

Using Optimisation Techniques on the Kidney

Exchange Problem

Final Report

CM3203 – One Semester Individual Project - 40 Credits

Author: Molly Wilson

Supervisor: Dr Richard Booth

Moderator: Dr Bailin Deng

School of Computer Science and Informatics

Cardiff University

14th May 2021

Abstract

Every year, there are on average 4,536 patients on the active waiting list for a kidney

transplant in the UK. Research is ongoing to develop effective ways to allocate

donations to save the lives of patients and maintain their quality of life. This project

aims to apply optimisation techniques to datasets modelling the kidney exchange and

analyse the effects of different methods and definitions of optimality. Four main

approaches are explored as part of this project, including Pairwise Exchange, Integer

Linear Programming, Top Trading Cycles and Chains, and introducing matching

patient-donor pairs into the matching pool. Analysis of the varying methods and

datasets indicated that the Integer Linear Programming formulation is the method

which provides solutions with the highest cardinality. The results also demonstrate

that the inclusion of compatible patient-donor pairs to the matching pool has a

significant effect on the number of patients allocated a kidney as part of the solution.

Further research is required to apply these findings to an international exchange

model.

Acknowledgements

I would like to thank my supervisor, Dr Richard Booth, for his support and guidance

throughout the project, for which I am grateful. In addition, I am grateful for his

lectures on Combinatorial Optimisation, which developed my interest in

optimisation and inspired my choice of project.

Table of Contents

Abstract ... 2

Acknowledgements ... 3

1 Introduction .. 6

2 Background .. 8

2.1 The Matching Process ... 8

2.2 Kidney Exchange Program ... 9

2.3 Similar Research ... 10

3 Implementation of Algorithms ... 12

3.1 Mathematical Description of the Problem .. 12

3.2 Optimisation .. 13

3.3 Dataset... 13

3.4 Pairwise Exchanges .. 13

3.4.1 Pairwise Exchange Mathematical Description 14

3.4.2 Edmond’s Blossom Algorithm ... 15

3.4.3 Example ... 15

3.4.4 Pseudocode .. 17

3.4.5 Implementation .. 19

3.5 Integer Linear Programming ... 20

3.5.1 Kosaraju’s Algorithm ... 20

3.5.2 Kosaraju’s Algorithm Steps ... 21

3.5.3 Kosaraju’s Algorithm Pseudocode ... 21

3.5.4 Example ... 22

3.5.5 Johnson’s Algorithm .. 23

3.5.6 Johnson’s Algorithm Steps .. 24

3.5.7 Johnson’s Algorithm Pseudocode .. 24

3.5.8 Example ... 26

3.5.9 Implementation .. 26

3.5.10 ILP Formulation ... 27

3.5.11 Example ... 28

3.5.12 Limitations ... 29

3.6 Top Trading Cycle .. 30

3.6.1 Top Trading Cycle Description .. 30

3.6.2 Pseudocode .. 31

3.6.3 Example ... 32

3.6.4 Extending the Dataset .. 34

3.6.5 Implementation .. 35

3.7 Top Trading Cycle and Chains ... 36

3.7.1 Example ... 37

4 Results and Evaluation ... 38

4.1.1 Dataset 1... 38

4.1.2 Dataset 2... 39

4.1.3 Dataset 3... 40

4.2.1 Pairwise Exchange Results Dataset 1 .. 41

4.2.2 Pairwise Exchange Results Dataset 2 .. 42

4.2.3 Pairwise Exchange Results Dataset 3 .. 44

4.3.1 ILP Results Dataset 1 ... 46

4.3.2 ILP Results Dataset 2 ... 51

4.3.3 ILP Results Dataset 3 ... 57

4.4.1 Top Trading Cycle Results Dataset 1 .. 62

4.4.2 Top Trading Cycle Results Dataset 2 .. 64

4.3.3 Top Trading Cycle Results Dataset 3 .. 68

5 Future Work ... 75

6 Conclusions .. 76

7 Reflection on Learning ... 78

Table of Abbreviations .. 81

References ... 82

Table of Tables

Table 1: Sample of Graph Data for Dataset D1 ... 38
Table 2: Patient-Donor Details for Pairs in Dataset D1 ... 39
Table 3: Sample of Additional Edges in Dataset D2 ... 40
Table 4: Altruistic Donor Information for Dataset D2 .. 40
Table 5: Compatible Patient-Donor Pair Information for Dataset D3 40
Table 6: Compatible Patient-Donor Matching Information for Dataset D3 41
Table 7: Donor Preferences for each Patient in Dataset D1 62
Table 8: Donor Preferences for each Patient in Dataset D2 65
Table 9: Donor Preferences for each Patient in Dataset D3 68
Table 10: Results Table for Dataset D1 ... 71
Table 11: Results Table for Dataset D2 ... 72
Table 12: Results Table for Dataset D3 ... 73

1 Introduction

Chronic Kidney Disease (CKD) is a long-term health condition whereby kidney

function deteriorates gradually over a period of months or years. There are 1.8

million people living with CKD in the UK, with an additional one million estimated

cases of undiagnosed CKD [8]. As of 29th February 2020, there were 4,726 patients

on the UK active kidney transplant list, of which 108 were paediatric patients. This

represents a 1% decrease in adult patients from the previous year and a 17% increase

in paediatric patients [6]. In addition, 3,190 adult kidney transplants were performed

in the UK in 2019/20, indicating a decrease of 3% on the previous year. Of these,

1,326 were from donations by brainstem death donors (DBD), 915 were from

donation by cardiac death donors (DCD) and 949 were from living donors [6].

Left untreated, CKD leads to kidney failure, and dialysis or transplant is required to

prevent death. It is therefore, of utmost importance that kidney donation and

allocation is managed effectively to save lives. Currently, the median waiting time

for an adult kidney transplant is between 2 and 3 years and in 2020, 233 people

passed away whilst awaiting a kidney transplant, which was more than the number

of patients who died awaiting lung, liver and heart transplants combined [19].

Currently, the level of kidney donation in the UK is not sufficient to meet the demand

for transplants. It is thus of paramount importance that kidney exchanges and

transplants are managed effectively to prolong patient quality of life.

The UK Living Kidney Sharing Scheme (UKLKSS) facilitates transplants for

incompatible patient-donor pairs by introducing them into the matching pool. In the

matching pool, the donor is allocated to a compatible patient in need of a transplant

on the promise that the patient they entered the pool with is also allocated a kidney

from one of the other donors. There are several formats and shapes in which a

matching occurs from the pool such as a pairwise exchange, a cycle exchange or an

altruistic domino chain (ADC), each of which will be explained and explored within

this project.

The aim of this project is to identify and explore appropriate optimisation techniques

to model the kidney exchange, implement the identified techniques and produce

results for each method in the process of kidney allocations. Varying datasets will

be utilised to demonstrate the performance of each algorithm and the resulting

optimal solutions will be analysed. Finally, from these methods, the most appropriate

and successful techniques will be identified for modelling the kidney exchange.

This project will also explore differing approaches to solving optimisation problems

such as Integer Linear Programming, and algorithms such as the Top Trading Cycle

and Edmond’s Blossom Algorithm to compare and contrast their effects on the

application of the kidney exchange. The project will also explore several definitions

of optimality, such as maximum cardinality (which shows maximum patients

matched), and maximum weight (which shows the probability of a successful

transplant). Finally, the project explores the impact of altruistic donors and the

introduction of compatible patient-donor pairs into the matching pool on the

cardinality of maximum matching and utility of available donors.

This project begins with an overview of kidney disease and its devastating impacts,

then a brief history of the evolution of the kidney exchange will be considered,

primarily focussing on progress in the UK, and current suggested methods to

optimise kidney allocation. Following this, Chapter three offers an overview of each

of the four approaches included in this project: Integer Linear Programming, Top

Trading Cycle and Chains, Pairwise Exchanges, and the Introduction of Matching

Patient-Donor Pairs into Matching Pools. Each of the approaches will be

implemented and analysed in-depth before the results are collated and critically

evaluated in Chapter four. To conclude this project, Chapters five and six will offer

suggestions for future work and a concluding argument. Chapter seven presents a

reflection of my learning and progress throughout the project.

2 Background

2.1 The Matching Process

There are four different blood types O, A, B and AB. Patients with blood type O, the

most common blood type, can only be matched with donors who are also of blood

type O. Patients with blood type A or type B can be matched with donors of the same

blood type and blood type O. Patients with blood type AB can be matched with

donors of any blood type. For this reason, patients with blood type AB are considered

universal recipients. As donors of blood type O can be matched with patients of any

blood type, they are considered universal donors [7].

There are a large number of factors considered when evaluating the compatibility

between a potential patient-donor match. Some of these include the age difference

between the patient and donor, the sensitivity level, the HLA mismatch level, and

previous matching run points [6].

The following outlines the structure for defining the compatibility of a match within

the NHS:

1. Previous Matching Run Points. This factor is measured by multiplying

the number of previous matchings the patient has already taken part in

by a factor of fifty. The current matching algorithm is executed quarterly

in January, April, July, and October.

2. Sensitisation Points. Sensitivity of a patient is measured by a Panel

Reactive Antibody Test. This test determines the number of pre-existing

antibodies the patient has against human cell antigens. The result of this

test is a percentage which represents the proportion of the population

with antigens to which the patient will react to. This factor is represented

by dividing the sensitivity percentage by 2.

3. Estimated Human-Leukocyte Antigens (HLA) Mismatch. HLA are

proteins found in tissue and on the surface of white blood cells. Where

a patient and donor share the same HLA, this is referred to as a tissue-

type match, meaning that their tissue is immunologically compatible.

The number of compatible proteins between a patient and donor is

assigned a value of 0, 5, 10 or 15, where the lowest values represent a

high level of incompatibility and the highest values represent a low level

of incompatibility.

4. Donor Age Difference. Where the age gap between the donor and the

patient is less than 20 years, they are assigned a value of 3. Where this

gap is greater than 20 years, it is assigned a value of 0. The age

difference between the patient and the donor is minimised as a priority

due to increased risk of graft failure as the difference increases. For

example, the acute rejection rate rises from 10.7% to 32% when the age

difference between the donor and patient is greater than 20 years [10].

The sum of the values from each of these categories represents the level of

compatibility of a patient-donor match, where high values represent a greater match.

2.2 Kidney Exchange Program

The UKLKSS began in January 2012 and is the collective term for the various

methods in which kidneys are donated and transplanted across the UK. It was

established following the introduction of the Human Tissue Act 2004 and has

become one of the most effective schemes in Europe [14]. Before the introduction

of this legislation, it was not possible for transplants to take place between a patient

and donor who did not have a genetic or emotional connection. As a result, patient-

donor pairs who were not compatible with one another were rejected for transplant,

the willing donor sent home and the patient left to join the kidney transplant waiting

list. Evidently, this was a waste of resources as the willing donor was unable to

participate in a transplant and consequently their paired patient, and other patients

who are compatible with the donor were impacted as a result. The creation of the

kidney exchange program aims to utilise the opportunity of a willing donor to

allocate a kidney to a patient in need, on the promise that the incompatible paired

patient will also receive a kidney. Methods encompassed by the UKLKSS include

paired/pooled donation (PPD) and ADCs initiated by non-directed altruistic donors

(NDADs).

The kidney exchange allows patient-donor pairs who are not compatible with one

another to participate in a matching pool where the donor is matched with another

patient in need of a transplant and the patient receives a kidney from another patient’s

incompatible donor. There are several variations of which a matching may occur in

this situation. One circumstance, called a two-way or pairwise matching, occurs

when two patient-donor pairs p1d1 and p2d2 match such that patient p1 receives the

kidney of donor d2 and patient p2 receives the kidney of donor d1. It is possible for

paired exchanges to occur with more than two patients such that the solution forms

a cycle. This means that for patient-donor pairs p1d1, p2d2 and p3d3 form a matching

such that patient p1 recieves the kidney of donor d2, patient p2 receives the kidney of

donor d3 and patient p3 receives the kidney of donor d3. This forms a cycle such that

each donor is able to donate their kidney to a patient who requires it, and each patient

is able to receive a kidney. In theory, there is no limit to the number of pairs who

may be included in this cycle. However, in practice, each transplant must be

performed simultaneously. This is due to the fact the donors are not legally obliged

to donate their kidney, such that it is possible for a donor to leave the program before

their donation [11]. As a result, the number of pairs k in any cycle is kept small,

usually between three and five. A third way a match may occur is when a non-

directed anonymous donor, also known as an altruist, triggers a chain of kidney

donations. This is referred to as an altruistic domino chain.

According to NHS Blood and Transplant, the UKLKSS allowed 71 extra patients to

receive a kidney transplant from a living donor in 2019 compared with 2018 [20].

