
Can Music Make You Run Faster?

Rhys Mathew Douglas

BSc Computer Science (With a Year in Industry)

CM3203 – Final Report

Supervisor: Dr Martin Chorley

Moderator: Surya Thottam Valappil

School of Computer Science and Informatics

Cardiff University

Module number: CM3203

Module title: One Semester Individual Project

Credits due for this module: 40

28 May 2021

Can Music Make You Run Faster?

1739325 1

Abstract
No matter who you are in the world, or what sport you partake in, you are always looking to

improve your performance to become the best version of yourself. In running, this often

comes down to personal determination to persevere and run faster and further than you had

before.

A lot of runners believe music is the key to continued success – and with a rise in smartphone

apps to track activities and listen to music, it is now easier than ever to measure your

performance over a large period and watch your abilities flourish. This project aimed to

supplement that growth, by producing a web user interface that allows users to connect their

running activities from some of the most popular apps, including Strava and Fitbit, and sync

those activities with their music history from services such as Spotify and Last.FM. Inferences

can then be made from said apps, and ultimately the project is able to produce a list of songs

that truly make the runner exercise at their best.

This report follows the development process of this project, from understanding basic

concepts of BDD-TDD to the finer details of determining what songs make a user run faster.

Backed by rigorous testing, this report is then rounded off with an overall evaluation of how

effective the project is against its original aims, ultimately answering the questioŶ of ͞CaŶ
MusiĐ Make You ‘uŶ Fasteƌ?͟.

Can Music Make You Run Faster?

1739325 2

Acknowledgements
Firstly, the biggest thank you goes out to my family and friends; it has been a tough year for

us all, and your support has helped me get this project completed successfully.

Many thanks to Dr M J Chorley for supervising this project, providing excellent support and

feedback throughout the course of this project, and suggesting the idea for it. His enthusiasm

and reinforcement in belief helped keep this project on schedule and enabled me to get the

project fully completed.

Can Music Make You Run Faster?

1739325 3

Table of Contents

1 Introduction .. 5

1.1 Motivation ... 5

1.2 Assumptions .. 5

1.3 Beneficiaries .. 5

1.4 Project Aims and Objectives ... 6

1.5 Scope of project .. 6

1.6 Approach ... 7

1.7 Summary of outcomes .. 7

2 Background ... 8

2.1 Wider problem context ... 8

2.2 Identified problem and stakeholders .. 9

2.3 Associated theory ... 9

2.4 Existing solutions... 10

2.4.1 Closest existing solutions .. 10

2.4.2 Automatic Tempo-matchers ... 10

2.4.3 Manual tempo-matchers .. 11

2.4.4 Other running apps ... 11

2.4.5 Music providers ... 11

2.4.6 Conclusions ... 12

2.5 Methods and tools used ... 12

2.6 Constraints on solution ... 13

2.7 Research questions ... 14

3 Specification and Design ... 15

3.1 Specification and approach to problem .. 15

3.1.1 Core requirements and constraints .. 15

3.2 Business Requirements ... 15

3.3 Solution Architecture .. 17

3.3.1 High level architecture and flow of data ... 17

3.3.2 High level testing architecture .. 18

3.3.3 UML Activity Diagram ... 19

3.3.4 Example data flow using Strava. ... 20

3.3.5 Module Partitioning .. 20

Can Music Make You Run Faster?

1739325 4

3.4 Web front-end user interface ... 21

3.5 What songs make me run faster? ... 22

4 Implementation .. 23

4.1 Agile development process ... 23

4.2 BDD and TDD ... 25

4.2.1 Fakes and mocks ... 25

4.3 User authentication .. 26

4.4 Unforeseen problems ... 26

4.4.1 Mobile frontend .. 26

4.4.2 Automated code style checking .. 27

4.4.3 Spotify limitations ... 28

4.4.4 Ethical approval ... 28

4.4.5 Fitbit limitations .. 29

5 Results and evaluation .. 30

5.1 UAT results .. 31

5.2 BDD and TDD automated testing .. 36

5.3 Evaluation from UAT, BDD and TDD ... 37

5.3.1 UAT .. 37

5.3.2 Limitations on UAT .. 39

5.3.3 BDD and TDD ... 39

5.3.4 General project evaluation ... 40

5.4 Future tests required .. 41

5.5 Summary and critical appraisal of approach .. 41

6 Future work ... 43

7 Conclusions ... 45

8 Reflection on learning ... 47

9 Table of Abbreviations .. 49

10 Appendices .. 50

11 References .. 58

Can Music Make You Run Faster?

1739325 5

1 INTRODUCTION

1.1 MOTIVATION

After running for a few times, runners may begin to question whether the music they listen

to (or choose not to listen to) has any impact on their running. This ͞iŵpaĐt͟ Đould ďe iŶ the
form of anything; average cadence, heart rate and average speed to name a few potential

impacts. This project therefore aimed to answer the question: Can Music Make You Run

Faster?

This project is particularly interesting because it is a topic that has had little investigation;

most people assume that music does have an impact on their running ability, but it is unclear

to what extent the impact listening to music whilst running has. This opens an avenue to more

questions that could be asked; do different genres of music affect runners in different ways?

What is the effect of listening to music with a high or low BPM?

1.2 ASSUMPTIONS

This project is therefore based on the assumption that music does have some impact on a

runŶeƌ͛s aďilitǇ to peƌfoƌŵ duƌiŶg eǆeƌĐise. In 2014, it was shown from a study that when a

gƌoup of Đollege studeŶts listeŶed to ŵusiĐ ǁhilst ƌuŶŶiŶg ͞theiƌ ƌuŶŶiŶg performance

iŵpƌoǀed ĐolleĐtiǀelǇ͟ (Bonette et al. 2014). Other scientists have also stated that music has

a positive impact on pace, where Jasmin Hutchinson, PhD stated that ͞MatĐhiŶg Ǉouƌ stƌide
to a particular ďeat ĐaŶ help Ǉou ďetteƌ ƌegulate Ǉouƌ paĐe͟ ;‘uŶŶeƌ͛s ǁorld, 2018). Without

this assumption in place, the project would not have any grounding.

This project also assumes that runners are likened to utilise mobile apps whilst they run,

primarily activity-tracking apps like Strava, and music streaming apps like Spotify. Different

avenues exist to track activities and listen to music, but in a world more and more orientated

around smartphones, this project assumes that runners exclusively log their runs and listen

to music using their mobile phone.

1.3 BENEFICIARIES

As this project is orientated around the iŵpaĐts of ŵusiĐ oŶ a ƌuŶŶeƌ͛s peƌfoƌŵaŶĐe, this
project is intended to be used primarily by runners who wish to investigate the impact of

music on their running performance. It is hoped that these runners can then benefit from the

insights generated from this project to better tailor their music choices whilst they run to

maximise their performance.

Can Music Make You Run Faster?

1739325 6

1.4 PROJECT AIMS AND OBJECTIVES

The aims of this project were to create a mobile application that allows a user to determine

whether music made them run faster. As such, the following aims were set:

1. To create a mobile application for Android, integrating at least 1 running application

and 1 music application.

2. To Đƌeate the ŶeĐessaƌǇ logiĐ ƌeƋuiƌed to eŶaďle a ĐoŵpaƌisoŶ ďetǁeeŶ the useƌ͛s
running activities and their listening history, comparing metrics such as pace and

average cadence to the music they were listening to.

3. To create a user-centred, clean user interface that is fit for purpose and encourages

ease of use.

To supplement the aims above, secondary aims were also set for this project:

1. To create a secure login system, complimented with back-end database to store user

information.

2. To extend the logic comparing music and running activity data, enabling the user to

view various impacts and music on their activity.

3. To extend the functionality to suggest other songs that may be used to increase a

useƌ͛s ƌuŶŶiŶg aǀeƌage paĐe.

To achieve all of the project aims, objectives were also created to ensure that the project was

delivered on time:

1. Investigate the extent of data aǀailaďle fƌoŵ ŵusiĐ aŶd ƌuŶŶiŶg souƌĐes͛ ƌespeĐtiǀe
public APIs.

2. Create a mobile application using the Xamarin framework, that will enable the

creation of both iOS and Android mobile applications.

3. Employ Test Driven Development and Behaviour Driven Development to ensure the

creation of a well-tested, robust mobile application.

4. Create an intuitive and functional user interface.

a. Log in screens to enable connectivity between the Xamarin application and the

useƌ͛s ƌuŶŶiŶg oƌ ŵusic application.

b. Activity screens that enable a user to view their running history over a period,

view what music they were listening to and the effect it had on their activity

and health metrics.

c. ͚IŶsights͛ sĐƌeeŶs that eŶaďle the useƌ to ǀieǁ ǁhat ŵusiĐ ŵade them run

faster.

1.5 SCOPE OF PROJECT

The scope of this project therefore was to create a mobile application, capable of producing

͞iŶsights͟ that alloǁed a ƌuŶŶeƌ to deteƌŵiŶe the iŵpaĐts of listeŶiŶg to ŵusiĐ ǁith theiƌ
running history. The project began with the development of an Android application, but it

later iterations it was also made to support iOS devices, should the progress of the project be

ahead of schedule.

Can Music Make You Run Faster?

1739325 7

1.6 APPROACH

As the author has experience as a full stack software engineer throughout his year in industry

placement, this project mimicked a SCRUM project; using an agile methodology, features

were incrementally added to the solution, produced as close to end-to-end as possible. This

gave the project versatility to adjust its scope where necessary, and to create sprints which

could be adjusted perfectly to meet the authoƌ͛s capabilities as the software developer in this

project.

As such, the project began as a versatile backend adaptable to support multiple user

interfaces, including mobile applications and web applications. ͞“toƌies͟ were first refined

into Gherkin (Gherkin,2019), before being implemented using BDD, with TDD to incrementally

further the story to completion. To support BDD and TDD, fakes are prominently used,

iŶĐludiŶg the ͞fakiŶg͟ of eǆteƌŶal services, such as Spotify and Strava to ensure testing can

take place as much as possible.

1.7 SUMMARY OF OUTCOMES

The primary outcome of this project is to create a mobile-usable application, which will enable

runners to connect their running and music listening services and be able to view insights

based on the services they connect with. In turn, this would hopefully be used by said runners

to better tailor the music they listen to, to further their performance whilst running.

Can Music Make You Run Faster?

1739325 8

2 BACKGROUND

This chapter aims to provide a detailed explanation of background topics that are necessary

to understand this report. This will begin by explaining the wider problem context, before

identifying the problem and its stakeholders. From this, similar and existing solutions are

explored, before discussing what elements of those solutions will be incorporated. Finally,

the remainder of this chapter will explore what methods and tools are used in the solution,

as well as the constraints that are in place.

2.1 WIDER PROBLEM CONTEXT

Running and activity tracking apps are widely used across all sports, with huge use from

professionals and amateurs alike. These tracking apps often support the measuring of

multiple metrics, including average pace, cadence, heart rate, aerobic and anaerobic effects,

stride length and calories burned to name a few. The source of these metrics does not come

from the activity tracking apps themselves – runners often utilise smart watches, heart rate

bands and other wearable technology to improve the accuracy of the metrics gathered during

their activities.

If the runner does not have access to this degree of wearable tech, mobile phones are

increasingly improving their ability to measure health metrics, but this is often limited to steps

taken during an activity, average pace and calories burned, of which can be sometimes

inaccurate, and mostly relies upon other, unrelated current activity metrics such as height,

weight, gender, and age (Apple, 2020). Despite this, mobile phones and smart watches are

increasingly becoming more accurate, with some studies showing only minor disparities

between calculated calories burned and actual calories burned.

These metrics proved useful for this application, as the activity tracking apps that hold this

personal information can be accessed with public-facing web APIs. This means that, providing

users grant authorization rights for the application to get their data, these health metrics can

be used to help analyse the impacts of music on the useƌ͛s ƌuŶŶiŶg aĐtiǀities.

