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Abstract 

Recent publications have shown that training supervised regression methods on MRI 

brain imaging can be used to predict the brain age of an individual with high precision. 

We can use these predictions to detect diseases associated with abnormal brain ageing 

where the predicted age does not match the chronological age.  

In this paper, we develop a convolutional neural network to predict brain age accu-

rately. The architecture of the model is a simplified adaptation of the VGG 

architecture. The network is trained on healthy grey-matter segmented images and 

applied to clinical T1-weighted MRIs.  

The model is trained on a publicly available healthy dataset and applied to a clinical 

dataset consisting of Schizophrenia, Parkinson’s Disease, and Post-Traumatic Stress 

Disorder patients. We demonstrated bias in brain age prediction, and we corrected it 

to improve the reliability of the results. Our BrainAge model obtained a mean absolute 

error (MAE) of 4.03 years and 0.96 R2 on the healthy dataset after correcting the bias. 

We used transfer learning to apply the BrainAge model to the clinical data and com-

pared the brain age delta (predicted age – chronological age) for each condition. The 

results were not statistically significant p<.05, meaning that the brain age delta does 

not indicate abnormal brain ageing in this instance. 
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1. Introduction 

We begin by presenting a general outline of the problem we aim to solve, followed by 

our aims and a brief summary of the methodology employed. 

1.1. Overview 

Ageing of the brain is a complex biological process, and unfortunately, when signs of 

cognitive decline become obvious, it is often too late to provide adequate treatment. 

Increased brain age poses a risk of neurodegenerative diseases, such as Alzheimer’s 
disease and Parkinson’s disease, as well as correlating with higher mortality rates 

(Levakov et al., 2020). Having a method that could predict abnormal brain ageing 

would be a valuable tool in detecting early signs of brain deterioration that could be 

missed by experienced neurologists and it would allow for treatment of said abnormal-

ities before symptoms become visible.  

In recent years, machine learning techniques have enabled automatic disease predic-

tion from imaging data. The aim is to increase the prediction accuracy beyond human 

performance to assist in clinical diagnosis and treatment decisions. The predicted age 

from these techniques can be considered to be the brain age because it is purely de-

rived from the imaging data. However, it is not just the brain age that it is relevant, it 

is the difference between the predicted age and the chronological age – known as 

brain-age delta – that matters. This value can provide very significant insight into the 

ageing speed of an individual. A positive delta implies that a subject’s brain looks older 
than their chronological age, meaning they are experiencing accelerated ageing (Peng 

et al., 2021), on the other hand, a negative delta implies slower brain ageing. Here, 

brain-age delta acts as an effective biomarker able to show differences between clinical 

groups (Kaufmann et al., 2018), and is predictive for mortality (Cole et al., 2018). 

Thus, it is of high importance to produce accurate brain age predictions as an essential 

pre-requisite for considering brain-age delta a potential biomarker. 

Numerous studies strive to make the most accurate brain age prediction system. Some 

of the methods used in the literature include machine learning approaches such as 

Linear Regression, Support Vector Machines and Gaussian Process Regression 

(Dosenbach et al., 2010; Gaser et al., 2013; Aycheh et al., 2018; Liang, Zhang and Niu, 

2019; Da Costa, Dafflon and Pinaya, 2020) and more recently deep learning tech-

niques  (Cole, Poudel, et al., 2017; Kawahara et al., 2017; Wang et al., 2019; Dinsdale 

et al., 2021; Peng et al., 2021). However, brain age prediction accuracy still needs fur-

ther improvement, especially in smaller datasets where there is not enough data to 

train the model (Peng et al., 2021). Some research suggests that deep learning per-

forms no better than simple machine learning models in neuroimaging datasets when 

the sample size is too small (He et al., 2020). 

Traditionally, brain age prediction was performed by extracting features from brain 

MRIs, followed by classification or regression analysis (Jonsson et al., 2019). A disad-

vantage of such feature extraction methods is the loss of information since the features 

are not explicitly selected for extracting information related to brain age. Classical 
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machine learning techniques rely on our current (limited) knowledge of the brain e.g., 

focusing on the hippocampus or other brain regions. However, there is much we do 

not know about the brain and nowadays, deep learning methods like convolutional 

neural networks (CNNs) can learn features that are important without a prior bias or 

hypothesis (Jonsson et al., 2019). CNNs have found that smaller areas, previously 

deemed irrelevant in the ageing process, in fact play a bigger role than originally be-

lieved to (Jónsson, 2018).  