2.3 Similar Research

Manlove and O’Malley (2014) carried out experiments using genuine data to analyse

the number of transplants which actually took place within in each quarter, compared

to results generated by two different ILP formulations and experiments on

constraints such as cycle length. One conclusion that arises from this study is that

the introduction of four-way exchanges into the matching pool is likely to lead to a

considerable increase in kidney transplants. The conclusions drawn in this paper

have inspired the ideas presented as part of this project, as one of the methods this

project explores is also an ILP formulation. [12]

In 2009, Biró, Péter & Manlove (2009) modelled the kidney exchange as a packing

problem and proved the approximable-completeness of finding a maximum

cardinality solution using only 2-cycles and 3-cycles. The resulting exact algorithm

produced by this research provides optimal solutions for the National Matching

Scheme for Paired Donation run by NHS Blood and Transplant. An approximation

algorithm was also produced to find a maximum weight solution containing cycles

of bounded length. [1]

Recent published research into the kidney exchange states that “single best practise

models and methods for Kidney Exchange Programmes do not exist”. This statement

demonstrates the importance of continued research into different methods and

circumstances. Optimal solutions differ depending on the ratio of donors to patients,

ability to perform successful transplants simultaneously and the number of donations

available from each type of donor, such as non-directed altruistic and DCD. This

research also ventures the concept of cross-national kidney exchange programmes.

Inspired by these models, this project explores the effect of introducing compatible

patient-donor pairs into the matching pool. This data mirrors the situation where

sharing waiting list information internationally could facilitate additional transplants

when compared with allocating kidneys nationally. [2]

3 Implementation of Algorithms

3.1 Mathematical Description of the Problem

Consider a directed graph G(n) such that n equals the number of patients awaiting a

kidney in this exchange. For each of the n donor-patient pairs, there exists a node in

the graph G(n). Where there is a match between the donor kidney ni and patient nj,

add an edge e between node ni and nj. The weight we of the edge e is equal to the

utility of nj receiving ni's donor kidney. Please note, a donor in a pair is willing to

donate their kidney if and only if their paired patient receives one.

A cycle c in the graph represents a possible exchange, with each node in the cycle

receiving the kidney of the previous node. The weight wc of a cycle c is the sum of

its edge weights. A complete matching consists of disjoint cycles, as each donor can

only donate one of their kidneys. Each cycle c must be of length k where 2 ≤ k ≤ 5,

and in most practical cases k = 3. k must be small as all operations in the cycle are

performed simultaneously.

Figure 1: Basic Graph G

In Figure 1 above, the graph G contains five patient-donor pairs, with five edges

which represent the matches between patients and donors. A cycle of length 3 is

indicated by the green arrows.

In the case of an altruistic donor, the node n will represent the donor. The donor is

prepared to donate unconditionally, meaning that there is no incoming edge to the

node n. In this case, a complete matching is not represented by a cycle c but a chain

known as an altruistic donor chain.

An optimal matching in this problem maximises the weight of cycles and chains,

meaning the number of successful transplants is also maximised with the available

resources.

3.2 Optimisation

Within this problem, there are varying definitions of what constitutes an optimal

solution due to the nature of transplants and their effect on a patient’s quality of life

or chance of survival. As a result, there are a range of factors to consider when

defining optimality. This includes, but is not limited to, maximising the sum of the

matching scores in the solution. This gives weight to factors such as length of time

on the waiting list, difficulty of matching the patient, and maximising the number of

patients in the solution. In addition, priority may be awarded to patients who are

most unwell or to younger patients as they are more likely to benefit long-term from

a transplant. There are obvious ethical issues surrounding priority amongst patients

and ultimately the decision lies with the founders of each individual transplant

scheme to define a solution within their scheme. Within the NHS, an optimal solution

is defined as first prioritising obtaining a maximum matching score and then

maximising the number of patients included in the solution.

3.3 Dataset

The datasets used throughout the project are provided by preflib.org. Although the

datasets are synthetic, it was produced by a state-of-the-art donor pool generation

method, described by Saidman (2006) [16]. Each dataset consists of two files, one

to document the patient-donor pair information, and another containing information

regarding patient-donor compatibility, which represent the edges in the associated

graph.

3.4 Pairwise Exchanges

Prior to sufficient research conducted into the theory and practicalities of 3-cycle

solutions or greater, the kidney exchange problem existed in a simplified state known

as a pairwise exchange. This means that an optimal solution consisted of patient-

donor pairs who had been successfully matched to one another. For example, for

three patient-donor pairs p1d1, p2d2 and p3d3, the maximum cardinality of the optimal

solution is two. This solution may be such that patient p1 recieves a kidney from

donor d2 and patient p2 recieves a kidney from donor d1.

Figure 2: Pairwise Exchanges

The primary focus in the NHS is to find a matching that allows the maximum number

of patients to be assigned a kidney. This means that maximum cardinality is the

priority.

3.4.1 Pairwise Exchange Mathematical Description

For each patient-donor in the matching pool, there exists a vertex pxdx in the directed

graph D.

For each match between a patient px and a donor dy, there exists a directed edge from

vertex pxdx to vertex pydy where the weight of the edge is equal to the matching score

for the transplant from donor dy to patient px.

In the case of pairwise exchanges, a directed edge between a vertex pxdx and a vertex

pydy where there does not exist a directed edge in the opposite direction, from vertex

pydy to vertex pxdx is excluded as this edge is not valid in a solution. As a result, the

directed graph D is transformed to an undirected graph G.

For each vertex pxdx that exists in the directed graph D, there exists an equivalent

vertex pzdz in undirected graph G.

For each pair of vertices, pxdx and pydy, connected by two edges, ex and ey, in the

directed graph D, there exists a single undirected edge ez in graph G between pxdx

and pydy with a weight wz where wz = ex(wx) + ey(wy).

For each pair of vertices, pxdx and pydy, connected by a single directed edge in graph

D, there does not exist an edge between them in graph G.

Now, for the undirected graph G, find a maximum cardinality, maximum weight

matching.

3.4.2 Edmond’s Blossom Algorithm

The solution to this problem is solved by Edmonds’s Blossom Algorithm, presented

by Jack Edmonds (1965) which is designed to compute a maximum matching in an

undirected general graph [3]. It is inspired by and an extension of the Hopcroft-Karp

algorithm which computes a maximum matching for bipartite graphs only.

The Blossom Algorithm performs by building augmenting paths starting and ending

at unmatched vertices from a graph, alternating between matched and unmatched

edges. This process repeats until no more augmenting paths can be identified,

meaning that a solution has been found. The algorithm takes its name from the

process in which an odd length cycle is identified as this is referred to as a blossom.

The nodes which belong to a blossom are contracted, and treated as a single node,

such that the graph contains an even number of nodes and is therefore suitable for

the Hungarian algorithm, which computes maximum-weight matching in bipartite

graphs, to identify further augmenting paths. In the worst case, this Edmond’s

Blossom Algorithm has a time complexity of O(|E||V|2) where E is the number of

edges in the graph and V is the number of vertices [13].

3.4.3 Example

For example, take the graph shown below in Figure 3.

Figure 3: Blossom Algorithm Example Initial Graph

At the start of the algorithm, each of the vertices are unmatched. Starting with vertex

v0, the algorithm uses breadth first search (BFS) to find a path. The first neighbour

of vertex v0 is v1. As vertex v1 is unmatched, there exists an augmenting path between

v0 and v1. After a path is found, all vertices are inverted from matched to unmatched

and vice versa. The number of edges included in the matching increases by 1. Figure

4 shows the current path.

Figure 4: Blossom Algorithm Augmenting Path

There are still two unmatched vertices in the graph v2 and v3. Now starting with v3,

use BFS to find another path. The first neighbour of v2 is v0, a matched node. As v0

is connected to v1, both nodes are added to the BFS queue. The next neighbour of v2

is v1, which already exists in the queue. Therefore, a cycle has been identified and as

it has an odd number of edges, it is called a blossom. The nodes in the blossom are

shrunk and represented as one node.

Figure 5: Shrunken Blossom Node

The new blossom node is also added to the BFS queue. Now, BFS is continued

starting from the blossom node v4. The first neighbour of v4 is v3, an unmatched node.

Therefore, an augmenting path has been identified. As there are no more unmatched

nodes in the graph, the blossom node is expanded such that the resulting path can be

identified.

Figure 6: Final Augmenting Path

Now, the matched edges are inverted such that our previous path (0, 1) becomes (2,

0) and (1, 3). As there are no more free vertices, a maximum cardinality matching

has been found.

Figure 7: Blossom Algorithm Maximum Cardinality Matching

3.4.4 Pseudocode

The following pseudocode is provided by Shoemaker and Vare (2016) [18].

Algorithm 1 Blossom Algorithm: Find Maximum Matching

procedure seq_find_maximum_matching(G, M)

P = seq_find_aug_path(G, M)

if P == [] then

return M

else

Add alternating edges of P to M

return seq_find_maximum_matching(G, M)

Algorithm 2 Sequential Blossom Algorithm: Find Augmenting Path

procedure seq_find_aug_path(G, M)

F = empty forest

nodes_to_check ← exposed vertices in G

for v in nodes_to_check do

Add v as single-node tree to F

node_to_root(v) = v

in G, mark all matched edges (all edges in M)

for v in forest_nodes do

while there exists an unmarked edge e = (v, w) do

if w ב F then (Vertex w must be in M)
seq_add_to_forest(M, F, v, w)

else

if dist(w, node_to_root(w)) % 2 == 0 then

if node_to_root(v) ≠ node_to_root(w) then

P = seq_return_aug_path(F, v, w,

node_to_root)

else

P = seq_blossom_recursion(G, M, F, v,

w)

return P

else

Do nothing

mark edge e

return empty path

Algorithm 3 Sequential Blossom Algorithm: Add to Forest

procedure seq_add_to_forest(M, F, v, w)

x ← vertex adjacent to w in M

add edges (v, w),(w, x) to tree(v) in F

add vertex x to nodes_to_check

node_to_root(w) = node_to_root(v)

node_to_root(x) = node_to_root(v)

Algorithm 4 Sequential Blossom Algorithm: Return Aug Path

procedure seq_return_aug_path(F, v, w, node_to_root)

root_v = node_to_root(v)

root_w = node_to_root(w)

Pɨ ← shortest_path(F,root_v,v)

Pɩ ← shortest_path(F, w,root_w)

return P1 + P2

Algorithm 5 Sequential Blossom Algorithm: Blossom Recursion

procedure seq_blossom_recursion(G, M, F, v, w)

Form blossom: B = shortest_path(F, v, w) + [v]

G’ = G with all blossom nodes contracted into w

M’ = M with all blossom nodes contracted into w

P’ = find_aug_path(G’, M’)

if w א P’ then
P = P’ lifted with blossom B

return P

else

return P’

Whilst this algorithm has been valuable in solving the pairwise kidney exchange

problem, the cardinality of the solutions is limited by the pairwise constraint. As

research has progressed, it has become possible for the total number of kidney

transplants to increase by allowing more than two patient-donor pairs to be matched

as part of the optimal solution.

3.4.5 Implementation

In this project, Blossom’s Algorithm is implemented using the Python Package Index

blossalg. This package requires a .csv file which represents the graph nodes and

edges in a matrix format. The algorithm then computes the optimal solution using

Edmond’s Blossom Algorithm and returns a .txt file which contains the matched

edges, and the cardinality is printed in the command line. To work with this package,

the datasets provided by Preflib were manipulated. The original datasets were

converted from undirected graphs to directed graphs, meaning only edges where

nodes were connected in each direction were preserved. The directed graph is then

converted to the required matrix format and input into the package.

3.5 Integer Linear Programming

Binary Integer Linear Programming (BILP) is a style of Linear Programming such

that each of the decision variables may only take the values 0 or 1. Linear

Programming is a valuable way to model real-world situations using linear

relationships between variables to represent constraints within a model and

maximising or minimising a linear function. They are usually constructed by an

objective function to be maximised or minimised, as well as decision variables and

linear constraints. In the case of the kidney exchange, the components are as follows:

Objective function:

Maximise the number of patients allocated a transplant in the matching

Constraints:

• Each donor can only donate one of their kidneys.

• The cycle length k must be between 2 and 3 such that 2 ≤ k ≤ 3. (This

constraint is handled before the BILP formulation as cycles greater than

length 3 are filtered out before input into the formulation.)

Decision Variables:

 A set of all the cycles between length 2 and 3 that are present within the

graph. The BILP will decide whether the cycle is included in the solution, and

therefore assigned a value of 1 or excluded from the solution and assigned a value

of 0.

3.5.1 Kosaraju’s Algorithm

For a directed graph D, there exists one or more strongly connected components. A

strongly connected component (SCC) exists where for each vertex v in the

component C, it is possible to access every other vertex vx in C. Within a directed

graph D, cycles are contained within SCCs. For a graph representing a kidney

exchange, SCCs are instrumental to identifying a solution in optimal time as it means

that edges which are not part of a strongly connected component can be ignored.

Specifically, in the case of the UK kidney exchange, where there may be up to 5,000

vertices, identifying transplants which cannot form part of a cycle is important to

save time and resources. Importantly, SCCs do not identify an optimal solution, but

exclude edges which cannot be part of the solution. Kosaraju’s Algorithm has a

linear time complexity, running in O(V+E) where V is the number of nodes and E is

the number of edges in the graph [4].

