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Abstract

This paper studies environmental features and social media for predicting the presence
of wildlife species in the UK using supervised machine learning classifiers. Ground truth
for the eleven species distributions used was obtained from the National Biodiversity
Network Atlas. The environmental features recognised include land cover, human
population, emissions, mean temp, wind speed and rainfall, along with the social media
platform Flickr. This data was obtained, processed and used as input into the classifiers.
Six different machine learning algorithms were implemented and tested in this project.
One of the main goals was to identify evaluation metrics to get an overall view of the
performance of each model, making them easily comparable, thus identifying the most
effective algorithm at correctly predicting the labels. A second goal was to compare
three different grid cell sizes to test how the granularity affects the results. The final
goal was to experiment with the impact the environmental features had on performance
and identifying the most effective. The results deemed Random Forest to be the
optimum performer consistently with Neural Networks and Support Vector Machines a
close second. The grid cell sizes appear to follow a correlation that as the size increases,
so does its accuracy. Lastly, the environmental features which proved to give the best
performance individually, therefore showing how they consistently had a direct impact
on species occurrence, was land cover. However, a combination of climate data proved

to outperform other features.
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Chapter 1: Introduction

1.1. Motivation

[ have always had a keen interest in the outdoors and a fascination with wildlife
programs which meant | was enthusiastic about undertaking a project such as this
which incorporates my interests along with my degree. Over the past few years, there
has been rapid development in the area of species distribution modelling, which is
hugely due to new techniques used for collating the data. Without these advancements, |
would have been unable to obtain the data necessary to take on this project. The
presence of wildlife is regarded to be heavily impacted by the environment it belongs in.
My motivation was to test how well I could predict their occurrences with what I
deemed as important environmental information, along with the use of available social
media data. The use of social media data is interesting as the photos are posted by the

general public, therefore reliant on them accurately being able to identify a species.

1.2. Project Aim and Scope

The projects’ scope focuses on how machine learning can be utilised for providing an
accurate as possible predictions on the presence of a given species based on the data
extracted for environmental features and from social media. Based on this, there are
several aims for this project which were previously mentioned in my initial plan. Firstly,
these include implementing five different machine learning algorithms and one deep
learning algorithm with appropriate evaluation techniques to make them easily
comparable. A second aim is to compare three different grid cell sizes to test how the
granularity affects its accuracy at predicting a species’ presence. Thirdly, I aim to
experiment with the impact the environmental features have on performance and
different combinations to identify the most practical and effective features. From this
project, the results found can be used to illustrate environmental features that have
greater impact on the presence of species as well as identifying which classifier was
proven to achieve a prediction to the highest degree of accuracy given the data inputted.
The reasoning behind applying machine learning for predicting a species occurrence is
that the accuracy of the model will improve when given more environmental features to

learn from.



1.3. Intended Audience

The intended audience for this project are individuals or organisations who are
interested in learning how to implement machine learning algorithms as species
occurrence predictors and which model proves to be the most successful along with
what grid cell size. Also, anyone interested in wildlife species and what environmental
features have the greatest impact on predicting their presence. I imagine wildlife

enthusiasts will be the most intrigued.

1.4. Assumptions

There were a handful of assumptions made through the completion of this project.
Firstly, the data extracted from the National Biodiversity Network Atlas is factual and
suitable to use as ground truth data. Secondly, the photos collated using the Flickr API
are in fact accurate images of the said species passed. Thirdly, the environmental data

collated is a correct representation.

1.5. Methodology

[ used an agile methodology to complete this project as opposed to a traditional
waterfall approach. Due to this being my first machine learning project, I found agile to
be a more appropriate choice as it offers a flexible nature, allowing me to have an
adaptive rather than a predictive approach. Agile is defined as an iterative development
model. Therefore, for this project, I broke it into several phases with different
requirements and solutions. Thus when new information came to light that needed
investigating, it was easily incorporated into the subsequent or future iterations. For
this project, I found it suitable to work in fortnightly sprints. The initial stage of an agile
methodology is to define developments that need to be undertaken, then to develop a
solution that meets the requirements that have been previously defined and utilise
testing to certify they work as expected. By holding meetings to discuss and evaluate the
sprints results I was able to define the new developments for the next sprint. This
approach resulted in avoiding any unnecessary work and allowed me to focus on

priority tasks to meet the projects main objectives. [32].
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Figure 1: Agile Methodology

1.6. Report Structure

[ have structured my report into the recommended sections which are as follows:
Chapter 1: Introduction - An introduction giving basic insight on what the project
entails.

Chapter 2: Background - Descriptive information on the background knowledge
needed in order to fully understand my report.

Chapter 3: Approach - Provide a clear picture of the system I have created, including
what the software system does (specification) and how it does so (design).

Chapter 4: Implementation - A finer analysis of how I developed the system including
code examples from my implementation.

Chapter 5: Test Cases - Testing of the main components to certify they work as
expected and their output is correct.

Chapter 6: Results + Evaluation - Demonstration that the project meets the
requirements which were aimed for and results of the tests executed.

Chapter 7: Future Work - These are ideas I had for future work [ would like to
accomplish on the same basis of this project but was unable to complete given the
available timeframe.

Chapter 8: Conclusion - A synopsis of my aims, objectives and a reiteration of the
results achieved.

Chapter 9: Reflection - Reflect on the project and what I have learnt throughout the

process which will be invaluable to carry forward. [33].



Chapter 2: Background

This chapter will give you an overview of some important concepts that are essential to
understanding my solution to this project. This includes the coordinate systems utilised
and species specific data retrieval. Also, a detailed explanation of the Machine Learning
algorithms used and the metrics to evaluate their performance. Penultimately, a list of
the Python libraries implemented with a brief description of their purpose. Lastly,
existing research papers that [ have read relating to this project and have given me
insight.

2.1. Coordinate System

A major requirement for this project was to split the UK into grid cell sizes and gather
data for all points within that cell. Thus, knowledge and understanding of the coordinate
system is required.

2.1.1. Latitude and Longitude

Latitude and longitude is a coordinate system that can be used to calculate and define
the direction and orientation of any point on the Earth’s Surface. On a globe or map,
latitude refers to the distance north or south of the equator and is specified by degrees
between 0 and 90. The equator is where latitude equals 0 degrees. Longitude is an angle

between 0 and 180 degrees pointing east or west from the Greenwich Meridian. [1].

Latitude Longitude
(North/South) (West/East)
90°N

45°

45°

0° > Equator =

90°S

Figure 2: Longitude and Longitude

2.1.2. Easting and Northing

Easting and Northing are a geographic Cartesian coordinate system for any given point.
Easting is the eastward-measured distance, also known as the x-coordinate. Northing is
the northward-measured distance known as the y-coordinate. These coordinates are
commonly measured in meters from the axis of the horizontal datum. For this project, I
used the Ordnance Survey National Grid reference (0OSGB36) system, which is used for

Great Britain. [2]
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2.2. National Biodiversity Network (NBN) Atlas
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The NBN is a registered charity that advocates biological data being shared since 2000.

Their aims are to improve data availability and quality to provide evidence for a base on

environmental decisions. The NBN Atlas provides an online tool to engage, educate and

inform people about the natural world. It aids the improvement of biodiversity

awareness, the expansion of research opportunities and the transformation of

environmental conservation in the UK. The NBN Atlas is innovative because it is the first

time various sources of knowledge about UK species and habitats, as well as the

opportunity to interrogate, integrate, and analyse the data, all in one place. Its aim is to

make the learning and understanding of wildlife in the UK less complicated. [3]

NBN has a feature that plots each of their specific species’ occurrences on a map, and

from there, you can download a CSV file. The CSV file provides detail on each point
which was used in this project as my ground truth as to whether a species is absent or

present in a given grid cell.

64,326 records (64,326 in total)
This map contans both point- and grid-based occurrences at different resolutions  Occurrence ID Licence  Rightsholder Scientific name  Taxonauthor  Name qualifier Commonname SpeciesID(TVK)  TaxonRank Occurrence st

Leaflet | NBN Atias, Map data © Op

Analyse data Interactive map View records

4

Figure 4: NBN Atlas map

15301911 OGL 810
125497859 CC-BY-NC BTO
123394879 CC-BY-NC BTO
102812580 CC-BY-NC BTO
567850331 CC-BY-NC BTO
72635170 CC-BY-NC BTO
57474926 CC-BY-NC BTO
66161876 CC-BY-NC BTO
80712211 CC-BY-NC BTO
114781848 CC-BY-NC BTO
72924836 CC-BY-NC BTO
116882132 CC-BY-NC BTO
123304880 CC-BY-NC BTO
59402895 CC-BY-NC BTO
51200352 CC-BY-NC BTO
248701162 CC-BY-NC

Figure 5: NBN CSV Output File
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2.3. UK Biodiversity Action Plan (BAP)

For this project, the species used were selected from the UK Biodiversity Action Plan
(BAP). The UK BAP priority is a list of 1,150 species deemed as the most threatened and
requiring protective action. The amended list was produced in 2007 and split into
several groups. The following groups include birds, terrestrial mammals, herptiles and
fish etc. [4]. In this project, the groups used are birds, mammals, reptiles and
amphibians. Birds are warm-blooded vertebrates with a feather-covered body, wings,
scaly legs, beak, no teeth, and bear their young in a hard-shelled egg. [26]. Mammals are
warm-blooded, breathe air, have hair, give birth to live young and secrete milk to feed
them. [27]. Reptiles are cold-blooded, air-breathing vertebrates covered in scales or
bony plates. [28]. Finally, amphibians are small cold-blooded vertebrates that need
water and a moist environment to survive. [29]. This UK BAP priority species list
provides the scientific name, common name and if they occur in the four UK countries,

as seen in the figure below.

Scientific name  |Common Taxon |England [Scotland |Wales [Northern |Original UK
name Ireland | BAP species?
Acrocephalus Aquatic Warbler | bird Y N Y N Yes - SAP
paludicola
Acrocephalus Marsh Warbler |bird Y Y Y N Yes - SAP
palustris
Alauda arvensis Sky Lark bird Y Y Y Y Yes - SAP
subsp.
arvensis/scotica
Anser albifrons European bird Y N N N
subsp. albifrons Greater White-
fronted Goose
Anser albifrons Greenland bird N Y Y Y
subsp. flavirostris | Greater White-
fronted Goose
Anthus trivialis Tree Pipit bird Y Y Y N

Figure 6: BAP Example Priority List

2.4. Flickr API

Flickr is a self-proclaimed best photo sharing online application in the world. Its initial
launch date was in 2004. The services they provide to their customers is a platform
where they can post and share their photos to friends and family and offer them a way
to organise their photos. It is unique to other sites with similar concepts by using tags to

describe images along with the option of geotags. [5]
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The benefits of these geotags are being able to search by location. In 2009 it was
reported that “100 million photos posted by users contained geotags, which equates to

around 33% of the total photos.” [6]

The Flickr API was used to build a dataset of photos that will be pre-processed for
machine learning. To gain access to the API, you need to obtain a key from Flickr. This
involves creating an account and signing up with an explanation of how you intend to
use this information. The key can be either commercial or non-commercial, referring to
whether you are making money from your application. Hence non-commercial is most
suitable for this project. Once the accounts are set up an API Key and secret will be

provided. Available methods are very well documented.

Flickrapi is a python library designed to access the Flickr API to establish a connection
with Flickr and stream available data. Photos gathered using flickrapi are in an XML

format, as shown below.

<?xml version="1.0" encoding="utf-8" 2>
<rsp stat="ok">
<photos page="1" pages="1" perpage="250" total="227">

<photo id="51124190465" owner="238825838N08" secret="2ab8cftba2"
<photo id="51115584962" owner="66190370€N05" secret="d4cl4£6£08"
<photo id="51115584932" owner="66190370€N05" secret="8aa77£fd547"
<photo id="51115584847" owner="66190370€N05" secret="d2ec9273e6"
<photo id="51068002383" owner="31693460€N06" secret="b65£135809"
<photo id="51065203018" owner="31693460€N06" secret="ca0d090527"
<photo id="51062386326" owner="31693460€N06" secret="eSfee554e6"
<photo id="51041605278" owner="95795254€N02" secret="leef9f6e34"
<photo id="50776084711" owner="67356167€N05" secret="6a578615ef"
<photo id="50599259528" owner="95795254€N02"
<photo id="50568313283" owner="95795254€N02"
<photo id="50381334568" owner="78465328EN04"
<photo id="50353914223" owner="35884794€N04"
<photo id="50179935207" owner="46262145€N08"
<photo id="50171207006" owner="34518162€N08"
<photo 1d="50102443247" owner="90555326@N05"

title="1
title="}
title="1
title="}1
title="(
title="(
title="(
title="1
title="}
title="1
title="1
title="}
title="(
title="}
title="}1
title="1

farm="66"
farm="66"
farm="66"
farm="66"
farm="66"
farm="66"
farm="66"
farm="66"
farm="66"
farm="66"
farm="66"
farm="66"
farm="66"
farm="66"
farm="66"
farm="66"

server="65535"
server="65535"
server="65535"
server="65535"
server="65535"
server="65535"
server="65535"
server="65535"
server="65535"
server="65535"
server="65535"
server="65535"
server="65535"
server="65535"
server="65535"
server="65535"

secret="81b7a88ee0"
secret="4becb37061"
secret="7d6160cf08"
secret="5434386181"
secret="80b8d96582"
secret="0bb8ac2840"
secret="6015a95£84"

<photo id="48701066333"
<photo id="47945411406"
<photo id="32552259367"
<photo id="46969052471"
<photo i1d="42174595980"
<photo id="43340062442"
<photo id="41932884641"

owner=
owner=
owner=
owner=
owner=

“67356167€NOS"
"63774863@N05"
“34518162€N08"
"67356167@N05"
"34705819€N05"

owner="58519338€N08"
owner="67356167@N05"

secret=
secret=
secret=
secret=
secret=
secret=
secret=

"5d2dfed fd4"
"8ab638045d"
"95£3b7ca07"
"7£5633d48b"
"32e3cle530"
"3d757403c0"
"16976180ea"

server="65535"
server="65535"

server="7902"
server="4897"

server="65535"

farm="66"
farm="66"

title="1
title="(

farm="8" title="Ma
farm="5" title="Re

farm="66"

title="(

server=

"1788" farm="2" title="Re

server="962" farm="1" title="Red

Figure 7: Flickr API XML Output

2.5. Machine Learning Algorithms

Machine Learning (ML) is a branch of Artificial Intelligence (AI) and results from the
expeditious development of data mining techniques and methods. The last decade has
seen increasing popularity in ML, enabling both organisations and individuals to have
insight and understanding of their datasets. [7]. There are many ML algorithms which in
brief are a sequence of statistical processing steps where they are trained to discover
patterns in vast volumes of data. The data can be in the format of numbers, words or
images as long as it is digitally stored. The better the algorithm, the more accurate the

results. The key disparity between ML models and computer programs is the lack of
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intervention needed by developers to instruct the system. From this, Arthur Samuels
coined the definition of machine learning as the “computers ability to learn without
being explicitly programmed”. [8]. Therefore, it is worth looking through the general
workflow of the machine learning process to get a more profound understanding.

