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Abstract 
In modern times we often find that, while the data of today is standardised and helpful, older data is 

less structured and, as such, may only contain small bits of information pertaining to the subject 

matter. This issue presents us the task of filling in this missing information in order to ensure all data 

is correct and up to date. 

In this regard, we consider the example of digitising collections for ecological documentation and 

preservation, in which older documents may only contain natural language descriptions of specimen 

locations. These older documents often lack clear coordinates for the specimen location, and as such 

present a challenge in mapping the spatial and temporal locations of various species. 

To make an attempt at solving this problem (and others like it), this paper presents the project 

AIGlobe – a web application designed to employ machine learning methods for Named Entity 

Recognition (NER) in order to tag locations in natural language captions, then resolve those entities 

into definite locations and map them on an interface for users to explore.  

This paper will document the development process of AIGlobe, as well as evaluating its performance 

and defining the successes and difficulties of this project. 
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1 - Introduction 
The task of digitising collections is, objectively, an arduous task. Many museums (and other 

organisations) across the globe are in possession of incredible amounts of historic data, and tens of 

thousands of hours of manpower have been invested into digitising and modernising these 

repositories. 

With the advent and popularisation of machine learning techniques, this task is becoming more and 

more viable to hand off to machines. Instead of manually annotating each record, it is now possible 

to hand huge collections of records off to a deep learning algorithm and allow it to automatically 

process in 10 minutes what one person could process in a day. 

This project aims to process these natural language captions, tag the location entities that it reads 

within them, and then display those captions on a map for a user to interact with. The intended 

beneficiaries of such a project would be those involved with the digitisation task mentioned at the 

start of this section. An intended use would be to allow a digitisation professional to upload a file 

containing a series of natural language captions, each describing the location of a given specimen. 

The application would then process this series of captions, tagging the location entities that it finds 

within them and displaying them on the map as well as any relevant data.  

This offers two benefits. The first would be the quick and automated processing of a potentially 

repetitive and time-consuming task. The second would be the collection of specimen data in a 

central repository, with the opportunity of graphically displaying the locations of the specimen on a 

map, as opposed to just displaying textual descriptions of these locations. This graphical display may 

lead to connections being seen that possibly would not be noticed in the pure textual processing of 

this data. 

It also presents an opportunity to assist in the current task of manual georeferencing, where a 

caption is too complex for the program to entirely pinpoint. The assistance would still greatly reduce 

the manpower needed, reducing the task from full georeferencing to simple validation.  

The project will take the form of a web application, which will be able to be used as an interface to 

interact with the processing features. The scope of the project aims to include a graphical front-end 

map interface, the machine learning features of the back end, and a database to store processed 

data. 

Extra scope includes the uploading and serving of files from user to server and vice versa, as well as 

potential geographical indexing of stored data. 

The described project is effectively a general-purpose natural language processing and mapping 

website, and so in order to define clear and helpful functionality, this project has been assumed to 

be used for the purposes of the problem of collection digitisation. 

In broad terms, this project is expected to generate a web application capable of processing and 

georeferencing natural language captions, as well as storing and processing data in an efficient and 

robust manner. 
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2 – Background 
This section will provide some background on the area surrounding the project, as well as the 

project itself. It aims to provide familiarisation with the concepts and challenges related to this 

project. 

2.1 - The Issue at Hand 

Expanding on the original issue detailed in the Introduction section, this project is aimed at being 

used for the digitisation of historic collections. Where current specimen records are much more 

standardised and contain perfect latitude and longitude coordinates, older specimens tend to be 

described only by natural language references to location. While the scope of this project is limited 

(see section 2.5), it will attempt to use these natural language descriptions to infill a latitude and 

longitude (or multiple) for each specimen. 

Below are three examples of descriptions that can be used to describe specimen locations: 

• ͞NgaƌaƌatuŶua CoŶe, Kaŵo, WhaŶgaƌei Co.͟ 

• ͞DoǁŶlaŶds at GleŶiti, Tiŵaƌu, oŶ ǁest side of MoƌgaŶs ‘oad, ϯϬϬǇd Ŷoƌth fƌoŵ Tiŵaƌu-

ClaƌeŵoŶt ‘oad͟ 

• ͞BelŵoŶt AƌŵǇ ‘eseƌǀe, ϰϬǇds south of ŵagaziŶe ϯ7͟ 

The aim of this project is to create a system which can automatically process these natural captions 

and generate a given address for each of the specimen locations that it encounters. 

2.2 - Stakeholders 

Fuƌtheƌ to the seĐtioŶ aďoǀe, the speĐifiĐitǇ of this assuŵptioŶ of the pƌojeĐt͛s use alloǁs us to 

identify key stakeholders in the use of such an application. 

Clearly, this project would be most useful to those who are in possession of large historical 

collections, and who are interested in the digitisation and modernisation of their data. 

Organisations matching that description include museums such as the National Museum of Wales, 

the National Museum of England, etc. The National Museum of Wales have already expressed an 

interest in a project of this type and have kindly provided this project with a dataset to allow us to 

build the project with example data in mind. Further to this, a New Zealand-based company, 

Landcare, have also provided a second dataset for the same purpose.  

2.3 - An Introduction to NLP and NER 

For this project, we will be using two concepts – Natural Language Processing (NLP) and Named 

Entity Recognition (NER). 

These two concepts are integral to the function of this project, and they describe the solutions to 

task described in the Introduction section - NLP is a subdivision of machine learning, specifically the 

process of teaching a machine learning algorithm to process natural language, i.e., the language that 

this paper is written in. Natural language is not usually something that computers can process – 

human language can be vague, or subtle, or implicit, in ways that a computer cannot understand. 

Machines require structured, predictable, explicit language, features which unstructured natural 

language does not provide. 

NLP aims to solve this problem – machine learning algorithms can use statistical models and 

language processing rules to guess the meaning of natural language, in order to bridge the 

communication gap between human and computer. NLP is used in many modern technologies, most 
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notably smart phone- and home-assistaŶts suĐh as Google͛s AssistaŶt (Singh, 2016) aŶd AŵazoŶ͛s 
Alexa (Gonfalonieri, 2018) 

This project focuses on a further subdivision of NLP known as Named Entity Recognition (NER). NER 

ĐaŶ ďe defiŶed as ͞the task of ideŶtifǇiŶg aŶd ĐategoƌiziŶg keǇ iŶfoƌŵatioŶ ;eŶtitiesͿ iŶ teǆt͟ 
(Marshall, 2019). A statistical model classifier is used to determine the nature of an entity based on 

the context of the caption around it. The classifier is expected to resolve ambiguity issues, for 

example the entity ͞IŶdia͟. IŶdia is a geopolitiĐal eŶtitǇ, ďut also a ĐoŵŵoŶ Ŷaŵe foƌ a huŵaŶ. A 
good NER tool will be able to distinguish which of these natures is implied, based on the context that 

it reads. 

2.4 – Statistical NLP Models 

Another key concept to the functioning of this project is the use of a statistical model known as an 

NLP model. As NLP belongs to the domain of artificial intelligence and machine learning, it follows 

that the NLP algoƌithŵ Ŷeeds to haǀe a ͞kŶoǁledge ďase͟ to iŶduĐe iŶfoƌŵatioŶ aŶd make decisions 

on unseen data. 

For NLP, this knowledge base is known as a statistical model and describes, statistically, the rules 

and knowledge that the NLP algorithm uses to decide whether a candidate entity is correct (in its 

opinion), or whether it is a false positive. 

These statistical models can vary wildly in size and efficiency, depending on the data that they were 

trained on, and different statistical models are suitable for different tasks. 

Many NLP packages include inbuilt statistical models for ͞out-of-the-ďoǆ͟ use, aŶd a feǁ of theŵ 
have functionality for training new statistical models based on the inbuilt statistical models. 

2.5 - Geo-Geo- and Non-Geo-Geo-Ambiguity 

The ͞IŶdia͟ issue mentioned in section 2.3 is a well-known problem in the study of georeferencing. It 

is referred to as Non-geo-geo-ambiguity, in which a geographical entity can be confused with a non-

geographical entity. 

The sister issue to this is also an issue that will have to be addressed in this project. Known as geo-

geo-ambiguity, it describes the issue of disambiguating a place name that occurs multiple times in a 

given space. For example: there are 15 instances of a town or city in the world which are named 

͞‘aleigh͟. Foƌ a huŵaŶ, it is usuallǇ easǇ to disambiguate these occurrences automatically and 

subconsciously, based on context, but this presents a larger issue for a computer.  

