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Abstract 

Every year, there are on average 4,536 patients on the active waiting list for a kidney 

transplant in the UK. Research is ongoing to develop effective ways to allocate 

donations to save the lives of patients and maintain their quality of life. This project 

aims to apply optimisation techniques to datasets modelling the kidney exchange and 

analyse the effects of different methods and definitions of optimality. Four main 

approaches are explored as part of this project, including Pairwise Exchange, Integer 

Linear Programming, Top Trading Cycles and Chains, and introducing matching 

patient-donor pairs into the matching pool. Analysis of the varying methods and 

datasets indicated that the Integer Linear Programming formulation is the method 

which provides solutions with the highest cardinality. The results also demonstrate 

that the inclusion of compatible patient-donor pairs to the matching pool has a 

significant effect on the number of patients allocated a kidney as part of the solution. 

Further research is required to apply these findings to an international exchange 

model. 
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1 Introduction 

Chronic Kidney Disease (CKD) is a long-term health condition whereby kidney 

function deteriorates gradually over a period of months or years. There are 1.8 

million people living with CKD in the UK, with an additional one million estimated  

cases of undiagnosed CKD [8]. As of 29th February 2020, there were 4,726 patients 

on the UK active kidney transplant list, of which 108 were paediatric patients. This 

represents a 1% decrease in adult patients from the previous year and a 17% increase 

in paediatric patients [6]. In addition, 3,190 adult kidney transplants were performed 

in the UK in 2019/20, indicating a decrease of 3% on the previous year. Of these, 

1,326 were from donations by brainstem death donors (DBD), 915 were from 

donation by cardiac death donors (DCD) and 949 were from living donors [6].  

Left untreated, CKD leads to kidney failure, and dialysis or transplant is required to 

prevent death. It is therefore, of utmost importance that kidney donation and 

allocation is managed effectively to save lives. Currently, the median waiting time 

for an adult kidney transplant is between 2 and 3 years and in 2020, 233 people 

passed away whilst awaiting a kidney transplant, which was more than the number 

of patients who died awaiting lung, liver and heart transplants combined [19]. 

Currently, the level of kidney donation in the UK is not sufficient to meet the demand 

for transplants. It is thus of paramount importance that kidney exchanges and 

transplants are managed effectively to prolong patient quality of life.  

The UK Living Kidney Sharing Scheme (UKLKSS) facilitates transplants for 

incompatible patient-donor pairs by introducing them into the matching pool. In the 

matching pool, the donor is allocated to a compatible patient in need of a transplant 

on the promise that the patient they entered the pool with is also allocated a kidney 

from one of the other donors. There are several formats and shapes in which a 

matching occurs from the pool such as a pairwise exchange, a cycle exchange or an 

altruistic domino chain (ADC), each of which will be explained and explored within 

this project. 

The aim of this project is to identify and explore appropriate optimisation techniques 

to model the kidney exchange, implement the identified techniques and produce 

results for each method in the process of kidney allocations. Varying datasets will 

be utilised to demonstrate the performance of each algorithm and the resulting 

optimal solutions will be analysed. Finally, from these methods, the most appropriate 

and successful techniques will be identified for modelling the kidney exchange. 



 

This project will also explore differing approaches to solving optimisation problems 

such as Integer Linear Programming, and algorithms such as the Top Trading Cycle 

and Edmond’s Blossom Algorithm to compare and contrast their effects on the 

application of the kidney exchange. The project will also explore several definitions 

of optimality, such as maximum cardinality (which shows maximum patients 

matched), and maximum weight (which shows the probability of a successful 

transplant). Finally, the project explores the impact of altruistic donors and the 

introduction of compatible patient-donor pairs into the matching pool on the 

cardinality of maximum matching and utility of available donors. 

This project begins with an overview of kidney disease and its devastating impacts, 

then a brief history of the evolution of the kidney exchange will be considered, 

primarily focussing on progress in the UK, and current suggested methods to 

optimise kidney allocation. Following this, Chapter three offers an overview of each 

of the four approaches included in this project: Integer Linear Programming, Top 

Trading Cycle and Chains, Pairwise Exchanges, and the Introduction of Matching 

Patient-Donor Pairs into Matching Pools. Each of the approaches will be 

implemented and analysed in-depth before the results are collated and critically 

evaluated in Chapter four. To conclude this project, Chapters five and six will offer 

suggestions for future work and a concluding argument. Chapter seven presents a 

reflection of my learning and progress throughout the project. 

 

 

 

 

 

 

 

 

 

 

 



 

2 Background 

2.1 The Matching Process 

There are four different blood types O, A, B and AB. Patients with blood type O, the 

most common blood type, can only be matched with donors who are also of blood 

type O. Patients with blood type A or type B can be matched with donors of the same 

blood type and blood type O. Patients with blood type AB can be matched with 

donors of any blood type. For this reason, patients with blood type AB are considered 

universal recipients. As donors of blood type O can be matched with patients of any 

blood type, they are considered universal donors [7]. 

There are a large number of factors considered when evaluating the compatibility 

between a potential patient-donor match. Some of these include the age difference 

between the patient and donor, the sensitivity level, the HLA mismatch level, and 

previous matching run points [6]. 

The following outlines the structure for defining the compatibility of a match within 

the NHS: 

1. Previous Matching Run Points. This factor is measured by multiplying 

the number of previous matchings the patient has already taken part in 

by a factor of fifty. The current matching algorithm is executed quarterly 

in January, April, July, and October. 

2. Sensitisation Points. Sensitivity of a patient is measured by a Panel 

Reactive Antibody Test. This test determines the number of pre-existing 

antibodies the patient has against human cell antigens. The result of this 

test is a percentage which represents the proportion of the population 

with antigens to which the patient will react to. This factor is represented 

by dividing the sensitivity percentage by 2. 

3. Estimated Human-Leukocyte Antigens (HLA) Mismatch. HLA are 

proteins found in tissue and on the surface of white blood cells. Where 

a patient and donor share the same HLA, this is referred to as a tissue-

type match, meaning that their tissue is immunologically compatible. 

The number of compatible proteins between a patient and donor is 

assigned a value of 0, 5, 10 or 15, where the lowest values represent a 

high level of incompatibility and the highest values represent a low level 

of incompatibility. 



 

4. Donor Age Difference. Where the age gap between the donor and the 

patient is less than 20 years, they are assigned a value of 3. Where this 

gap is greater than 20 years, it is assigned a value of 0.  The age 

difference between the patient and the donor is minimised as a priority 

due to increased risk of graft failure as the difference increases. For 

example, the acute rejection rate rises from 10.7% to 32% when the age 

difference between the donor and patient is greater than 20 years [10]. 

The sum of the values from each of these categories represents the level of 

compatibility of a patient-donor match, where high values represent a greater match.  

2.2 Kidney Exchange Program 

The UKLKSS began in January 2012 and is the collective term for the various 

methods in which kidneys are donated and transplanted across the UK. It was 

established following the introduction of the Human Tissue Act 2004 and has 

become one of the most effective schemes in Europe [14]. Before the introduction 

of this legislation, it was not possible for transplants to take place between a patient 

and donor who did not have a genetic or emotional connection. As a result, patient-

donor pairs who were not compatible with one another were rejected for transplant, 

the willing donor sent home and the patient left to join the kidney transplant waiting 

list. Evidently, this was a waste of resources as the willing donor was unable to 

participate in a transplant and consequently their paired patient, and other patients 

who are compatible with the donor were impacted as a result. The creation of the 

kidney exchange program aims to utilise the opportunity of a willing donor to 

allocate a kidney to a patient in need, on the promise that the incompatible paired 

patient will also receive a kidney. Methods encompassed by the UKLKSS include 

paired/pooled donation (PPD) and ADCs initiated by non-directed altruistic donors 

(NDADs). 

The kidney exchange allows patient-donor pairs who are not compatible with one 

another to participate in a matching pool where the donor is matched with another 

patient in need of a transplant and the patient receives a kidney from another patient’s 

incompatible donor. There are several variations of which a matching may occur in 

this situation. One circumstance, called a two-way or pairwise matching, occurs 

when two patient-donor pairs p1d1 and p2d2 match such that patient p1 receives the 

kidney of donor d2 and patient p2 receives the kidney of donor d1. It is possible for 

paired exchanges to occur with more than two patients such that the solution forms 

a cycle. This means that for patient-donor pairs p1d1, p2d2 and p3d3 form a matching 



 

such that patient p1 recieves the kidney of donor d2, patient p2 receives the kidney of 

donor d3 and patient p3 receives the kidney of donor d3. This forms a cycle such that 

each donor is able to donate their kidney to a patient who requires it, and each patient 

is able to receive a kidney. In theory, there is no limit to the number of pairs who 

may be included in this cycle. However, in practice, each transplant must be 

performed simultaneously. This is due to the fact the donors are not legally obliged 

to donate their kidney, such that it is possible for a donor to leave the program before 

their donation [11]. As a result, the number of pairs k in any cycle is kept small, 

usually between three and five. A third way a match may occur is when a non-

directed anonymous donor, also known as an altruist, triggers a chain of kidney 

donations. This is referred to as an altruistic domino chain.  

According to NHS Blood and Transplant, the UKLKSS allowed 71 extra patients to 

receive a kidney transplant from a living donor in 2019 compared with 2018 [20]. 

2.3 Similar Research 

Manlove and O’Malley (2014) carried out experiments using genuine data to analyse 

the number of transplants which actually took place within in each quarter, compared 

to results generated by two different ILP formulations and experiments on 

constraints such as cycle length. One conclusion that arises from this study is that 

the introduction of four-way exchanges into the matching pool is likely to lead to a 

considerable increase in kidney transplants.  The conclusions drawn in this paper 

have inspired the ideas presented as part of this project, as one of the methods this 

project explores is also an ILP formulation. [12] 

In 2009, Biró, Péter & Manlove (2009) modelled the kidney exchange as a packing 

problem and proved the approximable-completeness of finding a maximum 

cardinality solution using only 2-cycles and 3-cycles. The resulting exact algorithm 

produced by this research provides optimal solutions for the National Matching 

Scheme for Paired Donation run by NHS Blood and Transplant. An approximation 

algorithm was also produced to find a maximum weight solution containing cycles 

of bounded length. [1] 

Recent published research into the kidney exchange states that “single best practise 

models and methods for Kidney Exchange Programmes do not exist”. This statement 

demonstrates the importance of continued research into different methods and 

circumstances. Optimal solutions differ depending on the ratio of donors to patients, 

ability to perform successful transplants simultaneously and the number of donations 



 

available from each type of donor, such as non-directed altruistic and DCD. This 

research also ventures the concept of cross-national kidney exchange programmes. 

Inspired by these models, this project explores the effect of introducing compatible 

patient-donor pairs into the matching pool. This data mirrors the situation where 

sharing waiting list information internationally could facilitate additional transplants 

when compared with allocating kidneys nationally. [2] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3 Implementation of Algorithms 

3.1 Mathematical Description of the Problem 

Consider a directed graph G(n) such that n equals the number of patients awaiting a 

kidney in this exchange. For each of the n donor-patient pairs, there exists a node in 

the graph G(n). Where there is a match between the donor kidney ni and patient nj, 

add an edge e between node ni and nj. The weight we of the edge e is equal to the 

utility of nj receiving ni's donor kidney. Please note, a donor in a pair is willing to 

donate their kidney if and only if their paired patient receives one. 

A cycle c in the graph represents a possible exchange, with each node in the cycle 

receiving the kidney of the previous node. The weight wc of a cycle c is the sum of 

its edge weights. A complete matching consists of disjoint cycles, as each donor can 

only donate one of their kidneys. Each cycle c must be of length k where 2 ≤ k ≤ 5, 

and in most practical cases k = 3. k must be small as all operations in the cycle are 

performed simultaneously.  

 

 

Figure 1: Basic Graph G 

 

In Figure 1 above, the graph G contains five patient-donor pairs, with five edges 

which represent the matches between patients and donors. A cycle of length 3 is 

indicated by the green arrows.  



 

In the case of an altruistic donor, the node n will represent the donor. The donor is 

prepared to donate unconditionally, meaning that there is no incoming edge to the 

node n. In this case, a complete matching is not represented by a cycle c but a chain 

known as an altruistic donor chain. 

An optimal matching in this problem maximises the weight of cycles and chains, 

meaning the number of successful transplants is also maximised with the available 

resources.  

