
05/02/2021

Initial Plan
Multiplayer Hex Game Engine with

Networked Server, 3D UI and Artificial

Intelligence

Victoria Howells
STUDENT NUMBER: C1702957

SUPERVISOR: DR FRANK C LANGBEIN

MODERATOR: IRENA SPASIC

CM3203 - ONE SEMESTER INDIVIDUAL PROJECT
40 CREDITS

Victoria Howells: C1702957

1

Contents
1 Project Description ... 2

1.1 BaĐkgrouŶd to the gaŵe of ͚Heǆ͛ .. 2

1.2 Why Hex? .. 2

1.3 Approach ... 2

2 Project Aims and Objectives ... 4

3 Work Plan ... 5

3.1 Tasks & Timeline ... 5

3.2 Milestones... 7

3.3 Deliverables .. 7

Victoria Howells: C1702957

2

1 Project Description
The aim of this project is to implement a multi-player networked server-based game engine with a

graphical user-interface for human and AI players. I have chosen the game ͚Hex͛ for this project.

Ultimately, the focus/challenges for this project are two principal areas that have not been covered

in detail within course modules:

1. Multi-User Networked Servers – using modern techniques found in industry for robust

networked server applications that can be deployed on intranets/the internet

2. Advanced AI opponents – beyond simple minimax, utilising recent advances in

reinforcement learning and neural networks

This project will balance both areas with equal importance.

1.1 BackgrouŶd to the gaŵe of ͚Hex͛
Created in 1942 by Piet Hein (and again in 1948 by John Nash) 1, Hex is a 2-player turn-based board

game where the goal is for each player to connect opposite sides of the board. It is played on a

rhombus shaped board (most commonly an 11 by 11 board) where each player is assigned two sides

that are opposite each other. The players take turns where they can replace any hex/position on the

board with a stone of their colour, but only if that position has not already been selected by another

player. A player wins once they successfully connect their sides together through a chain/path of

adjacent stones, or the other player chooses

to resign.

Once a stone is placed, it cannot be moved or

removed, except if the swap rule is used. The

swap rule is where the second player can, on

their first turn, choose to move normally or

swap their counter with the one placed by the

first player. This was introduced to combat

the first player advantage.

1.2 Why Hex?

I chose Hex because I wanted to work with a turn-based game with perfect information, allowing me

to develop a straightforward baseline AI and spend more time on a complex advanced AI to compete

with it. At face value, Hex looks quite a simple game, however from an AI perspective, it has a high

branching factor as players can choose any hex on the board and are not limited to specific moves or

positions. This makes the heuristic more complex to determine the relative value of playing different

positions and whilst it is visually obvious who has won, it takes effort to determine

programmatically.

1.3 Approach

My iŵpleŵeŶtatioŶ ǁill foĐus oŶ deǀelopiŶg a Ŷetǁorked serǀer fraŵeǁork, ǁith a Đore ͚API͛
interface that will allow human and AI players to compete against each other - the game server will

support multiple concurrent games and will store results in a suitable database. It will allow human

vs human, human vs AI and AI vs AI, where the human and AI players will be remote to the server. I

will also look at comparing the effectiveness of different AI͛s, since the search space is quite large for

Hex (with 121 different positions on an 11 by 11 board for the first player).

1 https://en.wikipedia.org/wiki/Hex_(board_game)

https://en.wikipedia.org/wiki/Hex_(board_game)

Victoria Howells: C1702957

3

My core architecture will follow a Model-View-Controller (MVC) pattern using RESTful web-services

(most public facing open web-services today follow the REST pattern2) where the main game engine

will be accessible to multiple different players on different clients. Using a REST based

Framework/API will allow any remote players (Human or AI) to submit moves and will also allow for

new AI͛s to be created independently by players by simply following the published API specification

(programming language and platform independent).

Both the game server and graphical UI will be developed in Java, using a suitable MVC framework on

the server and JOGL/OpenGL for the 3D client, with a standard 2D interface (such as Swing or

JavaFX) for non-3D elements. OpenGL is a multi-platform open standard (the most widely adopted

2D and 3D graphics API in the industry3) and was part of the final year Graphics module this year. As

I am familiar with OpenGL/JOGL, development should be rapid allowing me to focus on the Server

and AI components.