2.6 - Relative References and Project Constraints 

Natural language can, at times, be vague. There are a multitude of ways to express an idea, and this 

Đase ƌeŵaiŶs tƌue ǁheŶ desĐƌiďiŶg the loĐatioŶ of a suďjeĐt. ͞ϯ ŵiles ǁest of “ǁiŶdoŶ͟, ͞Just at the 
eŶd of the ƌoad͟, aŶd ͞the iŶteƌseĐtioŶ of “haŶd aŶd TƌeŶt ‘oads͟ aƌe all eǆaŵples of relative 

relations, in which the location of the subject is described in relation to the location of another, 

usually more well-known object. There is an incredibly large number of ways to express these so-

called relative references, such that manually coding the recognition of each of these expressions is 

a futile task. 

This issue presents a large constraint, and solving it is beyond the scope of what can be expected for 

this project. In that regard, we will be ignoring relative references and instead simply tagging entities 

that are mentioned in a caption. For example, iŶ the eǆaŵple of ͞ϯ ŵiles ǁest of “ǁiŶdoŶ͟, the tag 
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will be placed directly on Swindon, as opposed to 3 miles west of Swindon. While this solution is less 

than perfect, and will lead to a loss of accuracy, it is a good compromise to the issue. 

2.7 – Evaluative Measures 

In order to evaluate the relative performance of a given NLP tool against a dataset, a value is 

needed. The F1 measure is introduced, which is defined as the harmonic mean of the precision and 

recall measures of a dataset: �ͳ = ʹ ∗ ݊݋�ݏ���ݎ݌ ∗ ݊݋�ݏ���ݎ݌�����ݎ + �����ݎ  

Where precision and recall are each defined as a ratio of true positives to true positives and false 

positives or true positives and false negatives, respectively: ݊݋�ݏ���ݎ݌ = ���� + �� �����ݎ                = ���� + �� 

Where TP, FP, and FN stand for True Positives, False Positives and False Negatives, respectively. 

In short, an F1 score approaching 1 is considered better performance. It is desirable to maximise the 

F1 score. 

The application of these equations with respect to the data used for this project will be expanded 

upon in section 6.1 

2.8 - Existing Solutions 

The idea of automated georeferencing, especially in the field of collection digitisation, is not an 

entirely new concept. (Van Erp et al., 2015) attempted a reasoning-based approach to collection 

digitisation for the Netherlands Centre for Biodiversity Naturalis. 

A 2004 paper (Murphey et Al, 2004) was published in order to evaluate four pre-existing automated 

georeferencing tools: 

• Biogeomancer (Beaman and Conn, 2003) 

• MANIS Georeferencing Calculator 

• GEOLocate 

• ArcView Georeferencing Extension 

The above-mentioned articles are certainly not an exhaustive list of attempts to solve this issue, and 

other evaluative papers list more automated georeferencing tools (Melo and Martins, 2017). 

It is clear, from the above, that the study of automated georeferencing is not an unsaturated field. It 

is worth noting, however, that the machine learning techniques used to automate georeferencing 

improve year upon year at an abnormal rate. With that in mind, it is felt that this project is justified 

in using modern techniques to improve upon the base performance of the georeferencing tools from 

the early 2000s. 

On a wider scale, there exists further solutions to georeferencing. The examples listed above all aim 

to tackle the issue of georeferencing for collection digitisation, but this is only one facet of the many 

issues to which automated georeferencing can be applied. 

Notable systems for automated geoparsing outside of the sphere of digitisation of collections 

include: 
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• Web-A-Where (Amitay et al, 2004) 

• SPIRIT (Jones, 2002) 

• Frankenplace (Adams, 2015) 

• STEWARD (Lieberman, 2007) 

Notably, with the exception of STEWARD, the above all make use of the old-style gazetteer method 

of geoparsing, with only STEWARD using the POS tagging and NER methods found in the newer, 

machine learning-based, style of georeferencing systems. 

The above systems all aim to tackle the issue of adding geospatial data to webpages in order to 

improve search engine relevancy. 

2.9 – Data Provided 

As mentioned in section 2.2, the National Museum of Wales has provided data in order to train the 

application. In addition to this, an organisation from New Zealand, called Landcare has also provided 

an example dataset. 

Between these two datasets, there will be sufficient data to provide examples for the application, as 

well as train the new statistical model that is mentioned in section 5.6 of this report. 

Examples of the provided data can be seen in the figures below: 

 

Figure 1 - An example of the Landcare Data 

 

Figure 2 - An example of the NMW data 

As ĐaŶ ďe seeŶ, the tǁo diffeƌ ǁildlǇ iŶ teƌŵs of theiƌ sĐheŵa. TheǇ ďoth, hoǁeǀeƌ, ĐoŶtaiŶ ͞loĐalitǇ͟ 
descriptions which represents the location of the specimen in question. 

AŶ iŵŵediatelǇ Ŷotaďle issue is the ƌelatiǀe ͞ŵessiŶess͟ of the data. “peĐifiĐally with the NMW 

data, it can be seen that points are referenced up to three times, and so the application must not 

assuŵe ͞ĐleaŶ͟ iŶput data and must contain functionality to expect and account for this. 
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3 - Justification of Tools 
This project will use the Python programming language as a server-side language. Python includes 

multiple libraries for NLP and NER, as well as other tools that will be necessary for the efficient 

implementation of this project. This section will present the range of tools to choose from and 

discuss the choice between them. 

3.1 - NER Tools 

There is a myriad of available NER tools online (Shen, 2019; Roldós, 2020), and so a choice needs to 

be made as to the choice of tool to use. 

The first thing to note about NER tools is the difference between the old-stǇle ͞ƌule-ďased͟ 
classifiers and the newer deep-learning algorithms that are used for NER. Today, most of the NER 

tools use this deep learning, but it is worth mentioning that this project will be disregarding any of 

the old rule-based classifiers, as a deep learning approach provides many advantages over rule-

based approaches, including better scalability (Smith, 2020) and the ability to train them. 

This project is, at its base, a web application. To that extent, it is a set requirement that it must be 

soŵeǁhat fast at pƌoĐessiŶg data. The issue is that the pƌopeƌties of ͞fast͟ aŶd ͞aĐĐuƌate͟ iŶ the 
domain of NER are somewhat mutually exclusive. The more accurate tools are, on average, slower. 

AŶ eǆaŵple of this ĐaŶ ďe seeŶ iŶ ;DishŵoŶ, [Ŷo date]Ϳ͛s ĐoŵpaƌisoŶ of NLTK aŶd “taŶfoƌd NE‘, 
ǁheƌe he ĐoŶĐludes that ͞It seeŵs “taŶfoƌd is ŵoƌe aĐĐuƌate, ďut NLTK is fasteƌ͟.  

With that in mind, Stanford will be ruled out as an option. Other viable options are now: 

• NLTK 

• SpaCy 

• Flair 

These NER tools are the forefront tools in the domain. The author of this paper has used NLTK 

before and found it to be difficult to use and not particularly well documented. This project will 

instead consider SpaCy versus Flair.  

The trade-off between the two tools is summed well by (Duffy, 2020). In short, both Flair and SpaCy 

haǀe good aĐĐuƌaĐǇ. Flaiƌ uses slightlǇ ŵoƌe ͞state-of-the-aƌt͟ teĐhŶologǇ thaŶ “paCǇ, ǁith the 
trade-off that ͞[Flaiƌ] is kŶoǁŶ to ďe sloǁ͟. DuffǇ goes oŶ to poiŶt out, hoǁeǀeƌ, that Flaiƌ ĐaŶ ďe 
optiŵised to the poiŶt ǁheƌe ͞[the] iŶfeƌeŶĐe tiŵe ĐaŶ ďe diǀided ďǇ ϭϬ͟ 

The table below was taken from this article, and sums the pros and cons of both tools: 
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Figure 3 - A Comparison of Flair and SpaCy 

The choice, then, falls to the above. As mentioned earlier, SpaCy trades accuracy for speed, and 

ŵisses out oŶ tiĐkiŶg the ͞state-of-the-aƌt͟ checkbox. It is the authoƌ͛s opiŶioŶ that prioritising 

speed will be useful for this project, and the accuracy trade-off can be mitigated by training the 

SpaCy model on the input data that was provided by the mentioned stakeholders. Another benefit of 

SpaCy is that it is well documented, which will be helpful towards the smooth implementation of this 

project. The other negative of SpaCy is that it lacks language support, however the data that will be 

used will be in English only, and so that does not present an issue to the performance of the tool. 

CoŶǀeƌselǇ, Flaiƌ͛s ƌelatiǀe ͞new-ness͟ and relative slowness are two issues that would hamper the 

performance of the tool. 

There is, however, a third option to consider. While SpaCy and Flair are both valid options, another 

tool, called Stanza, needs to be considered. Stanza provides a Python wrapper for the Stanford NER 

tool mentioned earlier. The official documentation for SpaCy (SpaCy, [no date]) provides a table of 

F1 scores for these 3 tools, tested against 2 benchmark corpora: 

 

Figure 4 - F1 Scores for SpaCy, Stanza, and Flair 

The F1 between them is almost indistinguishable, with Flair only beating the other two tools against 

the CONLL 2003 corpus. In consideration of the above table, the choice now comes down to Stanza 

vs SpaCy.  