Here, we implement a 3D Convolutional Neural Network trained on grey-matter seg-

mentation MRIs from the Cam-CAN dataset, inspired on the structure implemented 

by Dinsdale et al., (2021) as shown in Figure 1 which resembles a VGG-16 architecture.   

 

Figure 1: Part of the ensemble architecture proposed by Dinsdale et al., (2021) which inspired our model 

The structure from Dinsdale et al. is part of an ensemble architecture and is repeated 

three times before calculating the average. For simplicity, due to time constraints and 

limited computational power, our proposed architecture will be a single model with 

five convolutional blocks used to extract features, followed by a method to correct 

brain age bias. The model will be evaluated to measure how successful it is at predict-

ing variables from the given data by measuring the mean absolute error (MAE). We 

use MAE for ease of comparison against literature as it is the most common metric. 

Cross-validation will be used to ensure validity of the model by splitting the dataset 

into training and testing sets differently in each iteration. The training set is used to fit 

the model, while the testing set is used to measure how well the model performs at 

making predictions on unseen data. We will do ten rounds of cross-validation using 

different parts of the data to reduce variance. The model will be applied to clinical data 

to test the hypothesis that brain age delta in subjects with neurological diseases is not 

the same as in healthy controls. 
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1.2. Aims and objectives 

The ultimate goal of the field of brain age prediction is to improve longevity and quality 

of life through the identification of brain age delta as a biomarker to detect neuro-

degenerative diseases before they are too advanced. As an initial step towards this, we 

aim to create a deep learning model which takes MRIs as input and outputs the esti-

mated brain age. The predictive model will detect changes in structural MRIs related 

to brain ageing, where changes include the loss of grey-matter, white-matter, and vol-

ume in the brain (Cole, Poudel, et al., 2017).  

We aim to develop a convolutional neural network trained on a healthy da-

taset to predict brain age based on neuroimaging data. We will then apply the 

trained model, through transfer learning, to a clinical dataset which in-

cludes Schizophrenia, Parkinson’s disease, and PTSD data samples to evaluate how 

brain age delta varies when a neurological disease is present.  Lastly, we will 

evaluate our results holistically comparing them against the literature and iden-

tifying other factors that could have played a role in the findings. 

Our hypotheses are: 

H0 – Null Hypothesis: brain age delta in subjects with neurological diseases is the 

same as in healthy controls. 

H1 – Alternative Hypothesis: brain age delta in subjects with neurological diseases 

is not the same as in healthy controls. 

The aims will be achieved by experimenting with different CNN architectures, activa-

tion functions, adjusting the number of filters, and evaluating which combination 

achieves the best results. The network will be created using Keras with a TensorFlow 

backend. The different combinations will be trained and tested on a healthy dataset 

using cross-validation with an 80/20 train/test split. Once the best model configura-

tion is found, we will only train on the whole healthy dataset and save the model’s 
weights so we can use transfer learning to test the model on the clinical dataset. We 

will correct bias in brain age prediction mathematically. Lastly, we will evaluate our 

results holistically by choosing metrics for quantitative evaluation and analysing the 

results graphically to allow us to draw conclusions from our findings. 

Additionally, we aim to improve our knowledge of working with neuroimaging data 

and developing techniques used in data science. 

1.3. Methodology Outline  

To begin with, we will work on a healthy dataset to create a convolutional neural net-

work able to predict brain age with errors in line with research or better. To do this we 

will firstly work on the dataset with reduced dimensions, as they allow faster compu-

tation for experimentation, before moving on to the full-size images, originally in NifTi 

file format which need to be converted into numpy arrays. We will experiment modi-

fying the CNN architecture, adding different layers, adjusting the number of filters, 

and changing the activation functions. Next, we will compare the performance of our 
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BrainAge model against well-known CNN architectures, such as VGG-13 and LeNet-5, 

which have appeared in research related to brain age prediction (Jiang et al., 2020; 

Dinsdale et al., 2021; Peng et al., 2021). 