Define

Pt Problem \

Deploy +
Improve

> Collect Data

-0

Figure 8: Machine Learning Process

Define Problem - Before collecting data or implementing, start by clearly identifying
the problem and goal.

Collect Data - The dataset can be populated by data from databases, spreadsheets or
text files. The more diverse and extensive the data used is, the higher accuracy the
machine learning model's findings would be.

Process Data - This process entails analysing, cleaning and reformatting the data
gathered into a much more desirable form that the classifiers can utilise. After that, it
can be divided into two sets: Training and Testing. The training set is used to build the
machine learning model, while the testing set is used to assess it.

Train Model - Using the training data, a model will be constructed using a defined
algorithm. Identifying trends and similarities, as well as making assumptions.

Test Model - Using the testing data, the model will make predictions and its accuracy
assessed using chosen metrics. It is vital to validate the model using an unseen dataset

in order to ensure an unbiased evaluation.

Deploy and Improve - This process entails experimenting with various algorithms and

collecting a wider variety of data in order to refine predictions before a suitable model
is found. To summarise, the vast majority of machine learning processes are never
ending since there is still space for progress in the future as new evidence becomes

available or circumstances change.
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2.5.1. Supervised vs Unsupervised

Supervised machine learning algorithms is where it takes the desired input variables ‘x’
and a desired output variable ‘y’. A selected algorithm is used to approximate the
mapping by discovering how to arrive at those variables by identifying patterns. Ideally,
this mapping function will be used for new input data x’ to predict the output variable
‘y’ accurately. Supervised learning obtained its name through the process of an
algorithm learning from the training data, which is comparable to a teacher supervising
the students learning process. We know the accurate answers, so the algorithm iterates
over the training data, making assumptions that are then corrected by the teacher.
When the algorithm reaches a satisfactory level of accuracy, learning comes to an end.
Supervised machine learning algorithms are grouped into either classification or
regression, the difference being the nature of their output variables. [9].

= Test data
Training data

B [ B 1 [
b v

]
—— e B
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Labels Training Model Prediction 02

. . Absent
Outcome Prediction

Present Absent |

Figure 9: Process of Supervised Learning

Classification Models are utilised when the output is a category e.g. “Present” or
“Absent”. On the other hand, Regression Models are utilised when the output is a real

number e.g. size, weight. [9].
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Figure 10: Classification and Regression Graphs

Unsupervised machine learning algorithms is where it only takes input variables %’ and

has no corresponding output variable. Thus, the target variable ‘y’ is absent from the
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data, so prediction is not the goal. Therefore, we are trying to find structure and
patterns in the data. In conclusion, supervised and unsupervised machine learning
algorithms differ mainly in the way the data is labelled. Unsupervised machine learning

algorithms are further grouped into clustering. [9].

labelled cluster of data

B
— G

Model ﬁ

Figure 11: Process Unsupervised Learning

Clustering models try to find patterns in the unlabelled data and group the data into
clusters according to similarity. e.g. grouping customers by purchasing behaviour. [9].
2.5.2 Fitting

Model “fitting” refers to the chosen machine learning algorithms effectiveness at
generalising to similar data on which it was trained. To get the desired outcome, it is
imperative to be neither overfitted nor underfitted otherwise, we run the risk of poor
performance. Two essential terms, variance and bias, should both be considered when
examining the fit of the model. When model fitting, bias indicates any assumptions
made by the model to make a target. If the model has made a high number of
assumptions about the target function, it will have a high bias and vice versa. Variance
refers to the models’ dependence on the data it is trained with. If a model pays high
attention to the training data, it will have a high variance. A good/robust fitted model
will have a balance between bias and variance. An overfitted model will have a low bias
and high variance, meaning the model performs well on training data but does not
perform well on evaluation data. An underfitted model will have a high bias and low
variance, meaning the model performs poorly on training data. [10]. [30].

Values - Values ~ Values %

Time Time Time

Underfitted Good Fit/Robust Overfitted

Figure 12: Fitting Graphs
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2.5.3 Decision Trees

Decision Trees (DT) is a popular algorithm capable of performing both regression and
classification tasks. DT applies the learning concept of divide and conquer. It has a tree-
like structure where the internal nodes correspond to features, branches represent the
decision rules and leaf nodes for the class label. When predicting the class for the given
data, it starts at the root node, which is situated at the top of the tree. [t compares the
inputted data with values of the root and follows the corresponding branch and so on
until a leaf node is met with the predicted class value. A basic example to illustrate my
explanation is a question of where someone is fit? Firstly they check the “age” at the
root and if it is less than 30. If “Yes” it follows the branch to “Eat’s a lot of pizzas?” or if
“No” it corresponds to “Exercises in the morning?”. This routine continues until the leaf
node is met and the class is found. [11].

Is a Person Fit?

Age< 30?

Yes? /\ No?

Eat’s alot Exercises in the
of pizzas? Morning?

No? Yes?
Yes‘/\ /\No?

Unfit! Fit Fit Unfit!

Figure 13: Decision Tree Example

2.5.4. Random Forest Classifier

Random Forest (RF) is one of the most popular classifiers due to its simplicity and high
accuracy. RF consists of an ensemble of several decision trees hence, the name “forest”.
Also, “random” as training data points are split into random samples when building
trees. Therefore, these trees are learning from unique samples of data and trained in
parallel, this is referred to as “bootstrapping”. The plan is that by training each tree on
slightly different observation samples it will lead to a lower variance without increasing
bias. Once tested, the predictions are aggregated from each decision tree which is
referred to as “bagging”. Advantages of RF include its efficiency in performing on large

datasets and accuracy. [12].
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Figure 14: Random Forest Diagram

2.5.5. Support Vector Machines (SVM)

Support Vector Machine (SVM) algorithm is commonly used for solving classification
problems, although it can be used for regression. The aim of this algorithm is to
successfully get a hyperplane, which is like a boundary to effectively separate the two
groups of data points that are plotted in an n-dimensional space, where n is the number
of features. There will be an assortment of different hyperplanes that can be used to
separate the data points, but a well-performing hyperplane will minimise the distance
between the points and itself. This distance is called margin. The one with the largest
margin for both classes should be selected. Support vectors are the points that are
located closer to the hyperplane. Thus those are the ones chosen to define its position
and orientation to maximise margin. There is a selection of different SVM mathematical
algorithms, which are called kernels. A kernels purpose is to take the given inputted

data and convert it into the required form. For this project, [ used a Linear Kernel. [13].

A

Figure 15: Support Vector Machine Diagram
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2.5.6. K- Nearest Neighbors

Although K-Nearest Neighbors (KNN) is one of the most straightforward algorithms and
still achieves high accuracy. KNN makes no assumptions about the underlying data
structure, making it a non-parametric algorithm. This model may also be considered as
a lazy learner algorithm due to its nature in handling training data. It does not learn
from it immediately. Instead it is stored until needed for classification, and only then
performs an action on the data. The “K” is an integer that indicates the number of
nearest neighbouring data points that will be used. The neighbours hold a majority vote
for which class to be predicted. For instance, if the given “K” value is 5, then the five
nearest points to that point will be used to make the decision. So it is imperative to
choose the correct value for “K “, which can be achieved through trial and error whilst
selecting the best fit. However, calculating the distance between the data points for all

the training data comes with the disadvantage of computation costs. [14].

______

Figure 16: K-Nearest Neighbors Diagram

2.5.7. Naive Bayes

Naive Bayes is a classifier based on Bayes Theorem, which works on conditional
probability. The name “naive” comes from its assumption that all the features are
independent of each other. Conditional probability is the probability of an event
occurring given that something has already happened. [15]. The mathematical equation

for this is as follows:

p(A|B)p(B)
p(4)

Figure 17:Conditional Probability Equation

P(B|A) =
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As the figure below will help illustrate, the classifier will be using the training data
inputted, and the algorithm will learn the conditional probability of each feature on the
class label ‘C’. Bayes Theorem will then be applied when testing the algorithm to
calculate the probability of a class using features A1,A2,...,An. The class is decided by the
highest probability. A disadvantage to this classifier is the requirement of the features to
be independent as it may overlook important correlations within the data. Positives are
its fast performance which aids real-time predictions and how it is highly scalable with

both predictors and data points. [15].

C

A, A, Ay

Figure 18: Naive Bayes Diagram

2.5.8. Neural Network Classifier

In this project, I used a basic algorithm of Deep Learning, Multilayer Perception (MLP).
Deep learning is a subgroup of machine learning. This model is categorised as an
artificial neural network. As you can see from the figure below, there are three main
layers that are fully connected, input, hidden and output. At the input layer, each node
correlates to one feature of the given dataset leading to the output layer where nodes
represent the classes. MLP trains its data by carrying out a method called
backpropagation. To explain further, learning happens after processing data and
changing connection weights between neurons. This is based on a comparison between
the degree of error and the expected result in the output layer. MLP may use an
algorithm such as gradient descent in order to alter the weight, which will improve
accuracy. Artificial neural networks behave similarly to a biological one however, it

takes probabilistic data as inputs and converts it to output classes. [16].
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Figure 19: Multilayer Perception Diagram

2.5.9. Feature Scaling

Some features’ raw data values can span varying degrees of magnitude and range which
leads to a few algorithms not achieving their best performance, as they are sensitive to
this data. The classifiers most affected by this raw data are algorithms based on distance
and gradient descent, therefore a feature scaling technique is needed. This step is
usually performed during the pre-processing stage. There are several available methods
for scaling the data, this project utilises standard scaler. The end result of the scaling
process will be attributes with a mean of 0 and a standard deviation of 1. Below is the
equation used. [40].

X —p

a

X

Figure 20: Standard Scaling equation

2.6. Evaluating the Model

This section includes the evaluation techniques used in this project to assess and
compare the performance of the implemented machine learning classifiers.
2.6.1. Confusion Matrix
A Confusion Matrix is a table that is frequently utilised to visualise the performance of a
given classifier model by summarising prediction results on the test data. The possible
Confusion Matrix results include:

e True Positive (TP) - Correctly predicted present

e False Positive (FP) - Predicted present, but it’s actually absent

e True Negative (TN) - Correctly predicted absent
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e False Negative (FN) - Predicted absent, but it’s actually present
These four measures are used to show the effectiveness of the classifier. One axis of the
table is labelled Actual, and the other axis is Prediction. A Confusion Matrix is of size
NxN, where N correlates to the number of classes. In this instance, it is a binary

classification problem; thus, N=2.

0 1
0 TN EP
1 FN TP

Figure 21: Confusion Matrix

2.6.2. Accuracy
Accuracy is defined as the number of accurate predictions divided by the total number

of input samples, and it can also be expressed as follows:

TP+TN
TP+TN+ FP+ FN

Figure 22: Accuracy Equation

Accuracy =

Accuracy alone is not perfect for giving the whole picture and can provide a false sense
of accomplishment when there is a class-imbalanced data set like this project where
there is a disparity between the number of present and absent labels. [17].