This project will still use SpaCy, due to the fact that its documentation is superior to Stanza, and the 

new RoBERTa en_core_web_trf model included with SpaCy 3.0.0 has a very strong F1 value of 89.7-

91.6 (as seen in Figure 4) 
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Not only does SpaCy provide inbuilt statistical models, but it also gives the option of self-training a 

new statistical model (using other models as a basis), using self-annotated data. This option will be 

explored later in this project. 

3.2 - Geocoding Tools and API Choice 

WheŶ it Đoŵes to geoĐodiŶg iŶ PǇthoŶ, the de faĐto staŶdaƌd is the ͞GeoPǇ͟ liďƌaƌǇ. This liďƌaƌǇ 
presents an interface for easy connection to multiple geocoding APIs online, including the 

OpenStreetMap API group. 

Some research was conducted to investigate if there exist any alternate libraries for connecting to 

these APIs. Theƌe is aŶotheƌ liďƌaƌǇ, Đalled ͞geoĐodiŶg͟ ǁhiĐh seeŵs to pƌeseŶt the saŵe 
functionality as GeoPy does. To reinforce this statement, a page was found which compares the 

functionality of GeoPy to Geocoder (WebGeoDataVore, 2015). The page concludes that, while 

͞geocodiŶg͟ adds some extra functionality focused on command line interfacing and IP geocoding, 

the two libraries are effectively the same, and thus neither presents that much of an advantage over 

the other. With that in mind, this project will use the GeoPy library, as it is a library that the author is 

familiar with. 

Given that, the only other decision to make is between which geocoding API will be used for the 

project. 

As of the time of development of this project, GeoPy supports a total of 23 different APIs. As above, 

there exists a de facto standard for this, which can be found in the Nominatim API, which is provided 

by OpenStreetMaps.  

The obvious benefit of Nominatim is that it is free, which means it will be what is implemented for 

this project. 

The issue arises, however, that Nominatim is run on donated servers (OSMFoundation, [No Date]) 

and, as such, cannot handle a large request rate. In that regard, usage of Nominatim is rate limited 

to 1 request per second which, while acceptable for small datasets, will not be suitable for the large 

datasets that this project would eventually be used upon. Currently, this presents only a small issue. 

Datasets can simply be truncated to be small. This would, however, present an issue to further work 

on the project. 

An alternative to Nominatim is the Open MapQuest API, which is also a part of the OSM group. It is 

effectively identical to Nominatim, with a few changes. The positive is that there is no rate limit to 

OMQ, which would solve the above issue that Nominatim presents. The negative is that OMQ is 

transaction limited by a pricing structure, and to accommodate the number of transactions that 

would be expected from a file such as the data this project is aimed at (320,000 captions in the 

largest file) would cost upwards of $900 USD / month.  

Were this project to become funded, and be able to afford the use of OMQ, multithreading could be 

used to drastically improve the performance of the program and send multiple requests to the API at 

a time. 

Having checked each of the APIs offered by GeoPy, Nominatim can be concluded to be the only 

viable choice currently, without moving to a paid option. 

There is an API, named Pelias, which would have offered a QPS (Queries per second) of 6 and a QPD 

(Queries per day) of 30,000, which presents a balance between Nominatim and OMQ, but the online 

hosting for Pelias was provided by the MapZen project, which was shut down in 2018. 
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With all of the above in mind, this project will proceed using the GeoPy library connecting to the 

Nominatim API. 

3.3 – DBMS 

When it comes to choosing a database management system for an application, there are many 

choices to make and many DBMSs to choose from.  

The first choice to make is whether to choose a DBMS from the SQL family or the NoSQL family. The 

SQL family uses the rigid, schema-bound structure, using SQL for database queries. DBMSs in this 

family include MySQL, Oracle, and PostgreSQL. The use of SQL emphasises the ACID rules of 

database transactions – atomicity, consistency, isolation, and durability. Atomicity guarantees that a 

transaction will either completely succeed or completely fail. Consistency guarantees that all data 

within the database adheres to the rules defined by the database itself. Isolation guarantees that the 

database can concurrently process multiple transactions and the outcome of them will not affect 

each other. Finally, durability guarantees that, in the event of a system failure, all saved data will be 

preserved and protected. 

As described above, the SQL family requires schema-based databases, which requires that all input 

tuples include the exact same data every time. 

While this is suitable for some applications, the data that this project will be processing will be 

coming from different sources. To that extent, the input tuples will not contain the same information 

between separate data sets. This can be seen below: 

 

 

Figure 5 - Comparison of the Landcare and NMW dataset schemas 

The two images above show the schema for two separate datasets. As can be seen, they contain 

different fields (i.e., represent different schemas), and so would be unsuitable for storage within an 

SQL database. 

A dataďase ǁhiĐh is ͞sĐheŵa-fƌee͟, then, is needed. This is provided by the NoSQL family of DBMSs. 

The NoSQL movement emphasises the idea of not being bound to SQL and having no schema. To 

that extent, anything can be inserted to a NoSQL database, no matter the format of the tuple.  

Within NoSQL exists multiple types of DBMS. There are document-based databases, graph-based 

databases, key-value databases. The document family of NoSQL databases suits the needs of this 

project. DoĐuŵeŶt dataďases stoƌe data tuples as ͞doĐuŵeŶts͟, ǁhiĐh aƌe sĐheŵa fƌee aŶd ĐaŶ 
store any data. Multiple documents make up collections, and multiple collections make up a 

database. The data that this project will be storing suits the idea of a document, as a point on the 

map will simply be stored as a document consisting of a caption, an address, a latitude-longitude 

pair, etc. The NoSQL design will also allow for extra data to be stored with each document, if 

necessary. 

Within the document family exist many choices. The most widely deployed, however, is MongoDB 

(Yegulalp, 2018). MongoDB presents multiple advantages, such as very good documentation, the 

ability to deploy free non-local clusters, a good interface, etc.  
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One of the main benefits of MongoDB to this project is that it also has support for use with Python, 

via a library called PyMongo. Using this library will mean that DB functionality can be accessed 

directly from the back end, with no complicated API calls.  

This offer of simplicity, combined with the ability to deploy an online cluster with metric recording 

and easy database management, makes MongoDB an easy choice for this project.  

3.4 – Web Framework and Python 

The goal is to deploy this application as a web application. To that extent, there will be an 

intermingling of languages used to realise the front and back ends of the project. The front end will 

be written in HTML, CSS and JavaScript, and the back-end functionality will be written in Python.  

As a side note, Python has been chosen as it can be considered the leading language for AI based 

applications (Zola, 2018).  

To build a web application in Python is becoming increasingly easy. There are several frameworks in 

Python that are designed to help developers easily and efficiently develop code for secure, efficient 

web applications. 

Frameworks offer baked-in functionality for routing, serving, and managing web applications, and 

the obvious choice for this application is to use one of these. 

It has been decided that the application will use a framework called Flask, which has been chosen 

due to the authoƌ͛s faŵiliaƌitǇ ǁith it. The author found its documentation to be clear and concise. It 

is also popular with developers, which means many tutorials for Flask can be found online. Some 

research into the advantages of Flask found information agreeing with the above points, as well as 

making the points that Flask is extensible, fast, easy to deploy, secure, and flexible (Holcombe, 

2020). 

Flask provides a way to link between the front-end HTML script and the back-end Python code of the 

program. It includes something known as a templating engine, called Jinja. Jinja, among many other 

functionalities, allows Python-style code to be written in the HTML documents, which vastly 

increases the effectiveness of the HTML side of the project.  
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4 - Specification and Design 
This section will define the features and requirements that the project is expected to incorporate, as 

well as provide a detailed view into the design and data flow of the application. It is, for the most 

part, a plan for the development of the project but has in some areas been retroactively edited to 

contain comparisons between the plans and the final design of the project. 

4.1 - Features 

The project will incorporate the following features: 

4.1.1 – Single Geocoding Capability and Biasing 

The application takes a natural language caption, processes it to tag the geo-entities within it, finds a 

likely address for each entity and then returns: 

• From backend: 

o A JSON object containing the caption and the entities found within it, including raw 

address and latitudes and longitudes for each entity 

• From frontend: 

o A marker or marker chain on the map with popups for each marker containing the 

caption and entity address, with related entities (from the same caption) linked 

together by a line 

The functionality also supports biasing results towards a given country, allowing for some inter-

country geo-geo-ambiguity issues to be resolved 

4.1.2 – Database Integration 

The application is linked to an external database, in which it stores previously geocoded captions.  

The application allows the user to commit all current points from the session to the database, as well 

as fetching a set number of captions from the database. 

4.1.3 – Search Capabilities 

The application allows the user to search the database of pre-processed captions either by address, 

or by an interactive graphical-based radial search. 