3.2 Optimisation 

Within this problem, there are varying definitions of what constitutes an optimal 

solution due to the nature of transplants and their effect on a patient’s quality of life 

or chance of survival. As a result, there are a range of factors to consider when 

defining optimality. This includes, but is not limited to, maximising the sum of the 

matching scores in the solution. This gives weight to factors such as length of time 

on the waiting list, difficulty of matching the patient, and maximising the number of 

patients in the solution. In addition, priority may be awarded to patients who are 

most unwell or to younger patients as they are more likely to benefit long-term  from 

a transplant. There are obvious ethical issues surrounding priority amongst patients 

and ultimately the decision lies with the founders of each individual transplant 

scheme to define a solution within their scheme. Within the NHS, an optimal solution 

is defined as first prioritising obtaining a maximum matching score and then 

maximising the number of patients included in the solution. 

3.3 Dataset 

The datasets used throughout the project are provided by preflib.org. Although the 

datasets are synthetic, it was produced by a state-of-the-art donor pool generation 

method, described by Saidman (2006) [16]. Each dataset consists of two files, one 

to document the patient-donor pair information, and another containing information 

regarding patient-donor compatibility, which represent the edges in the associated 

graph. 

3.4 Pairwise Exchanges 

Prior to sufficient research conducted into the theory and practicalities of 3-cycle 

solutions or greater, the kidney exchange problem existed in a simplified state known 

as a pairwise exchange. This means that an optimal solution consisted of patient-

donor pairs who had been successfully matched to one another. For example, for 

three patient-donor pairs p1d1, p2d2 and p3d3, the maximum cardinality of the optimal 



 

solution is two. This solution may be such that patient p1 recieves a kidney from 

donor d2 and patient p2 recieves a kidney from donor d1.  

 

Figure 2: Pairwise Exchanges 

The primary focus in the NHS is to find a matching that allows the maximum number 

of patients to be assigned a kidney. This means that maximum cardinality is the 

priority.  

3.4.1 Pairwise Exchange Mathematical Description 

For each patient-donor in the matching pool, there exists a vertex pxdx in the directed 

graph D. 

For each match between a patient px and a donor dy, there exists a directed edge from 

vertex pxdx to vertex pydy where the weight of the edge is equal to the matching score 

for the transplant from donor dy to patient px. 

In the case of pairwise exchanges, a directed edge between a vertex pxdx and a vertex 

pydy where there does not exist a directed edge in the opposite direction, from vertex 

pydy to vertex pxdx is excluded as this edge is not valid in a solution. As a result, the 

directed graph D is transformed to an undirected graph G. 

For each vertex pxdx that exists in the directed graph D, there exists an equivalent 

vertex pzdz in undirected graph G.  

For each pair of vertices, pxdx and pydy, connected by two edges, ex and ey, in the 

directed graph D, there exists a single undirected edge ez in graph G between pxdx 

and pydy with a weight wz where wz = ex(wx) + ey(wy). 

For each pair of vertices, pxdx and pydy, connected by a single directed edge in graph 

D, there does not exist an edge between them in graph G. 

Now, for the undirected graph G, find a maximum cardinality, maximum weight 

matching. 



 

3.4.2 Edmond’s Blossom Algorithm 

The solution to this problem is solved by Edmonds’s Blossom Algorithm, presented 

by Jack Edmonds (1965) which is designed to compute a maximum matching in an 

undirected general graph [3]. It is inspired by and an extension of the Hopcroft-Karp 

algorithm which computes a maximum matching for bipartite graphs only.  

The Blossom Algorithm performs by building augmenting paths starting and ending 

at unmatched vertices from a graph, alternating between matched and unmatched 

edges. This process repeats until no more augmenting paths can be identified, 

meaning that a solution has been found. The algorithm takes its name from the 

process in which an odd length cycle is identified as this is referred to as a blossom. 

The nodes which belong to a blossom are contracted, and treated as a single node, 

such that the graph contains an even number of nodes and is therefore suitable for 

the Hungarian algorithm, which computes maximum-weight matching in bipartite 

graphs, to identify further augmenting paths. In the worst case, this Edmond’s 

Blossom Algorithm has a time complexity of O(|E||V|2) where E is the number of 

edges in the graph and V is the number of vertices [13]. 

3.4.3 Example 

For example, take the graph shown below in Figure 3. 

 

Figure 3: Blossom Algorithm Example Initial Graph 

At the start of the algorithm, each of the vertices are unmatched. Starting with vertex 

v0, the algorithm uses breadth first search (BFS) to find a path. The first neighbour 

of vertex v0 is v1. As vertex v1 is unmatched, there exists an augmenting path between 

v0 and v1. After a path is found, all vertices are inverted from matched to unmatched 

and vice versa. The number of edges included in the matching increases by 1. Figure 

4 shows the current path. 



 

 

Figure 4: Blossom Algorithm Augmenting Path 

There are still two unmatched vertices in the graph v2 and v3. Now starting with v3, 

use BFS to find another path. The first neighbour of v2 is v0, a matched node. As v0 

is connected to v1, both nodes are added to the BFS queue. The next neighbour of v2 

is v1, which already exists in the queue. Therefore, a cycle has been identified and as 

it has an odd number of edges, it is called a blossom. The nodes in the blossom are 

shrunk and represented as one node. 

 

Figure 5: Shrunken Blossom Node 

The new blossom node is also added to the BFS queue. Now, BFS is continued 

starting from the blossom node v4. The first neighbour of v4 is v3, an unmatched node. 

Therefore, an augmenting path has been identified. As there are no more unmatched 

nodes in the graph, the blossom node is expanded such that the resulting path can be 

identified.  



 

 

Figure 6: Final Augmenting Path 

Now, the matched edges are inverted such that our previous path (0, 1) becomes (2, 

0) and (1, 3). As there are no more free vertices, a maximum cardinality matching 

has been found. 

 

Figure 7: Blossom Algorithm Maximum Cardinality Matching 

3.4.4 Pseudocode 

The following pseudocode is provided by Shoemaker and Vare (2016) [18]. 

Algorithm 1 Blossom Algorithm: Find Maximum Matching 

procedure seq_find_maximum_matching(G, M) 

P = seq_find_aug_path(G, M) 

if P == [] then 

return M 

else 

Add alternating edges of P to M 

return seq_find_maximum_matching(G, M) 



 

Algorithm 2 Sequential Blossom Algorithm: Find Augmenting Path 

procedure seq_find_aug_path(G, M) 

F = empty forest 

nodes_to_check ← exposed vertices in G 

for v in nodes_to_check do 

Add v as single-node tree to F 

node_to_root(v) = v 

in G, mark all matched edges (all edges in M) 

for v in forest_nodes do 

while there exists an unmarked edge e = (v, w) do 

if w ב F then  (Vertex w must be in M) 
seq_add_to_forest(M, F, v, w) 

else 

if dist(w, node_to_root(w)) % 2 == 0 then 

if node_to_root(v) ≠ node_to_root(w) then 

P = seq_return_aug_path(F, v, w, 

node_to_root) 

else 

P = seq_blossom_recursion(G, M, F, v, 

w) 

return P 

else 

# Do nothing 

mark edge e 

return empty path 

Algorithm 3 Sequential Blossom Algorithm: Add to Forest 

procedure seq_add_to_forest(M, F, v, w) 

x ← vertex adjacent to w in M 

add edges (v, w),(w, x) to tree(v) in F 

add vertex x to nodes_to_check 



 

node_to_root(w) = node_to_root(v) 

node_to_root(x) = node_to_root(v) 

 

Algorithm 4 Sequential Blossom Algorithm: Return Aug Path 

procedure seq_return_aug_path(F, v, w, node_to_root) 

root_v = node_to_root(v) 

root_w = node_to_root(w) 

Pɨ ← shortest_path(F,root_v,v) 

Pɩ ← shortest_path(F, w,root_w) 

return P1 + P2 

 

Algorithm 5 Sequential Blossom Algorithm: Blossom Recursion 

procedure seq_blossom_recursion(G, M, F, v, w) 

Form blossom: B = shortest_path(F, v, w) + [v] 

G’ = G with all blossom nodes contracted into w 

M’ = M with all blossom nodes contracted into w 

P’ = find_aug_path(G’, M’) 

if w א P’ then 
P = P’ lifted with blossom B 

return P 

else 

return P’ 

Whilst this algorithm has been valuable in solving the pairwise kidney exchange 

problem, the cardinality of the solutions is limited by the pairwise constraint. As 

research has progressed, it has become possible for the total number of kidney 

transplants to increase by allowing more than two patient-donor pairs to be matched 

as part of the optimal solution.  

3.4.5 Implementation 

In this project, Blossom’s Algorithm is implemented using the Python Package Index 

blossalg. This package requires a .csv file which represents the graph nodes and 

edges in a matrix format. The algorithm then computes the optimal solution using 



 

Edmond’s Blossom Algorithm and returns a .txt file which contains the matched 

edges, and the cardinality is printed in the command line. To work with this package, 

the datasets provided by Preflib were manipulated. The original datasets were 

converted from undirected graphs to directed graphs, meaning only edges where 

nodes were connected in each direction were preserved. The directed graph is then 

converted to the required matrix format and input into the package.  

3.5 Integer Linear Programming 

Binary Integer Linear Programming (BILP) is a style of Linear Programming such 

that each of the decision variables may only take the values 0 or 1. Linear 

Programming is a valuable way to model real-world situations using linear 

relationships between variables to represent constraints within a model and 

maximising or minimising a linear function. They are usually constructed by an 

objective function to be maximised or minimised, as well as decision variables and 

linear constraints. In the case of the kidney exchange, the components are as follows: 

Objective function:  

Maximise the number of patients allocated a transplant in the matching 

Constraints: 

• Each donor can only donate one of their kidneys. 

• The cycle length k must be between 2 and 3 such that 2 ≤ k ≤ 3. (This 

constraint is handled before the BILP formulation as cycles greater than 

length 3 are filtered out before input into the formulation.) 

Decision Variables: 

 A set of all the cycles between length 2 and 3 that are present within the 

graph. The BILP will decide whether the cycle is included in the solution, and 

therefore assigned a value of 1 or excluded from the solution and assigned a value 

of 0. 

3.5.1 Kosaraju’s Algorithm 

For a directed graph D, there exists one or more strongly connected components. A 

strongly connected component (SCC) exists where for each vertex v in the 

component C, it is possible to access every other vertex vx in C. Within a directed 

graph D, cycles are contained within SCCs. For a graph representing a kidney 

exchange, SCCs are instrumental to identifying a solution in optimal time as it means 



 

that edges which are not part of a strongly connected component can be ignored. 

Specifically, in the case of the UK kidney exchange, where there may be up to 5,000 

vertices, identifying transplants which cannot form part of a cycle is important to 

save time and resources. Importantly, SCCs do not identify an optimal solution, but 

exclude edges which cannot be part of the solution. Kosaraju’s Algorithm has a 

linear time complexity, running in O(V+E) where V is the number of nodes and E is 

the number of edges in the graph [4]. 

For this project, Kosaraju’s Algorithm is used to identify strongly connected 

components as the algorithm runs in linear time and is based upon depth first search 

(DFS). The algorithm is based on the idea that, if a vertex v is accessible from a 

vertex u, then vertex u must also be accessible via vertex v. For vertices where this 

is the case, they are defined as strongly connected and form part of a component. 

3.5.2 Kosaraju’s Algorithm Steps 

1. Complete DFS graph traversal, pushing the source vertex onto the stack 

when recursive traversal for adjacent vertices is complete. 

2.  Reverse the direction of each edge in the graph to compute the transposed 

graph. 

3. Complete DFS on the transposed graph with each of the vertices from the 

stack until the stack is empty. The nodes visited within the DFS form a 

strongly connected component. Where there are nodes that remain unvisited, 

there are more strongly connected components within the graph. Repeat this 

step until all nodes are visited. 

The following pseudocode is inspired by OpenGenus IQ [9]. 

3.5.3 Kosaraju’s Algorithm Pseudocode 

Set s to None 

order = [] 

def dfs_loop(G): 

  for node in G 

    if node not explored then 

      s = node 

      dfs(G, node) 

 



 

def dfs(G, v): 

  set v.explored to True 

  set v.leader to s 

  for edge (v, w) 

    if w not explored then 

      dfs(G, w) 

  set order to [v] + order 

 

def kosaraju(G): 

  dfs_loop(G_reversed) 

  dfs_loop(G) in order 

 

3.5.4 Example 

Consider the directed graph D with unweighted edges e1 to e11 as shown below in 

Figure 8. As per Kosaraju’s Algorithm, there are 3 strongly connected components 

within this graph. The resulting strongly connected components are as follows: 6, (0, 

1, 4, 5, 3), 2 and are demonstrated by Figure 8 below. In this example, there are two 

components which only contain one vertex. This means that patient-donor pairs p2d2 

and p6d6 cannot be matched as part of an optimal matching cycle, and therefore edges 

e4, e6 and e7 can be ignored. 