2.6.3. Precision

Precision is defined as the number of accurately predicted positive results divided by
the number of positive results predicted by the classifier. [17]. It can be expressed as

follows:

i/ B o

Precision = m—m

Figure 23: Precision Equation
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2.6.4. Recall
Recall is defined as the number of accurately predicted positive results divided by the
total number of positive results that should have been detected. [17]. It can be

expressed as follows:

TP
TP+ FN

Figure 24: Recall Equation

Recall =

2.6.5. F1-Score
F1-Score defines the number of instances the classifier correctly classified, also
robustness. This is a comprehensive assessment of the models accuracy, with the

primary goal of striking a balance between precision and recall. [17].

precision * recall
Fl =2Z%

precision + recall

Figure 25: F1-Score Equation

2.7. Python Libraries

My chosen programming language was Python for the implementation of this particular
project as it is the most suitable for data science. Additionally, Python is widely popular
with a large community of developers making support easier to come by. Python has
many well-documented libraries, which are prewritten functions that solve common
programming tasks thus, helping to reduce programming time. A number of Python
libraries have been used to assist my project, and a brief description will be provided of
the most significant tools used.

Scikit-learn

It is also referred to as “sklearn”. This is a popular machine learning library that
provides supervised and unsupervised algorithms and is useful for a project such as this
as it offers metrics to evaluate the classifiers.

Pandas

Pandas stands for “Python Data Analysis” library. It takes data files e.g. CSV and creates
an object with rows and columns called a Data Frame. It is useful for pre-processing and
analysing data.

Numpy

23



It is a library for scientific computing that deals with powerful n-dimensional array
objects, as well as several routines for processing those arrays, e.g. mathematical
functions. [18].

Matplotlib

This is a plotting library for producing quality static, animated and interactive
visualizations for given datasets. Forms include bar charts, scatter plots and histograms.
Basemap

Basemap is a toolkit for creating maps and plotting longitude and latitude data. It is an
extension of matplotlib. Matplotlib plots the data, which is projected onto a matplotlib
figure. [19].

Seaborn

Seaborn is a Python library built on the matplotlib library that is mainly used for data
visualization. It has a simple high-level interface and useful statistical graphics for
plotting the outcomes of the classifiers. [20].

Convertbng

This library converts decimal longitude and latitude coordinates to Easting and
Northings (OSGB36) and vice versa. This conversion uses “Rust binary” and is
particularly quick. [39].

CSv

CSV allows you to read, process and parse CSV files from text files.

Pickle

This is used to both serialize and deserialize objects. An object is “pickled” and
converted into a byte stream saved on a disk. It can then be “unpickled” to inverse

operation and return the object. [21].

2.8. Related Work

“Species distribution model transferability and model grain size - finer may not
always be better” - Syed Amir Manzoor, Geoffrey Griffiths & Martin Lukac

This project uses species distribution modelling to predict the distribution of invasive
species. They focussed on grain size’s effect on accuracy and model transferability using
varying grain sizes of 50m, 300m and 1km in Wales UK. Their results showed that the
models’ accuracy increased as grain size increased along with models transferability. In

brief, the finer grain size variables led to less accurate models. [22].
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“A Review of Machine Learning Based Species’ Distribution Modelling” - Jian
Zhang & Sen Li

This paper looked at four different machine learning methods Random Forest, MaxEnt,
Support Vector Machine(SVM) and Artificial Neural Networks (ANN) and their
performance at predicting species distribution. They looked at their application,
benefits and flaws in detail. [t was deemed that the deep learning approach was the
most promising with increasing environmental data. [23].

“Using Flickr for characterizing the environment: an exploratory analysis” -
Shelan S. Jeawak, Christopher B. Jones & Steven Schockaert

Flickr data is a valuable informal information source for the disciplines of geography
and ecology. They characterise places based on Flickr tags and compare it to structured
data sources that had mixed results. Sometimes better and sometimes worse. To
conclude, it was found that the Flickr data was complementary to traditional sources for
characterising the environment. [24].

“Mapping Wildlife Species Distribution With Social Media: Augmenting Text
Classification With Species Names” - Shelan S. Jeawak, Christopher B. Jones &
Steven Schockaert

This project also uses social media data. This time to predict species distribution by
utilising posts that explicitly mention the species, which led to high precision and low
recall. They also tried to use a text classifier to get visual models of the location, that
achieved a better performance. However, the optimal results came from combining the

two strategies. [25].

Chapter 3: Approach

3.1. Project Requirements

As stated prior in this report in section 1.2, the aims of the project are to identify
environmental features and use social media data to accurately predict the presence of
a given species. To achieve this, six different machine learning solutions will be
implemented with a comprehensive evaluation to compare the algorithms. In addition,
three variations of grid cell sizes will be utilised to find the granularity that achieves the
optimum performance. Another aim is to identify the most important environmental
features that achieve the highest accuracy when predicting species occurrence. A set of

functional and non-functional requirements were set prior to starting the
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implementation of the project. These requirements were used to navigate the
development of this project to achieve a fully functioning model.

3.1.1. Functional Requirements

The most important functional requirements can be categorised into two main sections
as follows:

Data collection and pre-processing:

e Collected data is required to be processed to get value/count for each grid
cell and saved to a new CSV file.

e The system can load in the relevant datasets required for training and testing
the classifier.

e The data inputted into the classifier must be formatted in a certain way. This
involves merging the loaded data to form one dataset, dropping unnecessary
columns, deleting rows with missing data and splitting the data into training
and testing.

Machine Learning:

e Develop Machine Learning Algorithms for Random Forest, Naive Bayes,
Support Vector Machine, Decision Trees, K Nearest Neighbor and Neural
Networks.

e Train, test and evaluate each algorithm for eleven species and 3 different grid
cell sizes.

e Visualise results for all algorithms to compare performances and find the
most accurate for each grid cell size.

e Train and test a machine learning classifier using individual environmental
features and combinations to evaluate their effectiveness.

3.1.2. Non-functional Requirements

e Reusability - The implementation can be reusable for other people in their
systems.

¢ Reliability - The program will run with no failures or errors.

e Scalability - If the program needed to incorporate more grid cell sizes,
species or environmental features it is easily achievable without affecting

performance.
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3.2. Project Structure

As you can see from the figure below, the project is split into two. The main reason for

dividing the projects implementation is for simplicity as it allows for modifications to be

made easier and to avoid over cluttering. Moreover, given the projects time frame this

was considered the most suitable solution. Data collection and processing methods will

be developed in the “ProcessData” folder. Further discussion on the collated data and

their data flow together with functions used will be in section 3.3. Whereas the folder

“Classifiers” has all 11 species with their notebooks containing the machine learning

algorithms trained and tested using data from “ProcessData” along with their

corresponding results. Discussion on this process can be found in section 3.4.

newProjectML
o

Figure 26: Project Split Diagram

3.3. “ProcessData” - Data Collection + Data Processing

3.3.1. Wildlife Selection and NBN Data

T

The aim of this project is to build a classifier which is able to determine the presence of

a species based on selected environmental features. It is essential when collecting data

for it to be directed at the relevant species. Eleven species were selected for training and

testing the model. The species selected are chosen from the UK Biodiversity Action Plan

(BAP) and represents a variety of different taxonomic groups. It's imperative they differ

in number of occurrences and distributions to give a broader overview of how the

classifiers perform. This occurrence data was downloaded as a CSV file from the

National Biodiversity Network and used as “ground truth”.

Species Name Latin Name Taxonomic | Wales | England | Scotland NBN
Group Count
Red Grouse Lagopus Bird Y Y Y 64,326
Lagopus
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Species*.csv -

3.3.2. Flickr API

ProcessNBNData.py

Figure 27: Species Data Flow

E

—

N\

Tundra Swan Cygnus Bird Y Y 21,298
Columbianus
Willow Tit Poecile Bird Y Y 93,353
Montanus
Hawfinch Coccothraustes Bird Y Y 22,323
Coccothraustes
Yellow Wagtail | Motacilla Flava Bird 154,646
Twite Linaria Bird Y 46,512
Flavirostris
Polecat Mustela Putorius | Terrestrial Y Y 8,523
Mammal
Harvest Mouse Micromys Terrestrial Y N 4,258
Minutus Mammal
Adder Vipera Berus Reptile 24,731
Grass Snake Natrix Natrix Reptile Y 26,876
Great Crested Triturus Amphibian Y 82,897
Newt Crstatus
Data Flow

Species*30km.csv

Species*20km.csv

Species*10km.csv

Once eleven species were chosen, all their possible data was collated. The Python

library ‘flickrapi’ was used to stream photos that contain the tag of the species name

and save them to a CSV file. ‘Flickrapi’ is a popular library that permits the Flickr API to

be accessed using a valid authorisation key and secret. When collecting the data,
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parameters can be set to narrow the search to specific photos. The filters used for this
project include:

e Tags - Only photos containing the given word in their tags would be retrieved.
Multiple tags can be set at the same time. In this case, the species’ common name
or their Latin name.

e Bbox - Alist of 4 values that represent the boundary box, and only photos within

this box will be searched. Hence, the bottom right corner and top left corner of

the UK was used.

Species Name Flickr Count

Red Grouse 227

Tundra Swan 91

Willow Tit 118

Hawfinch 117

Yellow Wagtail 166

Twite 64

Pole Cat 187

Harvest Mouse 192

Adder 471

Grass Snake 223

Great Crested Newt 41

Data Flow

Species*flickr30km.csv

ProcessFlickrData.py -

FlickrData.py — m—’

Species*flickr20km.csv

Species*flickr10km.csv

Figure 28: Species Flickr data flow
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3.3.3. Environmental Features

These are the environmental features used for this project. Features were researched
that may affect a species’ presence, however, sourcing this data was reliant on the data
being available to the public. These are the seven found in an Ascii Grid format that

could easily be converted using excel to CSV.

Environmental Features Description Format

Mean Temperature The dataset contains mean temperature for Ascii Grid
each month in a 5km resolution for the year

2016-2017.

Data Flow

JanMeanTemp.asc JanMeanTemp.csv

FebMeanTemp.asc FebMeanTemp.csv

MarMeanTemp.csv

MarMeanTemp.asc
AprMeanTemp.asc AprMeanTemp.csv
TempMean30km.csv

ProcessTempData.py TempMean20km.csv

MayMeanTemp.asc MayMeanTemp.csv

JunMeanTemp.asc JunMeanTemp.csv

JulMeanTemp.asc JulMeanTemp.csv

AugMeanTemp.asc AugMeanTemp.csv
. 5 - 5 TempMean10km.csv

N

SepMeanTemp.asc SepMeanTemp.csv

OctMeanTemp.asc OctMeanTemp.csv

NovMeanTemp.asc NovMeanTemp.csv

L]

JUADdARRgT
—

DecMeanTemp.asc DecMeanTemp.csv

Figure 29: Temperature data flow

Mean Wind Speed The dataset contains mean wind speed for Ascii Grid
each month in a 5km resolution for the year

2016-2017.

Data Flow
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JanMeanRain.asc

FebMeanRain.asc

MarMeanRain.asc

AprMeanRain.asc

MayMeanRain.asc

JunMeanRain.asc

JulMeanRain.asc

AugMeanRain.asc

SepMeanRain.asc

OctMeanRain.asc

NovMeanRain.asc

DecMeanRain.asc

NN NEN

JanMeanRain.csv

FebMeanRain.csv

MarMeanRain.csv

AprMeanRain.csv

MayMeanRain.csv

JunMeanRain.csv

Y

ProcessRainData.py _—

JulMeanRain.csv

AugMeanRain.csv

N

SepMeanRain.csv
OctMeanRain.csv
NovMeanRain.csv

DecMeanRain.csv

Figure 30: Rainfall data flow

MeanRain30km.csv

MeanRain20km.csv

MeanRain10km.csv

Mean Rainfall

The dataset contains mean rainfall for each
month in a 5km resolution for the year

2016-2017.

Ascii Grid

JanMeanWind.asc

FebMeanWind.asc

MarMeanWind.asc

AprMeanWind.asc

MayMeanWind.asc

JunMeanWind.asc

JulMeanWind.asc

AugMeanWind.asc

SepMeanWind.asc

OctMeanWind.asc

NovMeanWind.asc

 —
_
—_
_—
—_—
—
e

_—
—_—

_
_
—_—

DecMeanWind.asc

Data Flow

JanMeanWind.csv

FebMeanWind.csv

MarMeanWind.csv

AprMeanWind.csv

MayMeanWind.csv

JunMeanWind.csv

Yz

ProcessWindData.py

JulMeanWind.csv

AugMeanWind.csv

N

SepMeanWind.csv
OctMeanWind.csv
NovMeanWind.csv

DecMeanWind.csv

Figure 31:Wind Speed data flow

MeanWind30km.csv

MeanWind20km.csv

MeanWind10km.csv
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Land Cover Dominant

Aggregate Class

The dataset contains 10 simplified aggregate

classification of land cover in a 1km

resolution for the year 2010.

“1-Broad-leaved / Mixed woodland
2-Coniferous Woodland

3-Arable and horticulture
4-Improved Grassland
5-Semi-natural grassland
6-Mountain, heath, bog

7-Built up areas and gardens
8-Standing open water

9-Coastal

10-Oceanic Sea”

Ascii Grid

(31]

LandCoverAggregateClass.asc Eemeeend LandCoverAggregateClass.csv R d

Data Flow

Figure 32: Land Cover Dominant Class data flow

LandCover30km.csv

LandCover20km.csv

LandCover10km.csv

Land Cover Dominant

Subclass

The dataset contains 26 different
classification of land cover in a 1km

resolution for the year 2010.

