
1

School of Computer Science and Informatics

Cardiff University

2020

CMT400 – Master’s Dissertation – 60 Credits

Research Paper Recommendation System

Author: Subodh Gholve

Supervisor: Luis Espinosa-Anke

Moderator: Alun D Preece

Degree Programme: MSc Computing and IT

Management with Placement

2

Acknowledgements

I would like to specially thank my supervisor Luis Espinosa-Anke for his extreme support

throughout the project during the most difficult time in my life, understanding me on a personal

level and responding to my queries even during Christmas holidays.

I would like to thank my friends Giulia Maria Bellan, Manali Lokhande and Taehui Kim for

being a family and supporting me during this pandemic whilst I have not been able to visit home

for a very long time.

I would like to thank my team at my workplace (Atradius) for their understanding, shedding off

workload form my shoulders, providing feedback and allowing me time to focus on the thesis.

3

Table of Contents

Abstract……………………………………………………………………………. 5

1. Introduction……………………………………………………………………….. 6

2. Aim and Objectives………………………………………………………………… 9

3. Problem Statement………………………………………………………………… 10

4. Training……………………………………………………………………………. 12

5. Background………………………………………………………………………... 13

5.1 Famous Recommender Systems……………………………………..… 13

5.2 Survey of Recommendation Classes………………………………...…. 13

5.2.1 Collaborative Based Filtering …………………………..….. 16

5.2.1.1 User-based Collaborative Filtering …………18

5.2.1.2 Item-based Collaborative Filtering………….19

5.2.2 Content Based Filtering ……………………………………20

5.2.2.1 Cosine Similarity …………………………...23

5.3 Flask……………………………………………………………………25

6. Data Sources………………………………………………………………………..27

7. Approach…………………………………………………………………………...28

8. Implementation…………………………………………………………………….31

9. Analysis…………………………………………………………………………….41

10. Conclusions and Evaluation ……………………………………………………….48

11. Future Work………………………………………………………………………..50

12. Reflection on Learning……………………………………………………………..52

13. References…………………………………………………………………………54

14. Appendices………………………………………………………………………...57

4

Table of Figures

Figure 1. Netflix movie recommender - personalised list…………………………………… 14

Figure 2. Personalised list of eBay. ………………………………………………………….15

Figure 3. Relevant recommendation list of Amazon…………………………………………15

Figure 4. Recommender system in Research papers sites (semanticscholar)……………….…16

Figure 5. Semanticscholar Paper Recommendation………………………………………….16

Figure 6. TFIDF tokens……………………………………………………………….…….22

Figure 7. CountVectorizer tokens………………………………………………………...….23

Figure 8. Two vectors in a 2D plane – Cosine Similarity………………………………….…24

Figure 9. Basic Application architecture…………………………………………………..…29

Figure 10. Application Workflow………………………………………………………....…30

Figure 11. home.HTML file for data collection…………………………………………..….31

Figure 12. Flask code reference for ‘result’ page……………………………………………..32

Figure 13. Home page of Covid Aware……………………………………………………...32

Figure 14. Top section of the results landing page…………………………………………..33

Figure 15. CSS styling example……………………………………………………………...33

Figure 16. Bottom section of the results landing page………………………………………34

Figure 17. Result page………………………………………………………………………34

Figure 18. Result page URL. ……………………………………………………………….35

Figure 19. Flask import. ……………………………………………………………………35

Figure 20. route decorator in Flask…………………………………………………………36

Figure 21. route for results…………………………………………………………………36

Figure 22. TFIDF Vectorization and Cosine similarity……………………………………..38

Figure 23. Using Count Vectorizer…………………………………………………………39

5

Figure 24. To Return Paper Abstract……………………………………………………….39

Figure 25. Recommendation function………………………………………………………40

Figure 26. Count Vectorizer Example 1……………………………………………………..41

Figure 27. TFIDF Vectorizer Example 1……………………………………………………42

Figure 28. Count Vectorizer Example 2…………………………………………………….42

Figure 29. TFIDF Vectorizer Example 2……………………………………………………43

Figure 30. TFIDF Vectorizer Example 3……………………………………………………43

Figure 31. Count Vectorizer Example 3……………………………………………….……44

Figure 32. Count Vectorizer Example 4……………………………………………….……44

Figure 33. Tfidf Vectorizer Example 4…………………………………………………...…45

Figure 34. Home page responsiveness on mobile browsers………………………………....47

Figure 35. Results page responsiveness on mobile browsers……………………………...…47

6

Abstract

Whilst there are ample of studies being conducted to end this global pandemic; this project offers

an opportunity to help Covid-19 researchers for their extremely helpful contributions towards

making things “normal”. Covid-Aware, the paper recommendation tool is developed to help the

researchers in finding the research papers most relevant to their paper of interest. This does not

use user’s evaluation and the recommendations are calculated using the information within the

dataset of the chosen paper. The recommender is developed using principles of content-based

filtering, one of the most common approaches to recommender systems. To achieve this, I have

used Cosine similarity function from Scikit-learn machine learning libraries in Python, Flask as

backend and a simple HTML frontend to display the results. The dataset being used is a cleaned

version of the CORD-19 Open Research Dataset provided by Semantic Scholar for use by global

researchers. This dataset contains Abstract IDs and Paper Abstracts for the research papers. The

recommendation tool takes an Abstract ID as input to compare the respective Paper Abstract with

the rest of the dataset to find the Top 10 most relevant documents.

7

1. Introduction

As technology has been advancing at a rapid pace, we see a massive increase in information. To

handle such huge data, we automate the analytical model building using machine learning. There

has been good growth in the recommender systems area over the last decade and is continually

improving. The interest remains high as with the rise in digital services, personalized

recommendations have been very useful for users to come across suitable content.

Recommendation systems are very popular on the internet on various e-commerce sites, on video-

on-demand services, etc. Lately, we have seen advertisements being personalised too. Although

there have been major improvements in the recommendation systems, there is good scope for

further improvements in them (Adomavicius, Tuzhilin, 2005). It is not easy for the content

providers to be distinct. Hence, recommender systems are developed as a solution. The purpose

of a Recommendation System is to unite the information and the users: this helps both the parties

by providing useful information for the users and by increasing the popularity of the recommender

providers (Ma. K., 2016).

As it has been mentioned in the paragraph above, hundreds of thousands of studies, similar but

not the same in details and progress, now populate the internet, making it hard for people to

research according to one’s preferences. The aim of the study is to build a tool to research studies

and papers on the topic of the virus of Covid-19 using a recommendation system, in order for the

research to be personalised and suitable.

1.1. Rationale of the study-

The pandemic of Covid-19 has affected every area of our lives, included technology. Together

with this event, the explosion and expansion of the world wide web have caused an out spacing of

the extraction of useful information during studies and research (Agarwal et al., 2005). According

to a study carried out by Paul Resnick on Recommender Systems (Resnick, 1997), there has been

8

a sudden increase in the number of research papers, also due to the incredible progress of

digitalisation in the last years.

