movesAndS lack; 

       this .this Node = 

mycd.nodeArray.get(this .hitNodes .get(i));  

       this .nextE dge = this .this Node.myE dgeAL.get(j);  
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       this .nextNode = 

mycd.nodeArray.get(myE dge.getC onnectedNode(this .this Node.nodeIndex));;  

      } 

     } 

 

     activeE dgeF ound = true; 

      

    } // if (myE dge.active) 

     

   } // for (int j=0; j<=myNode.myE dgeAL.s ize()-1;  j++) 

    

   if (!activeE dgeF ound) { 

    removeHitNodes .add(myNode);  

   } 

 

  } // for (int i=0; i<=this .hitNodes .s ize()-1;  i++) 

   

  if (this .nextE dge != null) { 

   this .nextE dge.active = fals e; 

  } 

   

  // R emove any hitNodes  which don't have an active edge 

  for (int i=0; i<=removeHitNodes .s ize()-1;  i++) { 

    

   this .hitNodes .remove(removeHitNodes .get(i).nodeIndex);  

    

  } 

   

 } 
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A* with wrapper 

 
   // 2. E xecute for A*P lus  

    

   ArrayLis t<AS tarP lus E ndNodes > as penAL; 

   as penAL = new ArrayLis t<AS tarP lus E ndNodes >();  

   AS tarP lus E ndNodes  as pen; 

    

   double xDis t, yDis t; 

    

   C oord s n = new 

C oord(this .myC ontrolData.nodeArray.get(this .myC ontrolData.s tartNode).myNodeInit.x,this .myC ontrolData.

nodeArray.get(this .myC ontrolData.s tartNode).myNodeInit.y);  

    

   // F or each end node s tore in an array and calculate the dis tance from the s tart node 

   for (int i=0; i<=this .myC ontrolData.endNodeAL.s ize()-1; i++) {  

    as pen = new AS tarP lus E ndNodes ();  

    as pen.endNode = this .myC ontrolData.endNodeAL.get(i);  

     

    C oord cen = new 

C oord(this .myC ontrolData.nodeArray.get(this .myC ontrolData.endNodeAL.get(i)).myNodeInit.x,this .myC ontr

olData.nodeArray.get(this .myC ontrolData.endNodeAL.get(i)).myNodeInit.y);  

    xDis t = cen.x - s n.x; 

    yDis t = cen.y - s n.y; 

    as pen.dis t = Math.s qrt((xDis t*xDis t) + (yDis t*yDis t));  

     

    as penAL.add(as pen);  

   } 

    

   // S ort the end nodes  into order of clos es t end nodes  firs t 

   S hortes tP athUtility.s ortAs pen(as penAL);  

    

   double firs tE lementDis tance = Double.MAX_V ALUE ;  

   s hortes tDis tance = Double.MAX_V ALUE ;  

    

   aggregatedAlgorithmOutput = new AlgorithmOutput();  

    

   aggregatedAlgorithmOutput.edges Hit = 0; 

   aggregatedAlgorithmOutput.nodes Hit = 0; 

   aggregatedAlgorithmOutput.totalHits  = 0; 

   aggregatedAlgorithmOutput.aS tarP lus Nodes Hit = 0; 

    

   // loop through the end nodes  

   for (int i=0; i<=aspenAL.s ize()-1; i++) {    

     

    // only execute this  block if the dis tance is  les s  than the firs t element dis tance 

    if (as penAL.get(i).dis t < firs tE lementDis tance) { 

     

     this .res et();  

     this .myC ontrolData.endNode = as penAL.get(i).endNode; 

     myAlgorithmOutput = this Window.executeAlgorithm("A*", fals e); 

      

     if (i==0) { 

      firs tE lementDis tance = myAlgorithmOutput.dis tance; 

     } 

      

     // check if a new s hortes t path has  been found 

     if (myAlgorithmOutput.dis tance < s hortes tDis tance) { 

      aggregatedAlgorithmOutput.clos es tNode = myAlgorithmOutput.clos es tNode; 

      aggregatedAlgorithmOutput.dis tance = myAlgorithmOutput.dis tance; 

      s hortes tDis tance = myAlgorithmOutput.dis tance; 