Music and music streaming apps are also widely used for multiple purposes, one of which is

for listening to music whilst running. The days of Sony Walkman and iPods has ended, and

now most of the music streaming now takes place on smartphones, with 32% of the music

streaming market being occupied by Spotify (Mulligan, 2020). Similar to the previously

mentioned activity tracking services, these music streaming providers also provide a publicly

facing web API, allowing developers to view an individual useƌ͛s listening history, including

song metadata and the time the song was played.

Combined, these two different web APIs can be used by an application to allow mapping

ďetǁeeŶ a useƌ͛s ƌeĐoƌded eǆeƌĐises oŶ “tƌaǀa aŶd Fitďit, as ǁell as their listening history from

providers such as Spotify and Last.FM. Consequently, inferences can be made by using the

metrics of the recorded exercises (such as average pace) which can lead to further inferences,

such as determining what songs made the user run faster.

Can Music Make You Run Faster?

1739325 9

2.2 IDENTIFIED PROBLEM AND STAKEHOLDERS

Based on the wider problem context, the identified problem is to create an application that

allows a user to connect to their running and music phone services (Spotify, Strava etc.), and

identify what music will make them run faster.

As this problem encompasses a multitude of external providers and technologies, there are

several key stakeholders that have been identified:

• Runners / users, who will use the application to infer what music made them run

faster.

• Public API providers, who provide the music and running data recorded by the runners

using the application.

Runners are a key stakeholder, as they are the core users of this application. Not only will they

benefit from viewing the insights generated by the application, but it will also be their own

personal health data and private music listening history being used by the application to

determine what songs made them run faster. As such, runners / users have a nested interest

to ensure that their data is used responsibly; it is only used for its purpose, and it is not stored

for longer than it is required. In accordance with this, the solution to this problem must

ĐoŵplǇ ǁith the useƌ͛s ƌight to pƌiǀaĐǇ aŶd ǁill only retain personal data for as long as its

required.

PuďliĐ API pƌoǀideƌs oƌ ͞data souƌĐes͟ also haǀe a stake iŶ this problem as the data to solve

said problem will come from these public API providers. As data controllers, they have a

responsibility to ensure that the data they collect is stored and used correctly – extending to

how their public APIs are used by applications. This means that the solution to this problem

ŵust ĐoŵplǇ ǁith the data souƌĐes͛ iŶdiǀidual ƌeƋuiƌeŵeŶts foƌ usiŶg their public APIs, where

some requirements could involve using a specific design of login button or limiting the lifetime

of transferred data when it has been requested from said public API.

2.3 ASSOCIATED THEORY

In order to establish what songs made a user run faster, the logic for determining said songs

should be understood. At this point in the flow of the program, songs have already been

mapped to each activity, regardless of what service it originated from (e.g., it is possible to

have a Strava activity with Last.FM music and Spotify tracks linked to it).

The application can then infer what songs made the user run faster by comparing activities to

one another and the metrics within said activities, such as pace and cadence. Using these

metrics, the songs that can be determined to make a user run faster can be established by

getting the activity with the fastest pace, or an activity with a cadence that best matches the

ideal value of 170 or above (Lobby, 2013). The aĐtiǀitǇ ǁith the ͞ďest ŵetƌiĐs͟ ĐaŶ theŶ ďe
used as the activity most ideal for improving, and as such the songs / tracks that are mapped

to said activity can be returned as the songs that made the user run faster.

This could then be extended further, depending on what services are used. For example,

Strava offers the ability to view ͞segŵeŶts͟ (Strava, 2020). Segments could prove useful for

Can Music Make You Run Faster?

1739325 10

this application, as in-detail inferences on what songs made a user run faster could be broken

doǁŶ to speĐifiĐ paƌts of a useƌ͛s ƌuŶ. In turn, this provides a more useful application for users

as the accuracy of determining what songs made a user run faster can be improved.

2.4 EXISTING SOLUTIONS

From research conducted, there is no current existing solution that perfectly matches the

problem space, of providing analysis of what songs made a user run faster after they have

finished their running activity.

2.4.1 Closest existing solutions

Currently, there is only one existing solution that almost solves the problem stated.

PUMATRAC is a standalone running application that provides detailed insights based on a

useƌ͛s ƌuŶŶiŶg aĐtiǀitǇ, iŶĐludiŶg the ͞gƌadiŶg͟ of ƌuŶs to describe its quality. PUMATRAC also

geŶeƌates peƌsoŶalized iŶsights ďased oŶ a useƌ͛s ƌuŶŶiŶg ďehaǀiouƌ, ŶotiŶg the specifically

the genre that makes the user run faster (Corpuz, 2021).

Other insights are also produced, such as the effects of weather and the time of day

(Johnson,2013), proving that this app provides excellent functionality and almost solves the

problem identified. This app could partially solve the problem if the user listened to a diverse

range of music, because the user could identify easily what songs belong to said genre they

were listening to. However, it cannot be assumed that every user will listen to a multitude of

genres, and consequently would make it difficult for a user to determine what songs made

them run faster.

2.4.2 Automatic Tempo-matchers

The closest examples of existing solutions are tempo-matchers, that offer automatic changing

of music based on your cadence and pace as you run. Examples of this type of solution has

been provided below.

For a time, Spotify offered a service known as Spotify Running. This feature was designed as

part of the Spotify application, and usiŶg Ǉouƌ phoŶe͛s aĐĐeleƌoŵeteƌ aŶd gǇƌosĐope, Spotify

automatically adjusted the songs you were listening to, in order to match your tempo

(Zamorski, 2018). The feature also allowed users to change the tempo manually using the

main screen. Support for this feature ended on 09/02/2018 (Spotify,2018), but many

standalone versions of the same concept also exist, including DrawRun, Tempo Run Nike+ Run

(Zamorski, 2018), and RockMyRun.

Runkeeper also previously allowed a user to sync their music to the app, and then assess the

songs for music and tempo. Ergo, you could then select the genre and tempo of the music

you want to listen to whilst running (Independence Blue Cross, 2017). Runkeeper and Spotify

also produced functionality for the Runkeeper app (Runkeeper,2016), whereby the Spotify

Running features and Runkeeper features were able to work seamlessly together, but this

was discontinued with removal of Spotify Running.

Other competitors in this space, such as the previously mentioned Nike+ Run App, offers a

function called Power Song, allowing users to giǀe theŵselǀes aŶ eǆtƌa ͞ďoost͟ ďǇ plaǇiŶg a

Can Music Make You Run Faster?

1739325 11

specific set of songs when the user wants to, in order to boost their performance (Alger,

2021).

These tempo-matchers partly solve the problem identified, because they will always push the

user to run at their best by playing music to match their current tempo. The user could then

arguably remember what songs were playing when they were running at their peak and use

that as their list of songs that make them run faster. However, these tempo-matchers lack the

scope to display what songs made them run faster, or in the case of Nike+, it assumes that

the user already knows that songs will make them run faster before they exercise.

2.4.3 Manual tempo-matchers

To supplement automatic tempo-matchers, there are also different versions of the

aforementioned applications, such as TrailMixPro. Instead of playing a pre-set platform

generated playlist, TrailMixPro allows the user to choose some music from iTunes, and then

adjusts the soŶgs plaǇiŶg usiŶg the useƌ͛s teŵpo and the playlist they added previously. The

appliĐatioŶ also suppoƌts a ͞ŵagiĐ shuffle͟ featuƌe that uses ŵusiĐ iŶ the useƌ͛s liďƌaƌǇ to
ŵatĐh the useƌ͛s ĐuƌƌeŶt teŵpo (Pickett, 2016).

Manual tempo-matchers do not solve the problem specified, but they benefit from the choice

of usiŶg the useƌ͛s oǁŶ ŵusiĐ to match tempo. The user could then infer that the music

playing when they were running fastest is music that makes them run faster, ergo the user

can see what songs made them run faster.

2.4.4 Other running apps

There are also some running apps that provide audio coaching, or pre-set playlists. Weight

Loss Running (Corpuz, 2021) provides audio coaching and pre-set playlists for users to listen

to as they run. There is no correlation between the useƌ͛s teŵpo, oƌ ǁhat the useƌ pƌefeƌs,
but as pre-set mixes they should have some basis to prove that they have a positive effect on

a useƌ͛s ƌuŶŶiŶg aĐtiǀitǇ.

There are many other apps that also provide the same functionality, such as Couch-To-5K and

RunCoach to name a few, but they do not differ much if at all to the functionality provided by

Weight Loss Running.

2.4.5 Music providers

Whilst these music providers may not directly solve the problem, music providers are key for

the functionality of the planned application. One such music provider is Spotify, who in 2020

had a market share of 32% of the global streaming market (Mulligan, 2020). Spotify provides

music streaming on desktop and mobile, including iOS, Android, Mac, and Windows. As

previously mentioned in the ͞Automatic tempo-matchers͟ section, Spotify did also offer

tempo-matching for a while, but that service has now been retired, prompting other market

forces to employ the functionality. Spotify also features a public API allowing applications to

ƋueƌǇ useƌ͛s ƌeĐeŶtlǇ plaǇed tƌaĐks, ďut this oŶlǇ offeƌs the ϱϬ ŵost ƌeĐeŶtlǇ plaǇed soŶgs.

Another music provider is Last.FM, providing a service like Spotify, but acting instead as a

middleman; Last.FM streams music from YouTube rather than streaming music from itself.

Can Music Make You Run Faster?

1739325 12

AĐĐoƌdiŶglǇ, Last.FM offeƌs iŶsights ďased oŶ the useƌ͛s listeŶiŶg histoƌǇ, aŶd actively builds

suggested music for the user to listen to, based on their already recorded listening history

(Last.FM,2021). As a middleman, Last.FM also offers the ability to connect other data sources,

including Spotify and subsequently can stoƌe a peƌŵaŶeŶt ƌeĐoƌd of the useƌ͛s listeŶiŶg
histoƌǇ, Đoŵpaƌed to “potifǇ͛s liŵited ϱϬ songs maximum. Last.FM also offers a public API,

allowing applications to access this record of information.

2.4.6 Conclusions

Based on the findings of the above existing solutions, this project aimed to solve the primary

deficiency of the existing solutions by showing the user what songs made them run faster

retrospectively, instead of relying on the user to remember what songs were playing when

they were running at their fastest. This project also aimed to solve the primary deficiency of

PUMATRAC with this problem, by providing information on what songs made a user run faster

instead of genres.

As the findings from the existing solutions have shown that the vast majority record the

running activity themselves, this project differed by not supporting this functionality. This is

because the reduction in scope in this area allowed the author to focus on supporting multiple

data sources connecting to the application, meaning that the user does not need to re-record

their running activity in the application if they wanted to find out what music made them run

faster.

This decision has therefore shaped the application to focus on the inferences that could be

made by connecting some of the existing solutions to the application, rather than collecting

the information required and then analysing what music made the user run faster. This

decision has also meant that the potential uses for tempo-matching music whilst running

cannot be employed. However, the idea of creating a playlist that would use the average BPM

of the useƌ͛s fastest soŶg and populating with similar songs has been considered and has such

been moved to the Future Work section.

2.5 METHODS AND TOOLS USED

In order to provide an application that could work on Android, iOS and a web frontend, a

versatile and resilient backend was required. To ensure that this backend also was compatible

with BDD, TDD and had a long service life, the backend was developed using .NET Core 3.1,

released in 2020. By using .NET Core 3.1, a robust backend could be created that supports all

features necessary for this project.

.NET Core 3.1 uses C# as a programming language, and in conjunction with the need for a web

frontend and a fake backend for BDD and TDD, ASP.NET Core is also used. ASP.NET core allows

for the creation of simple servers (using Kestrel) that can hosted on any device with the .NET

Core 3.1 SDK installed and allows for the use of several third-party clients to connect to the

running service and music service providers.