The AI͛s ǁill ďe ǁritteŶ iŶ Jaǀa aŶd PǇthoŶ (to show that the RESTful web-services can be supported

in multiple languages) and will run separately to the game server. I ǁill ruŶ a ͚ĐoŵpetitioŶ͛ ďetǁeeŶ
a baseline AI and a more sophisticated AI and evaluate the effectiveness of different AI strategies in

playing Hex.

The baseline AI will be a simple minimax and is not intended to be particularly sophisticated. Initial

research into turn based games with perfect information has shown that a Monte Carlo Tree search,

and more advanced approaches such as Google DeepMind AlphaZero 4 (utilizing Monte Carlo Tree

search and reinforcement learning with a neural networks) are likely to be more effective. This is

because, given the large branching factor for Hex, a normal tree-search attempting to follow all

possible combinations will likely fail to deliver an optimal result. Monte-Carlo will prioritise the most

promising branches aided by the output from reinforcement learning. Therefore, I will start off by

developing an AI that implements the Monte Carlo approach, then extend it with a neural network

in the style of AlphaZero.

2 https://en.wikipedia.org/wiki/Representational_state_transfer
3 https://www.khronos.org/opengl/
4 David Silver, Thomas Hubert, Julian Schrittwieser, Demis Hassabis. (2018). AlphaZero: Shedding new light on

chess, shogi, and Go. https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-

shogi-and-go

https://en.wikipedia.org/wiki/Representational_state_transfer
https://www.khronos.org/opengl/
https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go
https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go

Victoria Howells: C1702957

4

2 Project Aims and Objectives
• Implement a playable ͚Hex͛ Game Engine

o Java game implementing the default rules of Hex with options for board size and

using the swap rule

o Game results and statistics for each game stored in a database

o Support for multiple concurrent games, including player management and

registration

• Implement a networked REST Server to deploy Game Engine (API interface)

o Java based RESTful API using a suitable framework, running on a remote networked

server

o Players (both AI and Human) can connect via the API interface and play games

o Effective synchronised gameplay between players with support for

disconnection/reconnection to re-join an active game later

o Documentation/Specification for API available to players for creating their oǁŶ AI͛s

• Develop a 3D GUI for human players

o Client in Java allowing a human player to play and visualise the game

o 3D board using OpenGL with 2D menus and game controls

o Enable game management (re-join game, suspend game)

o Controls should be simple and intuitive

o UI will run cross-platform (Windows, Mac, Linux)

• Develop Multiple AI Players using different algorithms

o AI players can connect to games and play via the RESTful API

o AI will be capable of selecting a legal move for the game within the allotted turn

time

o Baseline AI (minimax with a simple heuristic)

o Advanced AI (Monte Carlo Search tree and/or AlphaZero with additional neural

network/reinforcement learning)

o AI can be platform and language independent ;plaǇers ĐaŶ Đreate their oǁŶ AI͛sͿ
• Competition: Evaluation of AI͛s against humans and other AI͛s

o The AI should be able to play against different AI͛s and human players

o The AI should be able to beat human opponents in most cases, in particular the

more advanced AI͛s

o The more advanced AI͛s should beat the baseline AI in most cases

Victoria Howells: C1702957

5

3 Work Plan
Assumptions:

• Project will follow Agile principles – get a basic working solution quickly, then iterate and

enhance

• Model-View-Controller pattern will be adopted

• Bug/Feature tracker will be used to record additional features and classify bugs (reviewed

weekly)

• Activity Log/Diary will be kept to record weekly progress, support supervisor meetings and

Final Report

• Weekly Supervisor meetings with two longer Supervisor Review meetings in weeks 5 & 8

3.1 Tasks & Timeline

Week Tasks

1

(1st Feb)

Write Initial Plan/Report: submit by 8th February

Request Access: request access to University OpenShift, OpenStack, MongoDB and

PostgreSQL (to evaluate and select in weeks 2 & 3)

Background Research: Some background research into Hex, Monte Carlo, AlphaZero and

REST frameworks like SpringBoot has already been completed. I will continue to

investigate these areas and fill in background sections of the report as I go

Design Hex Game Engine (Model): This involves creating a UML class diagram and figuring

out how the game will run, and how its different classes will link

Start Game Engine Prototype: Start implementing Game Engine for ͚siŶgle gaŵe͛ (e.g.

without swap rule, database or multi-player - running locally within IDE)

2

(8th Feb)

Ethics Course: Complete the ethics course.