4.1.4 – Bulk Geocoding with File Uploads 

The application supports the user uploading a csv file and will bulk process the file, allowing for 

efficient use of the features of the program 

It supports optional columns which can be fed to the biasing feature of the geocoding functionality 

4.1.5 – Exporting 

The system allows the user to export the current session, formatted to a CSV file, for use in other 

programs 
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4.2 – User Interface 

The user interface is designed to be simple, and to facilitate all major functionality within around 3 

clicks from the main screen. The website comprises of a single page, with functionality being 

presented from hide-show toggle forms that can be accessed from an expandable navigation bar at 

the top of the page.  

The reason for this design is to prioritise minimalism, and to present an unbroken experience to the 

user. This is achieved by never taking the user away from the map page, and instead simply 

summoning small forms to cover a section of the page when necessary. This design facilitates a 

simple experience for the user, allowing the website to be used by anyone. 

The below figures illustrate the wireframes that were created at the start of this project, as a rough 

idea for the UI. These are followed by their equivalents in the final system. 

 

 

 

Figure 6 - Initial UI Wireframes 
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Figure 7 - Main Page Wireframe Equivalent 

 

Figure 8 - Geocoding Wireframe Equivalent 
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Figure 9 - Search Wireframe Equivalent 

 

Figure 10 - File Upload Wireframe Equivalent 

 

Figure 11 - Radial Search Wireframe Equivalent 
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4.3 – Data Flow 

Using the Yourdon and Coad style for data flow diagrams: 

 

Figure 12 - Level 0 DFD (Context Diagram) 

In a high-level view, the user sends a caption to the application, which processes it internally 

(expanded on in the Level 1 diagram), sends the entity text to Nominatim, reassembles the 

geocoded caption, and returns it to the user. 

 

Figure 13 - Level 1 DFD 
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4.4 – System Algorithms 

4.4.1 – Vincenty Distance 

For the purpose of the radial search functionality described in section 4.1.3, the system needs to 

calculate the distance between two points. In a flat plane, this task is easy. It is, however, slightly 

more complex in the 3D plane that the world occupies. There are multiple algorithms that can be 

used to calculate distance, including Haversine, Great Circle, and Vincenty distance. Vincenty is the 

most accurate of these, with the trade-off of being the most complex. 

This complexity is, however, negligible when it comes to calculation, even on large sets of data 

(Matan, 2017). It is for the high accuracy, then, that I have chosen the Vincenty Distance algorithm 

to implement. 

4.5 – Static Architecture of the System 

The system is designed to be modular. Events occur in the system by way of the client sending API 

requests in the form of URLs to the server. A map of the relevant server modules can be seen below: 

 

Figure 14 - Server Module Map 

The functions of each module are described below: 

• index 

o Serves homepage 

• geo 

o Handles geocoding functionality 

• mgeo 

o Handles manual geocoding functionality 

• fetch 

o Fetches data from MongoDB cluster 

• commit 

o Commits data to MongoDB cluster 

• ufile 

o Handles file uploads 

• export 

o Handles exporting session to csv and serving to user 

• search 

o Handles flat search 

• rsearch 

o Handles radial search 
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Data is returned to the client using JSON notation, with a standardised structure following the {code, 

message} object template. 

Each module in the server is decorated with a specific URL route (as well as inputs) – for example: 

• /geo/<caption>/<bias> 

o Triggers the geocoding event in the server, returns the geocoded caption 

 

Figure 15 - /geo Event 

• /fetch 

o Triggers the DB fetch functionality, returns fetched captions from database 

 

Figure 16 - /fetch Event 

The below figure shows the raw JSON return data from the geo event: 

 

Figure 17 - Raw Return Data 
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An exhaustive diagram of all possible server interactions can be seen below: 

 

Figure 18 - All Possible Client-Server Interactions 

All iŶteƌaĐtioŶs, ǁith the eǆĐeptioŶ of the ͞/ufile͟ ƌoute, use the GET ŵethod.  

The modular design offers several advantages. Firstly, events on the server can be triggered by the 

client, which facilitates two-way communication between the client and server, as opposed to just 

the server sending data once to the client. 

Secondly, the front-end (client) and back-end (server) are now effectively separate. While the client 

code facilitates the use of these URL routes, and provides an interface for use, the back-end can be 

theoretically used from within another external program by sending API requests to the server. With 

proper documentation, this could be used by stakeholders who wish to incorporate the geocoding 

functionality of this project within their own applications.  
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The design also prioritises simplicity and allows for modular expansion of the functionality of the 

application by providing a set way to add new features. A developer would simply need to add a new 

route, which could then be incorporated into the front-end. It facilitates easy development on this 

project. 

4.6 – Small Features 

Various small features have been added in order to improve the aesthetic value of the client-facing 

front-end. This section will briefly explain them. 

4.6.1 – Caption Chaining 

It is common for a caption to contain two or more entities. When these entities are returned to the 

user and tagged on the map, it could be possible for the user to lose track of which entities belong to 

which captions (without manually clicking on each pin on the map to check which caption to which 

the entity belongs). In order to alleviate this issue, a chaining system has been implemented, in 

which a line (with a random green shade) is drawn between all entities in a caption. An example of 

this can be seen below: 

 

Figure 19 - Caption Chaining for Multiple-Entity-Captions 
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4.6.2 – Header Minimisation 

In order to present as minimal an interface as possible, the header (containing all interaction 

operations) has the option to be minimised, leaving just a small box in the corner of the page. This 

can be seen below: 

 

Figure 20 - Minimised Header 

 

Figure 21 - Maximised Header 

The arrow on the left is also the product of the animated burger menu icon. 
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5 – Implementation 
This section will detail the implementation of the project on a code-level scale. It aims to introduce 

and explain the important code behind the main features of the project. 

5.1 – Geocoding and NER 

5.1.1 – NER 

The system uses a custom NLP model (explained further in section 5.6) to tokenise, parse, and tag 

entities within a given natural language caption. 

Due to the nature of Python, callouts to external libraries are mostly simple. In order to facilitate 

natural language processing, the rather complex task of NLP can be simplified to a few function calls 

within the code: 

 

Figure 22 - Loading the Model 

Firstly, an object, called nlp, is assigned using the spacy.load function with the location of the custom 

NLP model as a parameter. 

 

Figure 23 - NLP Function Call 

This fuŶĐtioŶ Đall theŶ passes the ĐaptioŶ thƌough the ͞pipeliŶe͟ that the NLP ŵodel iŵpleŵeŶts. IŶ 
the custom model that this program uses, any non-essential pipeline components have been 

disabled. The caption is simply tokenised, vectorised, and then tagged using the NER component of 

the pipeline. 

An example of a tagged caption can be seen below, served for gƌaphiĐal iŶspeĐtioŶ ďǇ “paCǇ͛s 
DisplaCy module: 

 

Figure 24 - Example of a Tagged Caption 

5.1.2 – Forward Geocoding 

The geocoding section of the project is handled by external API calls to the Nominatim geocoding 

service, run by OpenStreetMaps. 

The API calls are, themselves, handled by the GeoPy python library. 

 

Figure 25 - Initialising the Geocoder 

The line above shows the initialisation of a Nominatim object, which is then wrapped in a second 

Rate Limiter object which forces consecutive requests to adhere to a 1 second delay, so as to adhere 

to NoŵiŶatiŵ͛s stƌiĐt ϭ ƌeƋuest peƌ seĐoŶd Ƌuota. 
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Figure 26 - Geocoding and Structuring the Return Data 

The above lines first send a request to Nominatim with the entity text tagged in the NER section, as 

well as a country bias (Seen in section 5.1.3) and forces the return language to be English so as to 

standardise input and output data. 

A JSON object is then constructed containing the entity, its located address, and its latitude and 

longitude. This JSON object is the standard representation of a location for this program. 

5.1.3 – Country Biasing 

In order to resolve some higher-level geo-geo ambiguity issues (between countries), the user is given 

the option to bias the returned data, if they are sure that a given caption͛s footpƌiŶt is within a 

country. 

 

Figure 27 - Fuzzy Search for the Bias Country 

The contents of the bias input box on the front end are handed to the backend in the GET request, 

and the bias is then fed to the line above. The line uses a python module called pycountry to link the 

input of the box to an ISO alpha 2 code for the country, which is the input that the Nominatim URL 

ƌeƋuests iŶ oƌdeƌ to ďias data. Note that the seaƌĐh is fuzzǇ, aŶd so ͞DeutsĐhlaŶd͟ aŶd ͞GeƌŵaŶǇ͟ 
will result in the same ISO code.  
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5.2 – DB Fetch and Commit 

A MongoDB cluster has been deployed in order to provide a basic data store for the application. This 

cluster is accessed using the PyMongo library for python, which provides native python functions for 

database interactions. 

5.2.1 – Fetch 

The program fetches a limit of 60 captions from the database when the /fetch request is sent to the 

server.  