The thiƌd paƌtǇ ͞ĐlieŶts͟ used aƌe as folloǁs:

• Fitbit.NET (Coleman et al. 2021)

Can Music Make You Run Faster?

1739325 13

• SpotifyAPI.Web (Dellinger, et al. 2021)

• Inflatable.Lastfm (Inflatable Friends, et al. 2020)

These third-party clients use an MIT license. They provide simple methods to get data from

their relevant APIs, once authenticated using OAuth 2. The author could have used a third-

party client for Strava as well, but due to necessity it was avoided, and a simple API call was

used instead using built-in C# methods. The same could have been repeated for all the third-

party clients, but for interest of time, these clients were used for their ease of use.

The SpotifyAPI.Web developers also have developed a package known as

SpotifyAPI.Web.Auth, which contains a simple authentication web server to handle call backs

for OAuth 2 authentication. This was adopted for all external services used, as the server was

fit for purpose to meet the authoƌ͛s needs.

Kestrel is a cross-platform web server for ASP.NET Core (Dykstra et al. 2020). As

aforementioned, Kestrel provides useful functionality for hosting servers, both for hosting a

web frontend, or hosting an API to be used for testing. In combination with NUnit, a unit-

testing framework for all .Net languages (NUnit, 2019), Kestrel can be used to host a localhost

API containing fake data – meaning that unit, integration, and behaviour testing can take

place regardless of the state of the external APIs, and independent of an internet connection.

This also means testing can take place much faster than if compared to usiŶg the ͞ƌeal͟
backend and ensures that the application remains within the usage limits of the external APIs

being called.

To enable BDD, SpecFlow has been adopted which enables written-as-English business

requirements to be tested against (SpecFlow,2020). The syntax used by SpecFlow is Gherkin,

providing a simple, testable method of writing business requirements.

The now deprecated frontend for mobile devices was produced using the Xamarin

framework, a C# middleware that connects iOS and Android SDKs to it, enabling C#

applications to run on these devices.

Instead of a mobile frontend, a web frontend was chosen to be implemented (as further

explained in Section 4 Implementation). This was implemented using React Typescript, which

compliments the object-orientated nature of the backend and supports TDD through Jest and

Enzyme.

2.6 CONSTRAINTS ON SOLUTION

As there are multiple pathways for this project to take, constraints were required to be put in

place to ensure that a high quality and feasible proof of concept were produced.

Consequently, the primary constraint on the solution is on the depth of analysis performed

by the app. The app will only compare activities from different data sources against one

another and will not support analysis on part of activities (e.g., Strava Segments).

Additionally, as this project serves as a proof of concept and the fact that each data source

provides different levels of information to analyse, analysis on the activities will also be

constrained to average speed and pace. This choice ensures that the pƌojeĐt͛s aiŵs aƌe ŵet,

Can Music Make You Run Faster?

1739325 14

but also ensures that the developer of the project is not overextended, which would reduce

the quality of the solution.

2.7 RESEARCH QUESTIONS

The following research question has been deduced:

さIn order to demonstrate the achievement of the stated aim of the project, this solution will allow a

user to connect their recorded running history and music history, use an algorithm to determine their

fastest activity and therefore deduce what songs made the user run faster in a versatile and user-

friendly manner.ざ

Can Music Make You Run Faster?

1739325 15

3 SPECIFICATION AND DESIGN

This chapter aims to explore the specification and design behind this project, as well providing

justification for any major design choices that have been made. This begins with outlining

major objectives and constraints, before exploring the details of the curated specification

through the remainder of the chapter. This is done by first breaking the problem down into

business requirements, before exploring the design of the system from a top-level overview.

3.1 SPECIFICATION AND APPROACH TO PROBLEM

3.1.1 Core requirements and constraints

Based on the aims, objectives, and wider context from the background section, the system

was required to:

• Allow a user to connect at least 1 running and at least 1 music data source.

• Allow a comparison between the connected data sources to take place.

• Allow a user to see what songs made them run faster, retrospectively to when they

completed the activity.

This specification closely encapsulates the aims of the project as defined in the Introduction

section, but also is simple enough to be interpreted in multiple ways, giving the project

flexibility as it progressed. These requirements are then further explored in the Business

requirements section as to how they are translatable into software.

Reflecting on the findings in the background section, the following constraints have been put

in place:

• The project will only initially compare simple metrics to determine what songs made

a user run faster, such as average or average speed.

• The depth of aŶalǇsis oŶ useƌ͛s exercise will also be constrained to an activity-level,

meaning features like Strava Segments will not be utilised.

Constraints such as these allowed the author to focus on the core aspects of the system,

whilst maintaining the correct level of complexity and scalability required for a project such

as this, that could encompass a variety of features in future development.

3.2 BUSINESS REQUIREMENTS

As a system that is reliant on the user͛s iŶteƌaĐtioŶ aŶd peƌsoŶal data, it is necessary that

business requirements ǁeƌe ǁƌitteŶ to ŵatĐh the useƌ͛s Ŷeeds. As suĐh, GheƌkiŶ
(Gherkin,2019) was adopted to write business requirements, as writing requirements in

Gherkin follows the process a user follows to achieve an aim ďǇ usiŶg ͞GiǀeŶ͟, ͞WheŶ͟ aŶd
͞TheŶ͟ steps. By using Gherkin, BDD could also be adopted, meaning that testing against

these business requirements could be tested against automatically, and as often as

development required. A typical Gherkin business requirement looked like this:

Can Music Make You Run Faster?

1739325 16

Appendix A – Typical Gherkin business requirement.

By using Gherkin, the following business requirements were produced to ensure that the

system truly reflected what the user required:

1. Get a useƌ͛s “potifǇ listeŶiŶg histoƌǇ.

2. Get a useƌ͛s “tƌaǀa running history.

3. Get a useƌ͛s Last.FM listeŶiŶg histoƌǇ.
4. Get a useƌ͛s Fitbit running history.

5. Compare Spotify and Strava history on a singular date.

6. Compare Spotify and Strava History with a date range.

7. Compare Listening and Running history on a singular date using Last.FM and Fitbit.

8. Compare Listening and Running history on a singular date using all data sources.

9. Compare listening and running history using all data sources with a date range.

The details of these business requirements are viewable in Appendices A-E.

Each requirement was refined based on the typical process the user would follow when using

this application, as well as speaking to likely users on what they would define their

requirements to be. These were then sometimes checked by the supervisor to ensure that

they truly kept within the scope of the system. By following this process, the top-level

requirements always reflected what the user wanted, and what the system should do, as such

always meant that the development process of completing each user requirement kept within

the scope of the system.

Can Music Make You Run Faster?

1739325 17

3.3 SOLUTION ARCHITECTURE

3.3.1 High level architecture and flow of data

The highest level of the system architecture can be defined as shown below in Appendix A.

The user interacts with the system using the web frontend, built using React Typescript. After

interacting with the React TS frontend, HTTP GET / POSTS requests are sent to an ASP.NET

Core Web API with two public API gateways: Inference Gateway and External API Gateway.

The Inference Gateway siŵplǇ peƌfoƌŵs ͞iŶfeƌeŶĐes͟, including the logic to determine what

music made a user run faster. The External API Gateway is used as a middleman between the

web application and the external sources, whose sole purpose is to authenticate the user and

get data from said external sources. This communication takes place also using HTTP GET

requests.

This design has not changed much throughout development, with the ͞IŶfeƌeŶĐe GateǁaǇ͟

being the only major modification. This is because the design of the system demanded that

the backend had versatility, meaning that the frontend should possess no logic to provide

scalability to other frontends (such as a mobile or a Smart Watch frontend).

Data then flows from the external sources to the External API Gateway, when of which data

is processed to ensure it meets the required criteria requested from the Web frontend, and

then returned as expected. When the user queries data from the Inference Gateway, requests

are received, processed and then the correct response is returned, like the external API

Gateway. The web frontend then handles this data and displays it in a user-friendly manner.

Appendix F – Highest level system overview

Within the ASP.NET Core 3.1 Backend, data is received from the external sources

predominantly in a J“ON oƌ XML foƌŵat. This ͚ƌaǁ͛ data is theŶ seƌialized iŶto stƌoŶglǇ tǇped
C# objects that correspond to each parameter within each JSON object. As such, these objects

aƌe ƌefeƌƌed to as ͞DTO͟ oƌ Data TƌaŶsfeƌ OďjeĐts. They are then again converted iŶ ͞eŶtitǇ͟
objects before any comparison takes place to ensure that the JSON/ XML is serialized

correctly, and error checks are put in place in case parsed JSON/ XML data is fragmented or

missing data.

This design ensures validation takes place across all levels of data handling, and the benefits

of an object orientated approach can be adopted, such as polymorphism and encapsulation.

Can Music Make You Run Faster?

1739325 18

These design choices also ensure that all the core objectives have and can be achieved, with

scalability offered to a potential future increase in business requirements or core objectives.

3.3.2 High level testing architecture

To prove confidence in the system, BDD, TDD and integration tests have been included within

the system to prove robust and versatile functionality. This is illustrated in the following

diagram:

Appendix G – Highest level testing architecture.

By adopting this testing architecture, full confidence could be given in the system as the

project grew, meaning that each iteration of development always contributed to the overall

growth of the project. In other words, every addition to the project had some business value.

As illuded to in the background section, quality unit, integration and behaviour tests allow the

user to gain confidence in the system when connecting their exercise activity as these tests

prevent errors from occurring, and prove the solution is sturdy enough to handle their

personal data. Therefore, by adopting this testing architecture confidence can be given in the

system by both the author and the user base as the project grew by each iteration.

Can Music Make You Run Faster?

1739325 19

3.3.3 UML Activity Diagram

Below is an example diagram of how the user may choose to interact with the system. This diagram

breaks down the process a user would follow when they wish to determine what songs make them

run faster.

Appendix L – UML Activity Diagram

Can Music Make You Run Faster?

1739325 20

3.3.4 Example data flow using Strava.

The diagram below illustrates how data flows from one end of the system to the other,

without explaining technical details too importantly. In this diagram, the process of getting

Strava activities has been explored:

Appendix J – Example Strava data flow.

This diagram also mentions an authentication process. More information about this can be found with

the reference of (Strava,2021). OAuth2 authentication is supported by all external data sources

chosen, with Strava and Fitbit using Implicit Grant Flow, and Spotify using PKCE. In an ideal world,

PKCE would have been used for all external sources as this negates the need to keep client credentials

in the source code. PKCE has been adopted by the only data source that supports it, Spotify. Last.FM

in its current scope does not require authentication, and as such no OAuth2 authentication process

has been implemented.

This mixture of implementations of OAuth2 Authentication also proves flexibility and scalability in the

system, meaning that it will be much easier to add more data sources in future if required.

3.3.5 Module Partitioning

As this project was developed as a .NET Core 3.1 application using Visual Studio, module partitioning

had to take place to ensure that a scalable, easy to understand and maintain system was created. As

such, the following partitions (projects) have been created:

• RD.CanMusicMakeYouRunFaster.CommonTestUtils

o Contains testing utilities, such as an InMemoryFactory used for integration and

behaviour driven tests.

• RD.CanMusicMakeYouRunFaster.ComparisonLogic

o Contains logic to compare activities and make activity inferences.

• RD.CanMusicMakeYouRunFaster.ComparisonLogic.UnitTests

o TDD (Unit tests) for the ComparisonLogic project.

• RD.CanMusicMakeYouRunFaster.FakeResponseServer

o Contains ͞fakes͟ used foƌ iŶtegƌatioŶ aŶd BDD testiŶg.

• RD.CanMusicMakeYouRunFaster.FakeResponseServer.UnitTests

o Contains TDD (Unit and Contract) tests to ensure the FakeResponseServer acts

properly.