For this project, Kosaraju’s Algorithm is used to identify strongly connected

components as the algorithm runs in linear time and is based upon depth first search

(DFS). The algorithm is based on the idea that, if a vertex v is accessible from a

vertex u, then vertex u must also be accessible via vertex v. For vertices where this

is the case, they are defined as strongly connected and form part of a component.

3.5.2 Kosaraju’s Algorithm Steps

1. Complete DFS graph traversal, pushing the source vertex onto the stack

when recursive traversal for adjacent vertices is complete.

2. Reverse the direction of each edge in the graph to compute the transposed

graph.

3. Complete DFS on the transposed graph with each of the vertices from the

stack until the stack is empty. The nodes visited within the DFS form a

strongly connected component. Where there are nodes that remain unvisited,

there are more strongly connected components within the graph. Repeat this

step until all nodes are visited.

The following pseudocode is inspired by OpenGenus IQ [9].

3.5.3 Kosaraju’s Algorithm Pseudocode

Set s to None

order = []

def dfs_loop(G):

 for node in G

 if node not explored then

 s = node

 dfs(G, node)

def dfs(G, v):

 set v.explored to True

 set v.leader to s

 for edge (v, w)

 if w not explored then

 dfs(G, w)

 set order to [v] + order

def kosaraju(G):

 dfs_loop(G_reversed)

 dfs_loop(G) in order

3.5.4 Example

Consider the directed graph D with unweighted edges e1 to e11 as shown below in

Figure 8. As per Kosaraju’s Algorithm, there are 3 strongly connected components

within this graph. The resulting strongly connected components are as follows: 6, (0,

1, 4, 5, 3), 2 and are demonstrated by Figure 8 below. In this example, there are two

components which only contain one vertex. This means that patient-donor pairs p2d2

and p6d6 cannot be matched as part of an optimal matching cycle, and therefore edges

e4, e6 and e7 can be ignored.

Figure 8: Strongly Connected Components

For this project, Kosaraju’s algorithm has been adapted to accommodate the selected

datasets. The original implementation, written in Python, was provided by

Programiz.com [21].

Originally, this program created a graph from a large number of function calls to add

the vertices and edges. This implementation has been adapted so that the patient-

donor vertices from the dataset are created by a for-loop. Consequently, this

implementation is suitable for all of the chosen datasets. Additionally, this program

printed the resulting strongly connected components without storing them. This has

been adapted such that the strongly connected components are stored to a 2-

dimensional list which is returned from the method print_scc. This allows retrieval

of the strongly connected components from another class in a suitable data structure

to use in the implementation of Johnson’s Algorithm that follows.

3.5.5 Johnson’s Algorithm

One of the required inputs for the linear integer programming formulation of the

kidney application is all of the 2- and 3-cycles that exist within the graph. The first

step in computing this is to identify the strongly connected components such that all

existing cycles in the graph can be located. For this implementation of the kidney

exchange problem, the cycle length k is limited to a maximum of 3 such that 2 ≤ k ≤

3, as per the constraints required by the NHS. At this stage, a valid cycle must contain

at least two nodes as the patient and donor within a patient-donor pair are not a match

to each other. This simulates the current exchange as deployed by the NHS. The

impact of introducing compatible patient-donor pairs into the matching pool is

explored in Chapter four. Initially, all the cycles within the strongly connected

components are identified using Johnson’s Algorithm, then any cycles where k > 3

are removed.

Johnson’s Algorithm identifies all elementary cycles within a directed graph. It

operates by taking each strongly connected component within a graph and

identifying paths between the vertices which start and end at the same vertex. This

method relies on the fact that cycles can only exist within strongly connected

components, thereby allowing some edges to be ignored. Johnson’s Algorithm

achieves a time complexity of O ((V + E) (|CycleV | + 1)) ∼ O (V∆|CycleV|) where

|CycleV| is the number of cycles in the graph, V the is number of vertices on the graph

and E is the number of edges. In the worst case, |CycleV| = O(V!) which can impact

performance when the dataset is large [5].

3.5.6 Johnson’s Algorithm Steps

1. Starting at the least vertex, add this vertex to a stack s and a blocked set b.

2. Explore the first neighbour of the current vertex, adding this vertex to the

stack s and blocked set. Repeat until a node is exhausted of neighbours.

3. When a vertex has no more neighbours and does not form part of a cycle, it

must be blocked. Remove this vertex from the stack and blocked set, add to

a blocked map m such that if a neighbour of the vertex is unblocked, this

node must be too.

4. Repeat until each vertex has been explored as the starting vertex.

3.5.7 Johnson’s Algorithm Pseudocode

begin

integer list array Ak(n), B(n); logical array blocked (n); integer

s;

logical procedure CIRCUIT (integer value v);

begin logical f;

procedure UNBLOCK (integer value u);

begin

blocked (u):= false;

for wאB(u) do
begin

delete w from B(u);

if blocked(w) then

UNBLOCK(w);

end

end UNBLOCK

f := false;

stack v;

blocked(v):= true;

L1: for w א AK(v) do

if w=s then

begin

output circuit composed of

stack followed by s;

f := true;

end

else if ¬blocked(w) then

if CIRCUIT(w) then f := true;

L2: if f then UNBLOCK(v)

else for w א AK:(v) do

if v ב B(w) then put v on B(w);

unstack v;

CIRCUIT := f;

end CIRCUIT;

empty stack;

s := 1;

while s < n do

begin

Ak := adjacency structure of strong component K with

least vertex in subgraph of G induced by {s, s + 1,

…, n};

if Ak ≠ Ø then

begin

s := least vertex in Vk;

for i א Vk do

begin

blocked(i) := false;

B(i) := Ø;

end;

L3: dummy := CIRCUIT(s);

s := s + 1;

end

else s := n;

end

end;

3.5.8 Example

For example, take the SCC identified in the example above and demonstrated by

Figure 9 below.

Stack = {}, Blocked Set = {}, Blocked Map = {}

Taking p0d0 as the lowest vertex, explore the neighbour p3d3.

Stack = {0, 1}, Blocked Set = {0, 1}, Blocked Map = {}

As 1 is not the same as the starting

vertex, add it to the stack and the

blocked set, and explore its neighbour

4.

Stack = {0, 1, 4}, Blocked Set = {0, 1,

4}

Repeat this following the path of each

vertex first neighbour until you reach v3.

Stack = {0, 1, 4, 5, 3}, Blocked Set = {0, 1, 4, 5, 3}

The first neighbour of v3 is v0 which matches the start vertex, and therefore a cycle

has been found. Now backtrack to the next neighbour of v3, which is v1. As v1 is

already part of the blocked set, it cannot be explored. As each of the vertices only

have an out degree of 1, backtrack to the start vertex, v0.

Repeat the process above, exploring neighbours of each vertex, starting with v5 as

the neighbour of v0 and storing any completed cycles found upon each iteration.

3.5.9 Implementation

The implementation featured within this project uses Python code to identify all the

cycles that exist within the directed graph, and then filters out cycles with length

greater than three such that only the 2- and 3-cycles that are relevant to the kidney

exchange implementation are returned.

Figure 8: Strongly Connected Component
Example

3.5.10 ILP Formulation

One method used to model the kidney exchange is by formulating it as a binary

integer linear programming problem. To achieve this, a formulation which builds

upon cycle formulation, first described by Roth, Sonmez and Unver (2007) is used.

[15]. The formulation is as follows:

Let C be the set of cycles that exist within a directed graph D where the cardinality

of cn is greater than or equal to 2 but does not exceed 3.

C = {c1, c2, …, cm} 2 ≤ n(cm) ≤ 3.

Let b be a nx1 vector which represents the upper bound of each value. In this case 1,

as each donor may only donate one kidney.

b = [b1, b2, …, bn] where n = |p| א C and bi = 1

Let A be an nxm matrix where n equals the number of patients p included in the set

of cycles C, and m is the cardinality of C.

n = |p| א C m = n(C) A =

Let Aij = 1 where pi is in the cycle cj.

Aij = 1 where pi א cj.

Let x be an nx1 vector of binary variables where xi = 1 if and only if ci belongs to the

set of cycles in optimal solution S.

x = [x1, x2, …, xn], xn {1 ,0} א where xi = 1 iff ci א S

Let k be an mx1 vector to represent the cost of each cycle cn within C, where m is the

cardinality of C. Let kn be the cardinality of ck.

 k = [k1, k2, … km] where m = n(C) and km = n(cm)

a11 a12 … a1n

a21 a22 … a2n

⋮ ⋮ ⋮ ⋮
am1 am2 … amn

Now,

 Maximise kx such that Ax ≤ b, subject to x {1 ,0} א

3.5.11 Example

For the directed graph D, there exists 10 cycles with which 2 or 3 patients belong.

There are 10 unique patients belonging to the cycles.

C = {(1, 3, 2, 1), (1, 3, 14, 1), (1, 13, 15, 1), (2, 11, 3, 2), (2, 12, 3, 2), (3, 14, 3), (3,

14, 13, 3), (3, 14, 15, 3), (4, 9, 4), (13, 15, 13)}

Let b represent the upper bound for each donor.

b =

[

 ͳͳͳͳͳͳͳͳͳͳ]

Let x be a binary 10x1 vector such that xi = 1 if and only if ci belongs to the optimal

solution.

 x =

Let A be a 10x10 matrix to represent each of the cycles in C.

x
1

x
2

x
5

x
3

x
4

x
10

x
6

x
9

x
7

x
8

Let a 10x1 vector k represent the length of each of the identified cycles.

k = [3 3 3 3 3 2 3 3 2 2]

Objective function:

Maximise kx

Decision variables:

 x1, x2, x3, x4, x5, x6, x7, x8, x9 and x10

Constraints:

• Ax ≤ b

• xi {1 ,0} א

The above formulation is implemented using the Gurobi library and used the

.optimize() function to compute an optimal solution.

The optimal solution identified in this case selects cycles c2, c5 and c9. Therefore,

S = {(1, 13, 15, 1), (2, 12, 3, 2), (4, 9, 4)}.

In this solution, kx = 8, meaning 8 patients have been successfully matched to donors.

3.5.12 Limitations

As part of this project, large datasets are used to compute optimal solutions. Due to

the ILP formulation selected, every cycle that exists within the graph is identified by

Johnson’s Algorithm, before cycles which violate cycle length constraints are

filtered out. The final dataset used in this project contains 167 edges, which contains

more than 70,000 cycles. Unfortunately, memory and computational power is

limited within the project and it is infeasible to compute every cycle which exists

within large datasets. Therefore, this impacts the achievable results on large datasets.

To overcome this problem, filtering out large cycles is carried out inside Johnson’s

Algorithm such that the number of identified cycles is smaller. However, rejecting

large cycles earlier in the method prevents some of the cycles from ever being

identified. As a result, in the case of large datasets, only an approximation to an

optimal solution can be identified. The extent to which the approximation provides

an acceptable solution is discussed as part of the results and analysis offered in

Chapter four.

3.6 Top Trading Cycle

The Top Trading Cycle (TTC) is an algorithm developed for the exchange of items

without exchange of money. It is attributed to David Gale and was first published by

Scarf and Shapley (1974) [17]. The algorithm contains a pool of agents who are

looking to exchange an item. Each agent then chooses other items from the pool

which are preferable to the item they already own and lists these from most to least

preferred. Initially, the algorithm starts at agent 0 and assigns them to their most

favoured item. Following this, the owner of the item that agent 0 chose is assigned

to their preferred item. This process continues until a cycle is formed.

3.6.1 Top Trading Cycle Description

For this project, TTC is applied to the kidney exchange to coordinate potential

kidney transplants from donor to patient. For each patient-donor pair in the pool,

each patient has a list of the donors for which they are a match, such that they would

prefer to receive a kidney from that donor rather than remain with their own kidney.

Then, based on the matching scores between each patient and potential donor, the

donors are listed from the most preferable, highest matching score to the least

preferable, lowest matching score. Beginning with patient p0, each of the patients are

matched to their most preferable donor until a cycle is formed.

After each potential matching assignment, the donor who has been matched must be

removed from the preference list of the remaining patient’s in the pool, as each donor

can only donate one kidney. In addition, the patient who has selected a donor has

their preferences removed from the list, as they have been assigned their most

suitable donor. There are several possible consequences after this process. It is

possible that a donor is no longer desirable to any remaining patients, such that they

do not exist in any of the remaining patient’s preferences. In this exchange, patients

only receive a kidney on the condition that their donor donates a kidney. If a donor

is no longer desirable it is not possible for their associated patient to receive a kidney,

and the patient-donor pair is removed from the pool. It is also possible that a patient’s

preference list may now be empty, such that all the donors in their preference list

have either been matched or removed from the pool. This means that this patient

cannot receive a kidney in this matching and subsequently the patient and their

associated donor are removed from the pool.

In some cases, a match is reached and a cycle is formed. In this situation, all the

patients and their corresponding donors are removed from the pool, and the process

continues with the remaining patient-donor pairs to identify any further cycles in the

dataset. This process continues until either all the patient donor pairs are matched or

there are no further matchings between the remaining patient-donor pairs. The result

is a set of cycles containing donor-patient pairs who may exchange kidneys, which

is now a possible solution.