Once we have a robust model, we will proceed to train it on the whole healthy dataset 

(as opposed to training and testing like we were doing in the previous steps) and we 

will save the model with its weights. Then, we will transfer the trained model to a su-

percomputing cluster containing the clinical data, as the data cannot be moved 

elsewhere due to ethical reasons. This will allow us to make use of transfer learning, 

meaning that the model will already be familiar with MRI data when it encounters the 

much smaller clinical dataset. We will freeze the feature extraction layers of the model 

and retrain the top layers with the healthy controls from the clinical dataset, enabling 

the model to familiarise itself with differences caused by having data in different for-

mats, the different scanners used and any noise that may be present. Next, we will 

correct the bias in brain age prediction to obtain more accurate results. Lastly, we will 

test the model on the different groups in the clinical dataset, namely, Parkinson’s dis-
ease, PTSD and Schizophrenia patients as well as the combination of all the 

aforementioned clinical groups, which we will refer to simply as patients.  

At the end, we will conduct an evaluation of the results, including graphs and tables to 

verify the hypothesis that brain age delta in subjects with neurological diseases is not 

the same as in healthy controls. If the hypothesis is supported by the results, it would 

provide ground for brain age prediction being used in diagnosis and treatment deci-

sions in the future. 

2. Background 

In this section, we provide a brief overview of the concepts relevant to this project. We 

discuss the usual progression of brain ageing, the bias in brain age predictions, differ-

ent neuroimaging formats and current research using machine learning and deep 

learning methods for brain age prediction. We also outline common methods used in 

deep learning to improve model performance, well-known convolutional neural net-

work architectures we will compare our model to, a summary of the software and 

libraries used as well as a description of our datasets.  

2.1. Brain Ageing 

Ageing has a direct structural impact on the brain which correlates with decreased 

mental and physical fitness. As a result of the ageing process, the brain experiences 

natural physical changes: reduced brain volume (especially in the prefrontal cortex, 

majorly responsible for decision making and logical reasoning), shrinking of grey and 

white matter, reduced volume of striatum, temporal lobe, cerebellar vermis, cerebellar 

hemispheres and hippocampus (Peters, 2006).  

Findings suggest that brain deterioration differs in male and female brains i.e., frontal 

and temporal lobes are more affected in males as opposed to the hippocampus and 

parietal lobes in females (Peters, 2006). Also, the effects of ageing are influenced by 
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genetic and environmental differences (Cole et al., 2018) such as diet, stress levels, 

exercise, smoking or drinking.  

In the case of Traumatic Brain Injury (TBI), long-term brain alterations are common 

e.g., an increased risk for early cognitive decline and dementia. The behavioural and 

anatomical changes are similar to normal ageing however, TBI contributes to prema-

ture development of said age-associated changes (Cole, Leech and Sharp, 2015). 

Conditions such as Parkinson’s disease (PD), Alzheimer’s Disease (AD), Schizophrenia 

(SZ), Depression, Multiple Sclerosis (MS) and Bipolar disorders (BPD) also incite ac-

celerated ageing (Koutsouleris et al., 2014; Jonsson et al., 2019). This pathological 

ageing is indicated by the level of deviation from the typical pattern of ageing and can 

be measured with a metric known as brain age delta, discussed in section 2.2. 

Increased brain age, which does not always correlate with chronological age, poses a 

risk of neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s 
disease (PD) (Beheshti et al., 2020), as well as higher mortality rates (Levakov et al., 

2020). Often, when cognitive decline becomes obvious, it is too late to treat it ade-

quately. Having a method to predict brain age would be a good indicator of early signs 

of brain deterioration which would allow to treat abnormalities before any symptoms 

become visible. 

Previous studies on brain age prediction discovered that brains of subjects with PD 

appear to be 1.5 years older than healthy brains (Beheshti et al., 2020). This is due to 

the loss of neurons in the substantia nigra and the presence of protein deposits in the 

Lewy bodies (Beheshti et al., 2020). In the case of SZ, the brain appears 5.5 years older 

(Koutsouleris et al., 2014) due to reduced grey matter and chronic inflammation 

(Institute Progress in Mind, 2019). PTSD brains appear 1.3 years older than healthy 

brains as a result of reduced cortical thickness (Liang, Zhang and Niu, 2019) 

2.2. Bias in Brain Age Predictions 

Brain age delta, defined as the difference between chronological age and predicted 

brain age, has been proposed as a pathology marker linked to a range of phenotypes. 

It is calculated by subtracting the chronological age from the predicted age.  

Research suggests the regression of age on brain features often leads to a biased model 

which manifests as an underestimation of brain age for older subjects, and an overes-

timation in younger subjects (Cole, Underwood, et al., 2017; Beheshti et al., 2019; 

Smith et al., 2019; De Lange and Cole, 2020). The brain age delta correlation displays 

a strong negative trend. 