• RD.CanMusicMakeYouRunFaster.Rest

Can Music Make You Run Faster?

1739325 21

o Main entry point of the application. Contains a RESTful API allowing frontends to

communicate with the remainder of the solution.

• RD.CanMusicMakeYouRunFaster.Rest.IntegrationTests

o Integration tests for the REST API, using the FakeResponseServer.

• RD.CanMusicMakeYouRunFaster.Rest.UnitTests

o TDD (Unit) Tests for the REST API.

• RD.CanMusicMakeYouRunFaster.Specs

o BDD tests for the entire solution.

• RD.CMMYRF.WebPortal

o Contains the web frontend, created using React Typescript.

3.4 WEB FRONT-END USER INTERFACE

To aĐhieǀe oŶe of the pƌojeĐt͛s pƌiŵaƌǇ aiŵs of a ĐƌeatiŶg a ͞ useƌ-centred, clean user interface

that is fit foƌ puƌpose aŶd eŶĐouƌages ease of use͟. The following design has been adopted to

reflect this:

Appendix H – Example web user Interface

Can Music Make You Run Faster?

1739325 22

The above user interface has been designed in such a way that it adheres to Nielsen͛s ϭϬ
usability Heuristics (Nielsen, 1994). These usability heuristics ensure that the third project

primary aim is achieved to the highest degree possible.

3.5 WHAT SONGS MAKE ME RUN FASTER?

BuildiŶg oŶ the fouŶdatioŶs of the ďaĐkgƌouŶd͛s assoĐiated theoƌǇ seĐtioŶ, the process of

deciding what songs make a user run faster must be understood.

At first, the system began by retrieving all the exercises required within the date range

specified before mapping songs to each activity. These activities were then compared using a

͞kiŶg of the hill͟ stǇle algoƌithŵ, ǁheƌe the aĐtiǀitǇ ǁith the fastest aǀeƌage speed ǁas
selected, and then the songs paired with said activity were returned. However, this design

brought limitations when development began, namely in those frontends were unable to

support the method of analysis as mentioned above.

Instead, a new design had been adopted. Firstly, activities are requested from the relevant

data source before theǇ aƌe ͞posted͟ ;usiŶg HTTP PO“TͿ to the IŶfeƌeŶĐeAPIGateǁay which

is used to determine the fastest activity. This is determined using the exact same logic as

previously stated, of which the fastest activity is then returned. This is then repeated for every

data source connected, until there is a fastest activity for each data source.

When the user is ready, the property from each activity is then sent back to the

InferenceAPIGateway, where the fastest overall activity is determined. After such activity is

determined, the date and time of that activity is returned. This is then sent to the

ExternalAPIGateway, which returns all the songs that were playing whilst the activity took

place. These songs are then displayed to the user, proving that those songs were the songs

that have the most effect on them.

This design may sound complicated at first, but it affords a lot of scalabilities for other metrics

to be added in future, meaning only a small number of additional endpoints need to be

created in the InferenceAPIGateway to support deeper analysis. This design also keeps the

concept of having all the business logic in the backend, with the frontend being used only as

a method of communicating with the user. This again provides versatility, adaptability, and

scalability for multiple frontends to be added in future, perfect for a project that is designed

to be used by as many users as possible.

Can Music Make You Run Faster?

1739325 23

4 IMPLEMENTATION

This chapter aims to cover the development cycle as the project grew, including any major

alterations to the project that occurred as well as exploring key aspects of the system that

made it what it is today. This chapter begins by exploring the process followed during

implementation, before exploring key concepts and then covering any major unforeseen

projects that altered the project.

4.1 AGILE DEVELOPMENT PROCESS

This project was developed using an AGILE approach, with BDD and TDD at the core of it. Due

to time constraints of the project, 1-week sprints were adopted instead of traditional 2-week

sprints. At the beginning of each sprint, typically a pre-refined story was focussed on and at

the end of each sprint the work for each week was reflected upon. At that stage, problems

faced that week were actively identified and plans were made to avoid the same issues arising

again.

To reflect the AGILE process, a Kanban board was created on Github that allowed the author

and other interested parties (such as the supervisor) to track the progress of the project as it

grew. This can be seen in Appendix I, with a link to the board found at (Douglas, 2021). This

contributed to development as a central knowledge repository as well as a code repository,

meaning that design decisions and issue tracking was maintained through this system.

Each ͞story͟ ĐoŶtaiŶed at least ϭ ďusiŶess ƌeƋuiƌeŵeŶt, of which was refined as

aforementioned at the beginning of each sprint, with 1 story being refined in advance as a

minimum. In other words, each business requirement as shown in appendices A-E was

required at the beginning of a sprint throughout the development process, and not refined at

the beginning of the entire project (as would be expected in a waterfall project).

This gradual development of business requirements granted a lot of flexibility throughout the

development cycle and meant that the author was not constrained to business requirements

that may have become outdated as the project grew. An example of this can be shown for

the ͞Add “potifǇ API Call͟ issue, ǁheƌe the business requirements had to be changed as

development of the project continued. This is shown in a screenshot below:

Can Music Make You Run Faster?

1739325 24

Screenshot reflecting how business requirements could change throughout the

development process.

Can Music Make You Run Faster?

1739325 25

4.2 BDD AND TDD

At the heart of this project, BDD and TDD were the two core principles that drove the project forward.

By adopting the process of writing a test, writing code to pass the test and refactoring code after the

passing test on all levels, confidence in the system grows as each test is added. When using BDD and

TDD together, a ͞ĐǇĐle͟ is adopted, as shoǁŶ iŶ the figuƌe ďeloǁ:

An infographic regarding the process of BDD-TDD. (Nair, 2018).

BDD-TDD has been adopted by beginning with the business requirements as defined in

Gherkin. These tests aƌe theŶ ƌuŶ iŶ diffeƌeŶt ͞ ŵodes͟ depeŶdiŶg oŶ the sǇsteŵ, staƌtiŶg ǁith
an ͚API͛ mode. The ͚API͛ ŵode purely tests the flow of data end-to-end, without any frontend

iŶǀolǀed. Hoǁeǀeƌ, otheƌ ŵodes ĐaŶ ďe added iŶĐludiŶg a ͞Weď͟ ŵode that iŶǀolǀes the use

of the web frontend to test the system end-to-end. This would have been included in the

project, but the authoƌ ƌaŶ out of tiŵe to iŵpleŵeŶt the ͚Weď͛ ŵode.

After the framework for each mode has been created, TDD tests are created to incrementally

pass the BDD test, until which a time all tests pass, and the code is refactored to work better,

and the cycle starts again. This ensures complete code coverage as the project progresses so

that project aims are always progressing as each individual test, no matter the level,

contributes to the overall confidence in the system.

4.2.1 Fakes and mocks

To supplement BDD and TDD, mirror-image components have been created to allow

integration and top-level BDD tests to take place, and the range of complexity these fake

components have vary on the required scenario. For example, a mock HTTP client could be

used to integration test the controllers within the External API Gateway to prove functionality,

whereas a BDD test would use an entire fake-backend. This fake backend exists as the

FakeResponseServer, of which is used to mimic the behaviour of a specific public API, such as

Spotify. As the author has created this fake backend, this FakeResponseServer can also be

Can Music Make You Run Faster?

1739325 26

used to serve whatever response is needed for the test – allowing for a range of tests using

normal, abnormal, and extreme data; stress testing the real system that has been designed.

Coupled with BDD and TDD, this creates a development environment that pioneers the

system to be as robust as possible – you cannot progress onto the next task until the current

test is passing. As such, east test proves that the system works as it should, putting more

confidence into the solution, and less stress on quality assurance.

It is also worth mentioning that the FakeResponseServer is also unit and contract tested –

meaning that it will always work as expected and will not differ from the expected behaviour

from its counterpart.

4.3 USER AUTHENTICATION

As mentioned in the specification and design section, multiple methods of user authentication

have been integrated into the system, namely Implicit Grant Flow and PKCE. To support this,

an authentication server taken from the SpotifyAPI.Web.Auth package (see background

section for more information) is used to handle call backs from each data source. This

provided a great time-saver for the author, as alone he would have had to create a server

himself to handle call backs and serve HTML content. Unfortunately, this authentication

server was only designed to be used for Spotify, aŶd as suĐh ƌetuƌŶs a ͞ĐoŶŶeĐted to SpotifǇ!͟
page no matter what data source is use; creating the potential for confusion.

However, the provided solution has provided a strong basis for authenticating users.

Consequently, a strong basis offers ease of scalability when integrating more data sources,

and as a result the project overall is better off for it.

4.4 UNFORESEEN PROBLEMS

In this subsection, major unforeseen problems are detailed. This includes an explanation of

what happened, how the problem was overcome and why the problem had such an impact

on the progress of the project.

4.4.1 Mobile frontend

Perhaps the largest challenge this project faced was the implementation of a Mobile

Frontend. Originally, plans were put in place to develop an Android and iOS app using the

Xamarin C# Framework, soon to be replaced by .NET MAUI. Xamarin was a perfect choice for

this pƌojeĐt, as it seeŵiŶglǇ offeƌed itself as a ŵiddleŵaŶ ďetǁeeŶ AŶdƌoid aŶd iO“ “DK͛s aŶd
a C# backend. However, problems began to arise when BDD and TDD was first attempted to

be integrated with Xamarin development. Due to incompatibility issues, the BDD and TDD

pƌojeĐts ǁeƌe uŶaďle to ͞ƌefeƌeŶĐe͟ the XaŵaƌiŶ pƌojeĐt aŶd as suĐh the authoƌ deĐided it
would be fine if there was no BDD or TDD tests covering the project.

However, more problems began to arise as development started. The author had gotten as

far as producing several functional UI screens, and even as far as getting Spotify songs by

allowing a user to authenticate using the incomplete application. However, when these songs

Can Music Make You Run Faster?

1739325 27

were attempted to be sent to the already created .NET Core 3.1 backend the same

incompatibility issue arose.

After some research, the author discovered that all the development work prior to the

Xamarin implementation was useless as it had been developed using .NET Core 3.1. To give

context, .NET Core 3.1 is the latest release from Microsoft, and is meant to support all the

features from sister frameworks such as .NET Standard and .NET framework. However, this

was not the case, and any .NET Core 3.1 content was unable to be used with the Xamarin

project.

The author was then left with a choice; attempt to refactor the previous development cycles

to be compatible with the Xamarin frontend at the cost of all BDD and TDD tests or create a

web frontend that was compatible on Smartphones and lose all the Xamarin progress.

Because of the huge benefits BDD and TDD provide, and that the author had more experience

with web development, a decision was made to abandon Xamarin. This ultimately meant that

no Smartphone app was developed for this project, but a web frontend was used instead that

could be compatible.

As such, the idea for an app has not been removed completely. As detailed in the Future work

section, a simple app could be created that contains an internal web browser and would serve

content from the web frontend within that. This situation could have perhaps been avoided

had the author chosen to prototype early on, but the same circumstances would have been

faced. As a result of this, the author still believes that the same decision would have been

made, but a lot earlier on in the project.

The original UI designs of the mobile app have been included in Appendix K. About 2-3 weeks

was spent on attempting to implement the Xamarin frontend, to no avail.

4.4.2 Automated code style checking

One of the earliest ideas in the project was to implement the highest degree of code quality

throughout the entire development process, including the adoption of Style checkers.

StyleCop is one of the largest code checkers used by .Net developers and ensures code quality

is kept consistent over the entire codebase (Stylecop,2021).

Several attempts were made to try and integrate StyleCop into the project in its infancy, using

multiple versions and other packages that style check. The main issue was that due to a lack

of correct documentation, rules could not be customized, and sometimes code checking was

buggy. For example, StyleCop would state that a method name should begin with a capital

letter, but another rule may conflict and say that it should begin with a lower-case letter. This

meant that it was impossible to write code without warnings or errors, and as such it had to

be avoided.