In order to find the papers suitable to our research, a recommendation system has to go through

thousands and thousands of options, so many of these have ways to personalise the search

(Agarwal et al., 2005), recommending users with similar research carried out by others with related

interests: this is called Content-Based recommendation system or Content-based filtering. A

second approach is called Collaborative filtering. This latter one analyses information collected

from users’ habits, recommending potential interesting items (Agarwal et al., 2005). The

differences between these systems will also be explained in its entirety in the section dedicated.

The choice to develop an application based on recommendation systems has been driven by mainly

two thoughts. Firstly, how helpful it would be to many students, doctors and the people in the

first line fighting during these difficult times; secondly, because recommendation systems are

almost everywhere, on every website of streaming or e-commerce, whereas not many have been

used for research.

1.2. Scope and limitation of the dissertation-

This paper mainly focuses on the explanation and description of the development of my Research

Recommendation system. As the topic is prevalently mathematics and of coding, no limitations

were found in the progress of this research. However, there are limitations in the application of

this service: as it has been developed, this tool can only be used as a standalone service which

would not be very efficient. Nevertheless, when integrated with a full-fledged application /

website, it would provide as an added functionality and deliver a higher level of efficiency.

1.3. Structure of the dissertation-

This dissertation will be divided into chapters and sub-chapters. There are 13 chapters in total.

Chapter 5 will provide a background of recommendation systems, indispensable for the

9

understanding of the approach and the implementation of the tool. The last 5 chapters will be

focussed on personal reflections, future work and evaluation. Finally, there will be a section

dedicated to the references to everything that has helped me writing this dissertation.

10

2. Aim and Objectives

The aim of the project is to research on Recommender Systems and find an appropriate way to

create an application which helps Covid-19 researchers to find Research papers. The returned

query should also provide top 10 similar research papers from the dataset so that the Researchers

are made aware about similar papers without having to change their search query. The returned

results for relevant papers should optionally have corresponding relevancy scores to have an idea

how similar the papers are. There are a lot of recommendation systems approaches but not all of

them are appropriate in our case.

Hence, to achieve this objective, we need to –

• Research for a dataset with Abstracts and use it as the data source for our software.

• Research on how recommendation systems work and the best approach to design one for

recommending Research papers.

• Choose suitable programming language with appropriate libraries to efficiently process the

dataset and return Abstracts relevant to the entered Research Paper ID.

• Design a basic Frontend for the user to input an abstract ID and see the expected results with

the similarity score.

• Choose a suitable Web Framework for our backend.

11

3. Problem Statement

To find research papers on a digital library or a website is not an easy task. Researchers spend

hours finding the right and relevant research papers as the search queries usually only return the

most relevant research paper based on their search query. It is one of the main problems faced by

researchers. The user needs to find research papers of their interest. As a solution to this, a

recommendation system can help the users by recommending them appropriate research papers.

The problem faced here is to create an application or a piece of software that instantly looks

through the entire library / dataset and returns the most relevant research papers to the user.

A number of questions would arise when we build this recommender from scratch, especially when

there is no user information as most of the recommender systems work based on user’s history

like browsing, purchases, wish lists, etc. Therefore, to solve this problem, we will break it into

multiple problem statements which will help us set the expectations clearer.

- How to recommend relevant research papers based solely on one input?

- What are the best frontends, backends and programming languages appropriate to process

this data?

- How to calculate the similarity between multiple research papers?

Going through a lot of research papers in this area, it can be derived that recommendation systems

are mostly common in movie recommendation systems and ecommerce websites as they have a

very high number of visitors. There have been relatively less studies based on research paper

recommender systems, but it has been well discussed. The top points that can be noted by

reviewing these research papers are –

1. We have a lot of techniques to use when it comes to recommender systems like Content-

based filtering, collaborative filtering, Hybrid Filtering, etc.

12

2. A lot of articles have approved of Content-based Filtering to be the best approach for

recommendation systems for Research papers.

13

4. Training –

I am very new to Machine Learning or programming in general. Consequently, starting up with an

NLP based project with such high time constraints was a very difficult task. Apart from

understanding theoretical concepts like Cosine similarity, I had to first understand the concepts of

Flask, NLP and Machine Learning using relevant Youtube tutorials, official documentations and

other public articles. Putting it all together was a big challenge as well. I had some basic

understanding of numpy and pandas studied during first semester of this degree, which helped me

pick up the pace in my training and create a whole usable application. To be able to version-control

my code, I also had to understand the concept of versioning and to learn using Github in an

effective way.

14

5. Background

5.1. Famous Recommender Systems:

5.1.1. Video on Demand services:

A movie recommender is a very important system on Video on Demand services or more

specifically OTT (Over the top) media services like Netflix or Amazon Primevideo. The reason

being that considers the users’ watching history and suggests them TV shows/movies based on

what they have watched and liked. It is vital, as it is quite tricky, to find something of their likings

amongst the vast numbers of available videos (Miller et al., 2003). An example of Netflix’s

recommender system is shown in Figure 1 below where the user has watched a TV show and the

recommender system has suggested other TV shows related to that series. This could be based on

multiple factors like genre, plot, cast, etc. As we can see, this recommendation system considers

what you have watched previously and tells you why they have recommended these titles.

Figure 1. Netflix movie recommender - personalised list.

5.1.2. E-commerce Websites:

As Video on Demand services mostly use a ‘personalised’ recommendation list, there is another

critical factor which is relevant. The relevancy factor matters equally in E-commerce websites (Ma.

K., 2016). Using eBay as an example, if the user tries to search for a PC game then the user would

15

be recommended gaming categories with the type of games related to what the user had searched

for and viewed as shown in the Figure 2 below. This is an example of personalised list.

Figure 2. Personalised list of eBay.

Figure 3. Relevant recommendation list of Amazon.

As you can see in Figure 3, this list is relevant to what the users have previously purchased and is

recommended for the user.

After comparing and observing, I personally believe that the recommendation lists of Amazon

consist of personalisation and relevancy, but eBay mostly focuses on personalisation, making

Amazon much more convenient for the shoppers as they recommend items based on what you

are currently viewing, what you have purchased in the past and items usually bought together.

16

5.1.3. Research paper websites –

As I have already mentioned, there are much lesser websites which contain recommendation

systems in research paper platforms, but some websites do have the implementation to suggest

relevant papers.

Figure 4. Recommender system in Research papers sites (semanticscholar)

In Figure 4 above it can be noticed that some research paper websites have a recommendation

paper system implemented. This snapshot has been taken from semanticscholar. It is a fairly less

emphasized section on the page as it focuses more on the abstract, topics, etc as shown in Figure

5. However, it is one of the most famous applications in terms of research paper recommender

tools.

Figure 5. Semanticscholar Paper Recommendation.