Toolboxes such as correlation-constrained-regression (Treder et al., 2021) are availa-

ble to correct said bias. The bias can also be corrected mathematically as described in 

De Lange and Cole, (2020) by fitting a regression model using the chronological age 

as the x parameter and the predicted age as y. The gradient and intercept are then used 

to correct the bias using the equation from De Lange et al., (2019) Corrected Predicted Age = Predicted Age + [Ω − 岫ゎ ∗ Ω + が岻] 
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where Ω represents the chronological age, ゎ the gradient, and が the intercept. 

Correcting the brain age bias allows to reduce the variance in brain age delta values 

and leads to lower MAE after correction thus, whenever possible, it is recommended 

to do it. 

2.3. Brain Imaging Formats 

A Magnetic Resonance Imaging (MRI) device uses strong magnetic field and radio 

waves to create detailed images of the organs and tissues within the body. It is a pow-

erful tool in diagnosis of brain injuries, cancer, multiple sclerosis, among others. 

There are a few common types of MR images, e.g., spin echo MRI, diffusion tensor 

imaging (DTI) and functional MRI (fMRI) (Murphy and Gaillard, 2017). In this pro-

ject, we focus on the spin echo images and specifically T1-weighted images and grey-

matter volumetric maps.  

In a T1-weighted image, the cerebrospinal fluid (CSF) appears dark, white matter 

(WM) appears light, and grey matter (GM) is shown in grey (Preston, 2016). There is 

little contrast between grey and white matter in this kind of images. The left image in 

Figure 2 shows an example of a T1-weighted image in MNI linear space (Preston, 

2016).  

On the other hand, a grey-matter volumetric map can be taken from a T1 image. This 

is done by a process called segmentation which splits the MR image into regions with 

specific properties (Ashburner and Friston, 1997). Segmentation can also be done to 

show only the white matter regions or cerebrospinal fluid. A grey-matter volumetric 

map has much more contrast between grey matter (in light grey) and white matter (in 

black) than a T1 image. It is sometimes preferable when looking for differences in GM 

tissue, such as the case of brain ageing. A grey-matter image is shown on the right in 

Figure 2, alongside a T1 image for comparison.  

 

Figure 2: The differences between a T1-weighted image (left)(Preston, 2016) and a Grey-matter volumetric map 
(right)(Cam-CAN, 2011) 

Ideally, both the training and testing sets should be in the same format i.e., both T1-

weighted or both Grey-matter segmentations. However, in this project, the healthy da-

taset is in Grey-matter format and the clinical dataset in T1 due to lack of availability 

of data in the same format within the timeframe established for the project. 
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Consequently, the results will not be generalisable and the errors will be higher due to 

the differences in the images. Should we gain access to data in the same formats, the 

implementation of the model would not vary, only the inputs, and the results would 

have higher validity. 

2.4. Machine Learning in Brain Age Prediction 

Machine learning is a branch of artificial intelligence focused on building applications 

that are able to learn from data and can progressively improve performance inde-

pendently. There are two main categories of machine learning: supervised learning 

and unsupervised learning. In a supervised setting, the model learns from labelled ex-

amples whereas in unsupervised learning, the model has no previous knowledge about 

the data and tries to find hidden patterns or intrinsic structures in the data. 

Research in brain age prediction is usually of supervised learning type, which enables 

the model to learn from labelled examples i.e., neuroimaging data labelled with corre-

sponding chronological age. Typically, supervised learning tasks include classification, 

where the goal is to learn a function that splits the inputs into two or more classes, and 

regression, where the goal is to infer a continuous function from labelled examples. 

Both approaches are studied in the literature, but regression methods are more com-

mon. For classification, ages are divided into age ranges, e.g., 18-30, 31-40, 41-50, etc. 

or groups e.g., young, middle aged, elderly, etc. The model should then infer which 

group each MRI belongs to. For regression, the ages are integers (not ranges), and the 

model infers the brain age based on a mathematical function. This project implements 

a regression method because it is more insightful to have integers as opposed to ranges 

for analytical purposes. 

Papers using machine learning for brain age prediction extract features from MRIs 

followed by classification or regression analysis (Jonsson et al., 2019). The features 

extracted are based on a hypothesis based on the current knowledge of brain structures 

and the areas that are relevant to ageing. However, the brain is a complex organ and 

pre-selecting regions leads to the loss of valuable information (Jonsson et al., 2019) 

given that there areas of the brain that have not been thoroughly studied to determine 

their involvement in ageing or the atrophy of the areas themselves.  