When a potential solution is found, the preference lists are reset and the algorithm

runs again now starting one patient along from the last run. For example, on the

second run of the algorithm, patient p1 is matched to their preferred kidney first. This

results in a different set of exchange cycles, which may or may not have a higher

cardinality or total matching score than the previous identified solution. When every

potential solution has been identified, an optimal solution is selected based on

maximising cardinality and matching score total.

It is possible for a chain of patient-donor assignments to fail to result in a closed

cycle. This may occur when the patient who is next to select their kidney no longer

has any preferred kidneys left in the pool. In the event of this, all patient-donor pairs

are returned to the pool and the algorithm continues one patient further along than it

started the last time.

3.6.2 Pseudocode

Below is the pseudocode for TTC with application to the kidney exchange.

set current patient to patient 0

while there are patients to explore

if patient has an empty donor preference list then

 if current patient’s donor has not been matched then

 no cycle has been found

 reset the donor preferences to the original list

 reset matches to beginning of current cycle

 iterate the patient number

 continue

 else

 store current matching

store current state of donor preferences

 continue with next patient

assign current patient to its first preference donor

clear current patient’s preferences

remove matched donor from other patient’s list of preferred

donors

remove any patients with an empty donor preference list

remove deleted patients from other's preference list

set current patient to patient associated with matched donor

3.6.3 Example

Given a set of patients S, such that S = {s0, s1, s2, s3, s4, s5}, and a set of donors D,

such that D = {d0, d1, d2, d3, d4, d5}, for each patient sx, there exists a subset spx of D

such that each donor in spx is a match for patient sx. The donors in spx are ordered by

the preference of dx to sx. The resulting graph is shown in Figure 10 below.

Figure 9: Top Trading Cycle Example 1

Patient s1 is not a match for any of the donors in the pool, therefore patient s1 and its

corresponding donor d1 are removed from the pool as they cannot be allocated as

part of an optimal matching. Similarly, donor d2 is not a match for any of the patients

in S, therefore donor d2 and the corresponding patient s2 are also removed from the

pool.

Please note, if any of the remaining patient-donor pairs were left without any

preferred donors, or other patients did not prefer their donor, they would also be

removed.

Now the algorithm begins assigning the patients to their preferred donor, starting

with patient s0.

The result of the allocations is as follows:

a1 = s0 → d3, s3 → d4, s4 → d0

The resulting allocations form a cycle, such that the patient and donor of pairs p0d0,

p3d3 and p4d4 are all featured in the matching.

This step is repeated until each of the donors have been allocated as the first patient

in the matching. The resulting allocations are shown below.

a2 = s3 → d4, s4 → d0, d0 → d3

a3 = s4 → d0, s0 → d3, s3 → d4

a4 = s5 → d4, s4 → d0, s0 → d3, s3 → d5

Figure 10: Top Trading Cycle Example 2

Note: in the above example, each of the allocations in A form a cycle and are possible

solutions, where this is not the case, allocations that do not form a cycle are rejected.

The allocations a1, a2 and a3 all feature the same cycle of patient-donor pairs s0d0,

s3d3 and s4d4 where each patient is allocated to its first choice donor. In these

matchings, patient s5 is not allocated a kidney.

Allocation a4 provides the optimal solution with a cardinality of 4, including all the

patient-donor pairs in the pool. Patients s5, s4 and s0 are matched to their most

compatible kidney, and patient s3 is matched to its second choice kidney.

3.6.4 Extending the Dataset

The matching score between a patient and donor is made up from computations of

the following categories: HLA mismatch, matching run points the patient has taken

part in, level of sensitisation and age difference between the donors. The Preflib

dataset provided values for the level of sensitisation for each patient, however the

other data was not available. As a result, the dataset was extended such that the

matching score could be computed accurately. The previous matching run points

were randomly generated values between 0 and 14, with a mean of 10. This models

patients with waiting list times from less than 3 months up to 3 years and 6 months,

with an average waiting time of 3 years such that the data reflects the current reality.

The HLA mismatch values were generated randomly for each matching patient-

donor from the set {0, 5, 10, 15} as these are the values which represent HLA

mismatch. The ages of both the patient and the donor were generated randomly

ranging from 18 to 70. The minimum value of 18 reflects the scope of the project

focussing on the adult transplant waiting list. Although there is no age limit for

transplant approval, it is less likely for patients over 70 to obtain approval due to the

increased risks posed by surgery, which is reflected by the upper limit of 70 within

the dataset. From the extended dataset, the matching score for each matching patient-

donor pair is computed from the following formula:

Score = ͷͲP + �ʹ + � + �

where P = previous matching run points, S = sensitisation levels, H = HLA

mismatch and A = 0 where patient-donor age difference is less than 20, A = 3

otherwise. This mirrors the matching score currently implemented by the NHS.

The calculated matching scores are then used as the weight for the edge between the

relevant patient-donor matching.

In addition, the dataset has been extended to represent the stage of kidney disease,

and therefore indicate the level of illness in each patient. Under the NHS, patients

are advised to consider transplant as a treatment option when their CKD reaches

stage 4. Therefore, each patient has been assigned a stage of either 4 or 5 (end stage).

3.6.5 Implementation

In this project, the implementation of this algorithm is extended to trial different

methods of prioritising patients and selection of kidneys. Whilst it is true that the

patient-donor matches with the highest matching score have the highest chance of a

successful transplant, it is possible for each patient to be assigned to any donor that

they are a match for. Based on this principle, this project explores the results when

other factors were prioritised, such as the most unwell patients and patients who were

more difficult to match.

One extension made to the TTC implementation is to extend the dataset to categorise

each of the patients into degrees of illness caused by their kidney disease. To model

this principle within the algorithm, each cycle is assigned a score based on how many

stage 5 patients are allocated a kidney within that solution. According to this, the

algorithm prioritises solutions where end stage patients are allocated a kidney over

stage 4 patients.

Another extension made to the TTC algorithm is to prioritise patients who are

difficult to match. For this implementation, difficulty to match is defined by the

sensitisation level of the patient from the dataset provided. This value represents the

percentage of the population that the donor is likely to have antibodies against.

Therefore, to prioritise these patients two alterations have been made to the TTC

algorithm. The prioritisation of highly sensitised patients is implemented by

assigning each solution a value calculated from the sum of the sensitisation levels of

the patients in the matching. Then, the algorithm selects the optimal solution based

on the matchings with the highest levels of sensitised patients. One potential side

effect of this method is that matchings with highly sensitised patients are more likely

to fall through post matching but before surgery. This is due to complications in the

final testing process between the patient and donor before the transplant is carried

out.

As per the regulations adopted by the NHS, the maximum cycle length for

transplants within the United Kingdom is 3. However, globally it is feasible for larger

cycle lengths to occur. For example, the longest cycle completed in the Netherlands

involved 6 pairs and 12 operations. To account for this within the project, a user-

input field is included to define the length of the cycle allowed. This value, k, is used

as an upper limit to the number of patients included in a cycle that forms part of a

potential solution. In the code written for this project, when a cycle is identified, the

length of the cycle is checked to ensure that it does not exceed the amount allowed

by k. In the case where the cycle length is greater than k, the solution is rejected.

Alternatively, it is accepted as part of a potential solution.

3.7 Top Trading Cycle and Chains

Non-directed altruistic donors are donors who do not name or specify the intended

recipient of their kidney. This means that an additional kidney is available within the

pool, without a paired patient. NDADs create domino chains which facilitate

additional transplants that would not otherwise be possible. Within these chains, the

donor who is paired with the patient receiving the NDAD kidney, donates their

kidney to the kidney transplant waiting list.

Figure 11: Altruistic Donor Chain

As demonstrated by Figure 12, four additional transplants could be allocated due to

the NDAD’s donation. This is because in the case where there are no existing cycles

between patients s0, s1, s2 and s3 no transplants could be allocated if the altruistic

donor had donated straight to the waiting list.

To model this within my dataset and implementation, each of the altruistic donors in

the matching pool are assigned a dummy patient, who is marked as compatible with

every donor in the pool. This is because the remaining kidney will be donated to the

waiting list, where a suitable match will be available regardless of existing factors

such as blood type. Therefore, when a cycle is formed including a NDAD, it is

actually a domino chain.

Another benefit to creating domino chains is that, unlike cycles, transplants allocated

as part of a chain do not need to be performed simultaneously. This is due to the lack

of risk of donor withdrawal, as NDADs are not expecting anything in return for the

donation of their kidney. This means that the length of the chain is not restricted as

with a cycle.

3.7.1 Example

 Let {d0: s1, d1: s2, d2: s3, d3: s0} be an optimal solution computed by TTCC,

where s0d0, s1d1 and s3d3 are patient donor pairs, and d2 is a NDAD. This solution

represents the following action:

• Donor d0 donates their kidney to patient s1

• Donor d1 donates their kidney to patient s2, which represents a donation to

the kidney transplant waiting list

• Altruistic donor d2 donates their kidney to patient s3

• Donor d3 donates their kidney to patient s0

4 Results and Evaluation
4.1.1 Dataset 1

 The first dataset that will be used to produce a matching for analysis is a

reduction of the 25th dataset as provided in the sets of data by Preflib, meaning that

the altruistic donors have been removed. This dataset is small, containing 16 patients,

and no altruistic donors. There are 56 edges connecting the patients and donors in

the graph.

Table 1 shows a sample of the graph data for graph D1 which belongs to this dataset.

Patient Donor HLA

0 15 10

0 5 15

0 3 0

0 13 10

0 12 5

0 7 5

0 4 0

0 14 15

0 11 5

0 6 10

1 9 5

Table 1: Sample of Graph Data for Dataset D1

Patient-

Blood

Donor-

Blood %Pra

Out-

Deg Altruist

Previous

Matching

Run

Points

Patient-

Age

Donor-

Age

0 O O 0.45 10 0 7 69 23

1 A O 0.9 12 0 9 67 25

2 O B 0.45 0 0 9 60 37

3 O B 0.05 1 0 11 52 62

4 O B 0.05 1 0 11 63 59

5 O A 0.05 4 0 10 30 44

6 B O 0.2875 11 0 9 27 35

7 O A 0.05 3 0 11 39 23

8 O A 0.45 3 0 9 57 31

9 O A 0.9 4 0 10 46 66

10 A A 0.45 2 0 11 22 33

11 A AB 0.05 0 0 11 53 52

12 O A 0.05 2 0 8 24 68

13 A B 0.2875 1 0 11 66 47

14 O A 0.45 2 0 11 50 35

15 A B 0.05 0 0 8 66 24

Table 2: Patient-Donor Details for Pairs in Dataset D1

4.1.2 Dataset 2

 The second dataset that will be used to produce a matching for analysis is

the 25th dataset as provided by Preflib. The dataset includes 16 patients as in

dataset 1, with the addition of 2 altruistic donors, 18 in total. As a result of this,

there are 49 additional edges, 105 in total.

Table 3 shows a sample of the additional edges in the graph D2.

Patient Donor HLA

15 17 0

15 16 0

16 5 10

16 2 15

16 14 10

16 7 15

16 8 10

16 4 5

16 12 10

17 6 0

17 12 5

Table 3: Sample of Additional Edges in Dataset D2

The patients contained in the second dataset D2 are the same as in dataset D1, with
the addition of altruistic donors and their corresponding dummy patients, p16 and
p17.

Patient-

Blood
Donor-

Blood %Pra

Out-

Deg Altruist

Previous

Matching

Run

Points

Patient-

Age

Donor-

Age

16 B O 0.05 7 1 9 70 36

17 A B 0.05 10 1 12 35 66

Table 4: Altruistic Donor Information for Dataset D2

4.1.3 Dataset 3

Dataset D3 contains the data from dataset D2, however it includes one final

extension: the introduction of compatible patient-donor pairs into the matching

pool. As a result, this dataset contains 21 patient-donor pairs, including 3

compatible patient-donor pairs. There are 62 additional edges on the graph, 167 in

total. Table 5 shows the patient-donor information for the compatible patient-donor

pairs.

Patient-

Blood
Donor-

Blood %Pra

Out-

Deg Altruist

Previous

Matching

Run

Points

Patient-

Age

Donor-

Age

18 O O 0.05 4 0 0 48 32

19 A O 0.05 12 0 0 25 34

20 AB B 0.05 21 0 0 46 52

Table 5: Compatible Patient-Donor Pair Information for Dataset D3

Table 6 shows a sample of the information on the matching relations between the
additional and existing patients.

Patient Donor HLA

18 0 5

18 18 0

18 1 0

18 6 10

19 5 10

19 7 0

19 18 5

19 8 5

19 9 5

19 10 0

Table 6: Compatible Patient-Donor Matching Information for Dataset D3

4.2.1 Pairwise Exchange Results Dataset 1

The directed graph which represents dataset D1 is shown below in Figure 13.