17

5.2. Survey of Recommendation Classes

There has been a lot of research in the recommender systems area using a range of approaches.

Most of them can be categorised as Stereotyping, content-based filtering, collaborative filtering,

Co-occurrence, Graph-based, Global relevance and Hybrid (Beel, Breitinger et Langer, 2015).

However, the most common approaches for building a recommendation system are –

1. Collaborative Filtering.

2. Content-based Filtering.

3. Hybrid Filtering.

Since hybrid filtering is not relevant to our context, I will focus more on Collaborative and content-

based filtering.

5.2.1. Collaborative based Filtering

The theory of collaborative filtering marks back to 1994 which was explained by Resnick et al. The

theory was explained as - “the users will like what like-minded users will like”. So, this theory is based on

a concept that when two different users rate the same item in the same way, they are considered

as like-minded and might also like another item based on what else the other user has liked (Resnick

et al., 1994). For example, if user A has rated 4 stars for item K and user B has also rated 4 stars

for item K, then user B is likely to rate item L as (say) 5 stars if user A has already rated it 5 stars.

So, the user B will be recommended similar items if they match tastes with user A based on how

alike their ratings are.

This type of filtering is the most famous amongst recommender systems as it based on user’s

choices according to the history of their actions. User-based collaborative filtering was the first

introduced type of collaborative filtering and then Amazon came up with item-based collaborative

filtering in 2000 (Ma. K., 2016).

18

Let us briefly discuss both the ways.

5.2.1.1. User-based Collaborative Filtering –

This type of filtering is based on users. It is assumed that when a user likes items which are liked

by another user, they will have similar preferences. Hence, the first thing to do would be to find

other people with similar preferences, for which we will have to figure out which users have liked

similar items. (Ma. K., 2016); (Singh et al., 2020)

To make this easier, let us consider two users a and b, and N(a) and N(b) are items set which are

liked by the respective users. Here the similarity is given by –

௔௕݉�ݏ = |�ሺܽሻ ת �ሺܾሻ||�ሺܽሻ ׫ �ሺܾሻ|
The likeability of User a for item x can be given by –

௔௫݌ = ∑ ሺ௫ሻ�ת௩௫௕∈ௌሺ௔,�ሻ݌௔௕݉�ݏ

 Item A Item B Item C Item D

User 1 Likes - Likes Likes

User 2 - Likes Likes -

User 3 Likes - Recommended Likes

User 4 Likes - Likes Recommended

Table – User-based Collaborative Filtering.

The Table above explains how User-based Collaborative Filtering works. User 3 and User 4 have

2 common likes with User 1. Hence, both the users are recommended a third item based on what

User 1 likes.

19

5.2.1.2. Item-based Collaborative Filtering -

Item-based Collaborative Filtering is somewhat similar, but the difference is that instead of looking

for similar users, we are looking for similar items. Hence, in item-based Collaborative Filtering, it

is considered that people will like items which are similar to the ones they have liked in the past.

So here we find the items similar to what the user has already liked.

Let us consider x and y are items and N(x) and N(y) are the user sets who like the items respectively.

Similarity is then given by –

௫௬݉�ݏ = |�ሺݔሻ ת �ሺݕሻ||�ሺݔሻ ׫ �ሺݕሻ|
The likeability of User u for item x can be given by –

௨௫݌ = ∑ ܵ௫௬݌௨௬௬∈ௌሺ௫,�ሻת�ሺ௨ሻ

 Item A Item B Item C

User 1 Likes - Likes

User 2 - Likes -

User 3 Likes - Recommended

User 4 Likes - Likes

Table – Item-based Collaborative Filtering.

The table above shows how if item A is liked by a group of users, then item C is also liked by

them. According to this assumption, Item C is recommended to User 3 in the table above.

20

This is how Collaborative filtering works, but when compared to Content-based Filtering,

Content-based method does not consider user ratings or preferences.

5.2.2. Content-based Filtering.

One of the most commonly used recommendation system methods is the Content-based filtering

system. One key element of CBF is the user modelling process, wherein the interests of users are

deduced from the items that users viewed or liked. (Beel, Breitinger et Langer, 2015).

In recommendation systems, the content-based filter is a vital approach. The main concept here

is to recommend results most similar to what the user has looked for before (Ma. K., 2016).

Content-based filtering holds a high advantage in front of some other approaches. Mainly,

Content-based filtering permits the recommendation system to have a user-based personalization

which helps the recommender to figure out the best recommendations for every user particularly,

instead of being limited (Singh et al., 2020).

To prototype this methodology, the Vector Space Model (VSM) method is used. It draws the

similarity of an item using the information in the document and utilizes the concept of TF-IDF

(Term Frequency-Inverse Document Frequency). TF-IDF was the foremost well-known

weighting plot (70%) among those approaches for which the plot was stipulated (Singh et al.,

2020).

A major factor of CBF is user modelling process: here the users’ interests are inferred from their

history of their previous interactions. This information is usually textual. The user's history of

interactions can be related to their searches, purchases or similar actions depending on the

application. This specific history of items is represented using its features. They could be n-grams,

words or phrases. In general, only the most descriptive characteristics are used for this modelling.

After these characteristics are identified, they are contained as a vector which stores these

21

characteristics and the weights assigned to the item. In the recommendation process, these vectors

are compared with the user model (Beel, Breitinger et Langer, 2015).

As previously mentioned, TF-IDF is one of the best information retrieval methods. TF-IDF is

given as follows –

Let us assume that N is the total number of documents, �௫ is the total number of words in

document, ݀௫. �௬,௫ are the number of times the word y appeared in document ݀௫. The ܶ�௬,௫ is

defined as (Adomavicius, Tuzhilin, 2005) (Philip et al., 2014).

ܶ�௬,௫ =
�೤,ೣ�ೣ (1)

But the words that are repeated in most of the documents are not particularly helpful in finding

out the relevant ones. This is where IDF comes into picture, we utilise the Inverse Document

Frequency in along with TF which is given by – (Adomavicius, Tuzhilin, 2005) (Philip et al.,

2014).

= �ܦ� log ��೤ (2)

Where, ݊௬ = number of documents containing term ݐ௬.

From (1) and (2), we get the TF-IDF by,

௬,௫ݓ = ܶ�௬,௫ × (3) �ܦ�

But for the weights to be in [0,1] interval and for documents to be signified by vectors of equal

length, the weights in (3) are normalised by cosine normalisation as (De Gemmis, Lops, Semeraro,

2011)-

௬,௫ݓ = ்�−��(௧೤,�ೣ)√∑ ்�−��ሺ௧�,�ೣሻమ|�|�=భ (3)

22

Finally, the content can be given by –

ሻݔሺ݀ݐ݊݁ݐ݊݋ܥ = ሺݓଵ௫, ,ଶ௫ݓ … . , ௫ሻ (4)�ݓ

(Adomavicius, Tuzhilin, 2005); (Ma. K., 2016).