     } 

      

     aggregatedAlgorithmOutput.edges Hit = aggregatedAlgorithmOutput.edges Hit + 

myAlgorithmOutput.edges Hit; 
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     aggregatedAlgorithmOutput.nodes Hit = aggregatedAlgorithmOutput.nodes Hit + 

myAlgorithmOutput.nodes Hit; 

     aggregatedAlgorithmOutput.totalHits  = aggregatedAlgorithmOutput.totalHits  + 

myAlgorithmOutput.totalHits ;  

     aggregatedAlgorithmOutput.aS tarP lus Nodes Hit ++; 

//     S ys tem.out.println("A*P lus " + myAlgorithmOutput.writeC s v());  

     

    } 

     

  } 
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Creation of test data 

 
 public s tatic void createC ompareT es tData() { 

   

  C ontrolData mycd = new C ontrolData();  

  mycd.res et();  

   

  // S E T  UP  DAT A 

  int maxNumE ndNodes  = 20; // T he maximum number of end nodes  in tes t data i.e. 1..n where n is  

maxNumE ndNodes   

  int numberC as es  = 100; // T he number of tes t cas es  for each number of end nodes  e.g. 100 cas es  for 10 

end nodes  

  S tring graph = "F rance";  

  double boundaryAngleAllowed = (Math.P I / (double) 2.0) * ( (double) 1.0 / (double) 2.0);  

 

  // R ead in bas e node data and populate node and edge arrays  

   

  mycd.nodeArray = Node.getNodeAL(graph);    

  mycd.edgeArray = E dge.getE dgeAL(graph, mycd.nodeArray, fals e); 

   

  // C reate connections  in node array to edges  

   

  Node.createNodeC onnections (mycd.nodeArray, mycd.edgeArray); 

 

  // G enerate tes t data 

  int numNodes  = mycd.nodeArray.s ize(); 

   

  // loop until numberC as es  found 

   

  int numC as es F ound; 

  int numC as es T ried; 

   

  T es tData td = new T es tData();  

  T es tDataInput tdi; 

  td.maxNumE ndNodes  = maxNumE ndNodes ; 

  td.numberC as es  = numberC as es ; 

   

  for (int numE ndNode=1; numE ndNode<= maxNumE ndNodes ; numE ndNode++) { 

   

   numC as es F ound = 0; 

   numC as es T ried = 0; 

   tdi = new T es tDataInput();  

    

   do { 

    

    tdi = new T es tDataInput();  

     

    // 1. R andomly s elect a s tart node 

    int s tartNode = T hreadLocalR andom.current().nextInt(0, numNodes );  

   

    C oord fromC oord = new 

C oord(mycd.nodeArray.get(s tartNode).myNodeInit.x,mycd.nodeArray.get(s tartNode).myNodeInit.y);  

    C oord toC oord = new C oord (0,0); 

     

    T rans late tn = new T rans late (fromC oord, toC oord);  

     

    // 2. R andomly s elect a vl direction 

    int vlDirectionInt = T hreadLocalR andom.current().nextInt(0, 361);  

    double vlDirection = ((double) vlDirectionInt / (double) 360.0) * ((double) 2.0 * 

Math.P I);  

     

    // 3. Determine upper boundary and lower boundary 

     

    double vlR otation; 

    if (vlDirection < (Math.P I / (double) 2.0)) { 

     vlR otation = (Math.P I / (double) 2.0) - vlDirection; 

    } 
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    els e { 

     vlR otation = (Math.P I * (double) 2.0) + (Math.P I / (double) 2.0) - vlDirection; 

    } 

     

    mycd.boundary1AngleR otated = (Math.P I / (double) 2.0) - boundaryAngleAllowed; 

    mycd.boundary2AngleR otated = (Math.P I / (double) 2.0) + boundaryAngleAllowed; 

     

    // 4. Loop and randomly s elect nodes  and s elect any within the boundaries  until criteria 

met 

   

    int numE ndNodes F ound = 0; 

    int numT ried = 0; 

    int randomNode; 

    C oord myC oord, myC oord2, myC oord3; 

    boolean iwb; 

    boolean alreadyS elected; 