Figure 8: Strongly Connected Components 



 

For this project, Kosaraju’s algorithm has been adapted to accommodate the selected 

datasets. The original implementation, written in Python, was provided by 

Programiz.com [21].  

Originally, this program created a graph from a large number of function calls to add 

the vertices and edges. This implementation has been adapted so that the patient-

donor vertices from the dataset are created by a for-loop. Consequently, this 

implementation is suitable for all of the chosen datasets. Additionally, this program 

printed the resulting strongly connected components without storing them. This has 

been adapted such that the strongly connected components are stored to a 2-

dimensional list which is returned from the method print_scc. This allows retrieval 

of the strongly connected components from another class in a suitable data structure 

to use in the implementation of Johnson’s Algorithm that follows. 

3.5.5 Johnson’s Algorithm 

One of the required inputs for the linear integer programming formulation of the 

kidney application is all of the 2- and 3-cycles that exist within the graph. The first 

step in computing this is to identify the strongly connected components such that all 

existing cycles in the graph can be located. For this implementation of the kidney 

exchange problem, the cycle length k is limited to a maximum of 3 such that 2 ≤ k ≤ 

3, as per the constraints required by the NHS. At this stage, a valid cycle must contain 

at least two nodes as the patient and donor within a patient-donor pair are not a match 

to each other. This simulates the current exchange as deployed by the NHS. The 

impact of introducing compatible patient-donor pairs into the matching pool is 

explored in Chapter four. Initially, all the cycles within the strongly connected 

components are identified using Johnson’s Algorithm, then any cycles where k > 3 

are removed.  

Johnson’s Algorithm identifies all elementary cycles within a directed graph. It 

operates by taking each strongly connected component within a graph and 

identifying paths between the vertices which start and end at the same vertex. This 

method relies on the fact that cycles can only exist within strongly connected 

components, thereby allowing some edges to be ignored. Johnson’s Algorithm 

achieves a time complexity of O ((V + E) (|CycleV | + 1)) ∼ O (V∆|CycleV|) where 

|CycleV| is the number of cycles in the graph, V the is number of vertices on the graph 

and E is the number of edges. In the worst case, |CycleV| = O(V!) which can impact 

performance when the dataset is large [5]. 



 

3.5.6 Johnson’s Algorithm Steps 

1. Starting at the least vertex, add this vertex to a stack s and a blocked set b.  

2. Explore the first neighbour of the current vertex, adding this vertex to the 

stack s and blocked set. Repeat until a node is exhausted of neighbours. 

3. When a vertex has no more neighbours and does not form part of a cycle, it 

must be blocked. Remove this vertex from the stack and blocked set, add to 

a blocked map m such that if a neighbour of the vertex is unblocked, this 

node must be too. 

4. Repeat until each vertex has been explored as the starting vertex. 

3.5.7 Johnson’s Algorithm Pseudocode 

begin 

integer list array Ak(n), B(n); logical array blocked (n); integer 

s; 

logical procedure CIRCUIT (integer value v); 

begin logical f; 

procedure UNBLOCK (integer value u); 

begin 

blocked (u):= false; 

for wאB(u) do 
begin 

delete w from B(u); 

if blocked(w) then 

UNBLOCK(w); 

end 

end UNBLOCK 

f := false; 

stack v; 

blocked(v):= true; 

L1:    for w א AK(v) do 

if w=s then 

begin 



 

output circuit composed of 

stack followed by s; 

f := true; 

end 

else if ¬blocked(w) then 

if CIRCUIT(w) then f := true; 

L2:    if f then UNBLOCK(v) 

else for w א AK:(v) do 

if v ב B(w) then put v on B(w); 

unstack v; 

CIRCUIT := f; 

end CIRCUIT; 

empty stack; 

s := 1; 

while s < n do 

begin 

Ak := adjacency structure of strong component K with 

least vertex in subgraph of G induced by {s, s + 1, 

…, n}; 

if Ak ≠ Ø then 

begin 

s := least vertex in Vk; 

for i א Vk do 

begin 

blocked(i) := false; 

B(i) := Ø; 

end; 

L3:       dummy := CIRCUIT(s); 

s := s + 1; 

end 



 

else s := n; 

end 

end; 

 

3.5.8 Example 

For example, take the SCC identified in the example above and demonstrated by 

Figure 9 below. 

Stack = {}, Blocked Set = {}, Blocked Map = {} 

Taking p0d0 as the lowest vertex, explore the neighbour p3d3. 

Stack = {0, 1}, Blocked Set = {0, 1}, Blocked Map = {} 

As 1 is not the same as the starting 

vertex, add it to the stack and the 

blocked set, and explore its neighbour 

4. 

Stack = {0, 1, 4}, Blocked Set = {0, 1, 

4} 

Repeat this following the path of each 

vertex first neighbour until you reach v3. 

Stack = {0, 1, 4, 5, 3}, Blocked Set = {0, 1, 4, 5, 3} 

The first neighbour of v3 is v0 which matches the start vertex, and therefore a cycle 

has been found. Now backtrack to the next neighbour of v3, which is v1. As v1 is 

already part of the blocked set, it cannot be explored. As each of the vertices only 

have an out degree of 1, backtrack to the start vertex, v0. 

Repeat the process above, exploring neighbours of each vertex, starting with v5 as 

the neighbour of v0 and storing any completed cycles found upon each iteration. 

3.5.9 Implementation 

The implementation featured within this project uses Python code to identify all the 

cycles that exist within the directed graph, and then filters out cycles with length 

greater than three such that only the 2- and 3-cycles that are relevant to the kidney 

exchange implementation are returned. 

Figure 8: Strongly Connected Component 
Example 



 

3.5.10 ILP Formulation 

One method used to model the kidney exchange is by formulating it as a binary 

integer linear programming problem. To achieve this, a formulation which builds 

upon cycle formulation, first described by Roth, Sonmez and Unver (2007) is used. 

[15]. The formulation is as follows:  

Let C be the set of cycles that exist within a directed graph D where the cardinality 

of cn is greater than or equal to 2 but does not exceed 3.  

C = {c1, c2, …, cm} 2 ≤ n(cm) ≤ 3. 

Let b be a nx1 vector which represents the upper bound of each value. In this case 1, 

as each donor may only donate one kidney. 

b = [b1, b2, …, bn] where n = |p| א C and bi = 1 

Let A be an nxm matrix where n equals the number of patients p included in the set 

of cycles C, and m is the cardinality of C. 

 

 

n = |p| א C     m = n(C) A =                              

 

 

Let Aij = 1 where pi is in the cycle cj. 

Aij = 1 where pi א cj. 

Let x be an nx1 vector of binary variables where xi = 1 if and only if ci belongs to the 

set of cycles in optimal solution S. 

x = [x1, x2, …, xn], xn {1 ,0} א where xi = 1 iff ci א S 

Let k be an mx1 vector to represent the cost of each cycle cn within C, where m is the 

cardinality of C. Let kn be the cardinality of ck. 

 k = [k1, k2, … km] where m = n(C) and km = n(cm) 

a11 a12  … a1n 

a21 a22  … a2n 

⋮ ⋮  ⋮ ⋮ 
am1 am2  … amn 



 

Now, 

 Maximise kx such that Ax ≤ b, subject to x {1 ,0} א 

3.5.11 Example 

For the directed graph D, there exists 10 cycles with which 2 or 3 patients belong. 

There are 10 unique patients belonging to the cycles. 

C = {(1, 3, 2, 1), (1, 3, 14, 1), (1, 13, 15, 1), (2, 11, 3, 2), (2, 12, 3, 2), (3, 14, 3), (3, 

14, 13, 3), (3, 14, 15, 3), (4, 9, 4), (13, 15, 13)} 

Let b represent the upper bound for each donor. 

b = 

[  
   
   
 ͳͳͳͳͳͳͳͳͳͳ]  

   
   
 
 

Let x be a binary 10x1 vector such that xi = 1 if and only if ci belongs to the optimal 

solution. 

 

 

 

                                                                x =  

 

Let A be a 10x10 matrix to represent each of the cycles in C. 

x
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Let a 10x1 vector k represent the length of each of the identified cycles. 

k = [3 3 3 3 3 2 3 3 2 2] 

Objective function: 

Maximise kx 

Decision variables: 

 x1, x2, x3, x4, x5, x6, x7, x8, x9 and x10 

Constraints: 

• Ax ≤ b 

• xi {1 ,0} א 

The above formulation is implemented using the Gurobi library and used the 

.optimize() function to compute an optimal solution.  

The optimal solution identified in this case selects cycles c2, c5 and c9. Therefore,  

S = {(1, 13, 15, 1), (2, 12, 3, 2), (4, 9, 4)}. 

In this solution, kx = 8, meaning 8 patients have been successfully matched to donors. 

3.5.12 Limitations 

As part of this project, large datasets are used to compute optimal solutions. Due to 

the ILP formulation selected, every cycle that exists within the graph is identified by 

Johnson’s Algorithm, before cycles which violate cycle length constraints are 

filtered out. The final dataset used in this project contains 167 edges, which contains 

more than 70,000 cycles. Unfortunately, memory and computational power is 



 

limited within the project and it is infeasible to compute every cycle which exists 

within large datasets. Therefore, this impacts the achievable results on large datasets. 

To overcome this problem, filtering out large cycles is carried out inside Johnson’s 

Algorithm such that the number of identified cycles is smaller. However, rejecting 

large cycles earlier in the method prevents some of the cycles from ever being 

identified. As a result, in the case of large datasets, only an approximation to an 

optimal solution can be identified. The extent to which the approximation provides 

an acceptable solution is discussed as part of the results and analysis offered in 

Chapter four. 

 

3.6 Top Trading Cycle 

The Top Trading Cycle (TTC) is an algorithm developed for the exchange of items 

without exchange of money. It is attributed to David Gale and was first published by 

Scarf and Shapley (1974) [17]. The algorithm contains a pool of agents who are 

looking to exchange an item. Each agent then chooses other items from the pool 

which are preferable to the item they already own and lists these from most to least 

preferred. Initially, the algorithm starts at agent 0 and assigns them to their most 

favoured item. Following this, the owner of the item that agent 0 chose is assigned 

to their preferred item. This process continues until a cycle is formed.   

 

3.6.1 Top Trading Cycle Description 

For this project, TTC is applied to the kidney exchange to coordinate potential 

kidney transplants from donor to patient. For each patient-donor pair in the pool, 

each patient has a list of the donors for which they are a match, such that they would 

prefer to receive a kidney from that donor rather than remain with their own kidney. 

Then, based on the matching scores between each patient and potential donor, the 

donors are listed from the most preferable, highest matching score to the least 

preferable, lowest matching score. Beginning with patient p0, each of the patients are 

matched to their most preferable donor until a cycle is formed.  

After each potential matching assignment, the donor who has been matched must be 

removed from the preference list of the remaining patient’s in the pool, as each donor 

can only donate one kidney. In addition, the patient who has selected a donor has 

their preferences removed from the list, as they have been assigned their most 

suitable donor. There are several possible consequences after this process. It is 

possible that a donor is no longer desirable to any remaining patients, such that they 



 

do not exist in any of the remaining patient’s preferences. In this exchange, patients 

only receive a kidney on the condition that their donor donates a kidney. If a donor 

is no longer desirable it is not possible for their associated patient to receive a kidney, 

and the patient-donor pair is removed from the pool. It is also possible that a patient’s 

preference list may now be empty, such that all the donors in their preference list 

have either been matched or removed from the pool. This means that this patient 

cannot receive a kidney in this matching and subsequently the patient and their 

associated donor are removed from the pool. 

In some cases, a match is reached and a cycle is formed. In this situation, all the 

patients and their corresponding donors are removed from the pool, and the process 

continues with the remaining patient-donor pairs to identify any further cycles in the 

dataset. This process continues until either all the patient donor pairs are matched or 

there are no further matchings between the remaining patient-donor pairs. The result 

is a set of cycles containing donor-patient pairs who may exchange kidneys, which 

is now a possible solution.  

When a potential solution is found, the preference lists are reset and the algorithm 

runs again now starting one patient along from the last run. For example, on the 

second run of the algorithm, patient p1 is matched to their preferred kidney first. This 

results in a different set of exchange cycles, which may or may not have a higher 

cardinality or total matching score than the previous identified solution. When every 

potential solution has been identified, an optimal solution is selected based on 

maximising cardinality and matching score total. 

It is possible for a chain of patient-donor assignments to fail to result in a closed 

cycle. This may occur when the patient who is next to select their kidney no longer 

has any preferred kidneys left in the pool. In the event of this, all patient-donor pairs 

are returned to the pool and the algorithm continues one patient further along than it 

started the last time. 