“1-Sea / Estuary

2-Water (inland)

3-Littoral rock

4-Littoral Sediment
5-Saltmarsh
6-Supra-littoral rock
7-Supra-littoral sediment
8-Bog (deep peat)

9-Dense dwarf shrub heath
10-Open dwarf shrub heath
11-Montane habitats
12-Broad-leaved / mixed woodland
13-Coniferous woodland
14-Improved Grassland
15-Neutral grassland
16-Setaside grassland
17-Bracken

18-Calcareous grassland
19-Acid grassland

20-Fen, marsh, swamp

Ascii Grid
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21-Arable cereals

22-Arable horticulture
23-Arable non-rotational
24-Suburban / rural developed
25-Continuous urban

26-Inland bare ground” [31]

Data Flow

N\

LandCoverSubClass.asc _— LandCoverSubClass.csv _— ProcessLCSubData.py el LandCoverSubclass20km.csv

Figure 33: Land Cover Subclass data flow

LandCoverSubclass30km.csv

LandCoverSubclass10km.csv

Emissions The dataset contains the sum of pollutant-
specific emissions data in 1km resolution for

the year 2018

Ascii Grid

Data Flow

ProcessEmissionsData.py

Figure 34: Emissions data flow

Emissions10km.csv

Population The dataset contains gridded human
population based on Census 2011 in 1km

resolution for the year 2011.

Ascii Grid

Data Flow

PopulationData.asc e PopulationData.csv _— ProcessPopData.py E—

N

Figure 35: Human population data flow

Population30km.csv

Population20km.csv

Population10km.csv

(98]
(8]




3.3.4. Process Data using Grid

As you can see from the data flow figures above, the environmental features and species
data obtained needs to be processed in a specific way to acquire the information in
10km, 20km and 30km grid files. Therefore, for this project, it is necessary to split the
UK into grid cells and calculate its respective values by processing the data to create
new CSV files which will be inputted into machine learning algorithms to predict the
presence of a species. The functions implemented to achieve this are as follows, and the
boundary box for the UK was set using Easting and Northing:

grid10km()- Returns an array of x values (Easting) and y values (Northing), which if
plotted form a grid with 10x10km cells. Also, the number of columns and rows used to
fill the given boundary box.

grid20km()- Returns an array of x values (Easting) and y values (Northing), which if
plotted form a grid with 20x20km cells. Also, the number of columns and rows used to
fill the given boundary box.

grid30km()- Returns an array of x values (Easting) and y values (Northing), which if
plotted form a grid with 30x30km cells. Also, the number of columns and rows used to
fill the given boundary box.

getCellByID() - Using an integer for ID, this function will return an array of the x and y
coordinates associated with that cell.

getCellValue()- Using the array of x and y coordinates, it will find the records that lie in
that cell and return either a sum, mean or most frequent value from those records. (This

is dependent on the feature as they have different specifications)

Using the figure below to illustrate my explanation, the algorithm for creating the grid
starts by getting the boundary box which are 4 corner coordinates using Easting and
Northing of the UK. Firstly, it calculates the coordinates of the bottom left point of the
top left grid cell. Then using the given grid cell size (10, 20 or 30km), it loops through
that row, adding the respective meters each time to the x coordinate and storing both x
and y values every time. Until the right boundary is met and you move on to the next

row, this continues until both the low y value and right x value is met.
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Figure 36: Grid supporting diagram

The getCellByID() function works by taking an integer which due to the way the array is
stored for both x and y, the bottom left corner coordinates of the cell are simply the x
and y values in the array at that number. So to get all four coordinates of that cell the
grid size is added to both the x and y coordinates already found. getCellValue() then
searches the given dataset to locate data that lies within the coordinates of the

boundary found, and their findings are saved to a CSV file.

3.4. “Classifiers” - Machine Learning

3.4.1. “Classifiers” Folder Overview

The Classifiers folder contains a separate folder for each of the eleven species used.
Inside said folders are notebooks for 10km, 20km, 30km and Environmental Features.
These notebooks are where the machine learning processes discussed in section 3.4.2
takes place. Their results are saved as a pickle and the ‘ClassifierResults’ notebook

collates them to produce a mean for the classifiers scores including all eleven species.

// \
s m

e
Species...1 5
Species...1 Species...1 Species...1 A i i " Species...n
Environmental Species...n Species...n Species...n &

% z 3 Environmental
10km.ipynb 20km.ipynb 30km.ipynb Feamres e 10km.ipynb 20km.ipynb 30km.ipynb Features e
Classifiers Classifiers Classifiers envFeature Classifiers Classifiers Classifiers ehvieature
Lo 2oKmiekt SOkt S 10km.pkl 20km.pki 30km.pkl s.pki

\\‘ ClassifierResults.

ipynb

Figure 37: "Classifiers" folder overview
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3.4.2. Machine Learning Process Overview

As you can see below, this flow chart will illustrate the behaviours used for each species
in this folder for implementing a machine learning solution. The first stage involves
reading in all the data required. For example, if species Red Grouse at a 20 km Grid Size
is being implemented, the data needed for input is as follows RedGrouse20km,
Population20km, LandCover20km, LandCoverSubclass20km, Emissions20km,
TempMean20km, MeanRain20km, MeanWind20km and redgrouseflickr20km .These
will all be combined to form one large dataset with any unnecessary columns dropped.
Further processing of the data involves getting statistics to recognise if there are rows
that need to be deleted due to no data values as this could affect the classifiers accuracy.
Once a fully processed dataset has been formed it will be segregated into training and
test sets. A crucial stage for a few classifiers used is scaling of the features, so the
training and testing data will be scaled appropriately for those algorithms. Each of the
classifiers selected will be trained using the training data and predict using the test data.
In this instance, the classifiers using the non-scaled data are Naive Bayes, Decision
Trees, Random Forest, whereas Support Vector Machine, K Nearest Neighbor and
Neural Network will use the scaled training and testing data. Their performances will be
evaluated using various metrics such as accuracy, recall, precision and F1-Score along
with a Confusion Matrix. To increase the effectiveness of the classifier's prediction
abilities, parameter tuning will be performed until acceptable results are achieved. Once
this process is completed for all species and grid cell sizes, results will be congregated

and compared to find the classifier and grid cell size that outperformed the others.

w S S Sree——— m e

Join data
frames

A AAY Y ¥ aa

-

-

gl Delete No Data
Values

=y Feature Scaling

b 4
Train-Test Split
h 4
Train and Test [
Model
v
Parameter
Tuning
-

v

Model Performance
Evaluation Metrics

Figure 38: Machine Learning Solution
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3.5. Development Strategy and Methodology

As mentioned previously in section 1.5, an agile methodology was used for this project.

Fortnightly sprints were implemented to produce the optimal project results. The

development process for this project was broken down into the following five

iterations:

[teration One - Focussed on searching for appropriate datasets that could be
used for environmental features that are freely available and in a useable format.
Selecting a wide range of species that will be representative of wildlife and
download ground truth data from NBN Atlas.

Iteration Two - Create a grid function to split the UK into grid cell sizes. Pre-
process the data to get the values associated with each grid cell and in a format
that can be inputted into a classification model.

[teration Three - Focussed on developing the 6 selected classifiers. They will be
trained on the given training data and tested on unseen data. All 6 classifiers
implemented on all eleven species and for three grid sizes.

[teration Four - Parameters for the classifiers will need tuning to optimise
performance and different evaluation techniques to calculate accuracy and
compare results for each model.

[teration Five - Focussed on experimenting with environmental features using
Random Forest classifier to test the effectiveness of the features individually and

with multiple combinations.

Chapter 4: Implementation

4.1. Overview

The implementation of this project can be divided into three sections:

1.
2.

Data collection and processing.
Development of multiple machine learning classifier algorithms, evaluation
techniques and their mean metrics for all species.

How different environmental features were used as classifier input.
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4.2. Data Collection and Pre-processing

4.2.1. Flickr Data Collection

Below is a detailed description of the script developed to collect the necessary data from
Flickr. The initial step involved setting up a Flickr Connection using the python package
FlickrAPI and passing in a valid key and secret, permitting any number of methods to

query the APL

key = u'0794e7ff463ae21c212f3bBee7123fc9’

secret u'd512dcdcceddfad3’
flickr = flickrapi.FlickrAPI(key, secret)

Figure 39: Flickr Connection

Flickr Connection

Is w > total species?
S _—
Yes
l No

flickr.photos.search

w+=1 l

Get total pages

}

Yes Is j > total pages?

No

flickr.photos.search

j+=1 |

Get perpage

}

Yes

Is i > perpage?

—

No

|

i+= 1| Get photo longitude, latitude and date

|

Store in CSV

Figure 40: Flickr Script Diagram

As you can see from the figure above the script has 3 ‘For loops’. My initial loop iterates
through the selected 11 species and opens a CSV file related to that species. Two calls
are made to the API using flickr.photos.search() for each species. The first call is a
generic search using parameters such as the English and Latin name of the individual
species as tags and a boundary box of the UK using four coordinates. The Flickr API
returns the results in a series of pages hence, the primary purpose of this call is to get

the number of pages that will be searched. An XML python package is utilised to
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navigate the outputted data from the calls. The second nested ‘For loop’ will go through
the number of pages found by the initial call, this number corresponds to the second API
call which is necessary to specify which page number to return. The final ‘For loop’ will
get the number of photos per page which by default is 250, from here we can run
through the photos on each page and extract the required data. In this case we need
specific information such as date taken, longitude and latitude and append said
information into the CSV file. However, exception handling is used if there is not 250

photos on said page.

w range (@, len(englishnames)):

open (englishnames [w] 'flickr.csv', 'a') infile:
writer = csv.writer(infile)

header - "“dateTime", “latitude", "longitude"
writer.writerow(header)

[ flickr.photos.search(tags englishnames [w] +','+ latinnames[w], bbox-"-5.9025857, 49.924471, 2.5125204, 58.898406")
totalPages - int(photos(@].get('pages')) + 1
print (int(photos(@].get('total’)))

j range(1, totalPages):

photos - flickr.photos.search(tags - englishnames(w] +','+ latinnames|(w], bbox-"-5.9025857, 49.924471, 2.5125204, 58.898406", page-j)

4l range(@, int(photos([@].get('perpage’))):

photo_id - photos[@] [i].get('id")

photoInfo - flickr.photos.getInfo(photo_i
datetime - "'" <photoInfo(@] ‘taken')
longitude - "'" - photoInfol¢ (*longitude’)
latitude - "'" + photoInfo[@](12].get('latitude’)

photos (@] [i).get('id"') )

data - datetime, latitude, longitude
writer.writerow(data)

IndexError:

Figure 41: Flickr Data Collection

4.2.2. Process NBN Data

To prepare the data for the machine learning aspect of this project, the initial CSV file
from NBN Atlas needed to be outputted into three different CSV files for each grid cell
size. The first step to achieving this for each of the 11 species’ was to read in their
observation data obtained from NBN Atlas into the script below and for each row
(observation) to obtain the longitude and latitude values, converting them to Easting
and Northing values, adding these x and y coordinates to a new CSV file. The output of
this ‘For loop’ is 11 new CSV files with the structure Species*EN.csv data is [‘Easting’,

‘Northing’].
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i range(@, len(species)):
open (species[i] +'EN.csv', 'w') infile:
open (species[i] esvi ) file:
reader - csv.reader(file)
writer - csv.writer(infile)
writer.writerow(['Easting’, ‘Northing'])

next(reader)
row reader:
lat float(row(21])
lon = float(row([22])
xy - geofunc.l12en(lat, lon)
eastingNorthing - strixy(@])(1:-1], str(xy[1])[1:-1]
writer.writerow(eastingNorthing)

Figure 42: Create file of Easting and Northing

My conversion of longitude and latitude coordinates to Easting and Northing (OSGB36)
is a function called 112en() which uses the convert_bng library.
def 112en(self, lat, lon):

Xy = convert_bng(lon,lat)
(xy)

Figure 43: Convert Long and Lat to Easting and Northing

An extremely valuable function in my project was CreateGrid(). It allowed for the
splitting of the UK into grid cells and acquire their respective information needed from

each individual cell. All the environmental features and ground truth data were run

using this function.