 

Figure 28 - Fetching 60 Captions from the DB 

Figure 20 shows (up to) 60 points being fetched from the database. So as to avoid data replication 

and unnecessary data transmission, any captions that are already on the map are scrubbed from the 

return data. 

5.2.2 – Commit 

 

Figure 29 - Committing the Session to DB 

To avoid duplicate captions being stored in the database, a unique key has been placed on the 

captions. As can be seen in the code above, the system will try to insert a caption, which will throw a 

͞DupliĐate KeǇ Eƌƌoƌ͟ if it is alƌeadǇ pƌeseŶt iŶ the dataďase. IŶ that Đase, the sǇsteŵ ǁill skip to the 

next caption. 
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5.3 – Search 

5.3.1 – Standard Search 

 

Figure 30 - Flat Searching 

The above line sends a fetch request to the database, filtered on the address value of each entity in 

a caption. The regex searches case-insensitively for any occurrence of the query in any of the 

addresses. If a match is found, the entire caption is returned. 

5.3.2 – Radial Search 

The radial search is slightly more complex than the standard search functionality.  

On the front end of the application, the user is presented with an input box, to enter a radius (in KM) 

for the search. Once a radius is entered and the radial search button is clicked, a circle of the entered 

radius is spawned on top of the map. This circle can be dragged around. A 500km radius circle can be 

seen in the example below: 

 

Figure 31 - A 500km Radial Search Window 

A well-known issue in geodesy and other Earth-related fields is the projection of a spherical object 

(the Earth) onto a 2D plane (a Map). The most popular solution to this is the Mercator Projection 

method (Singh, 2017), which stretches the poles of the Earth. As a result of this, 500KM on the 

Mercator Projection is larger nearer the poles than it is at the equator. 

Leaflet, the mapping extension that has been implemented, can deal with this inconsistency, and will 

stretch the search circle to ensure that the 500KM radius is preserved, no matter the latitude of the 

search window. 
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The figure below demonstrates this: 

 

Figure 32 - 500KM at different latitudes 

Once the user has the search window positioned over the location they wish to search, the front end 

gathers the radius and centre latitude and longitude of the circle and passes them via URL to the 

back-end. 

 

Figure 33 - Radial Searching Algorithm 

The system fetches all of the known captions from the database and checks each entity in each 

caption. Using the Vincenty Distance algorithm mentioned in section 4.4.1, each entity is checked to 

see if it is within the radius of the centre of the search window. If it is, the system passes the entire 

caption back to the user. 

5.4 – File Uploads 

The system, as well as being able to process single captions at a time, can also be handed an entire 

file to process.  

This API route uses the POST method instead of the GET method in order to handle an entire file 

being sent. In the front end, the user is shown a standard file input HTML control. Once they have 

chosen a file to upload and click the file upload button, the following code is triggered: 

 

Figure 34 - Creating a FormData Object 

A JS FormData object is created to simulate a form being used, the standard method for POSTing 

data to a URL.  
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Figure 35 - POSTing the Request 

A fetch is formulated, using the POST method and appending the FormData object to the body. Once 

a response is received, appropriate error handling is implemented to handle errors and, if none have 

occurred, each caption is added to the map. 

In terms of security, file uploads usually present a strong risk to the user, as deploying potentially 

executable code to the server could result in major breaches and damage to the application. In order 

to prevent this, the appliĐatioŶ tests foƌ a seĐuƌe fileŶaŵe usiŶg the ͞seĐuƌe_fileŶaŵe͟ fuŶĐtioŶ 
provided by Werkzeug Utils. It also prevents the upload of any file with an extension that is not in 

the ͞alloǁed_eǆteŶsioŶs͟ list. This is ĐuƌƌeŶtlǇ liŵited to C“V files oŶlǇ. 
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5.5 – Front End 

5.5.1 – Add Marker and Add Marker Array 

Two custom methods have been implemented to add markers to the map, as well as add arrays of 

markers to the map: 

 

Figure 36 - Adding a Marker 

A marker is generated on the given latitude and longitude, and then a popup is bound to the marker 

with the caption, and the address of the entity. 

 

 

Figure 37 - Adding a Marker Array 

In order to indicate that certain entities belong to the same caption, the above code chooses a 

random green colour, and pins a line between entities in the same caption.  

The program currently requires a CSV file with the captions to be stored under a column named 

͞ĐaptioŶ͟. Theƌe is suppoƌt foƌ aŶ optioŶal ĐoluŵŶ Đalled ͞ĐouŶtƌǇ͟ ǁhiĐh ǁill ďe fed to the ďias 
functionality. Any other columns will be ignored. 

5.6 – Custom NLP Models 

As mentioned in sections 2.4 and 3.1, the option provided by SpaCy to train a new statistical model 

was an option that was taken advantage of with this project. 

To that eǆteŶt, a Ŷeǁ ŵodel ǁas Đƌeated ǁith the Ŷaŵe ͞eŶ_aigloďe͟ iŶ oƌdeƌ to ŵake aŶ atteŵpt 
at improving upon the accuracy of the inbuilt models that SpaCy provides, as well as solving another 

issue (detailed in section 5.7.2). This section will explain the process of training the new model. 

IŶ oƌdeƌ to tƌaiŶ a Ŷeǁ statistiĐal ŵodel, tƌaiŶiŶg data ŵust ďe ͞aŶŶotated͟. This pƌoĐess is Đaƌƌied 
out by selecting data (in this case, natural language captions), and manually classifying each of the 

entities within the caption. A large number of these captions must be annotated in order to gain any 
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significant increase in performance against the data (Shrivarsheni, [No Date]). These large datasets 

are also often referred to as corpora. 

For SpaCy, the figure below illustrates the format in which data must be annotated: 

 

Figure 38 - A Manually Annotated Caption 

The caption must be listed, followed by a list of (again, in this case) the entities that can be found in 

the caption. The entity is described by its start index, its end index, and the classification that it 

belongs to.  

Two of these datasets are required, one for training the data and one (unseen) for evaluating the 

data. 

In total, 262 captions were annotated for this project, 162 for training and 100 for evaluation. 

Once these datasets were created, they were converted to the SPACY training format, and passed to 

“paCǇ͛s iŶďuilt tƌaiŶiŶg pƌoĐess, the output of ǁhiĐh ĐaŶ ďe seeŶ ďeloǁ: 

 

Figure 39 - Training a Custom NLP Mode 

Once this process has completed, the output is a custom NLP model that can be used in lieu of the 

inbuilt models. 

5.7 – Unforeseen Issues in Development 

The development for this project was, for the most part, relatively issue-free. That is not to say that 

no issues were discovered, as those will be detailed below, but this project came together with less 

issues than the author has experienced in previous projects. 

The author believes this ease of development can be attributed to the choice of tools at the 

beginning of this project. Libraries with good documentation and large communities were 

prioritised, and the author believes these choices led to tools that have been well-used and well-

documented, which meant that any issues with functionality were resolved with minimal research 

and effort. 

5.7.1 – Rate Limiting  

One of the major issues that was discovered over the course of developing this project is the fact 

that it is not possible to send uncapped consecutive requests to the Nominatim Geocoding API. As 

Nominatim runs on donated servers, sending multiple requests in parallel or consecutively could 
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overload their API. To combat this, Nominatim has a strict 1 request per second quota, which needs 

to be adhered to.  

Thankfully, this quota can be met by using a Rate Limiter, which is provided by the GeoPy library. To 

ensure that the application does not exceed the 1 r/s limit, the Rate Limiter was simply wrapped on 

to the geocoder object. 
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5.7.2 – Hierarchical Addresses and Entity Condensing 

An issue that was found with georeferencing captions is that the inbuilt model often identified more 

entities than necessary. 

To expand on this, the specific issue that is being referenced ĐaŶ ďe fouŶd iŶ the ĐaptioŶ ͞Pakaƌaka, 
NoƌthlaŶd͟. A staŶdaƌd NE‘ ŵodel ǁould, ĐoƌƌeĐtlǇ, ideŶtifǇ Ϯ eŶtities iŶ this caption: Pakaraka and 

Northland.  

IŶ this Đase, hoǁeǀeƌ, ͞Pakaƌaka, NoƌthlaŶd͟ is ƌeallǇ ƌefeƌƌiŶg to oŶe plaĐe: Pakaraka, which is 

located within Northland. In the vast majority of the data that this application is intended to be used 

for, commas actually denote a hierarchical address, where the first entity is within the second entity.  

It follows, then, that there is no need to place the second entity on the map, as it conveys 

unnecessary information. 

In order to deal with this, we introduce the idea of ͞eŶtitǇ ĐoŶdeŶsiŶg͟ ǁhiĐh, ǁheŶ pƌeseŶted ǁith 
an example like above, should join the two entities together. 

The first idea was to code in a solution to this, but it was realised that a more elegant solution would 

ďe to ͚teaĐh͛ aŶ NLP ŵodel to condense these entities.  