Figure 12: Directed Graph for Dataset D1

The directed graph can also be represented as a matrix:

 . Ͳ ͳ Ͷ ͸Ͳ Ͳ Ͳ Ͳ ͳͳ Ͳ Ͳ Ͳ ͳͶ Ͳ Ͳ Ͳ ͳ͸ ͳ ͳ ͳ Ͳ

When this data is input into the Blossom Algorithm, the following result is obtained:

Figure 13: Screenshot of Blossom Algorithm Output

The resulting output file contains:

Figure 14: Screenshot of Blossom Output File

This means that the first node in the graph should be matched to the third node in
the graph. Therefore, the optimal solution is as follows:

• Donor d0 donates their kidney to patient p6
• Donor d6 donates their kidney to patient p0

This solution has a cardinality of 2. As a result, 14 willing donors are unable to
donate, along with 14 patients who are unable to receive as part of this matching.

Figure 15: Pairwise Exchange Optimal Matching for Dataset D1

4.2.2 Pairwise Exchange Results Dataset 2

The directed graph produced from dataset D2 is shown in Figure 17 below:

Figure 16: Directed Graph for Dataset D2

The graph, shown in Figure 17, can be represented as a matrix, shown below: . Ͳ ͳ ʹ ͵ Ͷ ͷ ͸ ͹ ͺ ͻ ͳʹ ͳͶ ͳ͸ ͳ͹Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳʹ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳ͵ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳͶ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳͷ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳ͸ ͳ ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ͹ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳͺ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳͻ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳͳʹ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳͳͶ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳͳ͸ Ͳ Ͳ ͳ Ͳ ͳ ͳ Ͳ ͳ ͳ Ͳ ͳ ͳ Ͳ Ͳͳ͹ Ͳ Ͳ ͳ ͳ ͳ ͳ ͳ ͳ ͳ ͳ ͳ ͳ Ͳ Ͳ

The output from the Blossom Algorithm is shown in Figures 18 and 19 below:

Figure 17: Screenshot of Output from Blossom Algorithm for Dataset D2

Figure 18: Screenshot of Blossom Algorithm Output File

This output shows that the optimal solution is as follows:

• Donor d0 donates their kidney to patient p6
• Donor d2 donates their kidney to the active waiting list
• Donor d3 donates their kidney to the active waiting list
• Donor d6 donates their kidney to patient p0

• Donor d16 donates their kidney to patient p2
• Donor d17 donates their kidney to patient p3

As a result, the cardinality of this solution is 6, as there are 4 patients from the
matching pool and two patients from the active waiting list who are allocated a
kidney.

Figure 19: Pairwise Exchange Optimal Solution for Dataset D2

4.2.3 Pairwise Exchange Results Dataset 3

The directed graph produced from dataset D3 has 57 edges connecting 18 donor-
patient nodes. Therefore, the resulting graph is large and viewing the graph does not
aid understanding and is omitted as a result.

 . Ͳ ͳ ʹ ͵ Ͷ ͷ ͸ ͹ ͺ ͻ ͳͲ ͳʹ ͳͶ ͳ͸ ͳ͹ ͳͺ ͳͻ ʹͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳ Ͳʹ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳ Ͳ Ͳ Ͳ͵ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ ͲͶ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳ Ͳ Ͳ Ͳͷ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳ Ͳ Ͳ Ͳ͸ ͳ ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳ Ͳ ͳ͹ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳ Ͳ Ͳ Ͳͺ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳ Ͳ Ͳ Ͳͻ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ ͲͳͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳͳʹ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳ Ͳ Ͳ ͲͳͶ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳ Ͳ Ͳ Ͳͳ͸ Ͳ Ͳ ͳ ͳ ͳ ͳ Ͳ ͳ ͳ Ͳ Ͳ ͳ ͳ Ͳ Ͳ Ͳ Ͳ ͳͳ͹ Ͳ Ͳ ͳ Ͳ ͳ ͳ ͳ ͳ ͳ ͳ Ͳ ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ

ͳͺ ͳ ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳͳͻ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͲʹͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ ͳ

The output from the Blossom Algorithm is shown in Figure 21 below:

Figure 20: Screenshot of Blossom Algorithm Output for Dataset D3

Figure 21: Screenshot of Output File for Blossom Algorithm Dataset D3

This output shows that the optimal solution is as follows:

• Donor d0 donates their kidney to patient p6
• Donor d1 donates their kidney to patient p15
• Donor d2 donates their kidney to patient p13

• Donor d3 donates their kidney to patient p14
• Donor d6 donates their kidney to patient p0

• Donor d10 donates their kidney to the active waiting list
• Donor d13 donates their kidney to patient p2
• Donor d14 donates their kidney to patient p3

• Donor d15 donates their kidney to patient p1
• Donor d16 donates their kidney to patient p10

Figure 22: Pairwise Exchange Optimal Solution for Dataset D3

As a result, the cardinality of this solution is 10, as there are 9 patients from the
matching pool and one patient from the active waiting list who are allocated a
kidney.

4.3.1 ILP Results Dataset 1

The SCCs identified by Kosaraju’s Algorithm for graph D1 are as follows:

15, 11, 12, 10, 14, 2, (0, 3, 6, 1, 4, 5, 13, 7, 9, 8)

Figure 23: SCCs for Dataset D1

As a result, 30 edges were excluded from D1, reducing the number of edges left to
optimise from 58 to 28.

From the identified SCCs, Johnson’s algorithm computed all the cycles within the
graph where cycle length k such that 2 ≤ k ≤ 3. There are 13 cycles, 3 of length 2,
and 9 of length 3.

The set of cycles C is as follows:

C = {(0, 3, 6, 0), (0, 6, 0), (0, 6, 1, 0), (0, 4, 6, 0), (0, 13, 6, 0), (1, 3, 6, 1), (1, 6, 1),
(1, 4, 6, 1), (1, 13, 6, 1), (4, 6, 4), (5, 13, 6, 5), (6, 7, 13, 6), (6, 8, 13, 6)}

Let C be represented by the following matrix:

 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

0 1 1 1 1 1 0 0 0 0 0 0 0 0

1 0 0 1 0 0 1 1 1 1 0 0 0 0

3 1 0 0 0 0 1 0 0 0 0 0 0 0

4 0 0 0 1 0 0 0 1 0 1 0 0 0

5 0 0 0 0 0 0 0 0 0 0 1 0 0

6 1 1 1 1 1 1 1 1 1 1 1 1 1

7 0 0 0 0 0 0 0 0 0 0 0 1 0

8 0 0 0 0 0 0 0 0 0 0 0 0 1

9 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 1 0 0 0 1 0 1 1 1

Let b represent the upper bound for each donor and x be a binary 10x1 vector such

that xi = 1 if and only if ci belongs to the optimal solution.

 b =

[

 ͳͳͳͳͳͳͳͳͳͳ]

 x =

Let a 13x1 vector k represent the length of each of the identified cycles.

k = [3 2 3 3 3 3 2 3 3 2 3 3 3]

Now, maximise kx, with respect to Ax ≤ b and xi {1 ,0} א.

When using the Gurobi Optimiser, the following output is returned:

Figure 24: Screenshot of ILP Results for Dataset D1

The returned cycle which forms the optimal solution is c0. Cycle c0 has a cardinality

of 3, meaning that 3 patients are allocated a kidney transplant in total as part of the

optimal solution. It is of note that in this particular circumstance, there are 8 other

cycles which also have a cardinality of 3, therefore, to choose the optimum cycle,

the total weight of each cycle should be considered. A limitation of this program is

that cardinality is the determining factor in choosing an optimal matching, and total

weight is not considered. This means that whilst c0 was selected as the optimal

solution, any of the cycles length 3 provide the same cardinality.

Cycle c0 = (0, 3, 6, 0). This represents the following action:

• Donor d0 donates their kidney to patient p3

• Donor d3 donates their kidney to patient p6

• Donor d6 donates their kidney to patient p0

Figure 25: Optimal ILP Solution for Dataset D1

This dataset was also used with the cycle length k constraint such that 2 ≤ k ≤ 3, but
without the chain length constraint. As transplants from domino chains are not
required to occur simultaneously, the need for a small chain is not always necessary.

The SSCs identified from graph D1, are the same as in the results above. However,
no additional chains were identified. Therefore, the results in this case are the same
as above.

Additionally, this dataset was also used with the ILP formulation without the cycle
length constraint such that cycle length = k where 2 ≤ k ≤ 3. This set of results is to
highlight the difference in cardinality of the maximum matching and state the case
for research into the practicalities of cycles containing more patients.

The SCCs identified within the graph D1, are the same as above. From the identified
SCCs, Johnson’s Algorithm computed all the cycles within D1. There are now 23
cycles within the set C, shown below:

C = {(0, 3, 6, 0), (0, 3, 6, 1, 0), (0, 6, 0), (0, 6, 1, 0), (0, 4, 6, 0), (0, 4, 6, 1, 0), (0, 5,
13, 6, 0), (0, 5, 13, 6, 1, 0), (0, 13, 6, 0), (0, 13, 6, 1, 0), (0, 7, 13, 6, 0), (0, 7, 13, 6,
1, 0), (1, 3, 6, 1), (1, 6, 1), (1, 4, 6, 1), (1, 5, 13, 6, 1), (1, 13, 6, 1), (1, 7, 13, 6, 1),

(1, 9, 13, 6, 1), (4, 6, 4), (5, 13, 6, 5), (6, 7, 13, 6), (6, 8, 13, 6)}

Now as explained in the detailed ILP formulation in Chapter 3.5, maximise kx, with

respect to Ax ≤ b and xi {1 ,0} א.

When using the Gurobi Optimiser, the following output is returned:

Figure 26: Screenshot of ILP Results for Dataset D1 without cycle length constraints

The optimal solution is returned as cycle c7 only with a cardinality of 5, meaning that
2 additional patients are allocated a kidney compared to the solution which includes
the cycle length constraint. As above, as a single cycle of length 5 has been selected,
there are 2 other cycles which would also return maximum cardinality in this case.
Actions required by selection of cycle c7 detailed below:

Cycle c7 = (0, 5, 13, 6, 1, 0)
• Donor d0 donates their kidney to patient p5
• Donor d5 donates their kidney to patient p13
• Donor d13 donates their kidney to patient p6
• Patient d6 donates their kidney to patient p1
• Donor d1 donates their kidney to patient p0

Figure 27: Optimal ILP Solution for Dataset D1 without cycle length constraints.

4.3.2 ILP Results Dataset 2

The SCC identified by Kosaraju’s Algorithm for graph D2 is as follows:

(0, 3, 6, 1, 2, 16, 4, 17, 5, 10, 11, 15, 13, 7, 8, 9, 12, 14)

As the altruistic donor’s dummy patients are compatible with every donor, each

vertex becomes accessible from every other vertex, meaning that the graph D2 is one

SCC. As a result, the graph contains 18 patient-donor pairs, connected by 106 edges,

for which a diagram does not aid understanding due to the vast number of edges.

From the identified SCC, Johnson’s algorithm computed all the cycles within the

graph where cycle length k such that 2 ≤ k ≤ 3. There are 78 cycles, 20 of length 2,

and 58 of length 3.

The set of cycles C is as follows:

C = {(0, 3, 6, 0), (0, 6, 0), (0, 6, 1, 0), (0, 4, 6, 0), (0, 17, 6, 0), (0, 13, 6, 0), (1, 3, 6,
1), (1, 6, 1), (1, 4, 6, 1), (1, 17, 6, 1), (1, 13, 6, 1), (2, 16, 2), (2, 17, 6, 2), (2, 17, 2),
(3, 6, 17, 3), (3, 17, 3), (4, 6, 16, 4), (4, 6, 4), (4, 6, 17, 4), (4, 16, 4), (4, 17, 6, 4),

(4, 17, 4), (5, 16, 5), (5, 17, 6, 5), (5, 17, 5), (5, 10, 16, 5), (5, 10, 17, 5), (5, 11, 16,
5), (5, 11, 17, 5), (5, 15, 16, 5), (5, 15, 17, 5), (5, 13, 6, 5), (5, 13, 16, 5), (5, 13, 17,
5), (6, 17, 6), (6, 10, 17, 6), (6, 11, 17, 6), (6, 15, 17, 6), (6, 7, 17, 6), (6, 7, 13, 6),
(6, 8, 17, 6), (6, 8, 13, 6), (6, 12, 17, 6), (7, 16, 7), (7, 17, 7), (7, 11, 16, 7), (7, 11,
17, 7), (7, 15, 16, 7), (7, 15, 17, 7), (7, 13, 16, 7), (7, 13, 17, 7), (8, 16, 8), (8, 17,
8), (8, 10, 16, 8), (8, 10, 17, 8), (8, 11, 16, 8), (8, 11, 17, 8), (8, 13, 16, 8), (8, 13,

17, 8), (9, 17, 9), (9, 10, 17, 9), (9, 11, 17, 9), (9, 15, 17, 9), (9, 13, 17, 9), (10, 16,
14, 10), (10, 17, 14, 10), (11, 16, 12, 11), (11, 16, 14, 11), (11, 17, 12, 11), (11, 17,

14, 11), (12, 16, 12), (12, 17, 12), (12, 15, 16, 12), (12, 15, 17, 12), (14, 16, 14),
(14, 17, 14), (14, 15, 16, 14), (14, 15, 17, 14)}

As in the examples featured earlier in the report, C will be represented by a 78x18

matrix, with a column to represent each of the cycles in C, and a row to represent

each of the patients in the dataset. Cij = 0 where patient i does not belong to cycle j

and Cij = 1 where patient i does belong to cycle j.