     

    do { 

      

     randomNode = T hreadLocalR andom.current().nextInt(0, numNodes );  

     myC oord = new 

C oord(mycd.nodeArray.get(randomNode).myNodeInit.x,mycd.nodeArray.get(randomNode).myNodeInit.y);  

    

     myC oord2 = tn.trans late(myC oord);  

     myC oord3 = myC oord2.rotate(vlR otation);  

     iwb = myC oord3.coordWithinB oundaries (mycd, fals e); 

 

     // check random node s elected is  not the s tart node and als o not already 

been s elected 

     alreadyS elected = fals e; 

     for (int ii=0; ii<=tdi.endNodeAL.s ize()-1;  ii++) { 

      if (tdi.endNodeAL.get(ii) == randomNode) { 

       alreadyS elected = true; 

      } 

     } 

      

     if (iwb && randomNode != s tartNode && !alreadyS elected) { 

//      S ys tem.out.println("s tart node: 

"+mycd.nodeArray.get(s tartNode).myNodeInit.name+" -> "+mycd.nodeArray.get(randomNode).myNodeInit.name);  

      numE ndNodes F ound++; 

      tdi.endNodeAL.add(randomNode); 

     } 

     numT ried ++; 

      

    } while (numE ndNodes F ound < numE ndNode && numT ried <= (numE ndNode*1000));  

     

    if (numE ndNodes F ound == numE ndNode) { // F ound a tes t cas e 

     numC as es F ound ++; 

     tdi.s tartNode = s tartNode; 

      

     // calculate neares t and farthes t nodes  

     double minDis t = Double.MAX_V ALUE ;  

     double maxDis t = Double.MIN_V ALUE ;  

     double dis t; 

     double xDis t, yDis t; 

      

     C oord s n = new 

C oord(mycd.nodeArray.get(s tartNode).myNodeInit.x,mycd.nodeArray.get(s tartNode).myNodeInit.y);  

      

     for (int endNodeALloop=0; endNodeALloop<=tdi.endNodeAL.s ize()-1; 

endNodeALloop++) { 

      C oord cen = new 

C oord(mycd.nodeArray.get(tdi.endNodeAL.get(endNodeALloop)).myNodeInit.x,mycd.nodeArray.get(tdi.endNodeAL.get(endNo

deALloop)).myNodeInit.y);  

      xDis t = cen.x - s n.x; 

      yDis t = cen.y - s n.y; 

      dis t = Math.s qrt((xDis t*xDis t) + (yDis t*yDis t));  
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      if (dis t < minDis t) { 

       minDis t = dis t; 

      } 

      if (dis t > maxDis t) { 

       maxDis t = dis t; 

      } 

     } 

      

     tdi.maxDis t = maxDis t; 

     tdi.minDis t = minDis t; 

     tdi.medianDis t = ((maxDis t - minDis t) / (double) 2.0) + minDis t; 

      

     td.tes tC as e.add(tdi); 

      

    } 

     

    numC as es T ried ++; 

     

//    S ys tem.out.println("---------------");  

//    S ys tem.out.println("maxNumE ndNodes : "+numE ndNode);  

//    S ys tem.out.println("numF ound: "+numE ndNodes F ound);  

//    S ys tem.out.println("numT ried: "+numT ried);  

//    S ys tem.out.println("numC as es F ound: "+numC as es F ound);  

   

   } while (numC as es F ound < numberC as es );  

  

//   td.tes tC as e.add(tdi); 

    

   S ys tem.out.println("*****************");  

   S ys tem.out.println("maxNumE ndNodes : "+numE ndNode);  

   S ys tem.out.println("numC as es F ound: "+numC as es F ound);  

   S ys tem.out.println("numC as es T ried: "+numC as es T ried);  

    

  } // for numE ndNode loop 

   

  G s on myG s on = new G s on();  

  S tring myJ s on = myG s on.toJ s on(td);  

    

  try (P rintWriter out = new P rintWriter("tes tData.js on")) { 

      out.println(myJ s on);  

  } catch (F ileNotF oundE xception e) { 

   // T ODO Auto-generated catch block 

   S ys tem.out.println("E R R OR  - can't create js on file");  

  } 

   

 } 

 

 

 

 

 