3.6.2 Pseudocode 

Below is the pseudocode for TTC with application to the kidney exchange. 

set current patient to patient 0 

while there are patients to explore 

if patient has an empty donor preference list then 

 if current patient’s donor has not been matched then 



 

  no cycle has been found 

  reset the donor preferences to the original list 

  reset matches to beginning of current cycle 

  iterate the patient number 

  continue 

 else 

  store current matching 

store current state of donor preferences 

  continue with next patient 

assign current patient to its first preference donor 

clear current patient’s preferences 

remove matched donor from other patient’s list of preferred 

donors 

remove any patients with an empty donor preference list 

remove deleted patients from other's preference list 

set current patient to patient associated with matched donor 

3.6.3 Example 

Given a set of patients S, such that S = {s0, s1, s2, s3, s4, s5}, and a set of donors D, 

such that D = {d0, d1, d2, d3, d4, d5}, for each patient sx, there exists a subset spx of D 

such that each donor in spx is a match for patient sx. The donors in spx are ordered by 

the preference of dx to sx. The resulting graph is shown in Figure 10 below. 

 

Figure 9: Top Trading Cycle Example 1 



 

Patient s1 is not a match for any of the donors in the pool, therefore patient s1 and its 

corresponding donor d1 are removed from the pool as they cannot be allocated as 

part of an optimal matching. Similarly, donor d2 is not a match for any of the patients 

in S, therefore donor d2 and the corresponding patient s2 are also removed from the 

pool. 

 

 

 

 

 

 

 

Please note, if any of the remaining patient-donor pairs were left without any 

preferred donors, or other patients did not prefer their donor, they would also be 

removed. 

Now the algorithm begins assigning the patients to their preferred donor, starting 

with patient s0. 

The result of the allocations is as follows: 

a1 =  s0 → d3, s3 → d4, s4 → d0 

The resulting allocations form a cycle, such that the patient and donor of pairs p0d0, 

p3d3 and p4d4 are all featured in the matching. 

This step is repeated until each of the donors have been allocated as the first patient 

in the matching. The resulting allocations are shown below. 

a2 =  s3 → d4, s4 → d0, d0 → d3 

a3 =  s4 → d0, s0 → d3, s3 → d4 

a4 =  s5 → d4, s4 → d0, s0 → d3, s3 → d5 

Figure 10: Top Trading Cycle Example 2 



 

Note: in the above example, each of the allocations in A form a cycle and are possible 

solutions, where this is not the case, allocations that do not form a cycle are rejected. 

The allocations a1, a2 and a3 all feature the same cycle of patient-donor pairs s0d0, 

s3d3 and s4d4 where each patient is allocated to its first choice donor. In these 

matchings, patient s5 is not allocated a kidney. 

Allocation a4 provides the optimal solution with a cardinality of 4, including all the 

patient-donor pairs in the pool. Patients s5, s4 and s0 are matched to their most 

compatible kidney, and patient s3 is matched to its second choice kidney. 

3.6.4 Extending the Dataset 

The matching score between a patient and donor is made up from computations of 

the following categories: HLA mismatch, matching run points the patient has taken 

part in, level of sensitisation and age difference between the donors. The Preflib 

dataset provided values for the level of sensitisation for each patient, however the 

other data was not available. As a result, the dataset was extended such that the 

matching score could be computed accurately. The previous matching run points 

were randomly generated values between 0 and 14, with a mean of 10. This models 

patients with waiting list times from less than 3 months up to 3 years and 6 months, 

with an average waiting time of 3 years such that the data reflects the current reality. 

The HLA mismatch values were generated randomly for each matching patient-

donor from the set {0, 5, 10, 15} as these are the values which represent HLA 

mismatch. The ages of both the patient and the donor were generated randomly 

ranging from 18 to 70. The minimum value of 18 reflects the scope of the project 

focussing on the adult transplant waiting list. Although there is no age limit for 

transplant approval, it is less likely for patients over 70 to obtain approval due to the 

increased risks posed by surgery, which is reflected by the upper limit of 70 within 

the dataset. From the extended dataset, the matching score for each matching patient-

donor pair is computed from the following formula: 

Score = ͷͲP + �ʹ + � + � 

where P = previous matching run points, S = sensitisation levels, H = HLA 

mismatch and A = 0 where patient-donor age difference is less than 20, A = 3 

otherwise. This mirrors the matching score currently implemented by the NHS. 



 

The calculated matching scores are then used as the weight for the edge between the 

relevant patient-donor matching. 

In addition, the dataset has been extended to represent the stage of kidney disease, 

and therefore indicate the level of illness in each patient. Under the NHS, patients 

are advised to consider transplant as a treatment option when their CKD reaches 

stage 4. Therefore, each patient has been assigned a stage of either 4 or 5 (end stage). 

3.6.5 Implementation 

In this project, the implementation of this algorithm is extended to trial different 

methods of prioritising patients and selection of kidneys. Whilst it is true that the 

patient-donor matches with the highest matching score have the highest chance of a 

successful transplant, it is possible for each patient to be assigned to any donor that 

they are a match for. Based on this principle, this project explores the results when 

other factors were prioritised, such as the most unwell patients and patients who were 

more difficult to match.  

One extension made to the TTC implementation is to extend the dataset to categorise 

each of the patients into degrees of illness caused by their kidney disease. To model 

this principle within the algorithm, each cycle is assigned a score based on how many 

stage 5 patients are allocated a kidney within that solution. According to this, the 

algorithm prioritises solutions where end stage patients are allocated a kidney over 

stage 4 patients. 

Another extension made to the TTC algorithm is to prioritise patients who are 

difficult to match. For this implementation, difficulty to match is defined by the 

sensitisation level of the patient from the dataset provided. This value represents the 

percentage of the population that the donor is likely to have antibodies against. 

Therefore, to prioritise these patients two alterations have been made to the TTC 

algorithm. The prioritisation of highly sensitised patients is implemented by 

assigning each solution a value calculated from the sum of the sensitisation levels of 

the patients in the matching. Then, the algorithm selects the optimal solution based 

on the matchings with the highest levels of sensitised patients. One potential side 

effect of this method is that matchings with highly sensitised patients are more likely 

to fall through post matching but before surgery. This is due to complications in the 

final testing process between the patient and donor before the transplant is carried 

out. 



 

As per the regulations adopted by the NHS, the maximum cycle length for 

transplants within the United Kingdom is 3. However, globally it is feasible for larger 

cycle lengths to occur. For example, the longest cycle completed in the Netherlands 

involved 6 pairs and 12 operations. To account for this within the project, a user-

input field is included to define the length of the cycle allowed. This value, k, is used 

as an upper limit to the number of patients included in a cycle that forms part of a 

potential solution. In the code written for this project, when a cycle is identified, the 

length of the cycle is checked to ensure that it does not exceed the amount allowed 

by k. In the case where the cycle length is greater than k, the solution is rejected. 

Alternatively, it is accepted as part of a potential solution. 

3.7 Top Trading Cycle and Chains 

Non-directed altruistic donors are donors who do not name or specify the intended 

recipient of their kidney. This means that an additional kidney is available within the 

pool, without a paired patient. NDADs create domino chains which facilitate 

additional transplants that would not otherwise be possible. Within these chains, the 

donor who is paired with the patient receiving the NDAD kidney, donates their 

kidney to the kidney transplant waiting list. 

 

Figure 11: Altruistic Donor Chain 

As demonstrated by Figure 12, four additional transplants could be allocated due to 

the NDAD’s donation. This is because in the case where there are no existing cycles 

between patients s0, s1, s2 and s3 no transplants could be allocated if the altruistic 

donor had donated straight to the waiting list. 

To model this within my dataset and implementation, each of the altruistic donors in 

the matching pool are assigned a dummy patient, who is marked as compatible with 

every donor in the pool. This is because the remaining kidney will be donated to the 



 

waiting list, where a suitable match will be available regardless of existing factors 

such as blood type. Therefore, when a cycle is formed including a NDAD, it is 

actually a domino chain. 

Another benefit to creating domino chains is that, unlike cycles, transplants allocated 

as part of a chain do not need to be performed simultaneously. This is due to the lack 

of risk of donor withdrawal, as NDADs are not expecting anything in return for the 

donation of their kidney. This means that the length of the chain is not restricted as 

with a cycle. 

3.7.1 Example 

 Let {d0: s1, d1: s2, d2: s3, d3: s0} be an optimal solution computed by TTCC, 

where s0d0, s1d1 and s3d3 are patient donor pairs, and d2 is a NDAD. This solution 

represents the following action: 

• Donor d0 donates their kidney to patient s1 

• Donor d1 donates their kidney to patient s2, which represents a donation to 

the kidney transplant waiting list 

• Altruistic donor d2 donates their kidney to patient s3 

• Donor d3 donates their kidney to patient s0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4 Results and Evaluation 
4.1.1 Dataset 1 

 The first dataset that will be used to produce a matching for analysis is a 

reduction of the 25th dataset as provided in the sets of data by Preflib, meaning that 

the altruistic donors have been removed. This dataset is small, containing 16 patients, 

and no altruistic donors. There are 56 edges connecting the patients and donors in 

the graph. 

Table 1 shows a sample of the graph data for graph D1 which belongs to this dataset. 

Patient Donor HLA 

0 15 10 

0 5 15 

0 3 0 

0 13 10 

0 12 5 

0 7 5 

0 4 0 

0 14 15 

0 11 5 

0 6 10 

1 9 5 

Table 1: Sample of Graph Data for Dataset D1 

 

 

Patient-

Blood 

Donor-

Blood %Pra 

Out-

Deg Altruist 

Previous 

Matching 

Run 

Points 

Patient-

Age 

Donor-

Age 

0 O O 0.45 10 0 7 69 23 

1 A O 0.9 12 0 9 67 25 

2 O B 0.45 0 0 9 60 37 

3 O B 0.05 1 0 11 52 62 



 

4 O B 0.05 1 0 11 63 59 

5 O A 0.05 4 0 10 30 44 

6 B O 0.2875 11 0 9 27 35 

7 O A 0.05 3 0 11 39 23 

8 O A 0.45 3 0 9 57 31 

9 O A 0.9 4 0 10 46 66 

10 A A 0.45 2 0 11 22 33 

11 A AB 0.05 0 0 11 53 52 

12 O A 0.05 2 0 8 24 68 

13 A B 0.2875 1 0 11 66 47 

14 O A 0.45 2 0 11 50 35 

15 A B 0.05 0 0 8 66 24 

Table 2: Patient-Donor Details for Pairs in Dataset D1 

4.1.2 Dataset 2 

 The second dataset that will be used to produce a matching for analysis is 

the 25th dataset as provided by Preflib. The dataset includes 16 patients as in 

dataset 1, with the addition of 2 altruistic donors, 18 in total. As a result of this, 

there are 49 additional edges, 105 in total. 

Table 3 shows a sample of the additional edges in the graph D2. 

 

Patient Donor HLA 

15 17 0 

15 16 0 

16 5 10 

16 2 15 

16 14 10 

16 7 15 

16 8 10 



 

16 4 5 

16 12 10 

17 6 0 

17 12 5 

Table 3: Sample of Additional Edges in Dataset D2 

The patients contained in the second dataset D2 are the same as in dataset D1, with 
the addition of altruistic donors and their corresponding dummy patients, p16 and 
p17. 

 

Patient-

Blood 
Donor-

Blood %Pra 

Out-

Deg Altruist 

Previous 

Matching 

Run 

Points 

Patient-

Age 

Donor-

Age 

16 B O 0.05 7 1 9 70 36 

17 A B 0.05 10 1 12 35 66 

Table 4: Altruistic Donor Information for Dataset D2 

4.1.3 Dataset 3 

Dataset D3 contains the data from dataset D2, however it includes one final 

extension: the introduction of compatible patient-donor pairs into the matching 

pool. As a result, this dataset contains 21 patient-donor pairs, including 3 

compatible patient-donor pairs. There are 62 additional edges on the graph, 167 in 

total. Table 5 shows the patient-donor information for the compatible patient-donor 

pairs. 

 

Patient-

Blood 
Donor-

Blood %Pra 

Out-

Deg Altruist 

Previous 

Matching 

Run 

Points 

Patient-

Age 

Donor-

Age 

18 O O 0.05 4 0 0 48 32 

19 A O 0.05 12 0 0 25 34 

20 AB B 0.05 21 0 0 46 52 

Table 5: Compatible Patient-Donor Pair Information for Dataset D3 

Table 6 shows a sample of the information on the matching relations between the 
additional and existing patients.  