Let b represent the upper bound for each donor such that every value in b = 1, and x

be a binary 78x1 vector such that xi = 1 if and only if ci belongs to the optimal

solution.

Let a 78x1 vector k represent the length of each of the identified cycles.

k = [3 2 3 3 3 3 3 2 3 3 3 2 3 2 3 2 3 2 3 2 3 2 2 3 2 3 3 3 3 3 3 3 3 3 2 3 3

3 3 3 3 3 3 2 2 3 3 3 3 3 3 2 2 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 2 2 3 3

2 2 3 3]

Now, maximise kx, with respect to Ax ≤ b and xi {1 ,0} א.

When using the Gurobi Optimiser, the following output is returned:

Figure 28: Screenshot of Optimal ILP Solution for Dataset D2

 The returned cycles which form the optimal solution are c2, c29 and c60. The total

cardinality of this solution is 9, 6 more than the cardinality of the optimal solution

excluding the altruistic donors. This means that the addition of just two altruistic

donors into the pool has facilitated twice as many additional allocations. The

resulting action from this matching is detailed below:

Cycle c2 = (0, 6, 1, 0).
• Donor d0 donates their kidney to patient p6
• Donor d6 donates their kidney to patient p1
• Donor d1 donates their kidney to patient p0

Cycle c29 = (5, 15, 16, 5).
• Donor d5 donates their kidney to patient p15
• Donor d15 donates their kidney to the waiting list
• Altruistic donor d16 donates their kidney to patient p5

Cycle c60 = (9, 10, 17, 9).

• Donor d9 donates their kidney to patient p10
• Donor d10 donates their kidney to the waiting list
• Altruistic donor d17 donates their kidney to patient p9

As a result of this matching, 7 patients within the matching pool have been allocated

a kidney, and 2 patients on the kidney transplant waiting list have also been donated

a kidney.

Figure 29: Optimal ILP Solution for Dataset D2, where Cycle Length Restricted

Due to the nature of altruistic domino chains, it is not required for the allocated

transplants to be carried out simultaneously, as discussed in the introduction to

domino chains in Chapter 3.7. Therefore, this dataset is also trialled against the

constraint where cycles must be kept between length 2 and 3, but domino chains can

be of any length. The SCC identified in the graph remains as above.

The set of identified cycles C where cycle length k such that 2 ≤ k ≤ 3, and domino

chains of any length contains 1075 cycles and chains. From this, the ILP formulation

will be modelled as described in the examples above both earlier in this chapter, and

in Chapter 3.7.

When using the Gurobi Optimiser, a sample of the output is displayed in Figure 31
below:

 ⋮

Figure 30: Sample of Screenshot of ILP Solution for D2

The optimal solution in this case selects cycles c105 and c1070. The cardinality of this

matching is 12, meaning an additional 3 patients have been allocated a kidney than

when the domino chain length was restricted.

Cycle c105 = [0, 5, 10, 11, 16, 8, 13, 6, 1, 0]

• Donor d0 donates their kidney to patient p5
• Donor d5 donates their kidney to patient p10
• Donor d10 donates their kidney to patient p11
• Donor d11 donates their kidney to the waiting list
• Altruistic donor d16 donates their kidney to patient p8
• Donor d8 donates their kidney to patient p13
• Donor d13 donates their kidney to patient p6
• Donor d6 donates their kidney to patient p1
• Donor p1 donates their kidney to patient p0

Cycle c1070 = [12, 15, 17, 12]
• Donor d12 donates their kidney to patient p15
• Donor d15 donates their kidney to the waiting list
• Donor d17 donates their kidney to patient p12

As a result of this matching, 10 patients from the matching pool and 2 patients from

the waiting list are allocated a kidney.

Figure 31: Optimal ILP Solution for Dataset D2, No Restrictions

Finally, ILP was used to compute the optimal solution where the cycle length k, and

the domino chain length l are both unrestricted. This models the situation where

particularly the constraint on cycle length is ignored, to understand the potential

limitations imposed on the optimal solution further.

As a result, 10 additional cycles were identified to decipher between to compute the

optimal solution.

When using the Gurobi Optimiser, a sample of the output is displayed in Figure 33

below:

 ⋮

The optimal matching in this case consists of cycles c105 and c1065.The cardinality of
this matching is 12, so no additional patients have been allocated a kidney. Although
one of the chosen cycles differs from the previous result, this is due to an arbitrary
selection of a 3-cycle matching, and therefore the difference between the two
solutions is negligible. Therefore, in this case, the constraint on the cycle length k, 2
≤ k ≤ 3, does not limit the optimality of the solution.

Figure 32: Sample of Screenshot of Optimal ILP Solution for Dataset D2, No Restrictions

4.3.3 ILP Results Dataset 3

The SCC identified by Kosaraju’s Algorithm for graph D3 are as follows:

(0, 3, 6, 1, 2, 16, 4, 17, 5, 10, 11, 18, 19, 7, 13, 15, 8, 9, 12, 14, 20)

As this does not reduce the initial graph, there are still 167 edges and 21 nodes.

Therefore, an image of the SCC graph does not aid understanding.

Due to the large number of matches between patients and donors, and failure to

reduce the graph using Kosaraju’s Algorithm, this dataset is considered large. As a

result, it is not possible to store every instance of a cycle that exists within D3 due to

memory and computational power resources available. Therefore, this dataset is

processed according to the secondary method presented in Chapter 3.5.12.

In this instance, the initial search for cycles is limited to 10. As a result, it is possible

that not every single cycle of lengths 2 and 3 were identified. Despite this, 146 cycles

were identified, but due to the large number, they are not shown here.

As before, let a 146x1 vector b represent the upper bound for each donor and let a

146x1 vector x represent the selected cycles such that xi = 1 if and only if ci belongs

to the optimal solution.

Let an 146x1 vector k represent the length of each of the identified cycles.

Now, maximise kx, with respect to Ax ≤ b and xi {1 ,0} א.

Despite limiting the cycle search, the algorithm runtime has increased from almost

instantaneously to 25.4 seconds. When using the Gurobi Optimiser, the following

output is returned:

Figure 33: Screenshot of Optimal ILP Solution for Dataset D3 Restricted Cycle and Chain Length

The selected cycles are as follows:

Cycle c52 = (1, 12, 18, 1), cycle c65 = (4, 6, 20, 4), cycle c115 = (7, 13, 16, 7), cycle
c129 = (8, 11, 19, 8), cycle c140 = (9, 15, 17, 9)

This solution has a cardinality of 15, made up from 13 matching pool patient

allocations and 2 active waiting list allocations. This is an improvement of 6 when

compared to the ILP solution that does not include the compatible patient-donor

pairs. In addition, this solution identified 3 more matches than the equivalent TTC

solution. Therefore, this approach can be considered a good approximation to an

optimal solution.

Figure 34: Optimal ILP Solution Approximation for Dataset D3

Considering only eligible cycles and chains, where cycle length k such that 2 ≤ k ≤

3 and chain length l unrestricted and limiting the cycle length search to 10, 74,157

cycles and chains were identified. Due to the large number of cycles found, they are

not listed here. Every patient-donor pair in D3 is included in one or more cycles.

Therefore, let C be represented by a 74157x21 matrix.

As before, let a 21x1 vector b represent the upper bound for each donor and let a

21x1 vector x represent the selected cycles such that xi = 1 if and only if ci belongs

to the optimal solution.

Let a 74157x1 vector k represent the length of each of the identified cycles.

Now, maximise kx, with respect to Ax ≤ b and xi {1 ,0} א.

When using the Gurobi Optimiser, the following output is returned:

Figure 35: Screenshot of Optimal ILP Solution for Dataset D3

The optimal solution returned by Gurobi Optimiser selects cycles c35518,
c52303, c59231 and c73536, which are as follows:

c35518 = (0, 14, 15, 17, 8, 13, 18, 1, 0), c52303 = (3, 6, 20, 3), c59231 = (5, 10, 16, 5),

c73536 = (7, 11, 19, 7)

The optimal solution has a cardinality of 17, consisting of three 3-cycles and

an ADC of length 8. As part of this solution, 15 patients from the matching

pool and 2 patients from the active waiting list are allocated a kidney. The

solution had a total run time of 2m 23s.

Figure 36: Optimal Solution Approximation for Dataset D3

Finally, ILP was used to compute an approximation to an optimal solution where the

cycle length is unrestricted, but the cycle length search is restricted to a maximum

of 10. In this instance, 76,064 cycles were identified.

Therefore, let C be represented by a 76064x21 matrix.

As before, let a 21x1 vector b represent the upper bound for each donor and let a

21x1 vector x represent the selected cycles such that xi = 1 if and only if ci belongs

to the optimal solution.

Let a 76064x1 vector k represent the length of each of the identified cycles.

Now, maximise kx, with respect to Ax ≤ b and xi {1 ,0} א.

When using the Gurobi Optimiser, the following output is returned:

Figure 37: Screenshot of Output for ILP Dataset D3

The optimal solution selected cycles c12875, c38527 and c75737, which are as follows:

c12875 = (0, 4, 17, 9, 13, 6, 0), c38527 = (1, 2, 16, 20, 14, 11, 18, 1), c75737 = (8, 10, 15,

19, 8)

The solution had a run time of 2m 46s. It has a cardinality of 17, consisting of 15

patients from the matching pool and 2 from the active waiting list. The cardinality

of this solution matches the cardinality where the cycle length was restricted.

Therefore, this solution does not offer an improvement, and shorter cycle lengths are

preferable due to reduced risk of transplants falling through post-matching.

4.4.1 Top Trading Cycle Results Dataset 1

The top trading cycle generates a list of preferred donors for each patient, from

most compatible match to least compatible match. The initial preference list for

each patient is shown in Table 7 below:

 Matching Donors

Patient 1st 2nd 3rd 4th, ...

0 6 1

1 6

2 1 6

3 1 0

4 1 0 6

5 1 0 6

6 0 4 3 1, 13

7 6 0 1

8 6

9 1

10 5 6 8 9

11 14 12 10 9, 8, 7, 5, 1, 6, 0

12 6 1 0

13 8 7 1 9, 5, 0

14 0

15 6 5 0 14, 12, 10, 9, 7, 1

Table 7: Donor Preferences for each Patient in Dataset D1

As demonstrated by Table 7 above, donors d2, d11, and d15 are not a match to any
patients in the pool, therefore the corresponding patient-donor pairs are also
removed from the pool. As a result, there are 13 patients remaining. The cycle
length k is restricted such that 2 ≤ k ≤ 3.

The optimal solution returned is the following cycle:

(1, 6, 0, 1)

Figure 38: Screenshot of Optimal TTC Solution for Dataset D1, Cycle Length Restricted.

This cycle has a cardinality of 3, matching the maximum cardinality identified by

ILP. The cycle chosen as optimal by TTC differs from ILP as TTC takes the weight

of each edge into consideration. Therefore, the solution identified by TTC is more

optimal as the likelihood of the transplant taking place and achieving successful

results is higher.

Figure 39: Optimal TTC Solution for Dataset D1

Additionally, TTC was used to identify the maximum cardinality solution where

cycle length k was unrestricted. The initial preference list remains the same as in the

example above.

The optimal solution returned the cycle shown below:

(5, 1, 6, 13, 5)

Figure 40: Screenshot of TTC Solution for D1, Cycle Length Unrestricted

The implementation of TTC includes some additional definitions of optimality to

investigate the effect on the optimal solution. The first extension for this dataset, is

to prioritise the patients who have the most accelerated cases of CKD, namely stage

5 or end stage kidney failure.

The optimal solution, inclusive of the stage of each patient’s condition, returned the

following cycle:

(7, 6, 13, 7)

Figure 41: Screenshot of Optimal TTC Solution with Stage 5 Priority

In this instance, the patients included in the original optimal solution are not end-

stage CKD patients. Therefore, when the stage of each patient’s condition was

considered in the matching, the optimal matching has the same cardinality but the

patients included are different.

A second extension of the TTC algorithm considers which patients are difficult to

match with respect to sensitisation levels. In this dataset, the patients with the highest

levels of sensitisation p2 and p10 have already been removed. Therefore, from the

remaining patients, the patients with the highest levels of sensitisation are p1, p3, p9

and p11 at 0.45.

The returned optimal solution inclusive of high levels of sensitisation is as follows:

(1, 6, 0, 1)

Figure 42: Screenshot of Optimal TTC Solution with Sensitisation Priority

The levels of sensitisation for patients p0, p1 and p6 are 0.45, 0.9 and 0.2875,

respectively.

4.4.2 Top Trading Cycle Results Dataset 2

As in the example above, the initial preference list for each patient is generated and

shown in Table 8:

 Matching Donors

Patient 1st 2nd 3rd 4th, ...