The vectors of these weights for each word can be used to be projected in the multidimensional

space to find the similarities between them. This measure of similarity is calculated using Cosine

Similarity.

Count Vectorizer -

Apart from TF-IDF, there is another vectorizer used in a lot of recommendation systems, which

is Count Vectorizer in Sklearn.

Count Vectorization is one of the most basic ways to represent the textual data numerically

(Heidenreich H., 2018). It returns an encoded vector with a length of the whole vocabulary and

integer count for the number of instances every word showed in the document. The

CountVectorizer from scikit-learn can also be used in a way similar to TFIDF to achieve the

vectorization. The difference in between these two can be explained by the following example.

I performed a comparative analysis of both the Vectorizers to see how they vectorize the textual

data. The Vectorizers token counts responding to an abstract can be seen in the Figures 6 and 7.

Text input – “Middle East respiratory syndrome coronavirus (MERS-CoV) was first identified in

a human with severe pneumonia in 2012.”

Figure 6. TFIDF tokens.

23

Figure 7. CountVectorizer tokens.

In the final line of both the images it can be seen that Count Vectorizers assign a value of 1 to

each word and does not segregate between words, assigning equal weight to all the words.

TFIDF has a different tokenization mechanism which assigns lower weight to the repeated words

compared to the unrepeated ones.

5.2.2.1. Cosine Similarity-

Cosine similarity is basically the measure of cosine angle between two vectors. In our case, it

compares two documents on a normalized level. This is done by finding the dot product between

two vectors. Let us consider a 2D plane to explain a dot product of two vectors a and b. “The dot

product between two vectors corresponds to the projection of one of the vectors on the other.” (Grimaldi, E., 2018).

Hence, the dot product between two similar vectors is equal to their product, which is 1 or less

than 1. But they are completely different if they are perpendicular and their dot product is zero

(as cos 90 = 0). (Philip et al., 2014); (Grimaldi, E., 2018); (Singh et al., 2020)

ܽ. ܾ = [ܽଵܽଶ … ܽ�]. [
 ܾଵܾଶ..ܾ�]

 = ܽଵܾଵ + ܽଶܾଶ + ⋯+ ܽ�ܾ� = ∑ ܽ�ܾ���=ଵ

24

Figure 8. Two vectors in a 2D plane – Cosine Similarity.

As we have illustrated this example in a vector plane in Figure 8, the angle between a and b is �.

The similarity is measured based on this angle, lesser the angle, more the similarity. Hence, if this

angle � between the vectors is 0, they are identical. (Philip et al., 2014); (Grimaldi, E., 2018);

(Havan, E., 2019) ;(Singh et al., 2020)

Therefore, the similarity can be given by -

ݕݐ�ݎ݈ܽ�݉�ݏ = cosሺ�ሻ = ܽ. ܾ‖ܽ‖ × ‖ܾ‖ = ∑ ܽ�ܾ���=ଵ√∑ ܽ�ଶ��=ଵ √∑ ܾ�ଶ��=ଵ

According to the definition, if the vectors are identical the similarity will be equal to 1, if they are

perpendicular, it will be 0. Hence, the value will always be between 0 and 1 which will tell us how

similar the vectors are. In our case, it will tell us how similar the two research papers are.

25

5.3. Flask

Flask is one of the most popular Python web application frameworks. It is a light weight WSGI

(Web Server Gateway Interface) web application framework. It is designed in a way that getting

started is fast and simple, while being able to scale up complex apps (Flask, 2020). A quick start

template is available on their official website which creates a minimal “Hello World” application

to get the application running and then build on top of that.

It has two components based on Pocoo Projects which are Werkzeug and Jinja.

1. Werkzeug

Werkzeug (Greek for tool or work-stuff) is a WSGI web application library. Flask wraps Werkzeug

for handling details of WSGI. Werkzeug comes with many useful features like an interactive

debugger, a full-featured request object, a response object, http utilities to handle http data and

requests, a routing system to match URLs to endpoints, a threaded WSGI server, a test client for

HTTP request simulation (Werkzeug, 2020).

2. Jinja (2.0)

Python uses a full-featured template engine which is Jinja2. It has an optional integrated sandboxed

execution environment and a full unicode support (Jinja, 2020).

Jinja2 is a powerful template engine for Python, with a range of features, some of which are –

• Sandboxed execution mode. Every facet of this template execution is observed and

whitelisted or blacklisted, according to the preference (Jinja, 2020).

• Powerful automatic HTML escaping system. This is to prevent cross-site scripting (Jinja,

2020).

• Template inheritance makes it viable to utilize the same layout for all templates (Jinja,

2020).

26

• High performance due to real-time compilation. Jinja2 will translate the template sources

on initial load into Python p-code for best runtime performance (Jinja, 2020).

• Ahead-of-time compilation (optional) (Jinja, 2020).

• Simple to troubleshoot through a debug system (Jinja, 2020).

• Configurable syntax. Jinja2 can be reconfigured to well suit output formats like LaTeX and

JavaScript (Jinja, 2020).

Flask offers suggestions but it is the developer’s wish to decide the tools and libraries wanted

by them. Many extensions have been provided by the community which makes it easier to

have new functionalities. (Jinja, 2020).

27

6. Data Sources

I have used an open-source dataset available online for public use. Since the recommender system

being created is specifically for COVID-19 based research papers, the dataset used is the ‘Cord-

19: Covid-19 Open Research Dataset’ (Wang et al., 2020). This dataset is regularly updated, and a

fresh copy is available regularly on their website. The dataset when downloaded comes with a

cluster of files which can be used as per the user’s choice and application. It contains files which

contains some information like Paper ID, Paper title, Paper Abstract, date of publishing, etc. This

raw data is in JSON format.

The dataset which I will be using is one of the downloaded versions of these regular datasets and

it has been pre-cleaned by my dissertation supervisor and have dropped all the columns apart from

Paper ID and Paper Abstract. The rows with Null values have also been cleaned so we have a

dataset with just 2 columns and almost 60,000 rows all related to COVID-19 research papers.

28

7. Approach

To meet certain expectations and have this application functioning properly, we need to make sure

that a number of criteria are set out to be implemented. These criteria need to be predefined to be

well executed. They can be divided into Functional and Non-Functional Requirements as below.

Functional Requirements:

The application must have a capability to take an Abstract ID as an input from the user. This

Abstract ID should be used to Vectorize and calculate the similarity with other Abstracts in the

dataset.

1. The application should be able to use the provided dataset in .tsv format.

2. The application should be able to process the whole dataset and vectorize it, using either

TF-IDF or Count Vectorizers.

3. The application should be able to provide the abstract for the ID provided.

4. The application should use the vectors to convert the data into cosine similarity matrices.

When the Web Framework initializes, it should be able to:

1. Load the web templates successfully on the dedicated IP and port.

2. Collect the necessary parameters that are entered by the user and returned by the html

page.