 



 

Patient Donor HLA 

18 0 5 

18 18 0 

18 1 0 

18 6 10 

19 5 10 

19 7 0 

19 18 5 

19 8 5 

19 9 5 

19 10 0 

Table 6: Compatible Patient-Donor Matching Information for Dataset D3 

4.2.1 Pairwise Exchange Results Dataset 1 

The directed graph which represents dataset D1 is shown below in Figure 13. 

 

 

Figure 12: Directed Graph for Dataset D1 

The directed graph can also be represented as a matrix: 

 . Ͳ ͳ Ͷ ͸Ͳ Ͳ Ͳ Ͳ ͳͳ Ͳ Ͳ Ͳ ͳͶ Ͳ Ͳ Ͳ ͳ͸ ͳ ͳ ͳ Ͳ 

 



 

 

When this data is input into the Blossom Algorithm, the following result is obtained: 

 

Figure 13: Screenshot of Blossom Algorithm Output 

The resulting output file contains: 

 

Figure 14: Screenshot of Blossom Output File 

This means that the first node in the graph should be matched to the third node in 
the graph. Therefore, the optimal solution is as follows: 

• Donor d0 donates their kidney to patient p6 
• Donor d6 donates their kidney to patient p0 

This solution has a cardinality of 2. As a result, 14 willing donors are unable to 
donate, along with 14 patients who are unable to receive as part of this matching. 

 

 

Figure 15: Pairwise Exchange Optimal Matching for Dataset D1 

 

4.2.2 Pairwise Exchange Results Dataset 2 

The directed graph produced from dataset D2 is shown in Figure 17 below: 



 

 

Figure 16: Directed Graph for Dataset D2 

The graph, shown in Figure 17, can be represented as a matrix, shown below: . Ͳ ͳ ʹ ͵ Ͷ ͷ ͸ ͹ ͺ ͻ ͳʹ ͳͶ ͳ͸ ͳ͹Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳʹ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳ͵ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳͶ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳͷ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳ͸ ͳ ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ͹ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳͺ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳͻ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳͳʹ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳͳͶ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳͳ͸ Ͳ Ͳ ͳ Ͳ ͳ ͳ Ͳ ͳ ͳ Ͳ ͳ ͳ Ͳ Ͳͳ͹ Ͳ Ͳ ͳ ͳ ͳ ͳ ͳ ͳ ͳ ͳ ͳ ͳ Ͳ Ͳ

 

 

The output from the Blossom Algorithm is shown in Figures 18 and 19 below: 

 

Figure 17: Screenshot of Output from Blossom Algorithm for Dataset D2 



 

 

Figure 18: Screenshot of Blossom Algorithm Output File 

This output shows that the optimal solution is as follows: 

• Donor d0 donates their kidney to patient p6 
• Donor d2 donates their kidney to the active waiting list 
• Donor d3 donates their kidney to the active waiting list 
• Donor d6 donates their kidney to patient p0 

• Donor d16 donates their kidney to patient p2 
• Donor d17 donates their kidney to patient p3 

As a result, the cardinality of this solution is 6, as there are 4 patients from the 
matching pool and two patients from the active waiting list who are allocated a 
kidney. 

 

Figure 19: Pairwise Exchange Optimal Solution for Dataset D2 

 

4.2.3 Pairwise Exchange Results Dataset 3 

The directed graph produced from dataset D3 has 57 edges connecting 18 donor-
patient nodes. Therefore, the resulting graph is large and viewing the graph does not 
aid understanding and is omitted as a result. 

 



 

 . Ͳ ͳ ʹ ͵ Ͷ ͷ ͸ ͹ ͺ ͻ ͳͲ ͳʹ ͳͶ ͳ͸ ͳ͹ ͳͺ ͳͻ ʹͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳ Ͳʹ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳ Ͳ Ͳ Ͳ͵ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ ͲͶ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳ Ͳ Ͳ Ͳͷ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳ Ͳ Ͳ Ͳ͸ ͳ ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳ Ͳ ͳ͹ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳ Ͳ Ͳ Ͳͺ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳ Ͳ Ͳ Ͳͻ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ ͲͳͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳͳʹ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳ Ͳ Ͳ ͲͳͶ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ͳ Ͳ Ͳ Ͳͳ͸ Ͳ Ͳ ͳ ͳ ͳ ͳ Ͳ ͳ ͳ Ͳ Ͳ ͳ ͳ Ͳ Ͳ Ͳ Ͳ ͳͳ͹ Ͳ Ͳ ͳ Ͳ ͳ ͳ ͳ ͳ ͳ ͳ Ͳ ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ

 

ͳͺ ͳ ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ  Ͳ   Ͳ    Ͳ   Ͳ   Ͳ   ͳ    Ͳ    Ͳͳͻ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ  ͳ   Ͳ    Ͳ   Ͳ   Ͳ   Ͳ   ͳ    ͲʹͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ  Ͳ   Ͳ    Ͳ    ͳ   Ͳ   Ͳ    Ͳ   ͳ  

 

The output from the Blossom Algorithm is shown in Figure 21 below: 

 

Figure 20: Screenshot of Blossom Algorithm Output for Dataset D3 

 

Figure 21: Screenshot of Output File for Blossom Algorithm Dataset D3 

This output shows that the optimal solution is as follows: 

• Donor d0 donates their kidney to patient p6 
• Donor d1 donates their kidney to patient p15 
• Donor d2 donates their kidney to patient p13 



 

• Donor d3 donates their kidney to patient p14 
• Donor d6 donates their kidney to patient p0 

• Donor d10 donates their kidney to the active waiting list 
• Donor d13 donates their kidney to patient p2 
• Donor d14 donates their kidney to patient p3 

• Donor d15 donates their kidney to patient p1 
• Donor d16 donates their kidney to patient p10 

 

Figure 22: Pairwise Exchange Optimal Solution for Dataset D3 

As a result, the cardinality of this solution is 10, as there are 9 patients from the 
matching pool and one patient from the active waiting list who are allocated a 
kidney. 

4.3.1 ILP Results Dataset 1 

The SCCs identified by Kosaraju’s Algorithm for graph D1 are as follows: 

15, 11, 12, 10, 14, 2, (0, 3, 6, 1, 4, 5, 13, 7, 9, 8) 

 

 

Figure 23: SCCs for Dataset D1 



 

As a result, 30 edges were excluded from D1, reducing the number of edges left to 
optimise from 58 to 28. 

From the identified SCCs, Johnson’s algorithm computed all the cycles within the 
graph where cycle length k such that 2 ≤ k ≤ 3. There are 13 cycles, 3 of length 2, 
and 9 of length 3. 

The set of cycles C is as follows: 

C = {(0, 3, 6, 0), (0, 6, 0), (0, 6, 1, 0), (0, 4, 6, 0), (0, 13, 6, 0), (1, 3, 6, 1), (1, 6, 1), 
(1, 4, 6, 1), (1, 13, 6, 1), (4, 6, 4), (5, 13, 6, 5), (6, 7, 13, 6), (6, 8, 13, 6)} 

Let C be represented by the following matrix: 

 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 

0 1 1 1 1 1 0 0 0 0 0 0 0 0 

1 0 0 1 0 0 1 1 1 1 0 0 0 0 

3 1 0 0 0 0 1 0 0 0 0 0 0 0 

4 0 0 0 1 0 0 0 1 0 1 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 1 0 0 

6 1 1 1 1 1 1 1 1 1 1 1 1 1 

7 0 0 0 0 0 0 0 0 0 0 0 1 0 

8 0 0 0 0 0 0 0 0 0 0 0 0 1 

9 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 1 0 0 0 1 0 1 1 1 

Let b represent the upper bound for each donor and x be a binary 10x1 vector such 

that xi = 1 if and only if ci belongs to the optimal solution. 



 

                        b = 

[  
   
   
 ͳͳͳͳͳͳͳͳͳͳ]  

   
   
 
                                    x =  

 

Let a 13x1 vector k represent the length of each of the identified cycles. 

k = [3 2 3 3 3 3 2 3 3 2 3 3 3] 

Now, maximise kx, with respect to Ax ≤ b and xi {1 ,0} א. 

When using the Gurobi Optimiser, the following output is returned: 

 

Figure 24: Screenshot of ILP Results for Dataset D1 

The returned cycle which forms the optimal solution is c0. Cycle c0 has a cardinality 

of 3, meaning that 3 patients are allocated a kidney transplant in total as part of the 

optimal solution. It is of note that in this particular circumstance, there are 8 other 

cycles which also have a cardinality of 3, therefore, to choose the optimum cycle, 



 

the total weight of each cycle should be considered. A limitation of this program is 

that cardinality is the determining factor in choosing an optimal matching, and total 

weight is not considered. This means that whilst c0 was selected as the optimal 

solution, any of the cycles length 3 provide the same cardinality. 

Cycle c0 = (0, 3, 6, 0). This represents the following action: 

• Donor d0 donates their kidney to patient p3 

• Donor d3 donates their kidney to patient p6 

• Donor d6 donates their kidney to patient p0 

 

Figure 25: Optimal ILP Solution for Dataset D1 

This dataset was also used with the cycle length k constraint such that 2 ≤ k ≤ 3, but 
without the chain length constraint. As transplants from domino chains are not 
required to occur simultaneously, the need for a small chain is not always necessary. 

The SSCs identified from graph D1, are the same as in the results above. However, 
no additional chains were identified. Therefore, the results in this case are the same 
as above. 

Additionally, this dataset was also used with the ILP formulation without the cycle 
length constraint such that cycle length = k where 2 ≤ k ≤ 3. This set of results is to 
highlight the difference in cardinality of the maximum matching and state the case 
for research into the practicalities of cycles containing more patients. 

The SCCs identified within the graph D1, are the same as above. From the identified 
SCCs, Johnson’s Algorithm computed all the cycles within D1. There are now 23 
cycles within the set C, shown below: 

C = {(0, 3, 6, 0), (0, 3, 6, 1, 0), (0, 6, 0), (0, 6, 1, 0), (0, 4, 6, 0), (0, 4, 6, 1, 0), (0, 5, 
13, 6, 0), (0, 5, 13, 6, 1, 0), (0, 13, 6, 0), (0, 13, 6, 1, 0), (0, 7, 13, 6, 0), (0, 7, 13, 6, 
1, 0), (1, 3, 6, 1), (1, 6, 1), (1, 4, 6, 1), (1, 5, 13, 6, 1), (1, 13, 6, 1), (1, 7, 13, 6, 1), 

(1, 9, 13, 6, 1), (4, 6, 4), (5, 13, 6, 5), (6, 7, 13, 6), (6, 8, 13, 6)} 



 

Now as explained in the detailed ILP formulation in Chapter 3.5, maximise kx, with 

respect to Ax ≤ b and xi {1 ,0} א. 

When using the Gurobi Optimiser, the following output is returned: 

 

Figure 26: Screenshot of ILP Results for Dataset D1 without cycle length constraints 

The optimal solution is returned as cycle c7 only with a cardinality of 5, meaning that 
2 additional patients are allocated a kidney compared to the solution which includes 
the cycle length constraint. As above, as a single cycle of length 5 has been selected, 
there are 2 other cycles which would also return maximum cardinality in this case. 
Actions required by selection of cycle c7 detailed below: 

Cycle c7 = (0, 5, 13, 6, 1, 0) 
• Donor d0 donates their kidney to patient p5 
• Donor d5 donates their kidney to patient p13 
• Donor d13 donates their kidney to patient p6 
• Patient d6 donates their kidney to patient p1 
• Donor d1 donates their kidney to patient p0 



 

 

Figure 27: Optimal ILP Solution for Dataset D1 without cycle length constraints. 

 

4.3.2 ILP Results Dataset 2 

The SCC identified by Kosaraju’s Algorithm for graph D2 is as follows: 

(0, 3, 6, 1, 2, 16, 4, 17, 5, 10, 11, 15, 13, 7, 8, 9, 12, 14) 

As the altruistic donor’s dummy patients are compatible with every donor, each 

vertex becomes accessible from every other vertex, meaning that the graph D2 is one 

SCC. As a result, the graph contains 18 patient-donor pairs, connected by 106 edges, 

for which a diagram does not aid understanding due to the vast number of edges. 

From the identified SCC, Johnson’s algorithm computed all the cycles within the 

graph where cycle length k such that 2 ≤ k ≤ 3. There are 78 cycles, 20 of length 2, 

and 58 of length 3. 