As a solution, the author introduced self-disciplined code styling based on their experience

previously. This included specific test and method naming conventions, method and class

documentation and spacing rules. It is only human to miss these rules, especially when self-

disciplined. As an extra check, the author decided to use the GitHub feature of Pull Requests

Can Music Make You Run Faster?

1739325 28

to enable a retrospective self-review of the code being merged, ensuring that style and quality

had been adopted across the entire codebase.

4.4.3 Spotify limitations

After the production of a Minimum Viable Product, a major system limitation was discovered.

Based on the Spotify documentation, no limitations on what songs could be retrieved were

discovered, but it was only until the system was tested using real activity data it was

discovered that the Spotify Get User Recently Played Tracks endpoint was limited to the 50

most recent songs. As a result, integrating Last.FM became a priority as Last.FM keeps a log

of all songs listened to, with no data being lost.

This issue with Spotify still has not been resolved but could be resolved with the creation of a

data repository that actively logs Spotify tracks as they are listened to. However, Last.FM

already does this, so the priority for this solution is not high.

In simple terms, soŶgs foƌ a fastest aĐtiǀitǇ ĐaŶ oŶlǇ ďe ƌetƌieǀed if the useƌ͛s last ϱϬ soŶgs
were played during said activity. This is ideal if Spotify was only used for running, but with so

many other purposes, it is unlikely that all soŶgs that ǁeƌe plaǇiŶg duƌiŶg the useƌ͛s fastest
activity will be returned. The only way to avoid this is to encourage users to use the app

immediately after they finish exercising and hope that their most recent exercise was their

fastest.

This technical limitation has meant that the best way to use this system is to have a Last.FM

account, as otherwise there is a strong possibility no Spotify songs will be displayed. However,

Last.FM does not have a large market share, and as such this system should be marketed

towards those with a Last.FM account should it be made publicly available.

4.4.4 Ethical approval

One of the more nuanced problems this project faced over the course of its development was

achieving ethical approval. As the pƌojeĐt͛s Ŷatuƌe is to peƌfoƌŵ aŶalǇsis aŶd iŶfeƌ ďased oŶ
personal health data, it became a core requirement to ensure that ethical approval was given

to continue with the project. With User Acceptance Testing (UAT) as the primary method of

user testing, ethical approval had to be given so that testing could take place.

IŶitiallǇ, it ǁas uŶĐleaƌ ǁhetheƌ UAT should iŶǀolǀe testeƌ͛s oǁŶ peƌsoŶal health data; testers

would get a better understanding and feel more connected to the test if it were their own

data but would come at the cost of ensuring personal data was handled well and that the

testers had their own Fitbit, Strava, Spotify and Last.FM accounts.

Due to time constraints and a requirement from the ethics committee for clearer justification

oŶ hoǁ peƌsoŶal data ǁill ďe haŶdled, it ǁas deĐided to use ͞fake͟ test aĐĐouŶts with no

personal health data. Participants were then required to interact with the system using these

fake accounts, and then give their opinion based on their interaction with the system using a

questionnaire.

Can Music Make You Run Faster?

1739325 29

4.4.5 Fitbit limitations

Part of the requirements of this system was that the user should be able to use activities over

a large period of their choice to be able to determine what songs made the user run faster.

As this was one of the last features to be added to the project, a lot of research took place

into the public Fitbit API to find the correct endpoint that would return an authenticated

useƌ͛s eǆeƌĐises.

The ͞Get useƌ AĐtiǀitǇ Logs List͟ eŶdpoiŶt ǁas ideŶtified as the eŶdpoiŶt that ǁould satisfǇ
this behaviour. This endpoint seemed to act as intended, as required parameters for use

iŶĐlude a ͞ďefoƌe͟ oƌ ͞afteƌ͟ paƌaŵeteƌ, as well the Oauth2 Authentication token. However,

after implementing this endpoint to be integrated with the system a problem was discovered.

For some reason, even with multiple checks that the before/after time was correct, only

aĐtiǀities fƌoŵ that ͞ǁeek͟ ǁere being returned. As a result, the system is only able to get

activities that took place within the last week of querying.

Checks are still put in place to ensure that any activities returned by the endpoint are within

the correct time frame, iŶ Đase that the oƌigiŶ of this ďug is oŶ Fitďit͛s eŶd. Theƌe aƌe seǀeƌal
disĐussioŶs oŶ Fitďit͛s community regarding the functionality of this endpoint (Fitbit, 2020),

but at the time of writing it is unclear whether this is a fault on the authors end or Fitbit. As

such, this is an unresolved issue that will require further investigation.

Can Music Make You Run Faster?

1739325 30

5 RESULTS AND EVALUATION

In this chapter, the aims and the objectives of the report are directly tested against and

evaluated upon, determining the success of the project. This is done using a mixture of UAT

and BDD.

As this project has been centred around producing a user-centric solution, user acceptance

testing (UAT) has been adopted to ensure that the projeĐt͛s aiŵs have been met to their full

capacity. This testing involved users following open-ended instructions whilst interacting with

the web frontend, before providing their opinion on the usability, design, and ease of use of

the system through the means of a questionnaire. Open-ended instructions have purposefully

been used to ensure that users can use the application un-aided, and that the accuracy of

responses given in the questionnaires are as unbiased as possible.

BDD, TDD and integration tests were also adopted throughout the development of this

project. These tests are explored later within this section, but they are employed to ensure

the continued confidence of the system throughout the development lifecycle. These tests

also ͚stretch͛ the system to prove robustness and agility of the sǇsteŵ uŶdeƌ test oƌ ͞“UT͟,

and give real, actionable, and provable confidence that developed code works as intended.

As this project was developed using AGILE, several rounds of UAT were to take place.

However, due to a slow ethical approval and a change in project scope, only one round of UAT

took place. The aims of this round of UAT were to prove:

1. Primary aim: To create a user-centred, clean user interface that is fit for purpose and

encourages ease of use.

2. Implicitly prove the other primary aims, including the creation of an application that

has at least 1 music and 1 running data source, as well as the creation of necessary

logic to determine what songs made a user run faster.

3. Objective: Employ Test Driven Development and Behaviour Driven Development to

ensure the creation of a well-tested, robust mobile application.

4. Objective: Create an intuitive and functional user interface.

Can Music Make You Run Faster?

1739325 31

5.1 UAT RESULTS

The following questions were presented to individuals, following a short period of interaction

with the web app following a test script as aforementioned.

1. After using the provided credentials to log into Strava, Spotify, Fitbit and Last.FM, were

you able to view insights ďased oŶ the useƌ͛s ƌuŶŶiŶg aŶd listeŶiŶg histoƌǇ.

2. Rate the experience of connecting the application to Strava (1 being very easy, 5 being

very hard).

3. Rate the experience of connecting the application to Fitbit (1 being very easy, 5 being

very hard).

Can Music Make You Run Faster?

1739325 32

4. Rate the experience of connecting the application to Spotify (1 being very easy, 5 being

very hard).

5. Rate the experience of connecting the application to Last.FM (1 being very easy, 5 being

very hard).

6. Do you have any comments about your experience with connecting the external services

to the application?

Can Music Make You Run Faster?

1739325 33

7. Rate the quality of the insights the web app made (1 being very good, 5 being very bad).

8. Rate the usefulness of the insights the web app made (1 being very good, 5 being very

bad).

9. If you were to use this application using your own running and listening history, what

effect do you think it would have on you, based on your experience with the test you

have conducted today?

Can Music Make You Run Faster?

1739325 34

10. How would you rate the layout, aesthetic appeal, and usability of the web app? (1 being

very good, 5 being very bad).

11. Do you think the user interface is "fit for purpose"?

12. Do you think the web application is well built and designed?

Can Music Make You Run Faster?

1739325 35

13. Do you think the web application is useful?

14. Do you think you would use this web application, were it to be available publicly?

15. Rate your overall experience using the web app (1 being very good, 5 being very bad).

Can Music Make You Run Faster?

1739325 36

16. Do you have any other comments about the web application?

17. Are there any other features you would like to see included within the web app?

5.2 BDD AND TDD AUTOMATED TESTING

As part of the development of this project, BDD and TDD were employed to ensure that a

robust solution was employed, and that the aims of the project could be met to their full

potential. As such, full testing coverage has been achieved up until the inclusion of the web

application, which was manually tested throughout development and then covered by UAT.

In other words, the backend has full testing coverage, but when coupled with the web app,

there is no end-to-end test, nor TDD tests to accompany the web app.

In total, there are 82-unit, integration and behaviour tests that have been created, employing

the use of ͞fakes͟ aŶd ͞mock-ups͟ to ensure functional components worked as intended. A

screenshot of all the required tests passing has been included below:

Can Music Make You Run Faster?

1739325 37

5.3 EVALUATION FROM UAT, BDD AND TDD

Based on the tests conducted throughout development, as well as manual testing and UAT,

the author can confidently state that the system works as intended, but there is room for

more tests to be conducted.

5.3.1 UAT

User acceptance testing saw all the primary aims of the project being tested against, as well

as most of the secondary aims and objectives that were originally described in the initial

report. To evaluate the success of the system, it is important to use the results from this round

of UAT to define how well the system matched against it is original aims and objectives.

5.3.1.1 Primary aim of UAT – Usability

The primary aim that was tested against during this round of UAT was the third original aim

of the initial plan: ͞To create a user-centred, clean user interface that is fit for purpose and

encourages ease of use͟. This aim was explicitly and implicitly answered by the questionnaire

participants used, including question 11; ͞Do you think the user interface is ͚fit for purpose͛͟

of which 100% of participants agreed with the statement.

Other questions asked to participants, including questions 10 and 12 also reinforced the idea

that this aim had been achieved. Question 10 saw at least 60% of the testers identifying the

UI as ͞ good͟ iŶ ƌespoŶse to ďeiŶg asked ͞ hoǁ ǁould Ǉou ƌate the laǇout, aesthetiĐ appeal aŶd
usaďilitǇ of the ǁeď app?͟, with the remaining 40% answering ǁith ͞Ŷeutƌal͟.

Question 12 asked participants on their opinion if they thought the web application was well

ďuilt aŶd desigŶed, ǁith ϭϬϬ% of paƌtiĐipaŶts statiŶg ͞Ǉes͟. UsiŶg the ƌespoŶses to ƋuestioŶs
10, 11 and 12, clear confidence has been given that the system has been designed to support

a clean user interface, that is fit for purpose and encourages ease of use.

Participants were also asked to rate their experiences of connecting the application to the

four available external data sources (Strava, Spotify, Last.FM, Fitbit) in questions 2-5, of which

the aǀeƌage ƌespoŶse ǁas ͞good͟ aĐƌoss all ƋuestioŶs, as well as 80% of users finding the

application very easy to connect to Spotify. Unfortunately, Last.FM͛s ĐoŶŶeĐtiǀitǇ did not fare

as easily compared to the other souƌĐes, ǁith ϮϬ% of paƌtiĐipaŶts fiŶdiŶg the pƌoĐess ͞haƌd͟,
showing more work is required to make the application as user friendly as possible.

To support this, a ƌespoŶse to ƋuestioŶ ϭϲ ͞Do Ǉou haǀe aŶǇ otheƌ ĐoŵŵeŶts aďout the ǁeď
appliĐatioŶ͟ stated that theǇ ǁould suggest to ͞Iŵpƌoǀe ǁeďsite aesthetiĐ͟, as well as

another response to question 6 stating how it was confusing when they connected Strava,

and a Spotify authorization feedback screen appeared.

This clearly identifies that more work needs to be conducted to achieve the aim of creating

of user-centred, clean user interface that is fit for purpose and encourages ease of use.

Nevertheless, the overall user feedback given in questions 10-12 prove that the majority of

the userbase was satisfised with aesthetic appeal and the design of the user interface,

showing that this primary aim of the project has been achieved, but could use some minor

adjustments to become perfect.