Nonetheless, research relying on machine learning has been able to provide insightful 

results. Gaser et al., (2013) employed kernel regression methods, a class of algorithms 

for pattern analysis, and achieved an accuracy of up to 81% in predicting the conver-

sion of mild cognitive impairment into Alzheimer’s disease within three years follow-

up. They concluded that each additional year in estimated brain age compared to 

chronological age resulted in 10% higher risk of developing Alzheimer’s disease.  They 

calculated the average over the absolute differences between prediction and chrono-

logical age, also known as mean absolute error (MAE), and achieved an error of 3.8 

years in healthy subjects. The MAE increased up to 8.73 years in subjects with a mild 

cognitive impairment diagnosis highlighting accelerated brain ageing. 
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Franke et al., (2010) published one of the first papers on brain age prediction using 

structural images. The T1-weighted MRIs were pre-processed to correct for bias-field 

inhomogeneities, followed by a registration into a common MNI space and then a grey 

matter segmentation. The dimension of the grey matter segmented images was re-

duced to 410 features using principal component analysis (PCA) (Wold, Esbensen and 

Geladi, 1987). They trained a Relevance Vector Machine (RVM) on the 410 features 

extracted from the IXI dataset which resulted in an MAE of 4.61 years on the testing 

set. Franke et al. attempted to replicate the results on another dataset with 108 healthy 

subjects aged 20-59 obtained from a different scanner and got an MAE of 5.44 years, 

implying that the model was sensitive to artifacts left by the imaging device. Training 

using both datasets produced an MAE of 4.98 on the testing set.  Thus, we can assume 

that training on multiple datasets would make the model more robust and prevent it 

from relying on artifacts from a single dataset. 

Wang et al., (2014) explored brain age prediction based on cortical thickness and sur-

face curvature. They used T1-weighted images for 148 distinct cortical regions to 

estimate the cortical thickness and surface curvature. They accomplished an MAE of 

4.57 years on the testing set after training an RVM on those features on the IXI dataset.  

Most models that implement a Relevance Vector Regression (RVR) model only achieve 

a mean error of 4.6 years (Franke et al., 2010; Wang et al., 2014; Kondo et al., 2015). 

More recently, in Aycheh et al., (2018), they achieved an MAE of 4.05 years. In this 

instance, the researchers used a Sparse Group Lasso (SGL) for feature selection using 

the brain’s anatomical grouping (frontal, temporal, limbic, parietal, occipital and in-

sula lobes) followed by a Gaussian Process Regression (GPR) to fit the final age 

prediction model. Aycheh et al. compared the performance of five different regression 

models: Ordinary Least Squares (OLS), Sparse Group Lasso (SGL), Gaussian Process 

Regression (GPR), Relevance Vector Regression (RVR) and Deep Neural Networks 

(DNN); achieving the best results with the GPR model. They also compared the per-

formance results using hybrid approaches, that is combining more than one regression 

model, showing a combination of SGL and GPR was the best choice (MAE = 4.053). 

The errors from machine learning methods are still quite high which is why most re-

cent approaches are using deep learning. 

2.5. Deep Learning in Brain Age Prediction 

Deep learning is a branch of machine learning which structures algorithms in layers 

to create an artificial neural network that mimics the human brain i.e., it can learn and 

make intelligent decisions independently. Deep learning methods learn to solve a task 

by forming successively complex concepts from simpler concepts. Each successive 

layer uses the output from the previous layer as input to learn multiple levels of repre-

sentations that correspond to different levels of abstractions. For example, if using a 

neural network to distinguish between cats and dogs, the first layer would focus on 

recognising the outlines of the animal, then the next layer the fur, then ears, eyes, tail, 

whiskers, and so on. The method finally uses the extracted features to decide if the 

image looks more like a cat or a dog (provided it was trained on cat and dog images to 
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begin with). Likewise, for the case of brain age prediction, it would firstly look at the 

outline of the brain, amount of grey matter and white matter, then the volume of cer-

tain regions, the sulci (grooves) and gyri (folds), and so on before being able to predict 

the brain age based on said features. 