3. Pass the values and necessary parameters to the respective functions to find the abstract

value and the recommendations list.

4. Return the outputs to the results page template.

Useful to have (optional) features –

• Be able to return a relevancy score along with the similar abstracts.

• An interactive responsive web-design to make the application look nice.

29

• A SQL database to store the data and allow the user to query.

Non-functional requirements –

1. Usability – A GUI (Graphical user interface) should be implemented for a user to easily

use the application.

2. Performance – The application should collect the data, pre-process and process it fast and

efficiently using minimal time and resources.

My approach –

Figure 9. Basic Application architecture.

To meet the specified requirements, the application will be developed using Flask Web Framework

and Python Recommendation Engine. To understand this workflow, Figure 9 can be referred to.

The user will be allowed to enter a valid input using an HTML frontend. This HTML frontend

will interact with Flask framework to allow the input to be processed in the recommendation

engine which is Python. The recommendation engine will process this input and return a list of

the top 10 similar abstracts after comparing with the rest of the abstracts in the dataset. This

returned list will be published on another HTML template through Flask.

30

Figure 10. Application Workflow

Figure 10 represents the application workflow of how the whole application works and how it

interacts with data. The abstract ID will be passed from the user to the application. This data will

be compared and filtered while accessing the data source. The items which are found similar will

be returned to the user.

31

8. Implementation

This prototype application has been implemented using HTML, Flask and Python technologies.

For the ease of understanding, the explanation is divided into Frontend and Backend categories.

- Frontend – All the HTML web pages which are mainly responsible for the graphical user

interface for data collection and for representing the values returned after processing of

the data.

- Backend – This consists of Flask and Python, which are responsible for processing the

collected data, access the data source, process for similar items and return the

recommendations to the Frontend.

Frontend –

The Frontend is responsible for making an environment available to the user to be able to view

the interface and input their Abstract IDs. It is also responsible to display the paper abstract and

their relevant paper abstracts to the user after they search for one. To achieve this, the Frontend

uses two different templates.

Data collection template –

A separate home.html file is used to create a basic user interface in order to allow the user to enter

the specific Abstract ID to search for.

Figure 11. home.HTML file for data collection.

32

In Figure 11, the h1 tag represents the heading we can see on our page. Then, I have created a

form for accepting user input which uses a post method to send the data to Flask. The ‘action’

parameter in the form tag instructs the next action to be done which in this case is to send the data

to a result page in Flask. Figure 12 shows in short how it is defined in Flask. This result page allows

POST method as it can be seen. However, the Flask side of things will be discussed in detail in the

next section.

Figure 12. Flask code reference for ‘result’ page.

The result of this basic HTML template which is the home page of the application can be seen in

Figure 13.

Figure 13. Home page of Covid Aware

Result display template –

This template has the primary function to display the results returned by Flask which would be in

the form of variables.

33

Figure 14. Top section of the results landing page.

Figure 14 above represents the top section of the results page. This is the page returned by the

‘result’ action mentioned above. The head section in this code shows us the title of the html web

page. In line 6, we are linking a CSS stylesheet which allows us to separately configure some styling

to our HTML pages. Lines apart from line 14 represent some static data which will not change

based on the input. However, in line 14, 2 curly braces can be noticed. These brackets are used to

fetch input passed by Flask. The {{absid}} parameter here is a variable from Flask which contains

the returned Paper Abstract for the Abstract ID entered by the user. An ‘id’ parameter to a few

tags can be noticed in the following lines in the body section. These parameters are used to

reference customisation in the CSS stylesheets. An example of this is shown in Figure 15.

Figure 15. CSS styling example.

34

Figure 16. Bottom section of the results landing page.

Figure 16 above represents how the relevant paper abstracts are displayed on the results web page.

A table has been created with headings ‘Most similar paper abstracts’ and ‘Relevancy Scores’ which

will have the similar abstracts and score in their respective columns. To add the data to these

columns which is received in a single variable in the form of an array, a ‘for’ loop has been

implemented to fetch a single tuple from the array and populate the table one by one. An example

of the output (input abstract ID 5b889b5e979a0b32228441c2fb350b5357134712) for the results

page can be seen in Figure 17.

Figure 17. Result page

35

Figure 18. Result page URL.

From figure 18 above, it can be noticed that the returned URL contains ‘/result’ appended to the

URL. It denotes that this is the result page of the application. The page is divided into 2 sections

which display the abstract and a table for relevant abstracts and the relevancy score.

Backend –

The Backend side of the code contains the Flask Web Framework and the NLP (Natural Language

Processing) based Recommendation Engine written in Python.

Flask –

Flask is our web framework used to develop this application. To start with, Flask provides a

minimal application template which starts up as a basic Hello World program.

For my implementation, I have started with the minimal code and developed on it. As it can be

seen in Figure 19 below, in line 1, Flask class has been imported which allows us to create an

instance of it. This instance becomes our Web Server Gateway Interface (WSGI) application.

Figure 19. Flask import.

Apart from importing Flask, I have also imported render_template and request. Render_template

is used to render a defined web page in response to a triggered URL. The ‘request’ subclass allows

Flask to collect the user input from the rendered HTML template.

36

In line 9, I have created an instance of the Flask class which is our application. The name of the

application here is ‘__name__’. This is always the application name if the application uses a single

module. This name is used to find resources on the filesystem (Flask, 2020). The flask object acts

as a central registry for URL rules, template configuration, view functions, etc.

Then we have defined an app.route for the home page. Two values have been passed to the

app.route here because it indicates if either of the default route (‘/’) or home is requested, the same

function will be triggered. We can see in the Figure 20 below, that whether either of these are

resolved, the function home() will be triggered, and it will render a html page which is ‘home.html’.

Therefore, when referred back to the html home page, it will be resolved when this function is

triggered.

Figure 20. route decorator in Flask.

Figure 21. route for results.

Referring to the Figure 21, the app.route here resolves the URL ‘/result’ and triggers a function

called result(). This function is an important aspect of our application.

37

In line 102 - the value which was collected by the user’s input was stored under the name ‘absid’,

This value is being fetched using a request method which allows us to retrieve the form data as the

form in our home page had delivered these values to the result route. The values returned by the

NLP code have been assigned to variables, where the required values parameters are passed to the

function in line 106. Then these 2 variables are joined together to be sent to the results page in

one array.

Another variable (papername) is declared to store the paper abstract for the returned Abstract ID.

Required parameters are passed. In line 115, the html page named ‘returned_papers.html’ is

rendered with the ‘joint’ and ‘papername’ variables passed as ‘ab’ and ‘absid’.

This covers the Flask and the webpage side of events. But the NLP section is the heart of the

recommender system as it calculates the similarities and relevancy. The NLP section contains the

logic to find the cosine similarity using either Tfidf Vectorizer or Count Vectorizer.