The algorithm iterates through the rows of the grid starting at the top left, whilst a
nested loop iterates through the columns. The x and y coordinates of the bottom left
corner of the cells are stored in separate arrays. Using this implementation process
made it easier to call grid cells by their cell id.

def grid20km(se leftX, rightX, lowY, highY):
grid_size 8
n_cols - (rightX - leftX) grid_size
n_rows - (highY - lowY) grid_size
xx = []
yy = (]
highY - highY - grid_size
rightX - rightX - (grid_size-2)
plotY - highY

plotY lowY:
xx.append(leftX)
yy.append(plotY)
plotX = leftX
plotX rightX:
plotX - plotX -« grid_size
xx.append(plotX)
yy.append(plotY)
plotY - plotY - grid_size

rightX = plotX

(xx, yy, grid_size, n_cols, n_rows)

Figure 44: Create 20km Grid
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The getCellByID() function was called and used in conjunction with the grid arrays to
obtain all 4 corners of the cell. This is achieved by adding the grid cell size to the x and y

coordinates.

def getCellByID(self, xx, yy, squarelD, grid_size):
getCellx - []
getCellx.append(xx[squarelD])
getCellx.append(xx[squareID] - grid_size)

getCelly - []
getCelly.append(yy([squarelD])
getCelly.append(yy[squareID] - grid_size)

(getCellx, getCelly)

Figure 45: Call cell by ID

Once all four coordinates for that cell are retrieved the next step involves searching a
given CSV file to gather all the available data within those points. In this case, the earlier
CSV files created containing the Easting and Northing coordinates are utilised, and the
points located within that grid cell boundary are found and used. This function differs
slightly between environmental features. In this instance, we calculated how many
points were retrieved within the coordinates.

def getCellCount(self, ge

csvSource = open(species « 'EN.csv','r')
reader - csv. reader(csvSource)

count = 9
iterreader - iter(reader)

next(iterreader)
row 10 iterreader:
float(row[0]) >= float(getCellX[0]) and float(row[8]) < float(getCellX[1]) and float(row[1]) >= float(getCellY[0]) and float(row[1]) < float(getCellY[1]):
count = count + 1
(count)

Figure 46: Get Cell Count

For each species a new CSV file was created called Species*GridCellSize*km.csv with the
structure [‘Cell ID’, X', 'Y’, ‘Count’, ‘Presence’]. The nested ‘For loop’ is in the range of 0
to the number of columns multiplied by the number of rows. This number relates to a
cell in which we need its coordinates, calling the function mentioned prior
getCellByID(). When all four coordinates of the cell are found, we call getCellCount(). If
there is a count higher than 0, we use a ‘1’ in the presence column otherwise, a ‘0.
These are the labels that will be used later for the classifier. This process was reiterated

for 30km, 20km and 10km.
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XX, yy, grid_size, n_cols, n_rows - grid.grid20km(grid.leftX, grid.rightX, grid.lowY, grid.highY)

j in range(,len(species)):
spec - species(j]

open (species(j] + '20km.csv', 'w') as infile:
writer - csv.writer(infile)
writer.writerow(['Cell ID', 'X', 'Y', 'Count', 'Presence'])

k in range(@, (27+51)):

getCellX, getCellY - grid.getCellByID(xx, yy, k, grid_size)
count = countin.getCellCount(getCellX, getCellY, spec, grid_size)

float(count) -~ 0:

presence - 1

data - k, getCellX[@], getCellY[@], count, presence
writer.writerow(data)

presence -
data - k, getCellX[0], getCellY[®], count, presence
writer.writerow(data)

Figure 47: Create new grid CSV file

The ground truth grid data was later plotted. Using the longitude and latitude
coordinates of the UK as parameters, Basemap() created an outline of the UK map using
the coastlines. For each row where the species is ‘present’ the Easting and Northings
coordinates added half the size in meters of the granularity being used to indicate the
middle of the cell. These coordinates are converted to longitude and latitude before
being plotted. The map can be compared to the one used in NBN Atlas to verify results
and visualise distribution.
#Plot ground truth data
fig, ax = plt.subplots(l, figsize=(10,10))
m = Basemap(llcrnrlon=-7.5600,1lcrnrlat=49.7600, urcrnrlon=2.7800,urcrnrlat=60.840, resolution='f")
m.drawcoastlines()
for i, row in df.iterrows():
if row[ 'Presence'] == 1:

easting = float(row['X']) + 15000

northing = float(row['Y']) + 15000

lonlat = convert lonlat(easting, northing)

lat, lon = str(lonlat[l])[1l:-1], str(lonlat[0])[1l:-1]

x, y = float(lon), float(lat)

x1, yl = m(x, y)

m.scatter(xl, yl, marker = '.', ¢ = 'red', zorder=5)

plt.show()

Figure 48: Plot ground truth data

4.2.3. Process Environmental Data

All of the environmental data gathered was processed similarly to the method just
mentioned with minor changes. Environmental data was originally downloaded in an
ASCII grid format, for convenience excel was used to export the data as a CSV file. The

script below was applied to create a new CSV file with the data in this structure ['X’, ‘Y’,
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‘LandCoverSub’]. In an ASCII grid file ‘-9999’ was commonly used to signify no data
recorded, therefore these cells were skipped. The maths behind this algorithm differs
between environmental features as it is dependent on the first six lines of the ASCII file,

these indicate the number of rows, columns, grid cell size and no value number etc,

open ('LandCoverSubclasslkm.csv', 'w') infile:
open ('LandCoverSubclassData.csv', 'r') file:
reader - csv.reader(file)
writer - csv.writer(infile)
writer.writerow(['X", 'Y', 'LandCoverSub'])

ann

y 1300000 vov
i range(6):
next(reader)

row reader:
Xx=0
value row:
value '-9999"':
data - x, y, value
writer.writerow(data)
X + 1000
1000

Figure 49: Convert ASCIl Format

Number of Rows multiplied by Number of Columns

!

Is j > num rows x num cols?
_ >
Yes

lNo

getCellByID(j)

j+=1

getCellValue()

|

Store in CSV

Figure 50: Add values to CSV diagram

The same method described previously was used to create a grid and acquire
coordinates for the cell by ID (see figure above). However, in this case, we wanted the
most common Land Cover classification in each grid cell. This function differs between
features as in some cases, the mean of a grid cell is needed e.g. mean temp or the total
e.g. human population. If no data was found for a given cell, ‘-9999’ would be inputted as

a default value as when joining the files all the rows would need to coincide.

def most_frequent(List):

max(set(List), key - List.count)

Figure 51: Most Frequent
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def getCellvalue(self, getCellX, getCellY):
csvSource = open('LandCoverlkm.csv','r')
reader - csv.reader(csvSource)

count = 9
iterreader - iter(reader)
tempValue - (]

next(iterreader)

row in iterreader:
float(row([0]) >= float(getCellX(0]) float(row[0]) <= float(getCellX([1]) float(row[1]) >= float(getCellY[6]) float(row[1]) <= float(getCellY[1]):
tempValue.append(float(row(2]))
count = count + 1

count > 0
value - most_frequent (tempValue)

value = -9999

(value)

Figure 52: Get Cell Value

Completion of processing the collated data in this way resulted in the following files:
e MeanWindSpeed*GridSize.csv — [‘Cell ID’, ‘X', ‘Y’, ‘MeanWind’]
o ‘MeanWind’ refers to the average windspeed found for 12 months for each
cell.
e TempMean*GridSize.csv—[‘Cell ID’, X', ‘Y’, ‘MeanTemp’]
o ‘MeanTemp’ relates to the average temperature found for 12 months for
each cell.
e MeanRain*GridSize.csv — [‘Cell ID’, ‘X, Y’, ‘MeanRain’]
o ‘MeanRain’ defines the average rainfall found for 12 months for each cell.
e Population*GridSize.csv — [‘Cell ID’, ‘X', ‘Y’, ‘Population’]
o ‘Population’ is the sum of the human population found for each cell.
e LandCover*GridSize.csv —[‘Cell ID’, ‘X, Y’, ‘Land Cover’]
o ‘Land Cover’ indicates the most frequent aggregate land cover class for each
cell.
e LandCoverSubclass*GridSize.csv —[‘Cell ID’, ‘X', ‘Y’, ‘LandCoverSub’]
o ‘LandCoverSub’ refers to the most frequent land cover subclass found for
each cell.
e Emissions*GridSize.csv —[‘Cell ID’, ‘X’, ‘Y’, ‘Emissions’]

o ‘Emissions’ is the sum of the emissions found for each cell.
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e *SpeciesFlicker*GridSize.csv — [‘Cell ID’, ‘X', ‘Y’, ‘FlickrCount’, ‘FlickrPresence’]
o ‘FlickrCount’ indicates the number of photos found for each cell.
o ‘FlickrPresence’ relates to whether there is at least one photo found for each
cell.
e *Species*GridSize.csv - [‘Cell ID’, ‘X’, ‘Y’, ‘Count’, ‘Presence’]
o ‘Count’ represent the number of occurrences found for each cell.
o ‘Presence’ defines whether there is at least one occurrence found for each

cell.

4.3. Machine Learning Classification Models

For this project, five different machine learning classifier models and a deep learning
model was implemented. Each classifier will be discussed individually about why they
were selected, the pros and cons of the model and their development. The Scikit-learn
library was used to assist the development of all. Jupyter notebook was used for this
part of the project, allowing for easy analyses of the process in a step by step manner.
However, this decision was made when 3-5 species were going to be used, thus writing
a script to pass all species may have reduced development time. The implementation

process for the 11 species and 3 grid cell sizes follow a similar pattern.

The first step involved importing all the CSV file data, which was processed as
mentioned prior in section 4.2. into the notebook using pandas read_csv(), providing the
path to retrieve the relevant data. This then created a data frame with an assigned
variable name.

#import data

redGrouse = pd.read csv('/Users/laura/Desktop/newProjectML/ProcessData/ProcessNBNData/RedGrouse20km.csv')
population = pd.read csv('/Users/laura/Desktop/newProjectML/ProcessData/ProcessPopulationData/Population20km.csv')
landCover = pd.read _csv('/Users/laura/Desktop/newProjectML/ProcessData/ProcessLCData/LandCover20km.csv')
landCoverSub = pd.read_csv('/Users/laura/Desktop/newProjectML/ProcessData/ProcessLCData/LandCoverSubclass20km.csv')
emissions = pd.read csv('/Users/laura/Desktop/newProjectML/ProcessData/ProcessEmissionsData/Emissions20km.csv')
temp = pd.read csv('/Users/laura/Desktop/newProjectML/ProcessData/ProcessTempData/TempMean20km.csv')

rain = pd.read_csv('/Users/laura/Desktop/newProjectML/ProcessData/ProcessRainfallData/MeanRain20km.csv')

wind = pd.read csv('/Users/laura/Desktop/newProjectML/ProcessData/ProcessWindData/MeanWind20km.csv')

flickr = pd.read csv('/Users/laura/Desktop/newProjectML/ProcessData/FlickrData/redgrouseflickr20km.csv')

Figure 53: Loading Datasets

After reading in the data, it’s imperative to get all this information into one data frame,

therefore concatenated the tables that had been imported using pandas.concat(). Once,
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joined they form one large data frame, the columns deemed unnecessary for input into

the classifier were x and y coordinates, plus its corresponding ID, thus dropped.
#Joind tables and |Drop columns
data = pd.concat([redGrouse, population, landCover, landCoverSub, emissions, temp, rain, wind, flickr], axis = 1)

data = data.drop(['CellID', 'Cell ID', 'X', 'Y', 'Count', 'ID', 'FlickrPresence'], axis = 1)
data

Figure 54: Join data frames and drop columns
Earlier mentioned, when there was no data found for a specific cell, -9999 was inputted

as a default value. If there is a no data value in a row, all the data corresponding to that

specific cell will need to be removed as if inserted into the classifier it could affect the

results.

#drop rows with no value == -9999
data = data[data.Population != -9999]
data = data[data.Emissions != -9999]
data = data[data.MeanTemp != -9999]
data

Figure 55: Drop rows with a -9999 value

A useful tool to check the validity of the data and that all the no data values are removed
and to test for anomalies is to use .describe(). For example, if the minimum value for a

column was 9999’ then it would be apparent all necessary rows haven’t been removed.
data.describe( )|

Figure 56: Describe data frame

For the machine learning algorithms it’s necessary to separate the features from the
labels. In this instance, the ‘Presence’ column holds the labels of a 0 or 1 thus, indicating
the presence or absence to be used as a target to classify the features against. X refers to
features and Y the labels.

x = data.drop('Presence', axis=l)
y = data[ 'Presence’)

Figure 57: Split features and labels

A requirement of supervised learning entails evaluating the classifiers predictive
performance on unseen data, therefore, reducing bias. A method that is commonly used
is the Scikit-learn library which provides train_test_split(). This function will split the
features and labels into training and testing subsets. The size of the training and testing
data sets are based on the test size argument passed into the function. In this case, the

training size equals 75% and 25% for testing. This is relatively standard for machine
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learning projects as it avoids overfitting or underfitting the model. A multitude of splits
was tested on the data from 10:90 train-test to 90:10 and 75:25 had the more

favourable outcome.

82 1 —— F1-Score
81 1

79 1
78 1
77 1
76 1
75 1

74 1

10:90 20:80 30:70 40:60 50:50 60:40 70:30 80:20 90:10
Split

Figure 58: Experiment train and test split

i{_train, X_test, y train, y test = train test split(x, y, test size = 0.25)

Figure 59: train-test split

A requirement of this project is to compare the results of the classifiers, and an easy
way to group the results is to initialise a data frame and add the respective information

as you progress.

classifiers = pd.DataFrame (columns = ['Classifier', 'Accuracy', 'Precision', 'Recall', 'Fl-Score'])
classifiers|

Figure 60: Initialise data frame

Feature scaling through standardisation is an important step of the pre-processing
process for many distance-based machine learning algorithms as the distance between
data points is used to determine similarity. [25] Scikit-learn offered several

standardisation functions and for this project StandardScaler() was chosen.

scaler = StandardScaler()
scaler.fit(x_train)

X_train = scaler.transform(x_train)
X test = scaler.transform(x_test)

Figure 61: Feature Scaling

Naive Bayes was the first supervised learning classifier chosen to classify the species
occurrence. It is quick and efficient compared to other more complicated algorithms due

to its assumption that features are independent. However, this speed comes at a cost as
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less accuracy is achieved as this assumption is not usually the case. [41]. To implement
the model, GuassianNB() is used along with its default parameters.