0 6 1

1 6

2 1 6 17 16

3 1 17 0

4 1 0 17 6, 16

5 1 0 17 16, 6

6 0 4 3 1, 13, 17

7 6 0 16 17, 1

8 16 6 17

9 1 17

10 5 6 8 9

11 14 12 10 9, 8, 7, 5, 1, 6, 0

12 6 1 0 17, 17

13 8 7 1 9, 5, 0

14 17 0 16

15 6 5 0 14, 12, 10, 9, 7, 1

16 1 0 3 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 2

17 1 0 4 3, 2, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5

Table 8: Donor Preferences for each Patient in Dataset D2

The dummy patients p16 and p17 associated with the altruistic donors d16 and d17

respectively, are compatible with each of the donors in the pool. As a result, no

patient-donor pairs are removed from the pool due to lack of preference of a donor

from another patient. This means that patient-donor pairs p2d2, p11d11 and p15d15

remain in the pool for potential matching. As a result, all 17 patients included in the

dataset remain in the pool, an addition of 3 excluding the altruistic donors on dataset

D1. The cycle length k is restricted such that 2 ≤ k ≤ 3.

The optimal solution returned is the following cycles:

(4, 1, 6, 4), (2, 17, 2), (5, 16, 15, 5)

Figure 43: Screenshot of Optimal TTC Solution for Dataset D2 with Cycle Length Restrictions

This solution consists of two 3-cycles and a short domino chain. The cardinality of

this solution is 8, improving on the previous TTC results, which do not include

altruistic donors, by 5 patients. In comparison, the ILP formulation identified a

solution with cardinality 9, meaning an additional 2 patients could be matched.

Figure 44: Optimal TTC Solution for Dataset D2

Again, TTC was used to identify the maximum cardinality solution where cycle

length k was unrestricted. The initial preference list remains the same as in the

examples above.

The optimal solution returned the cycles shown below:

(2, 1, 6, 4, 17, 2), (5, 16, 15, 5)

Figure 45: Screenshot of Optimal TTC Solution for Dataset D2, No Cycle Length Restrictions

The optimal solution has a cardinality of 8. This is only less than the cardinality of

the solution identified by ILP, which had a cardinality of 10. One potential

explanation for this is that the order in which patient-donor pairs are selected in TTC

is restricted to choosing the most compatible donor who is still available.

One extension used with this dataset is the priority of patients who have end-stage

kidney disease. The optimal solution, inclusive of the stage of each patient’s

condition, returned the following cycle:

(4, 1, 6, 4), (2, 17, 2), (5, 16, 15, 5)

Figure 46: Screenshot of Optimal TTC Solution for Dataset D2 with Stage 5 Priority

Again, in this instance, 6 of the 6 patients included in the original optimal solution

are end-stage CKD patients. Therefore, when considering the stage of each patient’s

condition in the matching, the included patients remain the same. However, this

solution includes two 3-cycles and one short ADC.

Unlike dataset D1, due to the addition of two altruistic donors, the patients with the

highest levels of sensitisation remain in the pool. Patients p1 and p10 both have levels

of sensitisation at 0.9.

The returned optimal solution inclusive of high levels of sensitisation is as follows:

(2, 1, 6, 4, 17, 2), (5, 16, 15, 5)

Figure 47: Screenshot of Optimal TTC Solution for Dataset D2 with Sensitisation Priority

 The sensitisation levels for patients p4, p1, p6, p2, p17, p5, p16 and p15 are 0.05, 0.9,

0.2875, 0.45, 0.05, 0.05, 0.05 and 0.05, respectively. The dummy patients p16, and

p17 are assigned a low level of sensitisation as the actual recipients for donor d2 and

d5 kidney have not yet been chosen.

4.3.3 Top Trading Cycle Results Dataset 3

As in the example above, the initial preference list is generated and shown below:

 Matching Donors

Patient 1st 2nd 3rd 4th, ...

0 6 1 18 19, 20

1 6 19 18 20

2 1 6 17 16, 20

3 1 20 17 0

4 1 0 17 6, 16, 20

5 1 0 17 16, 6, 20, 19

6 0 4 3 1, 19, 18, 13, 20, 17

7 6 0 16 17, 1, 20, 19

8 16 6 20 19, 17

9 20 1 19 17

10 5 6 8 20, 19, 9

11 14 12 10 9, 8, 7, 5, 1, 20, 6, 0

12 6 1 0 17, 16, 20, 19

13 8 7 1 20, 9, 5, 0

14 17 0 16 20, 19

15 6 5 0 20, 14, 12, 10, 9, 7, 1

16 1 0 20 3, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 2

17 1 0 4 3, 20, 2, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5

18 1 10 5
4, 3, 20, 19, 17, 15, 14, 13, 12, 9, 6, 2, 0,

18, 16, 11, 8, 7

19 1 15 11 19, 17, 10, 20

20 20 16 6

Table 9: Donor Preferences for each Patient in Dataset D3

Note that for the compatible patient-donor pairs p18d18, p19d19, p20d20 the donor is

listed as one of the patient’s preferences, shown in bold in Table 9.

The optimal solution returned is the following cycles:

(0, 1, 6, 0), (5, 19, 15, 5), 18

Figure 48: Screenshot of Optimal TTC Solution for Dataset D3, Cycle Length Restricted

This solution contains two 3-cycles, and one compatible patient-donor matching.

The cardinality of this solution is 7. As patient p20 was not matched as part of the

solution, it is possible for them to be matched with donor d20. A limitation of TTC in

this case is that the p20 → d20 matching was not identified for this solution due to the

order in which the preferences are reduced. In addition, the altruistic donors are not

utilised, indicating this solution could be optimised further still.

Figure 49: Optimal TTC Solution for Dataset D3

Again, TTC was used to identify the maximum cardinality solution where cycle

length k was unrestricted. The initial preference list remains the same as in the

example above.

The optimal solution returned the cycles shown below:

(4, 1, 6, 0, 18, 10, 5, 17, 4), (7, 19, 15, 7)

Figure 50: Screenshot of Optimal TTC Solution for Dataset D3, Cycle Length Unrestricted

The optimal solution has a cardinality of 11.

One extension used with this dataset is the priority of patients who have end-stage

kidney disease. The optimal solution, inclusive of the stage of each patient’s

condition, returned the following cycle:

(0, 1, 6, 0), (5, 19, 10, 5), 18

Figure 51: Screenshot of Optimal TTC Solution for Dataset D3 with Stage 5 Priority

In this instance, 5 of the 7 patients included in the original optimal solution are end-

stage CKD patients. Therefore, when considering the stage of each patient’s

condition in the matching, the optimal solution remains the same.

The returned optimal solution inclusive of high levels of sensitisation is as follows:

(0, 1, 6, 0), (2, 16, 2), (3, 17, 3), (5, 19, 10, 5), 18

Figure 52: Screenshot of Optimal TTC Solution for Dataset D3 with Sensitisation Priority

The sensitisation levels for patients p1, p6, p0, p5, p19, p15, p18 are 0.9, 0.2875, 0.45,

0.05, 0.05, 0.05, 0.05 and 0.05, respectively.

4.4 Overall Results Analysis

k = cycle length, l = chain length

Dataset 1

There are 16 patients in this dataset. There are no altruistic donors or compatible

patient-donor pairs.

Method Edges Constraints Cardinality
Additional

Information

Pairwise 3 k = 2 2

ILP 28 2 ≤ k ≤ 3, 2 ≤ l ≤ 3 3

TTC 56 2 ≤ k ≤ 3, 2 ≤ l ≤ 3 3

ILP 28 2 ≤ k ≤ 3 3

TTC,
priority
stage 5

56 2 ≤ k ≤ 3, 2 ≤ l ≤ 3 3
2 Stage 5 patients

matched

TTC,
priority

sensitisation
56 2 ≤ k ≤ 3, 2 ≤ l ≤ 3 3

Sensitisation of
patients matched:

0.45, 0.9 and
0.2875

ILP 28 None 5

TTC 56 None 5

Table 10: Results Table for Dataset D1

From this dataset, it is clear that pairwise exchanges offered the least optimal

solution as it holds the lowest cardinality solution within the set. TTC and ILP

computed solutions with the same cardinality for each set of constraints. Priority of

stage 5 patients and patients with high levels of sensitisation did not impact the

cardinality of the optimal solution.

Dataset 2

This dataset contains 18 patient-donor pairs, including 2 altruistic donors.

Method Edges Constraints Cardinality
Additional

Information

Pairwise 21 k = 2 6

ILP 105 2 ≤ k ≤ 3, 2 ≤ l ≤ 3 9

TTC 105 2 ≤ k ≤ 3, 2 ≤ l ≤ 3 8

ILP 105 2 ≤ k ≤ 3 12

TTC,
priority
stage 5

105 2 ≤ k ≤ 3, 2 ≤ l ≤ 3 8
6 Stage 5 patients

matched

TTC,
priority

sensitisation
105 2 ≤ k ≤ 3, 2 ≤ l ≤ 3 8

Sensitisation of
patients matched: 0.05,
0.9, 0.2875, 0.45, 0.05,

0.05, 0.05 and 0.05

ILP 105 None 12

TTC 105 None 8

Table 11: Results Table for Dataset D2

The results from dataset D2 support the conclusion from dataset D1 that the pairwise

exchange allocation offers an inferior solution in comparison with TTC and ILP.

However, these results differ from the conclusions drawn from the previous dataset

as TTC fails to find a solution with a cardinality that matches that of ILP. In this

instance, the optimal solution identified by ILP has a cardinality that is 5 greater than

that of TTC. As a result, the ILP formulation offers the most optimal solution in this

case. As before, prioritising stage 5 patients or patients with high levels of

sensitisation did not lower the maximum cardinality of the solution.

Dataset 3

This dataset contains 21 patient-donor pairs, including 2 altruistic donors and 3

compatible patient-donor pairs.

Method Edges Constraints Cardinality
Additional

Information

Pairwise 57 k = 2 10 N/A

ILP 167
2 ≤ k ≤ 3,
2 ≤ l ≤ 3

15 N/A

TTC 167
2 ≤ k ≤ 3, 2 ≤ l ≤

3
7

ILP 167 2 ≤ k ≤ 3 17

TTC,
priority
stage 5

167
2 ≤ k ≤ 3,
2 ≤ l ≤ 3

7
5 Stage 5 patients

matched

TTC,
priority

sensitisation
167

2 ≤ k ≤ 3,
2 ≤ l ≤ 3

7

Sensitisation of
patients matched:

0.9, 0.2875, 0.45, 0.05,
0.05, 0.05, 0.05 and

0.05

ILP 167 None 17

TTC 167 None 11

Table 12: Results Table for Dataset D3

The largest dataset D3, and the dataset including the most diverse range of patient-

donor pairs, confirms the results offered by dataset D2. This means that the optimal

solution offered by the pairwise exchange had a maximum cardinality of 10, 7 kidney

allocations less than the maximum cardinality for the dataset. Again, ILP identified

the solution with the greatest cardinality, even though its performance was

compromised to an approximation for this dataset.

Dataset D1 represents a basic dataset where every patient-donor pair in the matching

pool are not compatible with each other. Out of the 16 patients in the pool, the

maximum matching only offered kidney allocations for 3 patients. This means that

only 18.75% of patients were able to receive a kidney and 81.25% of the available

kidneys were wasted.

In comparison, dataset D2 contained the same patients as dataset D1, with the addition

of two altruistic donors to highlight the importance of altruistic donors in the

matching pool. The two altruistic donors were included in every optimal matching,

emphasising their importance to the matching pool. The optimal solution for this

dataset had a cardinality of 12. This means that the addition of just two altruistic

donors facilitated a further 9 matches. In this case, 75% of patients in the pool were

able to receive a kidney, alongside 2 patients from the active waiting list and 33% of

the available kidneys were wasted. This represents a 53.8% decrease in waste of

available donors.

Finally, dataset D3 contained the same patients as dataset D2, with the addition of

three compatible patient-donor pairs. This aims to expose the importance of

introducing compatible patient-donor pairs into the matching pool, a technique that

is not currently practised in the UK under the NHS. This technique guarantees at

least as many matches as the pool which excludes compatible pairs as where the

additional pairs are not matched as part of the optimal solution, they are matched to

one another. The optimal solution for this dataset had a cardinality of 17. This means

that with three additional pairs, five additional kidney allocations were made. In

addition, in the solution offered by TTC, only one of the compatible pairs were

matched to themselves, indicating that the other pairs were able to achieve a better-

matched kidney than the one they entered the pool with. This result achieves an

allocation for 89.47% of patients in the matching pool, with 2 patients from the

waiting list also receiving kidneys. As a result, only 2 available kidneys were unable

to be allocated as part of the matching pool, indicating only 9.52% of donors were

wasted.

5 Future Work

One area where progress could be made to improve on the research and methods

detailed within this project would be the development of a front-end application to

display and demonstrate each of the graphs, methods, and results. During the initial

planning of this project, one of the aims was to develop a front-end application to

visualise the data for a user, to provide graphics to aid understanding of the processes

within each of the methods and algorithms, and finally to display the resulting

matchings and analysis clearly and visually. This application could offer multiple

datasets for the user to choose from, and apply the methods researched as part of this

project. A further feature of this application could be for the user to be able to input

and build datasets or graphs and compute various optimal solutions. Although this

application would not impact the results provided by the methods offered as part of

this project, it would be a valuable addition for a user. This is because researching,

practising, and understanding the algorithms included within the project can be

challenging and time-consuming and therefore it can be difficult for users to

understand the steps between choosing a dataset and viewing the results. A graphic

that outlines the steps of each algorithm, manipulating the graph as the algorithm

progresses, would allow a user of any background to gain an understanding of each

method. Additionally, viewing the resulting cycles and chains for each matching on

the graph allowed me to gain a deeper understanding of the solution.