To find the cosine similarity –

Primarily, the column width has been changed to none so that the whole abstract in the column

can be viewed without being limited to a predefined number of characters. Pandas has been

imported as ‘pd’. Hence, it can be seen that set_option is a pandas function.

In line 13 (refer Figure 22), the dataset in tsv format is assigned to the dataframe df and names

have been assigned to the respective columns. In this example, I am only reading top 10000 rows

for development purposes as it is faster to process lesser rows, making less matrices.

The next step is to use the Vectorizer. Since many articles have used CountVectorizers for

recommendation systems, for testing purposes I have implemented this using both Tfidf

Vectorizer and Count Vectorizer to see which one was giving better results.

38

Figure 22. TFIDF Vectorization and Cosine similarity.

After Vectorizing, fit transform function is used. This function basically implies fit first then

transform function but done more efficiently when passed together as fit_transform. The fit

function learns the vocabulary and IDF from the dataset and the transform function transforms

the documents to document-term matrix. It uses the document frequencies learned by fit. I have

passed just the paper_abstract column of the df, hence it only fits and transforms this column.

The Tfidf_matrix is then used to create a cosine similarity matrix by using the cosine_similarity

function by sklearn. Cosine similarity is the metric we are using to see how similar two abstracts

are. The cosine_sim is a numpy array containing computed cosine similarity between all abstracts.

Since they are all similar to themselves, we expect a diagonal full of 1s.

The cosine similarity is found by the equation as discussed earlier.

ݕݐ�ݎ݈ܽ�݉�ݏ = cosሺ�ሻ = ܽ. ܾ‖ܽ‖ × ‖ܾ‖ = ∑ ܽ�ܾ���=ଵ√∑ ܽ�ଶ��=ଵ √∑ ܾ�ଶ��=ଵ

The similarity matrix when calculated returns a score matrix, but since the vectors (in our case

Tfidf_matrix) passed as input are both the same, the matrix will have a diagonal of ones. For

example - The cosine similarity matrix for 4 rows would look as something like this –

[ͳ Ͳ.ͳ͵9 Ͳ.͵Ͳʹ Ͳ.ʹͶ͸Ͳ.ͳ͵9 ͳ Ͳ.Ͷ͵ͳ Ͳ.ͶͷͷͲ.͵Ͳʹ Ͳ.Ͷ͵ͳ ͳ Ͳ.ͲͶ͸Ͳ.ʹͶ͸ Ͳ.Ͷͷͷ Ͳ.ͲͶ͸ ͳ]

39

This is because we are passing only one column from df to calculate the similarity and they are

100% similar to themselves. It can also be observed that Row 1 of Column 0, and Column 1 of

Row 0 also have the same results.

Similar results can be achieved using Count Vectorizer. The only difference in the implementation

would be to use Count Vectorizer instead of Tfidf Vectorizer as shown in Figure 23 below. The

difference between both approaches is minimal as already explained. However, as Tfidf Vectorizer

gives more importance to less repetitive words, the results seen are much more accurate than

Count Vectorizer. Therefore, I have decided to implement Tfidf Vectorizer. A comparison

between the two has been shown in the Analysis section.

Figure 23. Using Count Vectorizer.

Function to return the Abstract –

In order to return the Abstract corresponding to the input Abstract IDs, the application uses a

function called returned_abstract which can be seen in Figure 24 below. The absid_returned

numpy array has been defined to select only the row which matches the abstract ID and then the

column with abstract ID is dropped. This leaves us with the expected paper abstract. This array is

returned to Flask to display on the html page as already discussed.

Figure 24. To Return Paper Abstract.

40

Function to recommend papers and relevancy scores –

This is the core function of our recommendation system which, when called with input parameters,

will return a list of recommendations and relevancy scores.

Here idx contains the index / position of the input Abstract ID. Then, in line 42 of Figure 25

below, a series of scores is created to store the scores obtained by the cosine similarity for the

index value of the input Abstract ID. These are sorted in descending order (highest value first).

The list of similarity scores is ready, so all that is required now is to list the corresponding abstracts.

To achieve this, I have 2 lists at line 45 and 47, which create a list of positions of score_series (or

the papers with the highest similarity). Line 47 creates a similar list but with similarity scores instead

of their positions. Both these variables contain only the top 10 values as we will be displaying only

the top relevant papers on our Application.

Finally, a for loop is used to populate the list by actual Abstracts corresponding to the positions in

‘top10_sim’ list.

Figure 25. Recommendation function.

41

9. Analysis

To compare the output of the application with both Count and TFIDF Vectorizers, I attempted

to manually observe which of these methods return the most relevant abstracts as there is no

definite way to compare the outputs. Hence, in my first example, as it can be seen in the Figure 26

below, that Count Vectorizer method has returned a few similar abstracts, but they are irrelevant

to the input abstract. The input abstract has keywords like “microorganisms”, “livestock”, etc. But

the most relevant paper talks about something completely irrelevant. Whereas in the TFIDF

Vectorizer, as it can be seen in the Figure 27, has returned a document with 2 matching keywords

which are “livestock” and “animal”. This makes it comparatively more relevant to what Count

Vectorizer had returned. The snapshots have been cropped to show only the first 4 results on each

page as they are sufficient for a comparison.

Figure 26. Count Vectorizer Example 1.

42

Figure 27. TFIDF Vectorizer Example 1.

To confirm this observation, I tried passing another abstract ID in example 2 (refer Figures 28

and 29).

Count Vectorizer – Does not seem to have any important repetitive words. The results are based

rather on the comparison of words like ‘was’ and ‘to’.

TFIDF Vectorizer – The first relevant abstract itself returns the core words of the abstract which

are “Ethnopharmacological relevance”, making it a much more relevant and effective system in

our case.

Figure 28. Count Vectorizer Example 2.

43

Figure 29. TFIDF Vectorizer Example 2.

However, there have been examples where both the methods have seemed to perform well.

Referring to Figure 30, an Abstract ID was entered for the third test where TFIDF has found

similar abstracts related to keywords like “SARS” and nucleoside analogues. Whereas, in reference

to Figure 31, CountVectorizer has also returned few results related to “SARS”. Hence, it can be

seen that CountVectorizer provides better results when a large text input has been passed.

Figure 30. TFIDF Vectorizer Example 3.

44

Figure 31. Count Vectorizer Example 3.

Finally, in rare cases like example 4 (Figure 32 and 33), it can be observed that the abstract talks

about something different but neither of the Vectorizers have been able to find a relevant research

paper. This could either be because of lack of similar research papers in the dataset or due to

prospect for improvement in the methods.

Figure 32. Count Vectorizer Example 4.

45

Figure 33. Tfidf Vectorizer Example 4.

The basic comparative analysis check to compare the relevancy for both methods can be

summarised as -

 Example 1 Example 2 Example 3 Example 4

TFIDF Vectorizer Relevant Relevant Relevant Irrelevant

Count Vectorizer Irrelevant Irrelevant Relevant Irrelevant

Table - Test analysis for both Vectorizers.