As training data was already being annotated to improve the results of the NLP model in use at the 

time, examples were added shoǁiŶg that ͞Pakaƌaka, NoƌthlaŶd͟ should ďe ĐoŶsideƌed Ŷot tǁo 
entities but one. 
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6 – Results and Evaluation 
This section will evaluate and explain the results that have been achieved by the project. It will 

justify the choices made in relation to the results achieved and will evaluate the choices made over 

the development cycle of the project. It will give metrics, where possible, relating to the efficiency 

and performance of the project, and will explain how those metrics have been gathered. 

6.1 – Custom NER Model Vs. Pre-trained NER Model 

As outlined in section 2.7, the efficacy of an NLP classifying model can be demonstrated using the F1 

evaluative measure.  

In order to do this, the data must be defined with respect to the equations for precision, recall, and 

F1 defined in section 2.7. 

True Positives, False Positives, and False Negatives (with respect to the annotated captions shown in 

section 5.6) are defined as follows: 

• A True Positive is counted when the model identifies an entity as belonging to the correct 

class (as defined with the ground truth found in the evaluation data) 

• A False Positive is counted when the model correctly identifies that an entity is a toponym 

but does not tag it as belonging to the correct class. 

• A False Negative is counted when the model incorrectly identifies an entity 

Note that for this task that if a false positive is counted, a false negative is also counted. 

Seen below is a comparison of the F1 values of the Đustoŵ ͞eŶ_aigloďe͟ ŵodel ǀeƌsus the 
͞eŶ_Đoƌe_ǁeď_tƌf͟ ŵodel, pƌoǀided ďǇ “paCǇ ǀϯ.Ϭ: 

 

Figure 40 - The F1 score of the en_aiglobe NLP model 

 

Figure 41 - The F1 score of the en_core_web_trf model 

The results above were taken from the meta.json file that is packaged with each model. 

As can be seen, the stock en_core_web_trf model has an F1 of 0.898, while the en_aiglobe model 

has an F1 of 0.702. Mathematically speaking, the custom NLP model is wildly outperformed by the 

trf model. While it may seem, then, illogical to use the en_aiglobe model instead of the trf model, it 

must be noted that the en_aiglobe model implements the entity condensing technique outlined in 

section 5.7.2. It is also worth noting that the F1 score also considers the classification of each entity 

(geopolitical entity, facility, location, organisation), when this information is not utilised by the 

application. The application only needs to know that an entity has been found, as opposed to its 

classification. 
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To that extent, the performance difference between the two becomes acceptable, and justifies the 

use of the custom en_aiglobe model.  

To demonstrate the efficacy of the entity condensing technique, below is a comparison of the 

eŶtities ideŶtified ďǇ eaĐh ŵodel ǁheŶ passed the ĐaptioŶ ͞Pakaƌaka, NoƌthlaŶd͟: 

 

Figure 42 - Using en_aiglobe to entity condense 

 

Figure 43 - Using en_core_web_trf to parse a hierarchical caption 

 

Further to that, below is the graphical output of parsing this caption with the trf model: 

 

Figure 44 - Unnecessary data in the graphical output when using en_core_web_trf 

As can be seen, the extra point for Northland has been added, which is unnecessary for the user. 

6.2 – Evaluation of Requirements 

With respect to the original requirements of this project, as defined in section 4.1, this project can 

be considered a success. The author has succeeded in implementing the functionality defined in the 

design section, as well as implementing extra functionality such as the custom en_aiglobe model. 

It is the authoƌ͛s opiŶioŶ that, given more time, the application could be shaped into a full business-

scale model, with potential to satisfy the needs of a client 

6.3 – Time Performance 

Evaluating the time performance of the project is somewhat difficult due to the inconsistent nature 

of internet download and upload speeds, which the project utilises for the external API calls to the 

MongoDB cluster for storage and the Nominatim API for geocoding. 

The following metrics were obtained using the Brave browser, with a quoted internet speed of 20ms 

ping, 220.44 mbps download, and 21.06 mbps upload. These metrics are correct for the machine 
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that the application was tested on but would vary for any other environment that the application 

could be used on. 

6.3.1 – Single Geocoding 

To provide transparency, two figures will be provided for this time: the time taken for NLP 

processing to occur and the time taken for geocoding to finalise. 

The sum of these two times will be the total time taken for geocoding in the application, excluding 

the time taken for front end processing, as this can be considered negligible and client-specific. The 

times are quoted in seconds. 

 

Figure 45 - Time Taken for Natural Language Processing of "Pakaraka, Northland" 

 

Figure 46 - Time Taken to Geocode "Pakaraka, Northland" 

As can be seen, the geocoding functionality presents somewhat of a bottleneck to the efficiency of 

the application, taking almost ten times more time to process than the NLP section. This is, however, 

due to the external nature of the geocoding functionality, and so is not unexpected. 

6.3.2 – Custom NLP Times versus Standard NLP Times 

The time efficiency of NLP models is not standard and tends to be inversely proportional to the 

accuracy of the model itself. With the time quoted for natural language processing in Figure 45 in 

mind, the below figure records the time taken on the same caption but using the en_core_web_trf 

model as opposed to the custom en_aiglobe model used in Figure 45. 

 

Figure 47 - Time Taken for Natural Language Processing of "Pakaraka, Northland" using en_core_web_trf 

It is shown, then, that the custom en_aiglobe model is slightly faster than the en_core_web_trf 

model. This is likely because the en_aiglobe model was trained using the en_core_web_sm model as 

a basis, which is the smallest and fastest model available. 

6.3.3 – Bulk File Geocoding 

The time taken for the bulk file geocoding is mostly proportional to the time taken for single 

geocoding, as the bulk file method simply employs the repeated use of the single geocoding 

functionality. There are also time overheads associated with the opening and reading of the file, as 

well as the ͞ŵeŵoƌǇ ŵethod͟ eŵploǇed to pƌeǀeŶt douďle-geocoding.  
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Figure 48 - Input File for Bulk Geocoding Time Test 

 

Figure 49 - Time taken to process a 5-line file 

Roughly 10 seconds taken to process a 5-line file, which is within acceptable limits for bulk 

geocoding. 

6.3.4 – Searching 

The below times describe the time taken for the flat search and the radial search functionality of the 

application. 

Firstly, the flat seaƌĐh ǁill ďe tiŵed, usiŶg the seaƌĐh ƋueƌǇ ͞EŶglaŶd͟: 

 

Figure 50 - Flat Searching with Query "England" 

To compare, the radial search window will be placed over the UK on the map in order to return the 

same results as the flat search functionality: 

 

Figure 51 - The location of the Radial Search Window 

 

Figure 52 - Radial Searching over the UK 

The time taken to perform a radial search is significantly longer than the flat search because the flat 

search employs a native indexing method in the database instance, while the radial search employs a 

non-indexed ͞naïve͟ search algorithm. 

6.4 – Evaluation of Tools Used 

The tools that I chose to implement this project were, in my opinion, the correct tools to use for this 

application. Specifically, the presence of clear documentation was a strong theme across each tool, 

and I believe this documentation gave far more benefit to the development of the project than, for 

example, the small differences in quoted F1 values mentioned in section 3.1. 
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6.4.1 – Python 

Using Python allowed me to bridge the gap between the data processing needs of machine learning 

and the requirements for a web application. Due to its extensive library catalogue, implementing 

new features to the application meant simply searching for a library that had already been published 

to solve the task. 

Python is an extremely well-documented language, which presented a very large benefit to this 

project. Due to its simplicity and sufficient error handling, errors came few and far between. When 

they were encountered, they were solved quickly due to the presence of clear documentation. 

Python also boasts well-used libraries with similarly clear documentation, which extended the clarity 

of development to not only the core code, but external code as well. 

6.4.2 – SpaCy 

Peƌhaps due to ďeiŶg ďuilt foƌ the PǇthoŶ platfoƌŵ, “paCǇ ŵatĐhes PǇthoŶ͛s reputation for clear 

documentation. 

With machine learning being a new topic to the author, implementing a machine learning classifier 

foƌ NLP Đould haǀe ďeeŶ a ǀeƌǇ diffiĐult task, ǁeƌe it Ŷot foƌ “paCǇ͛s Đleaƌ doĐuŵeŶtatioŶ aŶd 
tutorials for the implementation of common uses for their library. 

The implementation of the features needed for this project were made very simple due to this, and 

as such, no major issues with the implementation of the major functionality of the program were 

found. 

The documentation was, however, somewhat complex when it came to training a custom model. 

The upgrade from SpaCy v2.x to v3.0 changed the training process dramatically, and it was found 

that the documentation to be lacking a clear explanation on training a new model in the context that 

I needed. 

SpaCy, however, not only has clear documentation but a mature community of users. By following a 

tutorial (Lim, 2021), this issue was solved. 