A second area for future development is to further explore the suggestion of a multi-

national kidney exchange more closely. To draw on one of the conclusions of this

project, more transplants are facilitated when compatible patient-donor pairs are

entered into the matching pool. One idea which stems from this is that more

transplant allocations are made when transplant and waiting list information is

transparent. This means that allocating compatible patient-donor pairs to each other

without considering other options limits the opportunities for pairs in the matching

pool and limits the compatible pair from potentially identifying a more compatible

match. The application of this idea internationally implies that more transplants

could be facilitated by sharing transplant and waiting list information internationally.

6 Conclusions

As this project concludes, it is important to consider the aims and to what extent they

were achieved. To reiterate, this project aimed to create a tool to visualise the

performance of different optimisation methods and analyse the performance of the

chosen methods and consider their strengths and weaknesses. Early in this project,

the focus began to shift from the creation of an application to visualise each of the

chosen methods. This is because the definition of optimality applied to kidney

exchange solutions, and the impact of different types of living donors such as

altruistic and compatible patient-donor pair donors quickly became the focus as

initial research began. Therefore, the first aim of this project was not met but was

exchanged for a different research path which arguably is more valuable.

The second aim, to analyse the performance of different optimisation techniques, is

achieved as part of this project. The methods chosen and analysed as part of this

project are Blossom’s Algorithm, modelling the pairwise exchange, an ILP

formulation that relies on Kosaraju’s and Johnson’s Algorithm, and the Top Trading

Cycles and Chains method. To reiterate the conclusions drawn in Chapter 4, the ILP

Formulation produced the optimal solutions by definition of greatest cardinality,

despite only calculating an approximation to the optimal solution for the final

dataset.

The additional aim of this project was to explore the impact of different donors on

the cardinality of the optimal solution. This aim was achieved by extending the initial

dataset to include altruistic donors and compatible patient-donor pairs and analyse

the effects on the optimal solution. As discussed in Chapter 4, both altruistic donors

and the introduction of compatible patient-donor pairs into the matching pool

significantly increased the cardinality of the optimal solutions.

These results suggest that new models for kidney exchange programs should

consider the prospect of offering compatible patient-donor pairs the opportunity to

enter the matching pool. Patients may be encouraged to choose this option on the

premise that it may facilitate more kidney allocations, and therefore allow them to

help others in a similar position to themselves and provide the opportunity to receive

a more compatible kidney.

Future work could address the initial aim of this project to produce a tool to visualise

the processes taken to generate an optimal matching and provide a solid

understanding to user interested in either the kidney exchange or the underlying

algorithms.

To conclude, this project has successfully explored the performance of different

optimisation techniques, provided discussions on the potential limitations, and

identified the most appropriate method based on the results displayed in Chapter 4.

In addition, the impact of altruistic donors and the introduction of compatible patient-

donor pairs into the matching pool has been explored and conclusions provided to

support ongoing research into the advancement of kidney exchange models.

7 Reflection on Learning

Whilst undertaking this project, I have developed my skills in independent research.

This was achieved because I had to consider a broad range of topics, from

mathematics and graph theory to biology, and the underlying processes behind

kidney transplantation and matching. As part of this research, I have discovered and

understood an array of complex algorithms, such as Kosaraju’s Algorithm and

Edmond’s Blossom Algorithm, working independently to gain knowledge into the

methods involved for each algorithm. A particular challenge was that many of these

algorithms were reported only in mathematical research papers, which I was

unfamiliar with at the beginning of this project. Additionally, I have also improved

my technical skills whilst undertaking this project as I have learnt to use Gurobi

Optimiser to formulate and solve an ILP problem with Python code. Similarly, I have

gained experience implementing unfamiliar and complex algorithms in Python from

pseudocode produced by myself or found in research papers. When selecting a

dataset to model optimisation techniques on, I found the application of the kidney

exchange fascinating, despite a lack of knowledge regarding the biology and

technical matching process before starting this project. I have therefore developed

and expanded my knowledge during this project in several areas which were

previously unfamiliar to me.

Furthermore, I also utilised my time management skills to ensure the timely

completion of the project to a high standard. Reflecting on my initial plan, I vastly

underestimated the time it would take to research relevant algorithms, fully

understand the methods within them and finally implement them and gather my

results using a variety of datasets. Time management was therefore a vital skill

before and during the project to ensure effective research, implementation and report

writing.

Throughout this project, I have worked closely with my supervisor Dr Richard

Booth. This has enabled me to develop my communication skills as I provided

weekly updates on my progress, verbalised my ideas clearly, and requested advice

where necessary. I also had to navigate the organisation of these meetings entirely

virtually, which was achieved by video calling to ensure effective and regular

communication. In my initial plan, I agreed to attend weekly meetings with Dr Booth

lasting around 30 minutes, including two progress meetings, which were upheld

throughout the entire project.

Undertaking this project has also helped me to develop my report writing skills as

clear written communication detailing the relevant background information,

methods and implementations is of utmost importance. In particular, providing

sufficient detail whilst maintaining a clear, concise report writing style has been

challenging. Additionally, my oral presentation skills have improved as I develop a

clear and professional demonstration for my viva presentation.

Referring back to my initial plan, the project aims and deliverables presented were

as follows:

In this project I aim to:

• Create a tool to visualise the performance of different algorithms and

optimisation methods of kidney exchange assignments.

• Analyse the performance of each of the chosen methods and consider

the strengths and weaknesses of each.

 Project Objectives:

• Study the optimal matching problem, in particular its application to the

kidney exchange.

o Produce a mathematical description of the problem.

• Research and implement algorithms that provide optimal solutions or

matchings – or at least a good approximation to an optimal matching.

o Implement chosen algorithms and visualise the results via a

user-friendly interface.

• Conduct analysis of the chosen algorithms or methods using the

application of the kidney exchange.

o Produce a report explaining the chosen algorithms and offer

analysis of their performance.

Unfortunately, the final result of this project does not offer a user-friendly interface

to visualise the resulting matchings of each optimisation technique. This is due to

the vast amount of time required to research, understand, and implement each

algorithm, developing a frontend alongside this seemed infeasible under the time

constraints. However, the second project aim to analyse the performance and results

of each algorithm has been met.

Concerning the project objectives, I believe I have achieved the overarching

objectives to study the optimal matching problem and the kidney exchange, research

and implement different methods and conduct analysis of the results for each.

In conclusion, completing the project has taught me a new style of working and

researching independently, specifically learning from mathematical papers, and

expressing what I have learnt both professionally and mathematically. This process,

although more time consuming than first expected, has been very rewarding and I

have thoroughly enjoyed the opportunity to research and implement techniques

within optimisation with application to the kidney exchange.

Table of Abbreviations

ADCs Altruistic Donor Chains

BILP Binary Linear Integer Programming

CKD Chronic Kidney Disease

BDB Donation after Brainstem Death

DCD Donation after Cardiac Death

 DFS Depth First Search

HLA Human Leukocyte Antigens

ILP Integer Linear Programming

NDADs Non-directed Altruistic Donors

NHS National Health Service

 PPD Paired/Pooled Donation

 SCC Strongly Connected Component

 TTC Top Trading Cycle

 UKLKSS UK Living Kidney Sharing Scheme

References

[1] - Biró, P., Manlove, D. and Rizzi, R., 2009. Maximum Weight Cycle Packing in

Directed Graphs, with Application to Kidney Exchange Programs. Discrete

Mathematics, Algorithms and Applications, 01(04), pp.499-517.

[2] - Biró, P., van de Klundert, J., Manlove, D., Pettersson, W., Andersson, T.,

Burnapp, L., Chromy, P., Delgado, P., Dworczak, P., Haase, B., Hemke, A., Johnson,

R., Klimentova, X., Kuypers, D., Nanni Costa, A., Smeulders, B., Spieksma, F.,

Valentín, M. and Viana, A., 2021. Modelling and optimisation in European Kidney

Exchange Programmes. European Journal of Operational Research, 291(2),

pp.447-456.

[3] - Edmonds, J., 1965. Paths, Trees, and Flowers. Canadian Journal of

Mathematics, 17, pp.449-467.

[4] - GeeksforGeeks. 2020. Strongly Connected Components - GeeksforGeeks.

[online] Available at: <https://www.geeksforgeeks.org/strongly-connected-

components/> [Accessed 3 May 2021].

[5] - Giscard, P., Kriege, N. and Wilson, R., 2019. A General Purpose Algorithm for

Counting Simple Cycles and Simple Paths of Any Length. Algorithmica, 81(7),

pp.2716-2737.

[6] - Hendry, R. and Robb, M., 2020. Annual Report on Kidney Transplantation.

[online) Statistics and Clinical Studies, NHS Blood and Transplant, pp.2-24.

Available at: <https://nhsbtdbe.blob.core.windows.net/umbraco-assets-

corp/20032/kidney-annual-report-2019-20-final.pdf> [Accessed 12 April 2021).

[7] - National Kidney Foundation. 2016. Incompatible Blood Types and Paired

Exchange Programs. [online) Available at:

<https://www.kidney.org/atoz/content/incompatible-blood-types-and-paired-

exchange-programs> [Accessed 17 April 2021).

[8] - Kerr, M., 2012. Chronic Kidney Disease in England: The Human and Financial

Cost. [ebook) NHS Kidney Care by Insight Health Economics, pp.5-23. Available

at: <https://www.england.nhs.uk/improvement-hub/wp-

content/uploads/sites/44/2017/11/Chronic-Kidney-Disease-in-England-The-

Human-and-Financial-Cost.pdf> [Accessed 8 April 2021).

[9] - OpenGenus IQ: Learn Computer Science. 2021. Kosaraju's Algorithm for

Strongly Connected Components 懇O(V+E)昏. [online) Available at:

<https://iq.opengenus.org/kosarajus-algorithm-for-strongly-connected-

components> [Accessed 9 April 2021).

[10] - Lee, Y., Chang, J., Choi, H., Jung, J., Kim, Y., Chung, W., Park, Y. and Lee,

H., 2012. Donor-Recipient Age Difference and Graft Survival in Living Donor

Kidney Transplantation. Transplantation Proceedings, 44(1), pp.270-272.

[11] - Mak-Hau, V., 2015. On the kidney exchange problem: cardinality constrained

cycle and chain problems on directed graphs: a survey of integer programming

approaches. Journal of Combinatorial Optimization, 33(1), pp.35-59.

[12] - Manlove, D. and O’Malley, G., 2015. Paired and Altruistic Kidney Donation
in the UK. ACM Journal of Experimental Algorithmics, 19(2), pp.1-21.

[13] - Moore, K. and Landman, N., 2021. Blossom Algorithm | Brilliant Math &

Science Wiki. [online] Brilliant.org. Available at:

<https://brilliant.org/wiki/blossom-algorithm/> [Accessed 4 May 2021].

[14] - ODT Clinical - NHS Blood and Transplant. 2021. UK Living Kidney Sharing

Scheme. [online) Available at: <https://www.odt.nhs.uk/living-donation/uk-living-

kidney-sharing-scheme/> [Accessed 6 April 2021).

[15] - Roth, A., Sönmez, T. and Ünver, M., 2007. Efficient Kidney Exchange:

Coincidence of Wants in Markets with Compatibility-Based Preferences. American

Economic Review, 97(3), pp.828-851.

[16] - Saidman, S., Roth, A., Sönmez, T., Ünver, M. and Delmonico, F., 2006.

Increasing the Opportunity of Live Kidney Donation by Matching for Two- and

Three-Way Exchanges. Transplantation, 81(5), pp.773-782.

[17] - Shapley, L. and Scarf, H., 1974. On cores and indivisibility. Journal of

Mathematical Economics, 1(1), pp.23-37.

[18] - Shoemaker, A. and Vare, S., 2016. Edmonds’ Blossom Algorithm. Stanford

University, pp.4-7.

[19] - Stewart, C., 2020. Patient deaths on organ transplant waiting list 2020 |

Statista. [online) Statista. Available at:

<https://www.statista.com/statistics/519829/patient-deaths-on-organ-transplant-

waiting-list-united-kingdom-uk/> [Accessed 13 March 2021).

[20] - Sullivan, R., 2020. Kidney transplants on the rise in UK thanks to change to

sharing scheme. Independent, [online) Available at:

<https://www.independent.co.uk/news/uk/home-news/kidney-transplant-increase-

nhs-altruistic-donors-sharing-a9293231.html> [Accessed 23 April 2021).

[21] - Programiz.com. 2021. Strongly Connected Components. [online) Available at:

<https://www.programiz.com/dsa/strongly-connected-components> [Accessed 1

May 2021).