Recommender tool performance

The tool’s performance is obviously a factor of major concern. It has also been observed that the

tool’s performance has differed according to the conditions and dataset.

To test the tool’s performance, the dataset was limited to different number of rows throughout

the testing. The results of which can be seen in Table 2.

This analysis is based on a computer with following hardware –

Processor - i7-9750H 2.6Hz – 4.5Ghz, 6 cores, 12 LP.

RAM – 16GB DDR4 1330MHz

46

Number of rows

loaded

Time Required to initialise the

app

Response time to recommend

papers after initialisation

1000 rows 3 seconds <1 second

10000 rows 6 Seconds <1 second

30000 rows 136 seconds <1 second

45000 rows ~160 seconds (Failed sometimes) <1 second

60000 rows Failed. (requires higher RAM) Not Tested

Table 2. App Performance tests.

The tool fails to load more than 45,000 rows in the dataset as it requires 25GB RAM allocation

for 60,000 rows. The app does not require much time to load with less rows. Only the initial steps

seem to be having an impact as the Vectorizer learns the vocabulary, then creates the count matrix

and then finally the cosine matrix. Creating a huge cosine matrix requires high amount of memory,

hence these challenges were encountered.

It can, however, be seen that after the cosine similarity matrices are generated, the whole

application runs swiftly and requires no time to resolve the abstract, recommendations and the

relevancy scores.

Website responsiveness

To check if the website is responsive and also works on different display resolutions, it was tested

normally first on a computer browser (Google Chrome) and in responsive mode under developer

tools to check if it would work on a mobile phone. As it can be noticed in figures 34 and 35, both

the pages seem to be responsive and well-functioning. (Note: Figure 34 has been cropped to show

only the important part and does not actually show the data collection form at the bottom left of

the screen.)

47

Figure 34. Home page responsiveness on mobile browsers.

Figure 35. Results page responsiveness on mobile browsers.

48

10. Conclusion and Critical Evaluation

The implementation of the application has been successful, and the results have met the

expectations to be qualified as a functional recommender system. A set of functional and non-

functional requirements were set in Chapter 7, which have mostly been able to achieve.

To summarise the achievements, it can be stated that the application is able to import the dataset

which is tsv format. The tool was able to process the whole dataset and vectorize it. The application

is also successfully able to create the cosine similarity matrices and return expected results.

However, as earlier noticed in the analysis section, the application fails to create the matrix when

we load more than 45000 rows as it is not able to compute the cosine matrix for such a huge value

on this computer due to limited resources. This can partially be considered as a limitation as it fails

due to inadequate resources and not due to capability. However, this could also be attempted to

eliminate using different methods or more research. The application also returned with the Paper

Abstract when the user entered the Abstract ID.

Flask has worked flawlessly. After building the code, Flask initialises up well and under 30 seconds

if the rows loaded in the dataframe are less than ~20000. The home page loads up instantly using

either http://127.0.0.1:5000/ or http://127.0.0.1:5000/home. It loads our basic html page for data

collection. The data (abstract ID) was successfully collected and passed to the function that returns

the abstract and the function that generates the recommendations list. Within a response time of

<1s, the output with the paper abstract and relevant documents with its relevancy scores was

resolved.

To provide an insight particularly on the website; the website serves the functionality. It is not

aesthetically very appealing neither very off-putting. The website is responsive and works well in

computer browsers as well as mobiles and tablets as shown in the Analysis section. A shortcut to

go back to the home page form the results page is also implemented which can be done by clicking

49

on the top asserting, “Welcome to Covid Aware”. What I personally feel is off-putting or could

be improved is a problem in the home page which I noticed very late and was not able to fix in a

short time frame. The background stays static when zoomed in and the text magnifies. If zoomed

at 300%+, the text pops out of the box and starts looking aesthetically off-putting, so it looks good

only at 80% till 125%. Being more creative, I could have also added some good logos, pictures and

better colours to make it look better.

To point the biggest flaw of this program which I initially did not focus on and realised while

testing is that the code does not have an ValueError exception. After mistakenly entering a

wrong value, an error was encountered which made me realise that the code does not have an

escape mechanism and would crash if a wrong input were provided. This is the main shortcoming

of this application.

Finally, converging on the main objective of the application, does it provide accurate

recommendations as expected? I believe the recommendation system serves it purpose and

recommends good abstracts when TFIDF Vectorizer is used for tokenising the vectors, whereas

Count Vectorizer has not shown results as good as TFIDF. There is always room for improvement

but the recommendations by using TFIDF Vectorizer can be deemed satisfactory.

Some functionalities were considered optional, like having a SQL database and displaying

relevancy scores on the results page. Unfortunately, SQL database was not implemented but that

could have been a major improvement and definitely have a big impact on the overall outlook of

the project.

50

11. Future Work

Future work would be to make this application more convenient and feature rich. There have been

some difficulties and time constraints due to which some of the feature implementation has been

left for future work. To focus on the future work, I first need to list out all the shortcomings of

this application.

The features which can be improved as future work are as listed below –

• To be able to process large amount of dataset at a faster speed. At this point the current

dataset used has 60000 rows, and when an attempt is made process more than 30000 rows,

there is a significant difference in the initial processing speed as it creates a huge cosine

matrix. This could be solved by better resources (higher CPU and RAM). Using a third-

party hosting resource, based on the current implementation, the app would require 32/64

Gigabytes of RAM. With incremental data, this could be a considerable issue. New research

papers would be added to the system on a regular basis and the application should be able

to process without any manual intervention.

• To use a SQL Database to store the user information and the data. This will help us reduce

the time spent on managing data and allow incremental data while also allowing the user

to query the data in a better way.

• To allow the user to use search terms instead of being limited to abstract IDs. There would

be a significant difference and would make the recommendation system useful even

without knowing the Abstract IDs and can be used as an independent search tool.

However, this is not a demerit as the purpose was to only design a recommender and not

a search tool.

• Aesthetics – The looks of this recommender tool can be the next area of improvement.

Although not essential, good aesthetics do attract more users and gradually helps gain trust.

51

• Make the recommender system as an internal service instead of an entire application or

website. This service at the moment is a standalone website but the recommender system

is better as a feature for a library system or research paper-based websites.

52

12. Reflection on Learning

As a learner and a beginner in the field of computing, I have learned and gained a tremendous

amount of knowledge in a small amount of time. I had always been interested more in the

hardware, environments and managerial side of IT and have worked in a similar role throughout

my placement year and part-time thereafter. Hence, I never had an opportunity to work on

something related to Data Science. My supervisor was very kind to let me work and guide me on

a ML related project. Being this my first attempt working in the field, I have learned a variety of

things. Since I had started from the fundamental level and my level of understand was very

minimal, the whole project felt overwhelming. Whilst working under very limited time constraints

for this project, I have also been working part-time for a company. This made it even more difficult

to achieve it within the specified timeframe. Hence, the insights I have gained are much higher

than my expectations. Coming from a different educational background, writing a dissertation has

also been my first experience.