6.4.3 – GeoPy and Nominatim 

GeoPy was overall satisfactory in meeting the requirements for the project. Its connection to 

multiple geocodin6.4g APIs meant that the library was relevant to the project no matter the choice 

of API 

Nominatim was also satisfactory to the project at this scale but would be unsuitable for use at a 

larger scale. This will be expanded upon further in section 7.3 

The author found Nominatim to be no less accurate than Google Maps, with the added benefit of 

being free to use.  
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6.5 – Evaluation of Usability 

In order to self-evaluate the usability of a system, theƌe eǆist ǀaƌious sets of ͞heuƌistiĐ͟ guidelines 

that can be used to judge the system. This paper will evaluate the project using perhaps the most 

faŵous of these heuƌistiĐs, Jakoď NielseŶ͛s ϭϬ heuƌistiĐs ;NielseŶ, ϭ99ϰaͿ. The defiŶitioŶs foƌ eaĐh of 
these heuristics have been used from (Nielsen, 1994b). 

6.5.1 – Visibility of System Status 

͞The desigŶ should alǁaǇs keep useƌs iŶfoƌŵed aďout ǁhat is goiŶg oŶ, thƌough appƌopƌiate 
feedback within a reasonable amount of time.͟ 

To satisfǇ this heuƌistiĐ, the sǇsteŵ uses the iŶďuilt ͞aleƌt͟ fuŶĐtioŶality supplied with JavaScript in 

order to notify the user of changes to the system state, as well as notify of any errors and warnings. 

An example of this can be seen below: 

 

Figure 53 - Successful Search Notification 

6.5.2 – Match Between System and The Real World 

͞The desigŶ should speak the useƌs͛ laŶguage. Use ǁoƌds, phƌases, aŶd ĐoŶĐepts faŵiliaƌ to the useƌ, 
rather than internal jargon.͟ 

The system is designed to be as minimal as possible but assumes that the client will understand 

teƌŵs suĐh as ͞geoĐode͟, due to its speĐialist Ŷatuƌe. 

The sǇsteŵ Ƌuite liteƌallǇ ŵatĐhes ͞the ƌeal ǁoƌld͟ iŶ that the ŵaiŶ paƌt of the iŶteƌfaĐe is a ŵap, 
something that does not take specialist training to read or understand. 

All other language in the system is non-specialist and aims to introduce no unfamiliar concepts. 
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6.5.3 – User Control and Freedom 

͞Useƌs ofteŶ peƌfoƌŵ aĐtioŶs ďǇ ŵistake. TheǇ Ŷeed a ĐleaƌlǇ ŵaƌked ͚eŵeƌgeŶĐǇ eǆit͛ to leaǀe the 
unwanted action without having to go thƌough aŶ eǆteŶded pƌoĐess.͟ 

In order to minimise jarring movement and unwanted exploration, the website is limited to a single 

page, which allows forms to be drawn over the top of it. Each of these forms features a clear exit 

cross, which can be clicked on to close the form, returning the user to the original state. See below: 

 

Figure 54 - Geocoding Form with Exit Cross in Top Right Corner 

This Đƌoss ĐoŶstitutes aŶ ͞eŵeƌgeŶĐǇ eǆit͟. 

6.5.4 – Consistency and Standards 

͞Useƌs should not have to wonder whether different words, situations, or actions mean the same 

thiŶg. Folloǁ platfoƌŵ aŶd iŶdustƌǇ ĐoŶǀeŶtioŶs͟ 

In terms of design, each form on the application follows the same design standard, as well as colour 

theme. This means that the design and colour is standard across the entire application. 

Textually, concepts are only referred to by one name. In this regard, geocoding is only ever referred 

to as geocoding and searching is only ever referred to as searching, etc. 
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6.5.5 – Error Prevention 

͞Good eƌƌoƌ ŵessages aƌe iŵpoƌtaŶt, ďut the ďest desigŶs ĐaƌefullǇ pƌeǀeŶt pƌoďleŵs fƌoŵ 
occurring in the first place.͟ 

Errors are both handled and prevented in the code. In order to prevent errors, the application will 

prevent the useƌ fƌoŵ suďŵittiŶg ͞gaƌďage iŶput͟. AŶ eǆaŵple of this is fouŶd ǁheŶ the useƌ tƌies to 
submit an empty caption for geocoding, which is met with the following message: 

 

Figure 55 - Preventing Empty Caption Submission 

This error prevention is standard across any input in the system. All inputs must be filled before 

submission, and inputs that require only numbers, not text, (see radius input) disallow text input 

entirely. 

6.5.6 – Recognition Rather than Recall 

͞MiŶiŵise the useƌ͛s memory load by making elements, actions, and options visible. The user should 

Ŷot haǀe to ƌeŵeŵďeƌ iŶfoƌŵatioŶ fƌoŵ oŶe paƌt of the iŶteƌfaĐe to aŶotheƌ.͟ 

No information is required to be remembered by the user. 

6.5.7 – Flexibility and Efficiency of Use 

͞Shortcuts – hidden from novice users – may speed up the interaction for the expert user such that 

the design can cater to both inexperienced and experienced users. Allow users to tailor frequent 

aĐtioŶs.͟ 

The system does not currently present the option for shortcuts to be created, but instead aims to 

minimise the complexity of any task in the application by minimising the number of clicks needed to 

perform the task. 
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6.5.8 – Aesthetic and Minimalist Design 

͞IŶteƌfaĐes should Ŷot ĐoŶtaiŶ iŶfoƌŵatioŶ ǁhiĐh is iƌƌeleǀaŶt oƌ ƌaƌelǇ Ŷeeded.͟ 

The sǇsteŵ͛s desigŶ aiŵs to ďe as ŵiŶiŵalistiĐ as possiďle, takiŶg up oŶlǇ a sŵall poƌtioŶ of the 
page. There is no unnecessary information contained on the page, and the options element can be 

shrunk to fit only a small corner of the page. 

The figure below demonstrates the page with minimum information displayed: 

 

Figure 56 - Minimum Information Displayed 

The next figure shows the page with the maximum amount of information displayed: 

 

Figure 57 - Maximum Information Displayed 
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6.5.9 – Help Users Recognise, Diagnose, and Recover from Errors 

͞Eƌƌoƌ ŵessages should ďe eǆpƌessed iŶ plaiŶ laŶguage ;Ŷo eƌƌoƌ ĐodesͿ, pƌeĐiselǇ iŶdiĐate the 
problem, and coŶstƌuĐtiǀelǇ suggest a solutioŶ͟. 

The application contains error handling for most known issues, as well as error handling for 

unknown issues. While it returns error codes, it also returns error messages to accompany these 

error codes. Some examples of these can be seen below: 

 

Figure 58 - Error Message for No File Submitted 

 

Figure 59 - Error Message for No New Points Found 

All error messages for known errors across the system explain the issue.  

6.5.10 – Help and Documentation 

͞It͛s ďest if the sǇsteŵ doesŶ͛t Ŷeed aŶǇ additioŶal eǆplaŶatioŶ. Hoǁeǀeƌ, it ŵaǇ ďe ŶeĐessaƌǇ to 
provide documentation to help users understand how to Đoŵplete theiƌ tasks͟ 

The system as of now does not contain a help page but could be adapted to contain a help page if 

users found the system to be complex or confusing. The lack of help page can be attributed to the 

fact that the application is a specialist application and assumes a level of knowledge of the user to 

interact with the minimal interface.  
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6.6 – Testing 

While they have been demonstrated over the course of this paper, this section will serve to 

demonstrate and test each of the main functionalities of this project, in order to ensure that they 

work as intended. 

6.6.1 – Single Geocoding 

UsiŶg the ĐaptioŶ ͞Pakaraka, Northland. South side main north highway, opposite Pakaraka School.͟, 

taken from the Landcare dataset. 

Expected result is 2 tags to be placed on the map, one on Pakaraka, Northland, and one on Pakaraka 

School. A line should be drawn between the two of them. 

See below: 

 

Figure 60 - Demonstration of Single Geocoding 

As expected, a point has been placed each for Pakaraka, and Pakaraka School, with a line joining the 

two of them. 
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6.6.2 – Bulk Geocoding 

Uploading the file shown in Figure 48. Expected result is 5 separate captions visible on the map. 

See below: 

 

Figure 61 - Bulk Geocoding Demonstration 

5 captions can be seen, all correctly geocoded. 

6.6.3 – Export Session 

Using the session persisting from section 6.6.2, expecting to receive a file containing 5 lines, 1 for 

each caption. 

 

Figure 62 - Demonstration of Export Feature 
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6.6.4 – Searching 

For this test to be understood, it must be noted that as of writing this paper, the database currently 

contains 5 captions that are located within New Zealand. In order for the search test to be 

successful, when searching with New Zealand as the search query or having New Zealand within the 

search radius, all 5 captions must be returned. 

IŶitiallǇ, the flat seaƌĐh is peƌfoƌŵed ǁith seaƌĐh ƋueƌǇ ͞Neǁ )ealaŶd͟. 