Convolutional neural networks (CNN) are a special type of neural network. The key 

difference is that they utilise weight-sharing to minimise the number of parameters in 

the model. This makes sense for images which have many translational invariant prop-

erties, e.g., a neuroimage remains an image of a brain if shifted a few voxels but 

becomes a different “brain”. The CNN learns features that are invariant to shifting by 

making every local unit feature map perform the same operation on every part of the 

image. To put this simply, for a CNN trained to detect tumours in the brain, the detec-

tion should not depend on where the tumour is localised in the brain. 

Convolutional neural networks are usually composed of convolutional layers, activa-

tion layers, pooling layers, and fully connected layers. They can be connected to each 

other and repeated in a large number of ways however, the fully connected layer has 

to be at the end. Convolutional layers compute the output of neurons that are con-

nected to local regions in the input, each computing a dot product between their 

weights and a small region they are connected to in the input volume. Activation layers 

apply an element-wise activation function such as ReLu (rectified-linear unit). Activa-

tion functions are essential as they enable the CNN to learn from complex data and 

spot patterns, and to map non-linear relationships between the input and output to a 

desired range such as between 0 and 1. The pooling layers perform a down sampling 

operation along the spatial dimensions. The fully connected layers transform the fea-

ture map produced by the previous convolutional layer to the desired output. 

Cole, Poudel, et al., (2017), one of the first papers implementing a CNN for brain age 

prediction, compared a CNN model (based on a VGG-16 architecture) with a GPR 

model and obtained significantly more accurate results on the CNN (MAE = 4.16 years 

as opposed to 4.66 years).  

Huang et al., (2017) also published a paper around the same time. They trained a 2-

dimensional CNN to predict brain age on T1-weighted MRIs. Their structure was once 

again based on a VGG net. They found out there is no need to include all the brain 

slices when working with a 2D network and concluded only 15 were necessary to make 

a prediction without hurting performance. Their model predicts subject’s brain age 
with an MAE of 4.0 years. 

More recent research using a 3D Convolutional Neural Network approach have ob-

tained an MAE of 2.86 and 3.09 years for female and male groups respectively 

(Dinsdale et al., 2021). However, it should be noted that, although these results are 

some of the lowest in the literature, it would not yield the most clinically relevant 

model since not all the participants were healthy in the UK Biobank dataset they used.  

The lowest errors in brain age prediction have been achieved using CNNs, which is 

why we decided to make our own CNN model. In general, MAE results vary between 

3-5 years depending on the dataset and model used. Nevertheless, a deep learning 
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approach is not necessarily better than machine learning when a large enough dataset 

is unavailable (He et al., 2020).  

2.6. Regularisation 

When training high-capacity models like CNNs, it is important to use regularisation to 

prevent overfitting. Overfitting occurs when the model has studied the training data 

too much and learned every relationship which leads to decreased performance on un-

seen data. This becomes obvious when there is high accuracy on the training data but 

low accuracy on testing data. In simple terms, regularisation is any modification done 

to a learning algorithm to reduce its generalisation error (Goodfellow, Bengio and 

Courville, 2016). There are many regularisation methods available in deep learning 

but, for simplicity, only dropout and early stopping are employed in this project. 

Dropout is a recent regularisation method that became popular due to its simplicity 

and effectiveness in improving performance. It randomly drops out neurons during 

training which helps prevent the neuron from becoming too reliant on a small subset 

of important neurons (Srivastava et al., 2014). It is common practice to place dropout 

layers exclusively in the fully connected layer as there is no significant gain in perfor-

mance through adding dropout to convolutional layers (Srivastava et al., 2014).  

Early-stopping works well at preventing overfitting because it makes the model stop 

training if no improvement is seen after a certain number of epochs. Usually, training 

error decreases steadily over time, but the validation error starts to rise again after a 

certain point (Morgan and Bourland, 1990). Through early stopping, the weights at 

the lowest validation error are saved. Besides preventing overfitting, this method also 

helps prevent wasting time when the network is no longer getting smarter. 

2.7. Improving performance 

There are several ways to improve model performance. We provide an overview into 

loss functions, optimisation functions and performance metrics, all of which are used 

in this project to improve performance.  

2.7.1. Loss functions 

Neural networks learn to map a set of inputs to a set of outputs and make its predic-

tions. The network produces a loss, defined as the distance score between the predicted 

values and the output values. The model backpropagates said loss to each neuron that 

has contributed to the output of the model, making use of this information to update 

the parameters weight and bias of the neural network with the aim of reducing loss 

and producing the best performing model. Loss functions are used to reduce the loss 

of a model. They work by readjusting the weight and bias parameters of the model’s 
neurons. Generally, knowing how far off the prediction is from the true value is more 

significant than knowing if an incorrect prediction was higher or lower than expected.  