#Naive Bayes

model = GaussianNB()

model.fit(x train, y train)
y pred = model.predict(x test)

Figure 62: Naive Bayes Classifier train and predict

Confusion_matrix() is a helpful function using the Scikit-learn library to get the false
positives, false negatives, true positive and true negatives. Also, using sns.heatmap() to
perceive the results in a visually pleasing manner for the classifiers evaluation.

#Create the confusion matrix

LABELS = ['0','1"]

conf matrix = confusion matrix(y test, y pred)

plt.figure(figsize=(4,4))

sns.heatmap(conf matrix, xticklabels=LABELS, yticklabels=LABELS, annot=True, fmt="d", cmap="Blues");
plt.title("Confusion matrix- Naive Bayes")

plt.ylabel('True class')

plt.xlabel('Predicted class')

plt.show()

Figure 63: Confusion Matrix implementation

Four performance metrics (1)Accuracy, (2) Precision, (3) Recall, (4) F1-Score were
used. All evaluation metrics uses Scikit Learn library “metrics” to give different
evaluations of performance.
e sklearn.metrics.accuracy_score() - This function calculates subset accuracy. [35].
e sklearn.metrics.precision_score() — This function calculates the classifiers ability
not to label as ‘present’, when it’s actually ‘absent’. [36].
e sklearn.metrics.recall_score() - This function calculates the classifiers ability to
find all positive labels. [37].
e sklearn.metrics.f1_score() - This function calculates the average of precision and
recall. [38].

For each classifier these results are stored in the data frame “classifiers” created before.

#Add to dataFrame

classifier = "Naive Bayes"

accuracy = round(accuracy score(y pred, y test),2)*100

precision = round(precision score(y pred, y test, average= 'binary', pos label=1),2)*100

recall = round(recall score(y pred, y test, average= 'binary', pos_label=1),2)*100

flscore = round(fl_score(y_pred, y test, average= 'binary', pos_label=1),2)*100

classifiers = classifiers.append({'Classifier': classifier, 'Accuracy': accuracy, 'Precision': precision, 'Recall’' : re
classifiers

Figure 64: Evaluation metrics
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A second classifier chosen to implement is Support Vector Machines. The advantage of
this algorithm is that it generalizes well, leading to a lower risk of overfitting. On the
other hand, it doesn’t perform well when given a larger dataset as the training time
increases. [42]. This algorithm required feature scaling therefore, ‘X_train’ and X_test’
data are used instead of ‘x_train’ and ‘x_test’. This algorithm was developed using Scikit-
Learns SVC() with the parameters kernel equals ‘linear’. As you can see below from

experimentation with other possible kernels, linear had the best performance for F1-

Score.
B F1-Score
80 -
60 4
40 g
20 1
0 e
S 2 8 ©
: 2 © :
- o
@
Kernel
Figure 65: Experiment with SVM Kernels
#SVM

svclassifier = SVC(kernel='linear')
svclassifier.fit(X train, y train.values.ravel())
y_pred = svclassifier.predict(X test)

Figure 66: Support Vector Machine Classifier train and predict

Another classifier is Decision Trees. A positive reason for using this algorithm is that
feature selection occurs intuitively therefore, any features deemed unimportant will
have no influence over the overall results. It does however, tend to risk overfitting. [43].

The function used to implement this classifier is DecisionTreeClassifier().

#Decision Tree

clf = DecisionTreeClassifier()
clf = clf.fit(x train, y train)
y_pred = clf.predict(x test)

Figure 67: Decision Tree Classifier train and predict
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Nearest Neighbour was chosen to be implemented in this project. Pros of the algorithm
are that it doesn’t assume anything about the data. Cons are it is time-consuming to find
the optimal K value. [44]. As you can see below, from experimenting with the K value
between 1 to 10, 7 came out on top, hence used as a parameter. KNN also requires
feature scaling to avoid making wrong predictions. Scikit-Learns KNeighborsClassifer()

function was used.

——— F1-Score

58 1

1 3 5 7 9
K-Value

Figure 68: Experimenting with K value

#Nearest Neighbor

knn = KNeighborsClassifier(n neighbors=7)

knn = knn.fit(X train, y train.values.ravel())
y pred = knn.predict(X test)

Figure 69: K-Nearest Neighbor Classifier train and predict

The penultimate classifier chosen for development is Random Forest. The reasons for
this selection is its reduced likelihood to overfit compared to other algorithms such as
Decision Trees. However, due to the algorithm being more complex it requires more
computational resources and time. [45]. To implement the model
RandomForestClassifier() is used along with its default parameters.

#Random Forest

rf base model = RandomForestClassifier()

rf base model = rf base model.fit(x train, y train)
y pred = rf base model.predict(x test)

Figure 70: Random Forest Classifier train and predict

The final algorithm which can be considered as deep learning is Neural Networks. The
Neural Network developed here is called Multi-Layer Perception and is implemented
using MLPClassifier(). Training of the model can be time-consuming, but once

completed, the prediction process is fast. Scaling of the features had a significant impact
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on performance when tested. Parameters were trialled and these achieved the best
outcome.

#Neural Network Classifier
#https://stackabuse.com/introduction-to-neural-networks-with-scikit-learn/
mlp = MLPClassifier(hidden layer sizes=(10, 10, 10), max iter=1000)

mlp = mlp.fit(X train, y train.values.ravel())

y pred = mlp.predict(X test)

Figure 71: Neural Network Classifier train and test

Each classifiers results were appended to the ‘classifiers’ data frame which were saved

to a pickle for future use when comparing results.

classifiers.to_pickle("classifiers20km.pkl")

Figure 72: Save data frame to pickle

On completion of this process for each species, thus having a data frame for the
classifiers results, eleven species were saved as a pickle. They are all depickled using

read_pickle() and passed the correct path to the directory.

#import pkl for 10km

adder = pd.read_pickle('/Users/laura/Desktop/newProjectML/Classifiers/Adder/classifiersl0km.pkl")

grassSnake = pd.read_pickle('/Users/laura/Desktop/newProjectML/Classifiers/GrassSnake/classifiersl0km.pkl’)
greatCrestedNewt = pd.read pickle('/Users/laura/Desktop/newProjectML/Classifiers/GreatCrestedNewt/classifiersl0km.pkl’')
harvestMouse = pd.read_pickle('/Users/laura/Desktop/newProjectML/Classifiers/HarvestMouse/classifierslOkm.pkl')
hawfinch = pd.read_pickle('/Users/laura/Desktop/newProjectML/Classifiers/Hawfinch/classifiersl0km.pkl')
tundraSwan = pd.read pickle('/Users/laura/Desktop/newProjectML/Classifiers/TundraSwan/classifiers10km.pkl’)
poleCat = pd.read_pickle('/Users/laura/Desktop/newProjectML/Classifiers/PoleCat/classifierslOkm.pkl"')

redGrouse = pd.read_pickle('/Users/laura/Desktop/newProjectML/Classifiers/RedGrouse/classifiersl0km.pkl"')

twite = pd.read_pickle('/Users/laura/Desktop/newProjectML/Classifiers/Twite/classifiersl0km.pkl")

willowTit = pd.read_pickle('/Users/laura/Desktop/newProjectML/Classifiers/WillowTit/classifiersl0km.pkl')
yellowWagtail = pd.read_pickle('/Users/laura/Desktop/newProjectML/Classifiers/YellowWagtail/classifiersl0km.pkl')

Figure 73: Read in pickle for each species

The data frames containing the results for each species are combined using pd.concat().

#Join
data = pd.concat([adder, grassSnake, greatCrestedNewt, harvestMouse, hawfinch, poleCat, redGrouse, twite, willowTit, ye

Figure 74: Join data frames

The mean is achieved by iterating through the data frame and every row adding the
results for each metric, then dividing by 11. Result of this cell is a data frame containing
the mean score for each metric using all 11 species selected. Allowing for the
requirement to be met by comparing the results of the classifiers to find the most

accurate.
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#mean 20km species

df20 = pd.DataFrame(columns=[ 'Classifier', 'Accuracy', 'Precision', 'Recall', 'Fl-Score'])

for index, row in data.iterrows():
accuracy = row[l] + row[6] + row[1ll] + row[1l6] + row[21] + row[26] + row[31] + row[36] + row[41] + row[46] + row[5]
accuracy = accuracy/12
precision = row[2] + row[7] + row[1l2] + row[17] + row[22] + row[27] + row[32] + row[37] + row[42] + row[47] + row[E
precision = precision/12
recall = row[3] + row[8] + row[13] + row[18] + row[23] + row[28] + row[33] + row[38] + row[43] + row[48] + row[53]
recall = recall/12
flscore = row[4] + row[9] + row[1l4] + row[19] + row[24] + row[29] + row[34] + row[39] + row[44] + row[49] + row[54]
flscore = flscore/12
df20.loc[index] = row[0], accuracy, precision, recall, flscore

df20

Figure 75: Mean for classifier

4.3. Environmental Feature Importance

A sub experiment of this project was to evaluate the impact of the environmental
features used and to find combinations that support one another. This experiment was
conducted using 20km grid cell data. To achieve this, the data was processed the same
way as previously explained, however, when setting the labels and features only
specifically selected columns were used. When splitting the data for each feature into
train and test sets a random state was applied to reduce bias.

#Using just mean temp data

temp = data.drop(['Land Cover', 'LandCoverSub', 'Population', 'Emissions', 'MeanWind', 'MeanRain'], axis = 1)
X = temp.drop('Presence', axis=1)

Y = temp[ 'Presence']

X train, X test, Y train, Y test = train test split(X, Y, test_size = 0.25, random state = 42)

temp

Figure 76: Individual Environmental Feature

The Random Forest classifier was implemented to test the effectiveness of the data at
predicting a species occurrence and the results were saved to a data frame. This
behaviour was carried out on all environmental features individually and also features
that coincide. A mean using all eleven species was found using a similar method to that

previously mentioned.

Chapter 5: Testing

This section concentrates on the Test Cases that were used to test the project developed

met the main functional requirements mentioned is section 3.1.

Test Case ID: TC1 | Process data to get values for each grid cell

Precondition: Collected data for each feature in CSV format

Test Case Steps: 3

Step No Procedure Response Pass/Fail
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1 Read in CSV file using file name | No error message Pass

2 Get value associated with each | No error message Pass
grid cell

3 Save to CSV file in directory No error message Pass

Test Case Outcomes: Processed 10km, 20km and 30km CSV files for each feature and

species.

Related Test: None

Test Case ID: TC2

Pre-process data for classifiers

Precondition: CSV files containing feature and species values for 10km, 20km and

30km

Test Case Steps: 6

Step No Procedure Response Pass/Fail

1 Run cell to read in CSV files No error message Pass
using directory and save it to
data frame

2 Run cell to join together for No error message Pass
one large dataset

3 Run cell to remove rows of No error message Pass
cells with at least one no data
value

4 Run cell to split dataset into No error message Pass
features and labels

5 Run cell to split dataset into No error message Pass
train and test

6 Run cell to scale features No error message Pass

Test Case Outcomes: Pre-processed dataset ready to be inputted to classifiers

Related Test: TC1

Test Case ID: TC3

Naive Bayes

Precondition: Must have training and testing data to use as input

Test Case Steps: 2
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Step No Procedure Response Pass/Fail
1 Run cell to train Naive Bayes No error messages | Pass

and predict labels
2 Run cell to get evaluation scores | No error messages | Pass

and save them to data frame

Test Case Outcomes: Classifiers results for accuracy, precision, recall and F1-Score

Related Test: TC1, TC2

Test Case ID: TC4

Support Vector Machines

Precondition: Must have training and testing data to use as input

Test Case Steps: 2

Step No Procedure Response Pass/Fail

1 Run cell to train Support Vector | No error messages | Pass
Machines and predict labels

2 Run cell to get evaluation scores | No error messages | Pass

and save them to data frame

Test Case Outcomes: Classifiers results for accuracy, precision, recall and F1-Score

Related Test: TC1, TC2

Test Case ID: TC5

Decision Trees

Precondition: Must have training and testing data to use as input

Test Case Steps: 2

Step No Procedure Response Pass/Fail
1 Run cell to train Decision Tree No error messages | Pass

and predict labels
2 Run cell to get evaluation scores | No error messages | Pass

and save them to data frame

Test Case Outcomes: Classifiers results for accuracy, precision, recall and F1-Score

Related Test: TC1, TC2

Test Case ID: TC6

K Nearest Neighbor

Precondition: Must have training and testing data to use as input
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Test Case Steps:

Step No Procedure Response Pass/Fail

1 Run cell to train K Nearest No error messages | Pass
Neighbor and predict labels

2 Run cell to get evaluation scores | No error messages | Pass

and save them to data frame

Test Case Outcomes: Classifiers results for accuracy, precision, recall and F1-Score

Related Test: TC1, TC2

Test Case ID: TC7

Random Forest

Precondition: Must have training and testing data to use as input

Test Case Steps: 2

Step No Procedure Response Pass/Fail
1 Run cell to train Random Forest | No error messages | Pass

and predict labels
2 Run cell to get evaluation scores | No error messages | Pass

and save them to data frame

Test Case Outcomes: Classifiers results for accuracy, precision, recall and F1-Score