Can Music Make You Run Faster?

1739325 38

Aesthetic appeal and usability are also subjective topics, and no two testers will feel the exact

same way about a system. As such, it should not be believed that this aim will be ever fully

satisfied because a binary choice on a subjective topic will never cover how the tester truly

feels about a system. As such, the author is satisfied that this aim has been achieved, but

there are some small adjustments that could be made.

5.3.1.2 Other primary aims covered.

The other primary aims covered by this round of UAT were:

1. To create a mobile application for Android, integrating at least 1 running application

and 1 music application.

2. To Đƌeate the ŶeĐessaƌǇ logiĐ ƌeƋuiƌed to eŶaďle a ĐoŵpaƌisoŶ ďetǁeeŶ the useƌ͛s
running activities and their listening history, comparing metrics such as pace and

average cadence to the music they were listening to.

Whilst these questions are not typically answered by UAT, there were questions put to

participants that covered these aims. For example, Question 1 asks ͞afteƌ usiŶg the pƌoǀided
credentials to log into Strava, Spotify, Fitbit and Last.FM, were you able to view insights based

on the running and listening history?͟ of ǁhiĐh 100% of participants agreed.

Question 6 also reinforces this idea, where one user stated, ͞the aĐĐessiďilitǇ of ĐoŶŶeĐtiŶg …
ŵusiĐ aŶd fitŶess aps ǁas ƌeallǇ easǇ͟, aŶd aŶotheƌ siŵplǇ stated ͞it ǁoƌked͟. However, one

tester identified that ͞“tƌaǀa aŶd Fitďit took a loŶg tiŵe to ĐoŶŶeĐt and said Spotify has been

connected. Would be nice if it took you back to the initial screen after they had been

Đoŵpleted͟. This response implies that the system achieved the primary aims but behaved

abnormally to what they would have expected. This could illude to real-world users becoming

confused with the state of the system and lead to dissatisfaction, showing that users may not

get as much out of the solution as they want to.

Another caveat is that the fiƌst pƌiŵaƌǇ aiŵ has ƌeƋuiƌed a ͞ŵoďile appliĐatioŶ foƌ AŶdƌoid͟,
and whilst react does typically support android functionality, the project has not been directly

tested on an Android device, and as such there is no way of knowing if the application does

support Android.

Based on the evidence above, the author believes that these primary aims have been

achieved as expected, but more work could be done to better reflect the state of the system

to the user so they can gain the confidence that the system matches their mental model.

Multi-platform tests will also need to be introduced to give the system further confidence

that it is compatible with Android devices.

Can Music Make You Run Faster?

1739325 39

5.3.1.3 Objectives

This round of UAT also saw two of the objectives of the project being tested against, including:

• Employ Test Driven Development and Behaviour Driven Development to ensure the

creation of a well-tested, robust mobile application.

• Create an intuitive and functional user interface.

These objectives were directly tested against throughout the round of UAT, but the question

that addresses both objectives the most is Ŷuŵďeƌ ϭϱ: ͞‘ate Ǉouƌ oǀeƌall eǆpeƌieŶĐe usiŶg
the ǁeď app͟. 8Ϭ% of useƌs ƌated theiƌ eǆpeƌieŶĐe as ͞good͟, ǁith the remaining 20% rating

theiƌ eǆpeƌieŶĐe as ͞Ŷeutƌal͟. This implicitly proves an intuitive and functional user interface

was created, as if the opposite ǁeƌe tƌue the useƌ͛s oǀeƌall eǆpeƌieŶĐe of usiŶg the appliĐatioŶ
would be significantly lower. This also implicitly proves a well-tested, robust application has

been created, as otherwise any issues the tester may have encountered would severely

reduce the overall rating of the web application.

Additionally, ƋuestioŶ ϭϮ ͞Do you think the web application is well built and designed?͟
directly assesses the creation of a well-tested and robust mobile application. In question 12,

100% of participants agreed that the application was well built and designed, reinforcing the

authoƌ͛s opiŶioŶ that this oďjeĐtiǀe has ďeeŶ aĐhieǀed. However, this objective is orientated

aƌouŶd a ͞ƌoďust ŵoďile appliĐatioŶ͟, meaning that this test suffers from the same problems

detailed in the ͞Other Primary Aims͟ section where these tests need to be repeated on an

Android device to prove mobile portability.

The remaining objective to create an intuitive and functional user interface has been

previously aŶsǁeƌed iŶ the ͞Primary aim of UAT – usaďilitǇ͟ seĐtioŶ. Based on this, and the

evidence listed above, the author believes that both objectives have been fully achieved but

would require multi-platform testing to give complete confidence that the application works

as intended.

5.3.2 Limitations on UAT

Favourable opinions have been given by the author on the state of the system based on the

evidence presented from UAT, but there are issues over the validity of UAT. Preceding this

section, concerns have been raised over the lack of mobile platform testing and should be

addressed in future tests if this project were to continue.

Another issue with this round of UAT was that the sample size was small, with only 5

participants taking part. To ensure that the application continues to enjoy meeting its aims,

future rounds of UAT should encompass more participants to ensure that the results of said

tests are the most reflective of a public userbase as possible.

5.3.3 BDD and TDD

Behaviour Driven Development and Test-Driven Development enabled the author to achieve

test coverage of almost 100%, with some tests missing on the React Typescript web frontend

and end-to-end tests to compliment the system. Despite this, the tests that are currently in

place cover the two out of three primary aims of the project, namely:

Can Music Make You Run Faster?

1739325 40

1. To create a mobile application for Android, integrating at least 1 running application

and 1 music application.

2. To Đƌeate the ŶeĐessaƌǇ logiĐ ƌeƋuiƌed to eŶaďle a ĐoŵpaƌisoŶ ďetǁeeŶ the useƌ͛s
running activities and their listening history, comparing metrics such as pace and

average cadence to the music they were listening to.

Integration and behaviour driven development tests ensure that both the first and second

aim has been achieved, as integration and behaviour driven tests directly ensure that each

running and music application has been tested thoroughly, even in atypical situations where

access tokens have expired etc.

Integration and BDD tests directly ensure that both the first and second aims have been

achieved. To begin with, the first aim has been achieved fully due to the rigidity of the tests

that have been employed; integration and BDD tests assure that each running and music

application has been tested thoroughly, including each stage of interaction; from OAuth2

token acquisition to querying each data source with variable parameters. Each test added

gives more and more confidence that the first aim has been achieved, and that the application

has versatility and portability through the interchangeable use of testing with a mock-API and

the ͞ƌeal͟ API.

The second aim has been fully achieved predominantly by the BDD tests, where the logic

ƌeƋuiƌed to eŶaďle a ĐoŵpaƌisoŶ ďetǁeeŶ useƌ͛s ƌuŶŶiŶg aŶd ŵusiĐ is directly queried. BDD

tests as previously mentioŶed iŶ ͞ “peĐifiĐatioŶ aŶd DesigŶ͟ use GheƌkiŶ sǇŶtaǆ as iŶstƌuĐtioŶs
to run each test, and the screenshots of each business requirement can be found in

appendices A-E. Appendix E details a set of business requirements that directly require the

use of multiple data sources and expected results for each, thus proving that the necessary

logiĐ ƌeƋuiƌed to eŶaďle a ĐoŵpaƌisoŶ ďetǁeeŶ the useƌ͛s ƌuŶŶiŶg aĐtiǀities has been made.

The latteƌ paƌt of the seĐoŶd ƌeƋuiƌeŵeŶt iŶĐludes the ͞[comparison] of metrics such as pace

aŶd aǀeƌage ĐadeŶĐe to the ŵusiĐ theǇ ǁeƌe listeŶiŶg to.͟ This project has only been

successful in using the average pace metric and has been tested again using BDD tests. Each

BDD test iŶǀolǀes a ͞giǀeŶ͟ step, iŶ ǁhiĐh ǀaƌiaďle data ĐaŶ ďe iŶseƌted and objects can be

created from this. For example, it is possible to have two different activities where one has a

faster pace than the other, and accordingly this concept has been adopted in the BDD tests

to ensure that the second requirement is proven to its full capacity.

5.3.4 General project evaluation

The success of the project can also be assessed in terms of overall user acceptance, and not

just the aims of the project. UAT results saw users generally satisfied with the solution

produced, with 8Ϭ% of testeƌs ƌatiŶg theiƌ eǆpeƌieŶĐe as ͞good͟ iŶ UAT question 15. The

concept of the application has also been tested against, with UAT question 9 asking if users

would change the music they listen to based on the insights produced by the app, with 80%

of users saying they would. In a similar question, UAT question 13, 100% of respondents found

the web application useful, and 80% of users would use the application were it to be available

publicly (as shown in UAT question 14).

Can Music Make You Run Faster?

1739325 41

The responses to the aforesaid questions also undoubtably reinforce the idea that this project

is a success, and there is an appetite from testers to see more functionality. As a result, the

authoƌ͛s opiŶioŶ of this pƌojeĐt ďeiŶg a suĐĐess is strengthened by this hypothesis. However,

in UAT question 16 and 17 said they would like to see some organisation of songs being

displayed, whether it be alphabetical or sorted by impact. This shows that there is still room

for improvement with the solution, and the provided software has created a strong base for

future development.

5.4 FUTURE TESTS REQUIRED

As pƌeǀiouslǇ ŵeŶtioŶed fƌoŵ the ͞EǀaluatioŶ fƌoŵ UAT, BDD aŶd TDD͟ seĐtioŶ, the Ŷeǆt
round of UAT must take place on a multi-platform level to prove smartphone capability. This

set of UAT would provide full confidence in the system, as only at this stage would the aims

of the project be fully tested against.

The other aspect of testing that is required is to expand the level of BDD and TDD tests that

are currently employed within the system. Current BDD tests do not cover an end-to-end level

of testing when using the web application, nor TDD tests on the web application to prove a

robust application has been produced. These tests are essential, as without these tests no

grounded confidence can be given to the system when required to perform as expected.

5.5 SUMMARY AND CRITICAL APPRAISAL OF APPROACH

Based on the collective evidence shown in this section and the evidence presented within the

͞iŵpleŵeŶtatioŶ͟ seĐtioŶ, the author has a strong belief that all major aims and objectives

have been completed, but further testing is required to give full confidence of a fully robust

and functional solution. User sentiment from UAT supports this as previous shown in this

section, with some small improvements suggested by users.

In future, further testing should include multi-platform UAT, as well as a small change in BDD

tests to iŶĐƌease oǀeƌall test Đoǀeƌage. This iŶĐƌease iŶ ͞teĐhŶiĐal͟ testiŶg should also lateƌ
include deployment testing as to ensure the system maintains its crucial ability to be versatile

and operate on as many mobile platforms as possible as per the original aims of this project.

Overall, coupled with some small adjustments stated above, a great basis for future

development on this project has been created with all primary and some secondary aims

achieved. If a percentage of completion is required to be stated, a confident figure of 80%

completion could be given. The remaining 20% is unknown, as there are no mobile platform

tests to prove the system works. This 80% figure could be higher as the system could work as

intended on smartphones, but as aforementioned there is no real way of knowing unless

tested.

By achieving this 80% figure, suppoƌt foƌ the authoƌ͛s ĐhoiĐe of adoptiŶg BDD, TDD aŶd aŶ
AGILE methodology is given. If the author were to choose a waterfall methodology to begin

with, the project would have most likely suffered as an agile methodology allowed the author

to gain flexibility with what frontend was used. This flexibility was paramount as the

development of the project would have to have been restarted due to the compatibility issue

Can Music Make You Run Faster?

1739325 42

between the Xamarin project and the .Net Core backend as highlighted in the implementation

section. An AGILE methodology allowed enough freedom to avoid this, and plan well enough

in advance to allocate enough time to create a replacement web frontend.