 

Figure 63 - Search Demonstration 

The flat search can be considered successful. 

Secondly, the radial search is performed: 

 

Figure 64 - Radial Search Demonstration 

This search is also successful. 
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7 – Future Work and Alternative Solutions 
While this project has succeeded in filling the original requirements, there is also a multitude of 

further work that could be applied to it. This section will detail the extra functionality and solutions 

that could be implemented with more time and resources, and the choices that would have been 

made given a business-scale deployment of this application. 

7.1 – Document Clustering 

The app currently attempts to solve geo-geo ambiguity on a somewhat basic level. The biasing 

feature will solve conflicts between countries, but only in cases where the bias is known. 

Not only this, but geo-geo ambiguity still persists within countries when one considers common 

names such as street names or villages. 

There are multiple proposed solutions to minimising geo-geo ambiguity, but one that shows promise 

is the idea of document-level clustering and minimising footprints. 

The idea of this solution is to consider the list of potential candidates for a geocoded location and 

choose the candidate that is closest to the other already identified and geocoded point(s) in the 

document. 

This solutioŶ ǁould ďe aŶ iŵpƌoǀeŵeŶt upoŶ the appliĐatioŶ͛s ĐuƌƌeŶt solutioŶ to the issue of geo-

geo ambiguity. It is not, however, without flaw. It requires at least 2 entities to be within a document 

to work, as well as at least 1 point to be geocoded with surety.  

7.2 – Database Choice 

The current database choice for the application is a MongoDB M0 Sandbox Replica Set Cluster, 

consisting of 3 nodes, located in Ireland. The cluster has a 512 Mb max storage. This option was 

chosen simply because it was free. 

Clearly this storage space would not be feasible were this project to continue to a business 

deployment scale. In that regard, given a budget, this cluster would be upgraded to an M1 or above, 

depending on the requirements of the client. 

7.3 – Geocoding API Choice 

As with the database choice defined in section 7.2, Nominatim was chosen largely due to the fact 

that it was free. Nominatim is, however, limited. The limit of 1 request per second satisfies the 

requirements of the project in its early stages, but if it were to continue to business deployment, I 

would recommend utilising a different geocoding API.  

To that extent, and assuming a higher budget, the author would recommend a service with a higher 

‘P“ Ƌuota, as ǁell as a ŵoƌe ͞ǁell-estaďlished͟ seƌǀiĐe suĐh as Google͛s ŵappiŶg API, ǁhiĐh 
provides geocoding functionality. 

7.4 – Multithreading 

Assuming the implementation of a geocoding API with a higher RPS quota as outlined in section 7.3, 

a new bottleneck for the application would be found in sending consecutive requests.  

To improve performance, the application could be modified to implement multithreading, sending 

parallel requests to the API. With this implemented, a drastic delay decrease would be noted, which 

would increase the performance of request heavy operations such as the file handling functionality 

that the application implements.  
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7.5 – Geospatial Indexing 

As mentioned in section 5.3.2, the current method for radial searching from a point is to test each of 

the entities within the database and check their distances from the centre of the search window 

with the Vincenty distance algorithm. 

While this solution is feasible for the relatively small amount of data that is currently stored within 

the database, this would not be recommended for larger datasets, and would present a serious 

performance bottleneck to the application. 

Instead, the author would recommend making use of the geospatial indexing feature that is 

common in NoSQL databases such as MongoDB. By placing a geospatial index on each of the 

entities, the performance could be greatly increased when testing for presence within the search 

window. 

This would, however, require a reformat of the current data to match the necessary data format for 

geospatial indexing in MongoDB. 

7.6 – Georeferencing Accuracy 

As has been seen in this report, the task of georeferencing natural language to a high degree of 

accuracy is a difficult challenge. The application currently works around this by ignoring the low-level 

adjustments to the mentioned location found in the caption ͞ϯkŵ Ŷoƌth of “ǁiŶdoŶ͟ aŶd iŶstead 
places a point directly on Swindon (as opposed to 3km north). 

To this extent, there are a multitude of ways of expressing the translation of a given point from the 

mentioned location, as is mentioned in section 2.5. 

Potentially the largest challenge to be found in future work will be solving this problem. If solved, 

however, it would result in an application with almost unlimited accuracy for georeferencing 

documents. 

7.7 – Future Opportunities 

Over the course of this project, it was expressed by the National Museum of Wales that there could 

be in interest in a project similar to this one. 

In that regard, this project could be integrated into the systems of an interested party. Due to the 

split between the front end and back end of the project, the back-end alone could be treated as an 

API for another system to use, and so this project could be adapted to be used by any interested 

stakeholders for the purpose of collection digitisation. 
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8 – Conclusions 
To finish a project, one must state the conclusions that have been derived over the course of the 

work done. With an application-based project such as this one, this can be slightly difficult as there 

has been no hypothesis proven nor disproven. This section will, however, attempt to sum the 

lessons that can be learned from this project, as well as compare the result with respect to the 

original introduction and requirements. 

This project was undertaken with the idea of creating a web application that could map the locations 

mentioned in natural language. 

Over time, it evolved into a project intended specifically for georeferencing natural language data for 

ecological documentation and preservation, with the target stakeholders of ecological organisations 

looking to digitise and georeference collections. 

The project can, overall, be considered a success in that it met each of the initial requirements 

defined. It has achieved the goal of mapping the locations in texts, and all sub-goals that were 

chosen to meet the main objective.  

The system demonstrated in this report has made an attempt at solving the issues of geo-geo 

ambiguity and non-geo-geo ambiguity, as well as the other known issues within the field of 

automated georeferencing.  

It has been shown that a wide scale system designed to automate the georeferencing of texts, be it 

for collection digitisation or otherwise, is not only feasible but easily within reach. Combining the 

system that has been produced by this report with other, more complex, solutions defined in the 

material referenced in this report would result in a system capable of georeferencing documents to 

a high degree of accuracy. 

This report can be considered as a proof-of-concept for a future georeferencing application that 

would alleviate, if not cut entirely, the hours and manpower needed for georeferencing the massive 

non-digital collections of which many museums around the world are currently in possession. 

This report also serves to demonstrate the power of modern-day machine learning solutions such as 

those implemented in the SpaCy library. Their base accuracy and the ease of which they can be 

trained has increased many-fold over the years and is leading to their widespread use in non-

specialist applications. 
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9 – Reflection 
In the spirit of continual improvement, it is good practice to reflect upon the transferrable lessons 

and skills that have been learned over the course of a project. This section will reflect upon the skills 

and lessons that have been learned over this project. 

I originally undertook this project with a light scepticism as to the amount of material that could be 

covered in the relatively long time that this project ran for. 

This initial assumption was entirely wrong, as I realised how large the scope of the issue of natural 

language processing is. 

In that regard, I have learned to avoid assuming the scale of a project before the background 

research has been conducted, so as to avoid misjudging the scale of the project at hand. 

I haǀe also leaƌŶed the ǀalue of ͞ĐhoosiŶg the ĐoƌƌeĐt tools foƌ the joď͟. IŶ ŵǇ eǆpeƌieŶĐe ǁith 
previous projects, I took less time in choosing a tool/library for a given solution and often found the 

tool to be lacking or broken at a later time, when refactoring was too difficult to be considered. 

For this project, I took a serious approach to the choice of tools, weighing performance and 

efficiency but most importantly documentation and community. I found this approach to be wildly 

superior to the alternative, as when issues inevitably occurred, fixing them was made easy by the 

documentation and community support. 

On a higher scale, this project introduced me to the idea of remote work. Due the COVID-19 

pandemic, this project was undertaken remotely, with a supervisor in New Zealand. While modern 

video conferencing technology allows such a situation to be entirely feasible, it is still not 

comparable to working with a supervisor in person. 

I have found the challenge of self-supervision and motivation to be one of the most important 

lessons that I have learned over the course of this project, skills which will transfer and be very 

valuable towards my future work. 

AŶotheƌ ǀaluaďle, tƌaŶsfeƌƌaďle skill leaƌŶed fƌoŵ this pƌojeĐt is the taĐtiĐ of ͞doĐuŵeŶt-as-you-go͟. 
Many of the sections in this project, especially section 3 and all subsections, were written as and 

when the decisions were being made. This made the collation of this report not only easier towards 

the end of the project, but the sections are more accurate to the decisions that were made at the 

time, as opposed to having been written at a later date when potentially the reasoning for choices 

has been lost. 

This idea of document-as-you-go will be retained for all future projects. 

In terms of my approach to the project, I believe that it was well planned. There was a potential, 

however, for more research into the material surrounding the issue to be conducted at an earlier 

phase in the project, which would have given me more time to formulate elegant solutions to 

problems mentioned in the surrounding material. 

Overall, this project has been a success, and has taught me numerous lessons which I will keep in 

close consideration for my future projects. 
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