The set of cycles C is as follows: 

C = {(0, 3, 6, 0), (0, 6, 0), (0, 6, 1, 0), (0, 4, 6, 0), (0, 17, 6, 0), (0, 13, 6, 0), (1, 3, 6, 
1), (1, 6, 1), (1, 4, 6, 1), (1, 17, 6, 1), (1, 13, 6, 1), (2, 16, 2), (2, 17, 6, 2), (2, 17, 2), 
(3, 6, 17, 3), (3, 17, 3), (4, 6, 16, 4), (4, 6, 4), (4, 6, 17, 4), (4, 16, 4), (4, 17, 6, 4), 

(4, 17, 4), (5, 16, 5), (5, 17, 6, 5), (5, 17, 5), (5, 10, 16, 5), (5, 10, 17, 5), (5, 11, 16, 
5), (5, 11, 17, 5), (5, 15, 16, 5), (5, 15, 17, 5), (5, 13, 6, 5), (5, 13, 16, 5), (5, 13, 17, 
5), (6, 17, 6), (6, 10, 17, 6), (6, 11, 17, 6), (6, 15, 17, 6), (6, 7, 17, 6), (6, 7, 13, 6), 
(6, 8, 17, 6), (6, 8, 13, 6), (6, 12, 17, 6), (7, 16, 7), (7, 17, 7), (7, 11, 16, 7), (7, 11, 
17, 7), (7, 15, 16, 7), (7, 15, 17, 7), (7, 13, 16, 7), (7, 13, 17, 7), (8, 16, 8), (8, 17, 
8), (8, 10, 16, 8), (8, 10, 17, 8), (8, 11, 16, 8), (8, 11, 17, 8), (8, 13, 16, 8), (8, 13, 

17, 8), (9, 17, 9), (9, 10, 17, 9), (9, 11, 17, 9), (9, 15, 17, 9), (9, 13, 17, 9), (10, 16, 
14, 10), (10, 17, 14, 10), (11, 16, 12, 11), (11, 16, 14, 11), (11, 17, 12, 11), (11, 17, 

14, 11), (12, 16, 12), (12, 17, 12), (12, 15, 16, 12), (12, 15, 17, 12), (14, 16, 14), 
(14, 17, 14), (14, 15, 16, 14), (14, 15, 17, 14)} 

 



 

As in the examples featured earlier in the report, C will be represented by a 78x18 

matrix, with a column to represent each of the cycles in C, and a row to represent 

each of the patients in the dataset. Cij = 0 where patient i does not belong to cycle j 

and Cij = 1 where patient i does belong to cycle j. 

Let b represent the upper bound for each donor such that every value in b = 1, and x 

be a binary 78x1 vector such that xi = 1 if and only if ci belongs to the optimal 

solution. 

Let a 78x1 vector k represent the length of each of the identified cycles. 

k = [3 2 3 3 3 3 3 2 3 3 3 2 3 2 3 2 3 2 3 2 3 2 2 3 2 3 3 3 3 3 3 3 3 3 2 3 3 

3 3 3 3 3 3 2 2 3 3 3 3 3 3 2 2 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 2 2 3 3 

2 2 3 3] 

Now, maximise kx, with respect to Ax ≤ b and xi {1 ,0} א. 

When using the Gurobi Optimiser, the following output is returned: 

 

Figure 28: Screenshot of Optimal ILP Solution for Dataset D2 



 

 The returned cycles which form the optimal solution are c2, c29 and c60. The total 

cardinality of this solution is 9, 6 more than the cardinality of the optimal solution 

excluding the altruistic donors. This means that the addition of just two altruistic 

donors into the pool has facilitated twice as many additional allocations. The 

resulting action from this matching is detailed below: 

Cycle c2 = (0, 6, 1, 0).  
• Donor d0 donates their kidney to patient p6 
• Donor d6 donates their kidney to patient p1 
• Donor d1 donates their kidney to patient p0 

Cycle c29 = (5, 15, 16, 5). 
• Donor d5 donates their kidney to patient p15 
• Donor d15 donates their kidney to the waiting list 
• Altruistic donor d16 donates their kidney to patient p5 

 
Cycle c60 = (9, 10, 17, 9). 

• Donor d9 donates their kidney to patient p10 
• Donor d10 donates their kidney to the waiting list 
• Altruistic donor d17 donates their kidney to patient p9 

As a result of this matching, 7 patients within the matching pool have been allocated 

a kidney, and 2 patients on the kidney transplant waiting list have also been donated 

a kidney. 

  

Figure 29: Optimal ILP Solution for Dataset D2, where Cycle Length Restricted 

Due to the nature of altruistic domino chains, it is not required for the allocated 

transplants to be carried out simultaneously, as discussed in the introduction to 

domino chains in Chapter 3.7. Therefore, this dataset is also trialled against the 

constraint where cycles must be kept between length 2 and 3, but domino chains can 

be of any length. The SCC identified in the graph remains as above.  



 

The set of identified cycles C where cycle length k such that 2 ≤ k ≤ 3, and domino 

chains of any length contains 1075 cycles and chains. From this, the ILP formulation 

will be modelled as described in the examples above both earlier in this chapter, and 

in Chapter 3.7.  

When using the Gurobi Optimiser, a sample of the output is displayed in Figure 31 
below: 

 ⋮ 

 

Figure 30: Sample of Screenshot of ILP Solution for D2 

The optimal solution in this case selects cycles c105 and c1070. The cardinality of this 

matching is 12, meaning an additional 3 patients have been allocated a kidney than 

when the domino chain length was restricted.  

Cycle c105 = [0, 5, 10, 11, 16, 8, 13, 6, 1, 0] 



 

• Donor d0 donates their kidney to patient p5 
• Donor d5 donates their kidney to patient p10 
• Donor d10 donates their kidney to patient p11 
• Donor d11 donates their kidney to the waiting list 
• Altruistic donor d16 donates their kidney to patient p8 
• Donor d8 donates their kidney to patient p13 
• Donor d13 donates their kidney to patient p6 
• Donor d6 donates their kidney to patient p1 
• Donor p1 donates their kidney to patient p0 

Cycle c1070 = [12, 15, 17, 12] 
• Donor d12 donates their kidney to patient p15 
• Donor d15 donates their kidney to the waiting list 
• Donor d17 donates their kidney to patient p12 

As a result of this matching, 10 patients from the matching pool and 2 patients from 

the waiting list are allocated a kidney.  

 

Figure 31: Optimal ILP Solution for Dataset D2, No Restrictions 

Finally, ILP was used to compute the optimal solution where the cycle length k, and 

the domino chain length l are both unrestricted. This models the situation where 

particularly the constraint on cycle length is ignored, to understand the potential 

limitations imposed on the optimal solution further. 

As a result, 10 additional cycles were identified to decipher between to compute the 

optimal solution.  

When using the Gurobi Optimiser, a sample of the output is displayed in Figure 33 

below: 

 



 

 ⋮ 

The optimal matching in this case consists of cycles c105 and c1065.The cardinality of 
this matching is 12, so no additional patients have been allocated a kidney. Although 
one of the chosen cycles differs from the previous result, this is due to an arbitrary 
selection of a 3-cycle matching, and therefore the difference between the two 
solutions is negligible. Therefore, in this case, the constraint on the cycle length k, 2 
≤ k ≤ 3, does not limit the optimality of the solution. 

 

 

Figure 32: Sample of Screenshot of Optimal ILP Solution for Dataset D2, No Restrictions 



 

4.3.3 ILP Results Dataset 3 

The SCC identified by Kosaraju’s Algorithm for graph D3 are as follows: 

(0, 3, 6, 1, 2, 16, 4, 17, 5, 10, 11, 18, 19, 7, 13, 15, 8, 9, 12, 14, 20) 

As this does not reduce the initial graph, there are still 167 edges and 21 nodes. 

Therefore, an image of the SCC graph does not aid understanding. 

Due to the large number of matches between patients and donors, and failure to 

reduce the graph using Kosaraju’s Algorithm, this dataset is considered large. As a 

result, it is not possible to store every instance of a cycle that exists within D3 due to 

memory and computational power resources available. Therefore, this dataset is 

processed according to the secondary method presented in Chapter 3.5.12. 

In this instance, the initial search for cycles is limited to 10. As a result, it is possible 

that not every single cycle of lengths 2 and 3 were identified. Despite this, 146 cycles 

were identified, but due to the large number, they are not shown here. 

As before, let a 146x1 vector b represent the upper bound for each donor and let a 

146x1 vector x represent the selected cycles such that xi = 1 if and only if ci belongs 

to the optimal solution. 

Let an 146x1 vector k represent the length of each of the identified cycles. 

Now, maximise kx, with respect to Ax ≤ b and xi {1 ,0} א. 

Despite limiting the cycle search, the algorithm runtime has increased from almost 

instantaneously to 25.4 seconds. When using the Gurobi Optimiser, the following 

output is returned: 



 

 

Figure 33: Screenshot of Optimal ILP Solution for Dataset D3 Restricted Cycle and Chain Length 

The selected cycles are as follows: 

Cycle c52 = (1, 12, 18, 1), cycle c65 = (4, 6, 20, 4), cycle c115 = (7, 13, 16, 7), cycle 
c129 = (8, 11, 19, 8), cycle c140 = (9, 15, 17, 9) 

This solution has a cardinality of 15, made up from 13 matching pool patient 

allocations and 2 active waiting list allocations. This is an improvement of 6 when 

compared to the ILP solution that does not include the compatible patient-donor 

pairs. In addition, this solution identified 3 more matches than the equivalent TTC 

solution. Therefore, this approach can be considered a good approximation to an 

optimal solution. 

 

Figure 34: Optimal ILP Solution Approximation for Dataset D3 



 

 

Considering only eligible cycles and chains, where cycle length k such that 2 ≤ k ≤ 

3 and chain length l unrestricted and limiting the cycle length search to 10, 74,157 

cycles and chains were identified. Due to the large number of cycles found, they are 

not listed here. Every patient-donor pair in D3 is included in one or more cycles. 

Therefore, let C be represented by a 74157x21 matrix. 

As before, let a 21x1 vector b represent the upper bound for each donor and let a 

21x1 vector x represent the selected cycles such that xi = 1 if and only if ci belongs 

to the optimal solution. 

Let a 74157x1 vector k represent the length of each of the identified cycles. 

Now, maximise kx, with respect to Ax ≤ b and xi {1 ,0} א. 

When using the Gurobi Optimiser, the following output is returned: 

 

Figure 35: Screenshot of Optimal ILP Solution for Dataset D3 



 

The optimal solution returned by Gurobi Optimiser selects cycles c35518, 
c52303, c59231 and c73536, which are as follows: 

c35518 = (0, 14, 15, 17, 8, 13, 18, 1, 0), c52303 = (3, 6, 20, 3), c59231 = (5, 10, 16, 5), 

c73536 = (7, 11, 19, 7) 

The optimal solution has a cardinality of 17, consisting of three 3-cycles and 

an ADC of length 8. As part of this solution, 15 patients from the matching 

pool and 2 patients from the active waiting list are allocated a kidney. The 

solution had a total run time of 2m 23s. 

 

Figure 36: Optimal Solution Approximation for Dataset D3 

 

Finally, ILP was used to compute an approximation to an optimal solution where the 

cycle length is unrestricted, but the cycle length search is restricted to a maximum 

of 10. In this instance, 76,064 cycles were identified. 

Therefore, let C be represented by a 76064x21 matrix. 

As before, let a 21x1 vector b represent the upper bound for each donor and let a 

21x1 vector x represent the selected cycles such that xi = 1 if and only if ci belongs 

to the optimal solution. 

Let a 76064x1 vector k represent the length of each of the identified cycles. 

Now, maximise kx, with respect to Ax ≤ b and xi {1 ,0} א. 



 

When using the Gurobi Optimiser, the following output is returned: 

 

Figure 37: Screenshot of Output for ILP Dataset D3 

The optimal solution selected cycles c12875, c38527 and c75737, which are as follows: 

c12875 = (0, 4, 17, 9, 13, 6, 0), c38527 =  (1, 2, 16, 20, 14, 11, 18, 1), c75737 = (8, 10, 15, 

19, 8) 

The solution had a run time of 2m 46s. It has a cardinality of 17, consisting of 15 

patients from the matching pool and 2 from the active waiting list. The cardinality 

of this solution matches the cardinality where the cycle length was restricted. 

Therefore, this solution does not offer an improvement, and shorter cycle lengths are 

preferable due to reduced risk of transplants falling through post-matching. 

 

 

 



 

4.4.1 Top Trading Cycle Results Dataset 1 

The top trading cycle generates a list of preferred donors for each patient, from 

most compatible match to least compatible match. The initial preference list for 

each patient is shown in Table 7 below: 

 Matching Donors 

Patient 1st  2nd 3rd 4th, ... 