In terms of technology used, it was the correct choice to use a .NET backend. Due to the

original secondary aim of supporting iOS and Android, a decision was made to have a

centralised backend and only use the mobile apps for iOS and Android as a user interface,

with no business logic stored in either app. This gave the author a relatively painless transition

to switch to a web frontend when the time came.

If the business requirements were different, and the project was focussed on creating an

android only application, the technology used would have been different. Instead, Android

“tudio ǁould͛ǀe ŵost likelǇ ďeeŶ used iŶstead, ǁith all ďusiŶess logiĐ stoƌed ǁithiŶ the

android app that would have been developed. This approach would have avoided the

compatibility issue with a .NET core backend but would also be exclusively locked into Android

support only. As such, the author believes this versatility provided by avoiding using

technology such as Android studio has meant that the project was able to continue despite

adversity, and if this alternate approach faced the same problems as the original approach

faĐed, this pƌojeĐt͛s ĐoŵpletioŶ ǁould Ŷot ďe ǁhat it is todaǇ.

Using C# did have its limitations, however. As an object orientated language, simple

operations can have a large amount of complexity, and a lot of time had to be spent on

ensuring a good design was adopted throughout development of the system. Coupled with

the technical overhead of using BDD and fakes, the process had to be repeated for both

͞eŶds͟ of the sǇsteŵ, ŵeaŶiŶg that sĐƌapped seĐoŶdaƌǇ featuƌes suĐh as the suggested music

functionality could have been included if time were not spent on ensuring a robust OOP-SOLID

design.

Building on the limitations of BDD, adopting the process of testing-develop-refactor meant

that a lot of overhead code had to be developed to ensure confidence was given in the system.

The benefit of this confidence is immeasurable, but time spent working on BDD tests could

have otherwise been spent on developing other secondary features. This would have come

at the cost of robustness of the system, but otherwise would have advanced the system to

achieve more aims.

Overall, the author believes that a great foundation for future development has been

established, with the correct choice of methodology, techniques and programming languages

used. These choices may have come at the cost of some features that were originally included

within scope, but instead confidence has been put in place that ensures functionality really

does work as expected.

Can Music Make You Run Faster?

1739325 43

6 FUTURE WORK

When this project first began, some features have been removed from scope. For example,

oŶe of the seĐoŶdaƌǇ aiŵs ǁas to Đƌeate a ͞a secure login system, complimented with back-

end database to store user information͟. The current state of the system does not require

this and would only require this feature if the application had the need to store user data over

a long period of time.

As this project began and end as a prototype, there is a large potential for future work to be

performed on this project. In the immediate term, the very first thing that needs to be done

is to update the BDD tests. This ǁould iŶǀolǀe ƌefaĐtoƌiŶg of logiĐ iŶ the ͞ApiClieŶtDƌiǀeƌ͟ to

ďetteƌ ƌefleĐt the ĐuƌƌeŶt state of the sǇsteŵ, aŶd the ĐƌeatioŶ of a ͞WeďClieŶtDƌiǀeƌ͟, ǁhiĐh
would involve the use of the web frontend in testing. This would also involve the addition of

TDD tests for the React application. Had I not run out of time, this would and should have

been completed.

To support automated testing and a DevOps CI and CD approach, GitHub actions could then

be employed to automatically test any updates to the application and ensure the portability

of the solution on multiple platforms.

After this, the project would have good grounding for more additional features. As this project

only has the ĐapaďilitǇ to Đoŵpaƌe aĐtiǀities ďased oŶ the useƌ͛s aǀeƌage speed, it ǁould ďe
apt to iŶĐƌease the Ŷuŵďeƌ of ͞iŶsights͟ giǀeŶ to the useƌ i.e., the user should also be able to

determine what songs are best for their pace. These insights could then be extended to what

genre is best for their exercises, or even finding the artist that has the greatest effect on the

useƌ͛s ƌuŶŶiŶg aĐtiǀitǇ. The addition of this functionality would most likely take place in the

medium term, because it would be necessary for a small amount of refactoring of backend

logic to support different metrics being measured other than average speed.

As the project was built in a scalable manner, theƌe is ŵoƌe poteŶtial foƌ otheƌ ͞data souƌĐes͟
to be added to the project, including more activity tracking applications and music

applications. In the medium term, this would be ideal for users as this gives them more

flexibility of choice when it comes to what services they would like to connect to the

application. In the longer term, more data sources offer the opportunity to compare other

activities that differ from running such as cycling, walking, and hiking. Again, this would create

more flexibility for the user, and force the application to be more robust as more logic is

added.

Current data sources in the system also need adjustment, namely Spotify and Fitbit. As

aforementioned, Spotify is currently limited to returning 50 songs, and Fitbit can only get

activities from the current week. As such, a storage system could be corrected that adds

activities and music as an authenticated user logs them. However, this would increase the

complexity of the project and require several security and data protection environments,

potentially exceeding the scope of what is required for the system.

The user knowing the state of the system is also very important, especially for a project such

as this. It has been considered to include the potential use of highlighting dates on a calendar

Can Music Make You Run Faster?

1739325 44

where activities have taken place once the user has connected their running history. This

however would require significant modification to the system to be a complete feature, as

the solution currently only gets activities within the specified date range and not the useƌ͛s
complete activity history.

As this project has always been user-need centred, in the longer term more features can be

added that will complement their needs. As a React Typescript frontend has been used, the

opportunity for mobile usage has been retained. A mobile app could be created containing a

simple integrated web browser that is directed at the website, and as a result would give

mobile users access to the application. This however would require hosting of the web

frontend and the API backend, as ǁell as the poteŶtial ƌeƋuiƌeŵeŶt of a ͞seĐoŶdaƌǇ͟ ǁeďsite
that would serve mobile-sized content instead of using the frontend that has been produced

so far.

This application also has the potential to offer more advanced features, including automatic

creation of a playlist based on what songs made them run faster, as well as more in-depth

analysis of running activities. For example, this would include analysis of Strava Segments and

the metrics produced from each attempt. However, the complexity of a feature such as this

would increase dramatically as more data sources are added. This is because of a need of

uniformity across each activity data source, and as a result each data source would be

required to offer the same functionality (if possible).

Can Music Make You Run Faster?

1739325 45

7 CONCLUSIONS

When this project started, its simple aim was to really determine if music could make you run

faster. This was meant to be achieved by producing a mobile application that allowed users

to connect their running and music applications, and then displaying a list of songs to the user

that ŵakes theŵ ƌuŶ fasteƌ. EaĐh soŶg ǁas ŵeaŶt to ďe ͞pƌoǀeŶ͟ to ŵake the useƌ ƌuŶ faster,

as each song would be taken from their fastest running activitǇ. This ͞fastest͟ aĐtiǀitǇ ǁas
meant to originally meant to measure multiple metrics, including average speed and pace,

but ultimately receded to just average speed.

This project was also coupled with several primary and secondary aims, including:

1. To create a mobile application for Android, integrating at least 1 running application

and 1 music application.

2. To Đƌeate the ŶeĐessaƌǇ logiĐ ƌeƋuiƌed to eŶaďle a ĐoŵpaƌisoŶ ďetǁeeŶ the useƌ͛s
running activities and their listening history, comparing metrics such as pace and

average cadence to the music they were listening to.

3. To create a user-centred, clean user interface that is fit for purpose and encourages

ease of use.

To supplement the aims above, secondary aims were also set for this project:

1. To create a secure login system, complimented with back-end database to store user

information.

2. To extend the logic comparing music and running activity data, enabling the user to

view various impacts and music on their activity.

3. To extend the functionality to suggest other songs that may be used to increase a

useƌ͛s ƌuŶŶiŶg aǀeƌage paĐe.

Based on the evidence presented throughout this report, it is the authoƌ͛s stƌoŶg ďelief that
all primary aims have been achieved, with strong foundations in place to implement the

remaining secondary aims. Some of said secondary aims have been removed from scope,

including the creation of a secure login system. Plans for this project to support Android and

iOS were at the centre point of this project as it began, but due to a lack of prototyping and

research it had to be scrapped in favour of a web frontend. A web frontend now exists in their

place that should be compatible on all smartphones, regardless of what operating system

they run.

This project also adopted several techniques that are pioneering the software development

world, namely TDD and BDD. These techniques prioritised testing above all else, and

ultimately gives this system enough confidence to know that all 3 primary objectives have

been achieved, and without it, there would be no way of knowing for sure.

User Acceptance Testing was also at the forefront of this project and was only implemented

towards the end of the project, instead of its original intention of taking place throughout

development. The evidence gathered from the singular round of testing overwhelmingly

suppoƌted the authoƌ͛s seŶtiŵeŶt that the system achieved all primary goals.

Can Music Make You Run Faster?

1739325 46

There is some more room for improvement however, with only small changes in the codebase

and a few additional layers of tests required to ŵake the sǇsteŵ ͞peƌfeĐt͟. Other limitations,

such as the Spotify recently played limit have hindered the potential applications of the

system but have been constituted by features provided by other sources such as Last.FM.

In conclusion, a substantial foundation for future development has been established with all

primary aims being achieved. Despite facing adversity within numerous technical problems,

this project was able to deliver a mobile-compatible interface that can display a list of songs

to the user that make them run faster. Whether said songs will make the user run faster is

another question and will surely require more testing with the opinion of users on whether

they truly believe the songs produced by this app makes them run faster.

Can Music Make You Run Faster?

1739325 47

8 REFLECTION ON LEARNING

Completing this project has been paramount in advancing the authors skills as a software

developer, especially in understanding how best to utilise web APIs and building a system

around them. As a learning process, there have been some issues faced throughout the

course of this project that have been detailed below.

The largest issue that the author faced throughout development was time management.

Often delivery times of stories was arbitrary at best, and often ǁas Ŷot ͞ tiŵeďoǆed͟ ĐoƌƌeĐtlǇ.
Each story was different, and for most of the time the author was faced with one or more

unexpected issues throughout each sprint, as to be expected. To improve, this could be solved

in multiple ways. The first way is to reduce the size of each story into more manageable

chunks – arbitrary story completion times suggest that not every story was the same size due

to a lack of substantial refinement, aŶd as suĐh the authoƌ͛s aďilitǇ to ƌeseaƌĐh aŶd ƌefiŶe
stories should be improved in future.

The seĐoŶd ŵethod of iŵpƌoǀiŶg the authoƌ͛s tiŵe ŵaŶageŵeŶt ǁould ďe to spend more

time at the end of each sprint to reflect on the challenges faced whilst working on each story

and identify and problems that often resurfaced. Future work after the end of sprint would

then move to avoid these areas, and if not possible, work on a solution minimize the problem

as much as possible. Time management issues often resurface due to a lack of reflection, and

as such this method should be adopted to ensure that the assumptions of how long a task

should take is always being challenged to best reflect the authoƌ͛s aďilitǇ.

Another issue that the author faced throughout development was a lack of research into

future actions / technologies being used. This is most prevalent with the failure to implement

a mobile frontend; had the author attempted to prototype much earlier into the development

cycle, or spent more time investigating the capability of using Xamarin and a .NET Core

backend. Had the author had to repeat this project again, he would have chosen to spend the

first few weeks creating a basic prototype to ensure that all the plans he had for the project

were achievable, and that plans were in place should the possibility of a mobile frontend not

be possible.

Conversely, this project has highlighted the importance of adopting good software

development techniques and practises. BDD and TDD enveloped the project in a large amount

of technical and time overhead, but ultimately proved paramount in determining the success

of the system. Without using BDD and TDD, arguably more time could have been spent fixing

code after it had been manually tested as the testing architecture created by using this

technique allows for easy identification of what functional components are causing issues.