Related Test: TC1, TC2

Test Case ID: TCS8

Neural Networks

Precondition: Must have training and testing data to use as input

Test Case Steps: 2

Step No Procedure Response Pass/Fail

1 Run cell to train Neural No error messages | Pass
Network and predict labels

2 Run cell to get evaluation scores | No error messages | Pass

and save them to data frame

Test Case Outcomes: Classifiers results for accuracy, precision, recall and F1-Score

Related Test: TC1, TC2

Test Case ID: TC9

Calculate and visualise results
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Precondition: All machine learning algorithms were run successfully for every species

and grid cell size along with evaluation metric results saved

Test Case Steps: 7

Step No Procedure Response Pass/Fail

1 Run cell to read in data frame | No error messages | Pass

for 11 species

2 Run cell to merge data frames | No error messages | Pass

3 Run cell to calculate mean No error messages | Pass
score for each classifier and

metric

4 Run cell to create graph of No error messages | Pass

accuracy for all classifiers

5 Run cell to create graph of No error messages | Pass

precision for all classifiers

6 Run cell to create graph of No error messages | Pass

recall for all classifiers

7 Run cell to create graph of f1- | No error messages | Pass

score for all classifiers

Test Case Outcomes: Tables and graphs comparing results to use in report

Related Test: TC1, TC2, TC3, TC4, TC5, TC6, TC7 and TC8

Test Case ID: TC10 | Environmental Feature importance

Precondition: Must have pre-processed data

Test Case Steps: 5

Step No Procedure Response Pass/Fail

1 Run cells to split data frame No error messages | Pass
using specific columns and
train-test Random Forest

Classifier

2 Run cells to get evaluation No error messages | Pass
scores and save them to data

frame

56




3 Run cell to read in data frame | No error messages | Pass

for 11 species

4 Run cell to merge data frames | No error messages | Pass

5 Run cell to calculate mean No error messages | Pass
metric score for each

environmental features used

Test Case Outcomes: Environmental Features results for accuracy, precision, recall

and F1-Score

Related Test: TC1, TC2

Chapter 5: Results and Evaluation

5.1. Classification Models Performance

Successful implementation of the machine learning classifiers allowed for a critical
evaluation of the models’ performance. The goal for the algorithms was to successfully
predict the presence or absence of a given species. Thus, the evaluation metrics results
are compared between the classifiers. Using the main classification metrics for
evaluating the results of a classifier. Therefore the comparison tables consist of the
classifiers name, Accuracy, Precision, Recall and F1-Score. In addition, to comparing the
classifiers performance, the effect of different granularity grid cell sizes will also be
compared. The tables below show the models’ evaluation for 10km, 20km, and 30km.
These are a mean of all 11 species. Every species’ individual evaluation can be found in

the appendix figures 1,2+3.

Classifier Accuracy Precision Recall F1-Score
0 Naive Bayes 75.090809 70.000000 93.909091 79.090909
1 SVC 86.272727 93.818182 88.636364 91.000000

Decision Tree 82.363636 88.545455 87.909091 88.090909
K Nearest Neighbor 86.363636 93.090909 88.818182 90.727273

Random Forest 87.000000 93.363636 89.363636 91.181818

o A WN

Neural Network 86.181818 91.545455 89.818182 90.545455

Figure 77: 30km Classifier Results
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Classifier Accuracy

Precision

Recall

F1-Score

5.1.1. Accuracy

Accuracy refers to the total number of correct predictions divided by the number of

Naive Bayes 70.272727

SVC 81.454545

Decision Tree 79.181818

Nearest Neighbor 82.727273

Random Forest 83.909091

Neural Network 83.454545

63.818182
90.363636
84.818182
89.000000
91.000000
88.909091

88.636364
83.636364
84.272727
85.454545
85.818182
86.545455

Figure 78: 20km Classifier Results

Classifier Accuracy

Precision

Recall

73.090909
86.545455
84.363636
87.000000
88.181818
87.545455

F1-Score

Naive Bayes 66.545455

SVC 76.818182

Decision Tree 73.636364

Nearest Neighbor 78.272727

Random Forest 79.454545

Neural Network 78.909091

65.000000
79.727273
73.363636
76.000000
78.454545
77.909091

72.000000
75.454545
72.363636
78.454545
79.363636
79.000000

Figure 79: 10km Classifier Results

65.454545
77.363636
73.090909
77.181818
78.818182
78.545455

cases. The scores for accuracy for the classifiers for each of the cell sizes used are shown

below.

Scores

40
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Accuracy

30km
20km
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Naive Bayes

Random Forest Neural Network

Decision
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Classmers

Figure 80: Bard Chart of accuracy for 10, 20, 30km for each classifier
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Analysis of the results shows that aside from Naive Bayes, they all achieved similar
results between 82 - 87 for 30 km, 79 - 84 for 20km and 73 - 80 for 10km. Random
Forest performed slightly better on all sizes, with Neural Network and K-Nearest
Neighbour a close second and third. Whilst, Naive Bayes consistently had an accuracy
score of around 10% less.

5.1.2. Precision

Precision defines true positives divided by true positives and false positives. The scores
for precision of the classifiers for each cell size is illustrated below. The results are

between 0 and 100. Where 100 indicates optimal precision.
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Figure 81: Bar Chart of Precision for 10, 20, 30km for each classifier

As you can see, Support Vector Machines, K-Nearest Neighbour, Random Forest and
Neural Network achieved a precision of larger than 91 for 30km, >88 for 20km and >76
for 10km. Indicating that these classifiers were more successful at not labelling a
‘present’ cell as ‘absent’.

5.1.3. Recall

Recall signifies the classifiers ability to predict positive samples in a dataset. The scores

for recall of the classifiers for each of the cell sizes are as demonstrated.
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Figure 82: Bar Chart of Recall for 10, 20, 30km for each classifier

Inspection shows that all classifiers in this instance are successfully predicting a
‘present’ species as ‘present’, especially Naive Bayes who outperformed the other
classifiers for 30km and 20km grid cell sizes. Therefore, all the classifiers had a low
chance of labelling the presence of a species as ‘absent’.

5.1.4. F1- Score

F1-Score is the most valuable evaluation metric used in this project to determine the
classifiers performance, it takes into account false positives and false negatives. The
value lies between 0 and 100, where 100 signifies a perfect performance. In this
scenario, the higher F1-Score indicates the majority of presences successfully predicted.

The scores for the F1 value of the classifiers for each of the cell sizes is shown below.
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Figure 83: Bar Chart of F1-Score for 10, 20, 30km for each classifier

The graph shows that all the classifiers for all grid cell sizes achieved a relatively high
F1-Score of over 65. Whilst Random Forest on all three accounts had the highest, Neural
Network was a close second for 10km and 20km, Support Vector Machine for 30km. K
Nearest Neighbor also achieved acceptable results. Leading us to believe these are the

top performing classifiers used in this project.

In conclusion, Random Forest, Neural Network, K-Nearest Neighbor and Support Vector
Machine performed consistently well given the evaluation metrics used with not much
separating the scores. Although, Random Forest came out on top, Neural Network was
expected to achieve a higher accuracy. These expectations may not have been met due
to the parameters used, and further research and experimentation may lead to
improved results. The worst performing algorithm Naive Bayes may be due to its

assumption that the features are independent of each other.

5.1.5. Grid Cell Sizes

Overall it is obvious from the results that the size of the grid cell has a direct impact on
the classifiers performance. As we can see, as the grid cell size increases, its
classification performance increases also. There can be numerous reasons behind this
correlation. These include, presuming the classifier recognises the correlation between

the Flickr data and the NBN ground truth data, there is a higher likelihood with a larger
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cell that with a known Flickr presence the classifier will also predict present. In which a

high precision would be expected. Also, as the cell size gets finer, the task of prediction

becomes increasingly harder for the classifier as there is a less likely possibility of a

ground truth record compared to when the cells are larger. Therefore for a smaller cell

the classifier must be more precise at distinguishing between environmental features

and finding links which is difficult if the correlation is more tenuous.

5.2. Environmental Features

A sub experiment of this project was to identify the importance of the environmental

features used. From section 5.1. it was clear that Random Forest was the best all-around

classifier, therefore it was used for this experiment. As a middle ground, the focus was

on a 20km grid cell size. As illustrated below, the environmental features were inputted

individually and with different combinations into the classifier. The results show the

mean for all 11 species used.

Environmental Features Accuracy Precision Recall F1-Score
0 Mean Temp 68.454545 74.272727 76.363636 75.181818
1 Mean Rainfall 67.000000 75.636364 73.636364 74.454545
2 Mean Wind 67.636364 76.181818 74.272727 75.090909
3 Emissions 69.818182 78.181818 75.454545 76.636364
4 Land Cover 75.363636 79.727273 82.090909 80.090909
5 Land Cover Sub 74.272727 80.909091 79.636364 79.727273
6 Population 71.090909 76.454545 78.000000 77.090909
7 Climate 79.545455 87.727273 82.545455 85.181818
8 Both Land Cover 75.090909 79.363636 81.909091 80.000000
9 Both Land Cover + Pop + emissions 77.818182 85.636364 81.181818 83.272727

Figure 84: Environmental Features Results

To clarify on the environmental features tested:
Mean Temp - Temperature mean for 12 months
Mean Rainfall - Rainfall mean for 12 months
Mean Wind - Windspeed mean for 12 months

Emissions - Emissions

Land Cover - Land Cover dominant aggregate class

Land Cover Sub - Land Cover dominant subclass
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Population - Human Population

Climate - Combination of Mean Temp, Mean Rainfall and Mean Wind

Both Land Cover - Combination of Land Cover aggregate class and subclass

Both Land Cover + Pop + emissions - Combination of Land Cover aggregate class and
subclass, Population and Emissions.

From analysing the results, it was found that individually the Land Cover data
performed the best, which was predicted as a species occurrence will be reliant on the
surface in which they thrive. Although, Mean temperature, Rainfall and Wind may
appear to not be as affective features by themselves, a combination of all the climate
data (Mean Temp, Mean Rainfall, Mean Wind Speed) achieved the highest accuracy and
F1-score. All the environmental features selected for use in this project achieved an
accuracy score of over 67, meaning they were sufficient features overall to use when
predicting the occurrence of a wildlife species. A combination of all of these achieved
the best performance, which has been proven from the results in section 5.1.

5.1.5. Species Environment- Further Analysis

Harvest Mouse

Harvest Mouse are found predominantly in the South of the UK in grass and arable land.
Therefore land cover should do well at predicting the presence of this species. They do
not have a high survival rate over the winter months due to the harsher climate.
Reasons for this being they are not adapted to these conditions as a whole and if the
crops they live in die it leaves them vulnerable to predators. Hence, why they are
located in the southern region where there is a warmer climate, less wind, and rain.
Given this, I predict ‘Climate’ will achieve the best results. My findings support this

hypothesis with land cover and climate being the best indicator of their presence.

Environment Accuracy Precision Recall F1-Score

0 Mean Temp 75.0 69.0 75.0 72.0
1 Mean Rainfall 66.0 67.0 63.0 65.0
2 Mean Wind 72.0 77.0 69.0 73.0
3 Emissions 73.0 70.0 720 71.0
4 Land Cover 79.0 80.0 780 79.0
5 Land Cover Sub 77.0 78.0 75.0 77.0
6 Population 72.0 68.0 71.0 70.0
7 Climate 89.0 89.0 89.0 89.0
8 Both Land Cover 78.0 80.0 76.0 78.0
9 Both Land Cover + Pop + emissions 82.0 83.0 79.0 81.0

Figure 85: Harvest Mouse Environment Features Results
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Red Grouse

Red Grouse is a medium sized bird with extra layers of downy feathers thus making
them more comfortable in colder areas which is found in the North of the UK, mainly
Scotland. They also have feathers covering their nostrils allowing for warmer air to be
breathed in. [46]. For these reasons temperature in particular should be an excellent
predictor of their presence along with a combination of climate data achieving the

optimal accuracy. As you can see below the results found support this.

Environment Accuracy Precision Recall F1-Score

0 Mean Temp 82.0 820 88.0 85.0
1 Mean Rainfall 68.0 700 76.0 73.0
2 Mean Wind 62.0 60.0 720 66.0
3 Emissions 59.0 65.0 67.0 66.0
4 Land Cover 67.0 53.0 88.0 66.0
5 Land Cover Sub 64.0 55.0 79.0 65.0
6 Population 57.0 580 67.0 62.0
7 Climate 92.0 91.0 950 93.0
8 Both Land Cover 67.0 530 88.0 66.0
9 Both Land Cover + Pop + emissions 69.0 68.0 79.0 73.0 [

Figure 86: Red Grouse Environmental Feature Results

Chapter 6: Future Works

There are numerous ways in which the project may have been developed further, which

[ would have enjoyed had I'd been given more time.

Firstly, expanding on the environmental features used in this project. Although the
datasets collected were sufficient for training the classifier, there was scope for
improvement. Several datasets would have been interesting to add to this project, such
as Terrain and Soil Type. However, these datasets were either in a format that I was
unable to use or requested payment. If I were to take this project further [ would access
these datasets and incorporate them into my work to test if there were a negative or
positive impact on the accuracy already achieved. I predict an improved effectiveness as

machine learning models benefit from larger datasets.

Secondly, comparing more grid cell sizes in particular finer granularity. It would be
interesting to see how much the accuracy decreases, the finer-grained the cell becomes.
[ would also like to do further research on why this happens. Although working

adequately for the sizes used, there is a limitation of my current proposed
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implementation as if you were to use a finer grain grid cell size it would lead to an

extensive running time, therefore this would need to be improved.