0 6 1     

1 6       

2 1  6     

3 1 0     

4 1 0 6   

5 1 0 6   

6 0 4 3 1, 13 

7 6 0 1   

8 6       

9 1       

10 5 6 8 9 

11 14  12  10  9, 8, 7, 5, 1, 6, 0 

12 6 1 0   

13 8 7 1 9, 5, 0 

14 0       

15  6 5 0 14, 12, 10, 9, 7, 1 

Table 7: Donor Preferences for each Patient in Dataset D1 

As demonstrated by Table 7 above, donors d2, d11, and d15 are not a match to any 
patients in the pool, therefore the corresponding patient-donor pairs are also 
removed from the pool. As a result, there are 13 patients remaining. The cycle 
length k is restricted such that 2 ≤ k ≤ 3. 

The optimal solution returned is the following cycle: 

(1, 6, 0, 1) 



 

 

 

Figure 38: Screenshot of Optimal TTC Solution for Dataset D1, Cycle Length Restricted. 

This cycle has a cardinality of 3, matching the maximum cardinality identified by 

ILP. The cycle chosen as optimal by TTC differs from ILP as TTC takes the weight 

of each edge into consideration. Therefore, the solution identified by TTC is more 

optimal as the likelihood of the transplant taking place and achieving successful 

results is higher.  

 

Figure 39: Optimal TTC Solution for Dataset D1 

Additionally, TTC was used to identify the maximum cardinality solution where 

cycle length k was unrestricted. The initial preference list remains the same as in the 

example above. 

The optimal solution returned the cycle shown below: 

(5, 1, 6, 13, 5) 

 

Figure 40: Screenshot of TTC Solution for D1, Cycle Length Unrestricted 

The implementation of TTC includes some additional definitions of optimality to 

investigate the effect on the optimal solution. The first extension for this dataset, is 

to prioritise the patients who have the most accelerated cases of CKD, namely stage 

5 or end stage kidney failure.  



 

 

The optimal solution, inclusive of the stage of each patient’s condition, returned the 

following cycle: 

(7, 6, 13, 7) 

 

Figure 41: Screenshot of Optimal TTC Solution with Stage 5 Priority 

In this instance, the patients included in the original optimal solution are not end-

stage CKD patients. Therefore, when the stage of each patient’s condition was 

considered in the matching, the optimal matching has the same cardinality but the 

patients included are different. 

A second extension of the TTC algorithm considers which patients are difficult to 

match with respect to sensitisation levels. In this dataset, the patients with the highest 

levels of sensitisation p2 and p10 have already been removed. Therefore, from the 

remaining patients, the patients with the highest levels of sensitisation are p1, p3, p9 

and p11 at 0.45.  

The returned optimal solution inclusive of high levels of sensitisation is as follows: 

(1, 6, 0, 1) 

 

Figure 42: Screenshot of Optimal TTC Solution with Sensitisation Priority 

The levels of sensitisation for patients p0, p1 and p6 are 0.45, 0.9 and 0.2875, 

respectively. 

4.4.2 Top Trading Cycle Results Dataset 2 

As in the example above, the initial preference list for each patient is generated and 

shown in Table 8:  



 

 Matching Donors 

Patient 1st  2nd 3rd 4th, ... 

0 6 1     

1 6       

2  1 6 17 16 

3 1 17 0   

4 1 0 17 6, 16  

5 1 0 17 16, 6  

6 0 4 3 1, 13, 17 

7 6 0 16 17, 1 

8 16  6 17   

9 1 17      

10 5 6 8 9 

11 14 12 10 9, 8, 7, 5, 1, 6, 0 

12 6 1 0 17, 17  

13 8 7 1 9, 5, 0 

14 17 0  16   

15  6 5 0 14, 12, 10, 9, 7, 1 

16 1 0 3 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 2 

17 1 0 4 3, 2, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5 

Table 8: Donor Preferences for each Patient in Dataset D2 

The dummy patients p16 and p17 associated with the altruistic donors d16 and d17 

respectively, are compatible with each of the donors in the pool. As a result, no 

patient-donor pairs are removed from the pool due to lack of preference of a donor 

from another patient. This means that patient-donor pairs p2d2, p11d11 and p15d15 

remain in the pool for potential matching. As a result, all 17 patients included in the 

dataset remain in the pool, an addition of 3 excluding the altruistic donors on dataset 

D1. The cycle length k is restricted such that 2 ≤ k ≤ 3. 

 



 

The optimal solution returned is the following cycles: 

(4, 1, 6, 4), (2, 17, 2), (5, 16, 15, 5) 

 

Figure 43: Screenshot of Optimal TTC Solution for Dataset D2 with Cycle Length Restrictions 

This solution consists of two 3-cycles and a short domino chain. The cardinality of 

this solution is 8, improving on the previous TTC results, which do not include 

altruistic donors, by 5 patients. In comparison, the ILP formulation identified a 

solution with cardinality 9, meaning an additional 2 patients could be matched. 

 

 

Figure 44: Optimal TTC Solution for Dataset D2 

Again, TTC was used to identify the maximum cardinality solution where cycle 

length k was unrestricted. The initial preference list remains the same as in the 

examples above. 

The optimal solution returned the cycles shown below: 

(2, 1, 6, 4, 17, 2), (5, 16, 15, 5) 

 

Figure 45: Screenshot of Optimal TTC Solution for Dataset D2, No Cycle Length Restrictions 



 

The optimal solution has a cardinality of 8. This is only less than the cardinality of 

the solution identified by ILP, which had a cardinality of 10. One potential 

explanation for this is that the order in which patient-donor pairs are selected in TTC 

is restricted to choosing the most compatible donor who is still available. 

One extension used with this dataset is the priority of patients who have end-stage 

kidney disease. The optimal solution, inclusive of the stage of each patient’s 

condition, returned the following cycle: 

(4, 1, 6, 4), (2, 17, 2), (5, 16, 15, 5) 

 

Figure 46: Screenshot of Optimal TTC Solution for Dataset D2 with Stage 5 Priority 

Again, in this instance, 6 of the 6 patients included in the original optimal solution 

are end-stage CKD patients. Therefore, when considering the stage of each patient’s 

condition in the matching, the included patients remain the same. However, this 

solution includes two 3-cycles and one short ADC. 

Unlike dataset D1, due to the addition of two altruistic donors, the patients with the 

highest levels of sensitisation remain in the pool. Patients p1 and p10 both have levels 

of sensitisation at 0.9.  

The returned optimal solution inclusive of high levels of sensitisation is as follows: 

(2, 1, 6, 4, 17, 2), (5, 16, 15, 5) 

 

Figure 47: Screenshot of Optimal TTC Solution for Dataset D2 with Sensitisation Priority 

 The sensitisation levels for patients p4, p1, p6, p2, p17, p5, p16 and p15 are 0.05, 0.9, 

0.2875, 0.45, 0.05, 0.05, 0.05 and 0.05, respectively. The dummy patients p16, and 



 

p17 are assigned a low level of sensitisation as the actual recipients for donor d2 and 

d5 kidney have not yet been chosen. 

4.3.3 Top Trading Cycle Results Dataset 3 

As in the example above, the initial preference list is generated and shown below: 

 Matching Donors 

Patient 1st  2nd 3rd 4th, ... 

0 6 1  18 19, 20 

1 6 19 18 20 

2 1 6 17 16, 20 

3 1 20  17 0 

4 1 0 17 6, 16, 20 

5 1 0 17 16, 6, 20, 19 

6 0 4 3 1, 19, 18, 13, 20, 17 

7 6 0 16 17, 1, 20, 19 

8 16  6 20 19, 17 

9 20 1 19  17 

10 5 6 8 20, 19, 9 

11 14 12 10 9, 8, 7, 5, 1, 20, 6, 0 

12 6 1 0 17, 16, 20, 19 

13 8 7 1 20, 9, 5, 0 

14 17 0 16 20, 19 

15  6 5 0 20, 14, 12, 10, 9, 7, 1 

16 1 0 20 3, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 2 

17 1 0 4 3, 20, 2, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5 

18 1 10 5 
4, 3, 20, 19, 17, 15, 14, 13, 12, 9, 6, 2, 0, 

18, 16, 11, 8, 7 

19 1 15 11 19, 17, 10, 20 

20 20 16 6  

Table 9: Donor Preferences for each Patient in Dataset D3 



 

Note that for the compatible patient-donor pairs p18d18, p19d19, p20d20 the donor is 

listed as one of the patient’s preferences, shown in bold in Table 9. 

The optimal solution returned is the following cycles: 

(0, 1, 6, 0), (5, 19, 15, 5), 18 

 

Figure 48: Screenshot of Optimal TTC Solution for Dataset D3, Cycle Length Restricted 

This solution contains two 3-cycles, and one compatible patient-donor matching. 

The cardinality of this solution is 7. As patient p20 was not matched as part of the 

solution, it is possible for them to be matched with donor d20. A limitation of TTC in 

this case is that the p20 → d20 matching was not identified for this solution due to the 

order in which the preferences are reduced. In addition, the altruistic donors are not 

utilised, indicating this solution could be optimised further still. 

 

Figure 49: Optimal TTC Solution for Dataset D3 

Again, TTC was used to identify the maximum cardinality solution where cycle 

length k was unrestricted. The initial preference list remains the same as in the 

example above. 

The optimal solution returned the cycles shown below: 

(4, 1, 6, 0, 18, 10, 5, 17, 4), (7, 19, 15, 7) 

 



 

 

Figure 50: Screenshot of Optimal TTC Solution for Dataset D3, Cycle Length Unrestricted 

The optimal solution has a cardinality of 11.  

One extension used with this dataset is the priority of patients who have end-stage 

kidney disease. The optimal solution, inclusive of the stage of each patient’s 

condition, returned the following cycle: 

(0, 1, 6, 0), (5, 19, 10, 5), 18 

 

Figure 51: Screenshot of Optimal TTC Solution for Dataset D3 with Stage 5 Priority 

In this instance, 5 of the 7 patients included in the original optimal solution are end-

stage CKD patients. Therefore, when considering the stage of each patient’s 

condition in the matching, the optimal solution remains the same. 

The returned optimal solution inclusive of high levels of sensitisation is as follows: 

(0, 1, 6, 0), (2, 16, 2), (3, 17, 3), (5, 19, 10, 5), 18 

 



 

 

Figure 52: Screenshot of Optimal TTC Solution for Dataset D3 with Sensitisation Priority 

The sensitisation levels for patients p1, p6, p0, p5, p19, p15, p18 are 0.9, 0.2875, 0.45, 

0.05, 0.05, 0.05, 0.05 and 0.05, respectively.  

4.4 Overall Results Analysis 

k = cycle length, l = chain length 

 

Dataset 1 

There are 16 patients in this dataset. There are no altruistic donors or compatible 

patient-donor pairs. 

Method Edges Constraints Cardinality 
Additional 

Information 

Pairwise 3 k = 2 2 
 

ILP 28 2 ≤ k ≤ 3,   2 ≤ l ≤ 3 3 
 

TTC 56 2 ≤ k ≤ 3,   2 ≤ l ≤ 3 3   

ILP 28 2 ≤ k ≤ 3 3   

TTC, 
priority 
stage 5 

56 2 ≤ k ≤ 3,   2 ≤ l ≤ 3 3 
2 Stage 5 patients 

matched 

TTC, 
priority 

sensitisation 
56 2 ≤ k ≤ 3,   2 ≤ l ≤ 3 3 

Sensitisation of 
patients matched: 

0.45, 0.9 and 
0.2875 

ILP 28 None 5   

TTC 56 None 5   

Table 10: Results Table for Dataset D1 



 

From this dataset, it is clear that pairwise exchanges offered the least optimal 

solution as it holds the lowest cardinality solution within the set. TTC and ILP 

computed solutions with the same cardinality for each set of constraints. Priority of 

stage 5 patients and patients with high levels of sensitisation did not impact the 

cardinality of the optimal solution. 

Dataset 2 

This dataset contains 18 patient-donor pairs, including 2 altruistic donors. 

Method Edges Constraints Cardinality 
Additional 

Information 

Pairwise 21 k = 2 6 
 

ILP 105 2 ≤ k ≤ 3, 2 ≤ l ≤ 3  9 
 

TTC 105 2 ≤ k ≤ 3, 2 ≤ l ≤ 3 8   

ILP 105 2 ≤ k ≤ 3 12   

TTC, 
priority 
stage 5 

105 2 ≤ k ≤ 3, 2 ≤ l ≤ 3 8 
6 Stage 5 patients 

matched 

TTC, 
priority 

sensitisation 
105 2 ≤ k ≤ 3, 2 ≤ l ≤ 3 8 

Sensitisation of 
patients matched: 0.05, 
0.9, 0.2875, 0.45, 0.05, 

0.05, 0.05 and 0.05 

ILP 105 None 12   

TTC 105 None 8   

Table 11: Results Table for Dataset D2 

The results from dataset D2 support the conclusion from dataset D1 that the pairwise 

exchange allocation offers an inferior solution in comparison with TTC and ILP. 