Additionally, the author believes that his ability to plan paid off in this project. Whilst the

project suffered from meaningful enough research, secondary and tertiary plans were always

put in place as fallbacks in case anything failed. This came to fruition especially with the failure

to implement a Xamarin frontend, as without the foreplaning to use a web frontend this

project would not have come as far as it did.

Can Music Make You Run Faster?

1739325 48

The only remaining change the author would like to make for future projects would be to

make the project as full stack as possible. This project suffered with a lack of direction in the

early stages due to the author wanting to develop as much as possible within the smallest

time possible. As such, the author felt that it was possible to develop a Xamarin frontend

tailoring for both iOS and Android, without focussing on solely one or the other. Because of

this, BDD tests were only designed to have coverage up until the REST API stage, until the web

frontend was added consequently added time being wasted attempting to get the BDD tests

updated with the remainder of the system, something that the author failed to incorporate

in the end.

Full stack development would avoid this scenario and would mean that BDD tests have

maximum coverage as early on in development as possible. In future projects, the author will

choose to adopt this technique in the hope that time wasted is minimized, and more time can

be spent on providing functionality for the system.

Can Music Make You Run Faster?

1739325 49

9 TABLE OF ABBREVIATIONS

Abbreviation Meaning

͚API͛ Application Programming Interface.

͚BPM͛ Beats per Minute.

͚BDD͛ Behaviour Driven Development.

͚CI͛ Continuous Integration.

͚CD͛ Continuous Deployment.

͚PKCE͛ Proof Key for Code Exchange.

͚TDD͛ Test Driven Development.

͚‘eaĐt T“͛ React TypeScript.

͚UAT͛ User Acceptance Testing.

Can Music Make You Run Faster?

1739325 50

10 APPENDICES

Appendix A – Typical Gherkin business requirement (Also the Spotify business

requirement).

Appendix B – Get a useƌ͛s Strava running history.

Can Music Make You Run Faster?

1739325 51

Appendix C – Get a useƌ͛s Last.FM listeŶiŶg histoƌǇ.

Appendix D – Get a useƌ͛s Fitbit running history.

Can Music Make You Run Faster?

1739325 52

Appendix E – Comparison business requirements.

Can Music Make You Run Faster?

1739325 53

Appendix F – Highest level system overview

Appendix G – Highest level testing architecture.

Can Music Make You Run Faster?

1739325 54

Appendix H – Web user interface

Can Music Make You Run Faster?

1739325 55

Appendix I – partial screenshot of Kanban board.

Appendix J – Example Strava data flow.

Can Music Make You Run Faster?

1739325 56

Appendix K – Xamarin mock-ups.

Can Music Make You Run Faster?

1739325 57

Appendix L – UML Activity diagram

Can Music Make You Run Faster?

1739325 58

11 REFERENCES

1. Bonette, R et al. 2012. The Effect of Music Listening on Running Performance and Rating of

Perceived Exertion of College Students. The Sport Journal Volume 41, Issue 2. Doi:

https://thesportjournal.org/article/the-effect-of-music-listening-on-running-performance-

and-rating-of-perceived-exertion-of-college-students/

2. Runner͛s ǁoƌld. ϮϬϭ8. Hoǁ MuĐh Does MusiĐ Help You During a Run? ‘uŶŶeƌ͛s ǁoƌld. 1

November. Available at: https://www.runnersworld.com/training/a23471165/how-much-

does-music-help-during-a-run/ [Accessed: 11 April 2021]

3. Cucumber. 2019. Tools & Techniques that elevate teams to greatness. Available at:

https://cucumber.io/ [Accessed: 22 April 2021]

4. Apple. 2020. Improve your Workout and Activity accuracy. Available at:

https://support.apple.com/en-gb/HT204516 [Accessed: 22 April 2021]

5. PractiCal. 2020. A 12-Week “tudǇ of the AĐĐuƌaĐǇ of the Apple WatĐh͛s Caloƌie TƌaĐkiŶg.
Available at: https://medium.com/@practical_app/a-12-week-study-of-the-accuracy-of-the-

apple-watchs-calorie-tracking-ed672cb5c333 [Accessed: 22 April 2021]

6. Mulligan, M. 2020. Music Subscriber Market Shares Q1 2020. Available at:

https://www.midiaresearch.com/blog/music-subscriber-market-shares-q1-2020 [Accessed:

22 April 2021]

7. Zamorski, H. 2018. Spotify Running Is Gone, Check These Best Alternatives. Available at:

https://www.drmare.com/spotify-music/spotify-running-alternative.html [Accessed:

06/05/2021]

8. Spotify. 2018. Retirement of our Running Feature. Available at:

https://community.spotify.com/t5/Content-Questions/Retirement-of-our-Running-

Feature/td-p/4383603 [Accessed: 06/05/2021]

9. Independence Blue Cross. Music Apps to Help You Run Faster and Smarter. Available at:

https://www.phillymag.com/sponsor-content/music-apps-to-help-you-run-faster-and-

smarter/ [Accessed: 06/05/2021]

10. Runkeeper. 2016. Introducing Runkeeper + Spotify Running! Available at:

https://runkeeper.com/cms/rkrunner-guide/use-the-app/introducing-runkeeper-spotify-

running/ [Accessed: 06/05/2021]

11. Alger, K. 2021. Nike ‘uŶ Cluď: Hoǁ to use Nike͛s app to ďeĐoŵe a ďetteƌ ƌuŶŶeƌ. Aǀailaďle
at: https://www.wareable.com/running/nike-plus-run-club-guide-how-to-use-running-430

[Accessed: 06/05/2021]

12. Lobby, M. 2013. Running Technique: The importance of Cadence and Stride. Available at:

https://www.active.com/running/articles/running-technique-the-importance-of-cadence-

and-stride [Accessed: 06/05/2021]

13. Strava. 2020. Strava Segments. Available at: https://support.strava.com/hc/en-

us/articles/216918167-Strava-Segments [Accessed: 06/05/2021]

14. Strava. 2021. Strava Authentication. Available at:

https://developers.strava.com/docs/authentication/ [Accessed: 27/05/2021]

15. Pickett, M. 2016. Running Apps for Music Lovers. Available at:

https://www.consumerreports.org/cell-phones-services/running-apps-for-music-lovers/

[Accessed: 06/05/2021]

16. Corpuz, J. 2021. Best running apps for 2021. Available at:

https://www.tomsguide.com/uk/round-up/best-running-apps [Accessed: 06/05/2021]

https://thesportjournal.org/article/the-effect-of-music-listening-on-running-performance-and-rating-of-perceived-exertion-of-college-students/
https://thesportjournal.org/article/the-effect-of-music-listening-on-running-performance-and-rating-of-perceived-exertion-of-college-students/
https://www.runnersworld.com/training/a23471165/how-much-does-music-help-during-a-run/
https://www.runnersworld.com/training/a23471165/how-much-does-music-help-during-a-run/
https://cucumber.io/
https://support.apple.com/en-gb/HT204516
https://medium.com/@practical_app/a-12-week-study-of-the-accuracy-of-the-apple-watchs-calorie-tracking-ed672cb5c333
https://medium.com/@practical_app/a-12-week-study-of-the-accuracy-of-the-apple-watchs-calorie-tracking-ed672cb5c333
https://www.midiaresearch.com/blog/music-subscriber-market-shares-q1-2020
https://www.drmare.com/spotify-music/spotify-running-alternative.html
https://community.spotify.com/t5/Content-Questions/Retirement-of-our-Running-Feature/td-p/4383603
https://community.spotify.com/t5/Content-Questions/Retirement-of-our-Running-Feature/td-p/4383603
https://www.phillymag.com/sponsor-content/music-apps-to-help-you-run-faster-and-smarter/
https://www.phillymag.com/sponsor-content/music-apps-to-help-you-run-faster-and-smarter/
https://runkeeper.com/cms/rkrunner-guide/use-the-app/introducing-runkeeper-spotify-running/
https://runkeeper.com/cms/rkrunner-guide/use-the-app/introducing-runkeeper-spotify-running/
https://www.wareable.com/running/nike-plus-run-club-guide-how-to-use-running-430
https://www.active.com/running/articles/running-technique-the-importance-of-cadence-and-stride
https://www.active.com/running/articles/running-technique-the-importance-of-cadence-and-stride
https://support.strava.com/hc/en-us/articles/216918167-Strava-Segments
https://support.strava.com/hc/en-us/articles/216918167-Strava-Segments
https://developers.strava.com/docs/authentication/
https://www.consumerreports.org/cell-phones-services/running-apps-for-music-lovers/
https://www.tomsguide.com/uk/round-up/best-running-apps

Can Music Make You Run Faster?

1739325 59

17. Coleman, A et al. 2021. Fitbit.NET Api Client Library. Available at:

https://github.com/aarondcoleman/Fitbit.NET [Accessed: 06/05/2021]

18. Dellinger, J et al. 2021. SpotifyAPI-NET. Available at:

https://github.com/JohnnyCrazy/SpotifyAPI-NET [Accessed: 06/05/2021]

19. Inflatable Friends et al. 2020. Inflatable Last.fm .NET SDK. Available at:

https://github.com/inflatablefriends/lastfm [Accessed: 06/05/2021]

20. Dykstra, T et al. 2020. Kestrel web server implementation in ASP.NET Core. Available at:

https://docs.microsoft.com/en-

us/aspnet/core/fundamentals/servers/kestrel?view=aspnetcore-5.0 [Accessed: 06/05/2021]

21. NUnit. 2019. What is NUnit? Available at: https://nunit.org/ [Accessed: 06/05/2021]

22. SpecFlow, 2020. Behaviour Driven Development for .NET. Available at: https://specflow.org/

[Accessed: 06/05/2021]

23. Mulligan, M. 2020. Music Subscriber Market Shares Q1 2020. Available at:

https://www.midiaresearch.com/blog/music-subscriber-market-shares-q1-2020 [Accessed:

24/05/2021]

24. Last.FM. 2020. Music counts. Track, find and rediscover music. Available at:

https://www.last.fm/about [Accessed: 24/05/2021]

25. Nielsen, J. 1994. 10 Usability heuristics for User Interface design. Available at:

https://www.nngroup.com/articles/ten-usability-heuristics/ [Accessed: 26/05/2021]

26. Douglas, R. 2021. Final Year Project Kanban Board. Available at:

https://github.com/users/TheRealDougie1/projects/4 [Accessed:26/05/2021]

27. Nair, J. 2018. TDD vs BDD – What is the difference between TDD and BDD. Available at:

https://blog.testlodge.com/tdd-vs-bdd/ [Accessed: 26/05/2021]

28. Stylecop, 2021. StyleCop Analyzers for the .NET compiler platform. Available at:

https://github.com/DotNetAnalyzers/StyleCopAnalyzers [Accessed:27/05/2021]

29. Fitbit, 2020. Get Activity Logs List shows different data as Fitbit App. Available at:

https://community.fitbit.com/t5/Web-API-Development/GET-Activity-Log-List-shows-

different-data-as-Fitbit-App/td-p/4534912 [Accessed: 27/05/2021]

https://github.com/aarondcoleman/Fitbit.NET
https://github.com/JohnnyCrazy/SpotifyAPI-NET
https://github.com/inflatablefriends/lastfm
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel?view=aspnetcore-5.0
https://nunit.org/
https://specflow.org/
https://www.midiaresearch.com/blog/music-subscriber-market-shares-q1-2020
https://www.last.fm/about
https://www.nngroup.com/articles/ten-usability-heuristics/
https://github.com/users/TheRealDougie1/projects/4
https://blog.testlodge.com/tdd-vs-bdd/
https://github.com/DotNetAnalyzers/StyleCopAnalyzers
https://community.fitbit.com/t5/Web-API-Development/GET-Activity-Log-List-shows-different-data-as-Fitbit-App/td-p/4534912
https://community.fitbit.com/t5/Web-API-Development/GET-Activity-Log-List-shows-different-data-as-Fitbit-App/td-p/4534912