Thirdly, this project focuses on the UK, but you can expand this scope to Europe or
around the world as a whole. This could involve looking at a broader range of species.
There are environmental feature data available that covers continents and the entire
world however, | am unsure how much variety is available and whether it would come

at a cost.

Also, there is a multitude of classifiers provided by Scikit Learn and it would be of
interest to experiment with more. Although six were implemented for this project which
covers a wide range, there may have been a missed classifier that would have achieved
better results. Given more time, [ would have chosen to implement a logistic regression

algorithm.

Penultimately, while pre-processing the data for the machine learning algorithms, I
used Scikit-Learn train-test split. In brief, this splits the data according to the given
ratio. This is a common method used, nevertheless, it introduces bias as the model is
trained on the data set aside for training which may not be as representative as
possible, meaning if you were to rerun the split and the classifier again you may receive
different results. To optimise on this in the future, there are a few cross-validation
methods also provided by Scikit-Learn that can be used. These include KFold and
StratifiedKfold. In this instance, it would split the dataset into K folds, each of the folds

are used for validation while K-1 folds is utilised as the training set. [34].

Finally, for this project there was not much Flickr data available for the species selected.
In future projects instead of using exclusively Flickr I would incorporate other
platforms such as Twitter and Instagram. This would give me a larger and more
representative dataset to use, thus leading to improved accuracy of the machine

learning models.

Chapter 7: Conclusion

In conclusion, this project aims to investigate the use of machine learning classifiers
along with environmental features and social media for species distribution. I also
wanted to experiment into the importance of these features and investigate varying

combinations to test their effectiveness. Fortunately, all the requirements set in my
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initial report were met and achieved including desirable aims which were optional if
time allowed. These included implementing a deep learning algorithm and comparing

three grid cell sizes.

A key discovery from this project is the precedence of finding the most effective features
that can aid the prediction of the presence of a species. Data collected for this project
was extracted from a number of sources including a social media platform Flickr,
National Biodiversity Network Atlas, Digimap etc. A variety of species were used to
allow for a diverse range of results providing a more complete overview of how well the

classifiers performed.

A multitude of tests were performed on six different classifiers to evaluate their
performances and determine the most effective model. Five of these are machine
learning algorithms along with one deep learning model. I implemented Naive Bayes,
Random Forest, Decision Trees, K Nearest Neighbor, Support Vector Machine and
Neural Network. The evaluation metrics used include accuracy, precision, recall and F1-

Score to evaluate and compare their performance.

As you can see from the results portion of the report, the results achieved were
respectable for all classifiers. They also followed the predicted pattern of their accuracy
growing as granularity increased. For 10km, the mean of their F1-Scores ranges from 65
to 79. For 20km, the mean of their F1-Scores ranges from 73 to 88 and for 30km the
mean of their F1-Scores range from 79 to 91. In comparison, Naive Bayes’ performance
was just below the other classifiers, whereas Random Forest performed the best with
Neural Network a close second. For environmental features, it was clear that land cover
data was the best individually for predicting the occurrence of a species whereas a

combination of all the climate data together seen the best results.

However, there are multiple other algorithms that need be implemented and tested to
ensure Random Forest fares the best along with environmental features that may be

deemed more successful.

Chapter 8: Reflection on Learning

From completing this project, | have come to the realisation that there was no
comparison between this and other university projects, as this project has required

consistent amounts of concentration and hard work. From start to finish, [ have
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encountered many challenges in which to overcome. For example, due to Machine
Learning being a topic I was unfamiliar with prior to taking on this project and the short
time frame given to complete. Nevertheless, this just enhanced my learning experience
and expanded my knowledge on machine learning algorithms, python libraries, pre-

processing data and evaluation methods.

As mentioned previously, I split the project into iterations which involved collecting the
data, pre-processing the data, implementing the classifier algorithms and comparing
performances. However, I was concerned I spent too much time collecting the data as It
was difficult to locate, and my Flickr API was only retrieving one page of data at a time
and then repeating itself for a while, which led to me being unsure halfway through the
semester whether [ would have enough time to complete the project to the specification
[ had mentioned in my initial plan. Therefore, by improving my time management skills
[ organised myself to not just meet the requirements I set, but also my desirables set in
the initial report. A crucial error on my behalf was not writing the report alongside the
implementation process whilst my project was progressing. This meant I had to go back
over things to refresh my memory which wasted precious time that would have been

better spent making improvements.

Improvements [ would have made are as follows. The species used in this project were
selected from the UK Biodiversity Action Plan (BAP). However, looking back these
species didn’t have much data available on Flickr. Also, as mentioned previously the use
of train-test split introduces bias. If I had prior machine learning knowledge, [ wouldn’t
have used this method and implemented an alternative. Although there is room for
enhancing the accuracy of the models, [ am not disappointed with my results and

believe they are more than adequate.

Looking back, I thoroughly enjoyed completing this project as I believe it to have
valuable real world applications looking at environmental features and their impact on
species occurrence along with the use of social media involving setting up my first API.
Prior to starting Cardiff University 4 years ago [ had no knowledge of coding or how I
would embrace a project such as this, so I am pleased to see how [ have developed my

skills over the years and the achievements I have made this far.
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Figure 1- 30km Species Results

Appendix

Great

Grass Harvest Tundra Pole Red Willow Yellow
Classifier Metrics Adder Snake CreNs‘:ﬁ Mouse Hawfinch Swan Cat Grouse Twite Tit Wagtail

Naive
0 Baves Accuracy 890 710 70.0 73.0 640 790 740 810 840 710 700
1 Nave b 99.0 5.0 6.0 60.0 70 690 790 790 930 580 650
Bayes recision K 55. 56. K 57. B A . . 58. 5.

Naive
2 genwe  Recal 900 940 100.0 91.0 950 980 880 950 900 940 980
g Nave g 940 690 72.0 73.0 71.0 810 830 860 91.0 720 780
Bayes -oCcore o a A A . a A . . A .
0 SVM Accuracy 890  91.0 84.0 91.0 750 870 810 87.0 910 880 850
1 SVM Precision 960  96.0 89.0 89.0 900 930 1000 870 1000 930  99.0
2 SVM  Recall 920  89.0 89.0 96.0 810 870 810 950 910 880 860
3 SVM Fi-Score 940  93.0 89.0 92,0 850 900 890 910 950 910 920
o DeoSON accuracy 810 850 81.0 88.0 790 820 710 930 820 830  81.0
1 DS precision 860 960 92,0 87.0 840 910 760 940 860 910  91.0
2 DeOSON  Recal 920 820 83.0 92,0 880 830 860 97.0 930 840  87.0
3 Dec"#‘?re'ef Fi-Score  89.0  89.0 87.0 89.0 86.0 870 810 950 900 87.0 890
0 KNN Accuracy 850  87.0 87.0 92,0 790 810 830 900 910 880  87.0
1 KNN Precision 910  96.0 92.0 92.0 890 900 960 880 1000 930  97.0
2 KNN  Recall 920 840 89.0 94.0 850 830 850 980 910 880 880
3 KNN Fi-Score 920  89.0 90.0 93.0 870 860 900 930 950 910 920
0 RF Accuracy 840  87.0 87.0 90.0 820 840 830 920 910 890 880
1 RF Precision 920  94.0 97.0 91.0 910 900 920 930 990 910  97.0
2 RF  Recal 900  85.0 86.0 92.0 860  87.0 880 97.0 920 910 890
3 RF Fi-Score 910  89.0 91.0 91.0 800 880 900 950 950 910 930
0 MLP Accuracy 830  87.0 88.0 88.0 830 840 840 890 850 880 890
1 MLP Precision 880 920 92,0 87.0 930 950 920 900 910 910 960
2 MLP  Recall 930 860 90.0 92.0 870 830 890 950 920 900  91.0
3 MLP Fi-Score 900  89.0 91.0 89.0 900 890 900 920 920 900 940
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Figure 2 - 20km Species Results

Great

Grass Harvest Tundra Pole Red Willow  Yellow
Classifier Metrics Adder Snake CreNséﬁ Mouse Hawfinch Swan Cat Grouse Twite Tit Wagtail
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0 fuvee Accurmcy 770 700 75.0 78.0 70.0 710 640 780 620 690 590
Naive -
1 Qe Precsion 950 490 61.0 73.0 62.0 500 690 760 610 560 500
2 Naive  pocall  80.0 87.0 99.0 85.0 95.0 930 780 840 840 960  94.0
Bayes ecal i | ! i i A i | g i J
Naive
3 payee FlScoe 870 630 76.0 79.0 750 650 730 800 710 700 650
0 SVM Accuracy 810  86.0 80.0 86.0 760 800 700 910 760 850 850
1 SVM Precision 1000  87.0 84.0 84.0 900 870 820 920 1000 950 930
2 SVM  Recal 810  87.0 84.0 92,0 790 790 770 920 760 840 890
3 SVM Fi-Score 890  87.0 84.0 87.0 840 830 790 920 870 890  91.0
0 Dec‘?“?mg Accuracy 740 790 780 89.0 71.0 780 680 890 750 870 830
| D"Ci‘?r‘;g Precision 810  80.0 79.0 88.0 83.0 850 760 950 880 910  87.0
2 DeOSION  Recal 860 800 85.0 92,0 79.0 770 790 870 810 900  91.0
3 DeoSOn Fiscoe 830 800 82.0 90.0 810  81.0 770 910 840 900 890
0 KNN Accuracy 840 830 83.0 84.0 790 8.0 700 910 81.0 87.0  87.0
1 KNN Precision 97.0  89.0 84.0 84.0 890 900 790 880 930 930 930
2 KNN  Recal 850 800 89.0 88.0 84.0 780 790 960 830 880  90.0
3 KNN Fi-Score 910 840 86.0 86.0 860 830 790 920 880 900 920
0 RF Accuracy 840  87.0 85.0 87.0 770 810 750 920 780 890 880
1 RF Precision 960  90.0 87.0 85.0 870 920 870 930 950 950 940
2 RF  Recal 860 860 89.0 92,0 82.0 770 790 930 800 890  91.0
3 RF Fi-Score 910 880 88.0 88.0 840 B840 830 930 870 920 920
0 MLP Accuracy 860 830 86.0 84.0 790 820 690 930 840 860 860
1 MLP Precision 960  89.0 85.0 83.0 900 890 780 940 930 890 920
2 MLP  Recal 880 800 92.0 89.0 830 800 79.0 940 870 900 900
3 MLP Fi-Score 920  84.0 88.0 86.0 860 840 780 940 900 900 910
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Figure 3- 10km Species Results

Great

Grass Harvest Tundra Pole  Red Willow  Yellow
Classifier Metrics Adder Snake CreNs‘:ﬁ Mouse Hawfinch Swan Cat Grouse Twite Tit Wagtail
0 Nalve .. 59.0 71.0 73.0 76.0 71.0 700 580 620 61.0 690 620

Bayes ACCuracy i d i i J ] i ] d i !

Naive cen

1 paves Precision 740 550 56.0 76.0 690 310 780 930 790 580  46.0
2 Nave  poal 640 780 88.0 65.0 720 700 530 540 620 880 980
3 Nave . o 69.0  64.0 68.0 70.0 710 430 630 690 700 700 630

Bayes ' 1-Score i . . . i X . X i ; 1
0 SVM Accuracy 610  85.0 81.0 82.0 720 740 640 890 750 810  81.0
1 SVM Precision 840 850 81.0 79.0 74.0 720 660 880 760 860  86.0
2 SVM  Recal 640 830 82.0 73.0 700 630 590 880 780 840  86.0
3 SVM Fi-Score 720 840 81.0 76.0 720 670 630 880 770 850  86.0
o DS accuracy 640 810 770 75.0 650 660 640 B850 690 840  80.0
1 Decﬁi‘?re;‘ Precision 710 80.0 80.0 65.0 700 470 600 850 740 910 840
2 De"ﬁ"?m'ef Recal 700 800 76.0 66.0 64.0 540 600 820 720 850  87.0
3 DeOSON Fiscore 710 800 78.0 66.0 670 510 600 840 730 880  86.0
0 KNN Accuracy 650  86.0 84.0 82.0 720 730 670 890 750 840 840
1 KNN Precision 720  86.0 84.0 74.0 690 540 600 870 750 890  86.0
2 KNN  Recall 710 850 84.0 75.0 730 660 640 890 800 860  90.0
3 KNN Fi-Score 720 850 84.0 75.0 710 600 620 880 770 870 880
0 RF Accuracy 670  87.0 84.0 83.0 730 750 690 890 760 870 840
1 RF Precision 770  85.0 83.0 78.0 740 580 620 860 790 930 880
2 RF  Recal 720  87.0 85.0 76.0 730 700 670 880 790 870  89.0
3 RF Fi-Score 740  86.0 84.0 77.0 730 630 650 870 790 900  89.0
0 MLP Accuracy 660  86.0 82.0 83.0 720 750 690 910 750 840  85.0
1 MLP Precision 730  86.0 81.0 79.0 720 620 630 890 760 890  87.0
2 MLP  Recall 720 850 84.0 76.0 720 670 670 900 790 860  91.0
3 MLP Fi-Score 730  86.0 83.0 770 720 640 650 890 780 880  89.0
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