However, these results differ from the conclusions drawn from the previous dataset 

as TTC fails to find a solution with a cardinality that matches that of ILP. In this 

instance, the optimal solution identified by ILP has a cardinality that is 5 greater than 

that of TTC. As a result, the ILP formulation offers the most optimal solution in this 

case. As before, prioritising stage 5 patients or patients with high levels of 

sensitisation did not lower the maximum cardinality of the solution. 



 

Dataset 3 

This dataset contains 21 patient-donor pairs, including 2 altruistic donors and 3 

compatible patient-donor pairs. 

Method Edges Constraints Cardinality 
Additional 

Information 

Pairwise 57 k = 2 10 N/A 

ILP 167 
2 ≤ k ≤ 3,            
2 ≤ l ≤ 3 

15 N/A 

TTC 167 
2 ≤ k ≤ 3, 2 ≤ l ≤ 

3 
7   

ILP 167 2 ≤ k ≤ 3 17   

TTC, 
priority 
stage 5 

167 
2 ≤ k ≤ 3,             
2 ≤ l ≤ 3 

7 
5 Stage 5 patients 

matched 

TTC, 
priority 

sensitisation 
167 

2 ≤ k ≤ 3,              
2 ≤ l ≤ 3 

7 

Sensitisation of 
patients matched:  

0.9, 0.2875, 0.45, 0.05, 
0.05, 0.05, 0.05 and 

0.05 

ILP 167 None 17   

TTC 167 None 11   

Table 12: Results Table for Dataset D3 

The largest dataset D3, and the dataset including the most diverse range of patient-

donor pairs, confirms the results offered by dataset D2. This means that the optimal 

solution offered by the pairwise exchange had a maximum cardinality of 10, 7 kidney 

allocations less than the maximum cardinality for the dataset. Again, ILP identified 

the solution with the greatest cardinality, even though its performance was 

compromised to an approximation for this dataset.  

Dataset D1 represents a basic dataset where every patient-donor pair in the matching 

pool are not compatible with each other. Out of the 16 patients in the pool, the 

maximum matching only offered kidney allocations for 3 patients. This means that 

only 18.75% of patients were able to receive a kidney and 81.25% of the available 

kidneys were wasted. 



 

In comparison, dataset D2 contained the same patients as dataset D1, with the addition 

of two altruistic donors to highlight the importance of altruistic donors in the 

matching pool. The two altruistic donors were included in every optimal matching, 

emphasising their importance to the matching pool. The optimal solution for this 

dataset had a cardinality of 12. This means that the addition of just two altruistic 

donors facilitated a further 9 matches. In this case, 75% of patients in the pool were 

able to receive a kidney, alongside 2 patients from the active waiting list and 33% of 

the available kidneys were wasted. This represents a 53.8% decrease in waste of 

available donors. 

Finally, dataset D3 contained the same patients as dataset D2, with the addition of 

three compatible patient-donor pairs. This aims to expose the importance of 

introducing compatible patient-donor pairs into the matching pool, a technique that 

is not currently practised in the UK under the NHS. This technique guarantees at 

least as many matches as the pool which excludes compatible pairs as where the 

additional pairs are not matched as part of the optimal solution, they are matched to 

one another. The optimal solution for this dataset had a cardinality of 17. This means 

that with three additional pairs, five additional kidney allocations were made. In 

addition, in the solution offered by TTC, only one of the compatible pairs were 

matched to themselves, indicating that the other pairs were able to achieve a better-

matched kidney than the one they entered the pool with. This result achieves an 

allocation for 89.47% of patients in the matching pool, with 2 patients from the 

waiting list also receiving kidneys. As a result, only 2 available kidneys were unable 

to be allocated as part of the matching pool, indicating only 9.52% of donors were 

wasted. 

 

 

 

 

 

 

 

 



 

5 Future Work 

One area where progress could be made to improve on the research and methods 

detailed within this project would be the development of a front-end application to 

display and demonstrate each of the graphs, methods, and results. During the initial 

planning of this project, one of the aims was to develop a front-end application to 

visualise the data for a user, to provide graphics to aid understanding of the processes 

within each of the methods and algorithms, and finally to display the resulting 

matchings and analysis clearly and visually. This application could offer multiple 

datasets for the user to choose from, and apply the methods researched as part of this 

project. A further feature of this application could be for the user to be able to input 

and build datasets or graphs and compute various optimal solutions. Although this 

application would not impact the results provided by the methods offered as part of 

this project, it would be a valuable addition for a user. This is because researching, 

practising, and understanding the algorithms included within the project can be 

challenging and time-consuming and therefore it can be difficult for users to 

understand the steps between choosing a dataset and viewing the results. A graphic 

that outlines the steps of each algorithm, manipulating the graph as the algorithm 

progresses, would allow a user of any background to gain an understanding of each 

method. Additionally, viewing the resulting cycles and chains for each matching on 

the graph allowed me to gain a deeper understanding of the solution. 

A second area for future development is to further explore the suggestion of a multi-

national kidney exchange more closely. To draw on one of the conclusions of this 

project, more transplants are facilitated when compatible patient-donor pairs are 

entered into the matching pool. One idea which stems from this is that more 

transplant allocations are made when transplant and waiting list information is 

transparent. This means that allocating compatible patient-donor pairs to each other 

without considering other options limits the opportunities for pairs in the matching 

pool and limits the compatible pair from potentially identifying a more compatible 

match. The application of this idea internationally implies that more transplants 

could be facilitated by sharing transplant and waiting list information internationally.  

 

 



 

6 Conclusions 

As this project concludes, it is important to consider the aims and to what extent they 

were achieved. To reiterate, this project aimed to create a tool to visualise the 

performance of different optimisation methods and analyse the performance of the 

chosen methods and consider their strengths and weaknesses. Early in this project, 

the focus began to shift from the creation of an application to visualise each of the 

chosen methods. This is because the definition of optimality applied to kidney 

exchange solutions, and the impact of different types of living donors such as 

altruistic and compatible patient-donor pair donors quickly became the focus as 

initial research began. Therefore, the first aim of this project was not met but was 

exchanged for a different research path which arguably is more valuable.  

The second aim, to analyse the performance of different optimisation techniques, is 

achieved as part of this project. The methods chosen and analysed as part of this 

project are Blossom’s Algorithm, modelling the pairwise exchange, an ILP 

formulation that relies on Kosaraju’s and Johnson’s Algorithm, and the Top Trading 

Cycles and Chains method. To reiterate the conclusions drawn in Chapter 4, the ILP 

Formulation produced the optimal solutions by definition of greatest cardinality, 

despite only calculating an approximation to the optimal solution for the final 

dataset.  

The additional aim of this project was to explore the impact of different donors on 

the cardinality of the optimal solution. This aim was achieved by extending the initial 

dataset to include altruistic donors and compatible patient-donor pairs and analyse 

the effects on the optimal solution. As discussed in Chapter 4, both altruistic donors 

and the introduction of compatible patient-donor pairs into the matching pool 

significantly increased the cardinality of the optimal solutions. 

These results suggest that new models for kidney exchange programs should 

consider the prospect of offering compatible patient-donor pairs the opportunity to 

enter the matching pool. Patients may be encouraged to choose this option on the 

premise that it may facilitate more kidney allocations, and therefore allow them to 

help others in a similar position to themselves and provide the opportunity to receive 

a more compatible kidney. 

 



 

Future work could address the initial aim of this project to produce a tool to visualise 

the processes taken to generate an optimal matching and provide a solid 

understanding to user interested in either the kidney exchange or the underlying 

algorithms.  

To conclude, this project has successfully explored the performance of different 

optimisation techniques, provided discussions on the potential limitations, and 

identified the most appropriate method based on the results displayed in Chapter 4. 

In addition, the impact of altruistic donors and the introduction of compatible patient-

donor pairs into the matching pool has been explored and conclusions provided to 

support ongoing research into the advancement of kidney exchange models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

7 Reflection on Learning 

Whilst undertaking this project, I have developed my skills in independent research. 

This was achieved because I had to consider a broad range of topics, from 

mathematics and graph theory to biology, and the underlying processes behind 

kidney transplantation and matching. As part of this research, I have discovered and 

understood an array of complex algorithms, such as Kosaraju’s Algorithm and 

Edmond’s Blossom Algorithm, working independently to gain knowledge into the 

methods involved for each algorithm. A particular challenge was that many of these 

algorithms were reported only in mathematical research papers, which I was 

unfamiliar with at the beginning of this project. Additionally, I have also improved 

my technical skills whilst undertaking this project as I have learnt to use Gurobi 

Optimiser to formulate and solve an ILP problem with Python code. Similarly, I have 

gained experience implementing unfamiliar and complex algorithms in Python from 

pseudocode produced by myself or found in research papers. When selecting a 

dataset to model optimisation techniques on, I found the application of the kidney 

exchange fascinating, despite a lack of knowledge regarding the biology and 

technical matching process before starting this project. I have therefore developed 

and expanded my knowledge during this project in several areas which were 

previously unfamiliar to me. 

Furthermore, I also utilised my time management skills to ensure the timely 

completion of the project to a high standard. Reflecting on my initial plan, I vastly 

underestimated the time it would take to research relevant algorithms, fully 

understand the methods within them and finally implement them and gather my 

results using a variety of datasets. Time management was therefore a vital skill 

before and during the project to ensure effective research, implementation and report 

writing.  

Throughout this project, I have worked closely with my supervisor Dr Richard 

Booth. This has enabled me to develop my communication skills as I provided 

weekly updates on my progress, verbalised my ideas clearly, and requested advice 

where necessary. I also had to navigate the organisation of these meetings entirely 

virtually, which was achieved by video calling to ensure effective and regular 

communication. In my initial plan, I agreed to attend weekly meetings with Dr Booth 

lasting around 30 minutes, including two progress meetings, which were upheld 

throughout the entire project.  



 

Undertaking this project has also helped me to develop my report writing skills as 

clear written communication detailing the relevant background information, 

methods and implementations is of utmost importance. In particular, providing 

sufficient detail whilst maintaining a clear, concise report writing style has been 

challenging. Additionally, my oral presentation skills have improved as I develop a 

clear and professional demonstration for my viva presentation. 

Referring back to my initial plan, the project aims and deliverables presented were 

as follows: 

In this project I aim to: 

• Create a tool to visualise the performance of different algorithms and 

optimisation methods of kidney exchange assignments. 

• Analyse the performance of each of the chosen methods and consider 

the strengths and weaknesses of each. 

       Project Objectives: 

• Study the optimal matching problem, in particular its application to the 

kidney exchange. 

o Produce a mathematical description of the problem. 

• Research and implement algorithms that provide optimal solutions or 

matchings – or at least a good approximation to an optimal matching. 

o Implement chosen algorithms and visualise the results via a 

user-friendly interface. 

• Conduct analysis of the chosen algorithms or methods using the 

application of the kidney exchange. 

o Produce a report explaining the chosen algorithms and offer 

analysis of their performance. 

Unfortunately, the final result of this project does not offer a user-friendly interface 

to visualise the resulting matchings of each optimisation technique. This is due to 

the vast amount of time required to research, understand, and implement each 

algorithm, developing a frontend alongside this seemed infeasible under the time 

constraints. However, the second project aim to analyse the performance and results 

of each algorithm has been met. 

Concerning the project objectives, I believe I have achieved the overarching 

objectives to study the optimal matching problem and the kidney exchange, research 

and implement different methods and conduct analysis of the results for each. 



 

In conclusion, completing the project has taught me a new style of working and 

researching independently, specifically learning from mathematical papers, and 

expressing what I have learnt both professionally and mathematically. This process, 

although more time consuming than first expected, has been very rewarding and I 

have thoroughly enjoyed the opportunity to research and implement techniques 

within optimisation with application to the kidney exchange. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table of Abbreviations 

 

ADCs  Altruistic Donor Chains 

BILP  Binary Linear Integer Programming 

CKD  Chronic Kidney Disease 

BDB  Donation after Brainstem Death 

DCD   Donation after Cardiac Death 

 DFS  Depth First Search 

HLA  Human Leukocyte Antigens 

ILP   Integer Linear Programming 

NDADs Non-directed Altruistic Donors 

NHS  National Health Service 

 PPD  Paired/Pooled Donation 

 SCC  Strongly Connected Component 

 TTC  Top Trading Cycle 

 UKLKSS UK Living Kidney Sharing Scheme 
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