Complete Basic Game Engine: Complete basic game engine

Game Database: Design (and decide on SQL or NoSQL) database and add to Game Engine

using ORM Framework (e.g. Spring Data/JPA/Hibernate)

Player Management: Design and implement basic player registration and multi-game

management within Game Engine

Unit Testing: Create initial test cases for the game engine and implement using test

framework

3

(15th Feb)

Request Ethics Approval: request access to allow people to play games on server

Design REST API (Controller): design REST API for game engine

Select Server Platform: select server platform (e.g. OpenShift, OpenStack, Azure, AWS

etc.)

Implement REST Server: ImpleŵeŶt ‘EST API͛s aŶd liŶk to Gaŵe EŶgiŶe

Document API: Ensure all endpoints are documented and accessible (e.g. in Swagger)

Testing: test REST endpoints using Swagger/Postman

Victoria Howells: C1702957

6

4

(22nd Feb)

Background Research: Select Java 2D GUI frameworks e.g. Swing, JavaFX

UI Design (View): Create wireframes and heuristic evaluation to ensure design meets

usability requirements

Client Class Design: Create a UML diagram for the classes used in the Client and how they

interact

Prototype GUI client: Start off by implementing the 3D game board using OpenGL and

connect to REST services

5

(1st Mar)

Complete GUI Client: human GUI should be completed this week (game should be

playable by human players)

Test Play: Human vs Human

Heuristic Evaluation of GUI: Ensure that usability standards have been met for the user

and add any weaknesses to bug tracker

First Supervisor Review Meeting: First of the longer supervisor review sessions (Game

Engine, REST Server and most of the GUI for human players should have been

implemented). This is before AI development starts so would be a good point to assess the

projects progress

6

(8th Mar)

Baseline AI Design: Create a UML Class diagram design for the classes to be implemented

for the baseline AI

Baseline AI Implementation: implement minimax with simple heuristic

Test Play: Human vs Baseline AI, Baseline AI vs Baseline AI

7

(15th Mar)

Background Research: Complete research into the advanced AI approaches (Monte Carlo

Search Tree and AlphaZero)

Start Monte Carlo AI player: Develop Monte Carlo AI (probably in Python) and link to REST

API services

8

(22nd Mar)

Complete Monte Carlo AI player: complete Monte Carlo implementation

Test Play: Baseline AI vs Monte Carlo AI

Start AlphaZero AI: add AlphaZero to Monte Carlo implementation

Second Supervisor Review Meeting: Second of the longer supervisor review sessions

(Advanced AI should have started). This meeting will be useful to reflect on what

milestones have been achieved, and what work should be prioritised over the 3 Easter

weeks

Easter

(29th Mar)

(5th Apr)

(12th Apr)

Complete AlphaZero AI: complete the Alpha Zero implementation

Train AlphaZero: train AlphaZero AI by playing against baseline AI

Bug fixing and Enhancements: bug fixes and final enhancements to end-to-end Game

EŶgiŶe, Serǀer, GUI aŶd AI͛s

Evaluation: determine how competition/evaluation will be performed

Victoria Howells: C1702957

7

9

(19th Apr)

Test Play: Baseline AI vs Monte Carlo, Baseline AI vs AlphaZero, Monte Carlo vs AlphaZero

Final Bug Fixes to support Evaluation: complete any final fixes to support good evaluation

results

10

(26th Apr)

Evaluation: Run AI evaluation and collect/analyse results

Final Report: start final report using weekly logs, designs created through implementation

and evaluation results

11

(3rd May)

Final Report: compete the bulk of the report

12

(10th May)

Final Report: review the report and make any final changes necessary.

Submit Project: Gather all data, appendixes, and application code and submit by 14th May

3.2 Milestones

1. Submit Initial Plan [Week 1]

2. Complete Basic Game Engine (Model) [Week 2]

3. Complete API Design/Specification [Week 3]

4. Deployed REST Server with Database and Game Engine (Model & Controller) [Week 3]

5. Complete 3D GUI (View) [Week 5]

6. Complete Baseline AI [Week 6]

7. Complete Monte Carlo AI [Week 8]

8. Complete AlphaZero AI [Week 9]

9. Evaluation Data Gathered [Week 10]

10. Submit Final Report and Supporting Files [Week 12]

3.3 Deliverables

8th February 2021

• Initial Report

14th May 2021

• Game Engine and Server

• API Specification

• 3D GUI

• AI Players (Baseline and Advanced)

• Final Report (including AI Evaluation)