When first discussed with the project supervisor, it was decided initially that a SQL database would

be used for storing the data but due to time constraints and having very limited knowledge, we

decided to focus first on the main functionalities and then improve slowly in the lesser essential

areas. I have also learnt to use version controlling better and efficiently, which will help me while

working full-time on my current job as an administrator. I have learned some theoretical concepts

in NLP like TFIDF Vectorizer, fit_transform, etc. But more importantly, I have learned how to

find a solution and how to go about finding an appropriate way to solve a problem. I have faced

huge amounts of problems and difficulties throughout this project but with the help from my

supervisor and the internet, it was all possible. Even though I have not applied much html and

CSS in this project as I was more focused on getting results and the app working, I am very happy

that I could use the learning outcomes from other areas in the same project. Flask was something

I had never heard about, so again this was my first experience working on a Web Framework.

53

Now, in addition to creating static pages for web development, I have also learned to work on the

backend which gives me a complete idea of creating and hosting an entire application. The biggest

challenge was to learn and handle all these different technologies, make sense of it, and put it all

together to develop a working application.

Apart from the technical part, I have also learned many useful skills about researching,

documenting and writing. Being an international student, I feel it is a very valuable skill as this is

my first experience of writing something research based. In the initial stages, I read plenty of

research papers and theoretical concepts. Soon I was lost as I could not connect the dots as all the

concepts were new for me. I somehow succeeded in implementing the whole idea at a basic-cum-

satisfactory level. After successful implementation, completing this write-up was the biggest

challenge, as I have written this dissertation towards the end of my deadline due to unforeseen

challenges during the biggest pandemic of the decade. In summary, I have developed a lot of

valuable technical, researching and problem-solving skills (and realisation of the need for

organisational skills) which will be advantageous for my future.

54

13. References

Agarwal, Nitin & Haque, Ehtesham & Liu, Huan & Parsons, Lance. (2005). Research Paper

Recommender Systems: A Subspace Clustering Approach. 475-491. 10.1007/11563952_42.

Beel, Joeran & Gipp, Bela & Langer, Stefan & Breitinger, Corinna. (2015). Research-paper

recommender systems: A literature survey. International Journal on Digital Libraries. 1-34.

10.1007/s00799-015-0156-0.

Bradley N Miller, Istvan Albert, Shyong K Lam, Joseph A Konstan, and John Riedl. Movielens

unplugged: experiences with an occasionally connected recommender system. In Proceedings of

the 8th international conference on Intelligent user interfaces, pages 263–266. ACM, 2003.

Flask.palletsprojects.com. API — Flask Documentation (1.1.X). [online] Available at:

<https://flask.palletsprojects.com/en/1.1.x/api/#flask.Flask>

G. Adomavicius and A. Tuzhilin, "Toward the next generation of recommender systems: a survey

of the state-of-the-art and possible extensions," in IEEE Transactions on Knowledge and Data

Engineering, vol. 17, no. 6, pp. 734-749, June 2005, doi: 10.1109/TKDE.2005.99.

Grimaldi, E., 2018. How to build a content-based movie recommender system with Natural

Language Processing. [Blog] Available at: <https://towardsdatascience.com/how-to-build-from-

scratch-a-content-based-movie-recommender-with-natural-language-processing-25ad400eb243>.

Havan, E., 2019. Recommender System Application Development. [online] towardsdatascience.

Available at: <https://towardsdatascience.com/recommender-system-application-development-

part-1-of-4-cosine-similarity-f6dbcd768e83>].

Heidenreich, H., 2018. Natural Language Processing: Count Vectorization With Scikit-Learn.

[online] Medium. Available at: <https://towardsdatascience.com/natural-language-processing-

count-vectorization-with-scikit-learn-e7804269bb5e>.

55

Lops, Pasquale & de Gemmis, Marco & Semeraro, Giovanni. (2011). Content-based

Recommender Systems: State of the Art and Trends. 10.1007/978-0-387-85820-3_3.

MA, K., 2016. Content-Based Recommender System For Movie Website. Master's. KTH Royal

Institute of Technology.

Pallets. 2020. Flask. [online] Available at: <https://palletsprojects.com/p/flask/> [Accessed 27

December 2020].

Pallets. 2020. Jinja. [online] Available at: <https://palletsprojects.com/p/jinja/> [Accessed 27

December 2020].

Pallets. 2020. Werkzeug. [online] Available at: <https://palletsprojects.com/p/werkzeug/>

[Accessed 27 December 2020].

Paul Resnick and Hal R. Varian. Recommender systems. Commun. ACM, 40(3):56–58, 1997.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,

Perrot, M. and Duchesnay, E., 2011. scikit-learn. Journal of Machine Learning Research, 12,

pp.2825--2830.

Philip, Simon & Shola, Peter & Abari, Ovye. (2014). Application of Content-Based Approach in

Research Paper Recommendation System for a Digital Library. International Journal of Advanced

Computer Science and Applications. 5. 10.14569/IJACSA.2014.051006.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P. and Riedl, J., 1994. GroupLens. Proceedings

of the 1994 ACM conference on Computer supported cooperative work - CSCW '94,.

Semanticscholar.org. n.d. Semantic Scholar | AI-Powered Research Tool. [online] Available at:

<https://www.semanticscholar.org/>.

56

Singh, Ramni & Maurya, Sargam & Tripathi, Tanisha & Narula, Tushar & Srivastav, Gaurav.

(2020). Movie Recommendation System using Cosine Similarity and KNN. 2249-8958.

10.35940/ijeat.E9666.069520.

Wang, L., Lo, K., Chandrasekhar, Y., Reas, R., Yang, J., Eide, D., Funk, K., Kinney, R., Liu, Z.,

Merrill, W., Mooney, P., Murdick, D., Rishi, D., Sheehan, J., Shen, Z., Stilson, B., Wade, A., Wang,

K., Wilhelm, C., Xie, B., Raymond, D., Weld, D., Etzioni, O. and Kohlmeier, S., 2020. CORD-19:

The Covid-19 Open Research Dataset.

57

14. Appendices

The source code for the application has been uploaded along with this write-up.

The code has a specific directory structure and is recommended to use it as it is zipped without

moving any files. The structure is as follows –

It is also recommended to edit line 12 with the number of rows to be tested depending on the

RAM as it might break the build if RAM<24GB

A requirements.txt file is provided which contains all the python modules required to run this

code. The code has only been tested in Google Chrome and is recommended to use Google

Chrome, although the webpages are responsive and have been built to work in any browsers or

devices.

Inputs for testing this application can be taken from abstracts.tsv file.

Main folder Sub-folders

index.py

Requirements.txt

Abstracts.tsv

\static\ Style.css

\templates\ Home.html

returned_papers.html