Mean Absolute Error (MAE) measures the absolute average magnitude of the errors 

(true value – predicted value) in a set of predictions for a regression model. A limita-

tion of using MAE as a loss function is that the gradient is the same throughout, which 
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means the gradient will be large even for small loss values. Thus, this is not always 

appropriate for learning. 

Mean Squared Error (MSE) calculates the loss for a regression problem. MSE 

measures the average of the squares of the error. This value provides insight into how 

close the set of points of a regression model are to the regression line. Errors are more 

penalised than with an MAE loss function. In contrast to the gradient problem with an 

MAE loss, an MSE loss converges even with a fixed learning rate. The gradient of MSE 

loss is high for larger loss values and decreases as loss approaches zero, making it more 

precise at the end of training. For these reasons, we will use MSE as the loss function 

for our model. 

2.7.2. Optimisation function 

The role of optimisation functions is to find the correct values of weights and bias that 

minimise loss. Gradients affect how a neural network learns i.e., a higher gradient al-

lows a model to learn faster but, if the slope is zero, the model stops learning. 

Gradient descent is an optimisation strategy that involves iteratively adjusting values 

to minimise the loss function. The algorithm takes steps proportional to the negative 

of the gradient of the function at the current point and tweaks parameters iteratively 

with each step down the gradient. The goal is to decrease the learning steps with each 

iteration while adjusting the parameters to move towards the global minimum. Having 

a learning step that is too small could mean the algorithm misses the global minimum 

but, a large learning rate can result in getting trapped in a local minimum. 

The Adam optimiser is a popular optimisation function. It uses an adaptive learning 

rate method based on the Stochastic Gradient Descent algorithm to update the net-

work’s weights and biases during training. The Adam optimiser is computationally 

efficient and is well suited for problems that are large in terms of data or parameters. 

It is also well suited for non-stationary objectives and problems with very noisy or 

sparse gradients. A great advantage is that it does not usually require tuning, and it 

scales the learning rate for individual parameters to reach the convergence of a gradi-

ent. Thus, our model employs an Adam optimiser. 

2.7.3. Performance metrics 

A good model has to undergo a performance evaluation. Performance metrics are dif-

ferent to loss functions in the sense that a metric is used to evaluate the performance 

of the model once training has finished, whereas the loss function is used by the opti-

miser during the learning process to minimise errors. Different metrics are better 

suited for different problems.  

For a regression task, Mean Absolute Error (MAE) is usually the best metric. MAE, 

defined by the equation below, is the average over the test sample of the absolute dif-

ferences between prediction and actual observation where all individual differences 

have equal weight. In the formula, �̂� represents the predicted age and �� the 
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chronological age, n is the total number of subjects and j represents each subject in-

creasing up to n in steps of one. 

��� =  1� ∑|�̂� − ��|�
�=1  

Since MAE is an error metric, the lower the value is, the better. In this project, the 

MAE will be an indication, in years, of how far off the predicted values are from the 

real values. We chose MAE for ease of comparison against literature since it is the most 

popular metric. 

2.8. Analysis of Variance (ANOVA) 

An Analysis of Variance (ANOVA) test is a type of inferential statistic used to deter-

mine if there is a significant difference across the means of a population. ANOVA tests 

are useful to test hypotheses in data such as comparing a null hypothesis with an al-

ternative hypothesis using the difference in means. 

Here, we use an independent one-way ANOVA to test the significance of the brain age 

delta in controls and patients. The one-way ANOVA tests the null hypothesis that two 

or more groups have the same population mean. The test is applied to samples from 

two or more groups, which can be of different sizes. It calculates the F-values by eval-

uating the magnitude of variance between the groups against the variance within each 

group of samples. 

If the between-group variance is large relative to the within group variance, the F sta-

tistic will be larger than the critical value, therefore statistically significant. It means 

at least one of the group of means is significantly different from other group of means. 

The ANOVA test does not indicate which group of means is significant thus, a t-test or 

Tukey HSD test would need to be performed to find out. Contrary to that, if the within-

group variance is larger, and the between-group variance is smaller, the F-value would 

be smaller. This reflects the likelihood of no significant differences between the sample 

means. 

The ANOVA notation is F(b, w) = x, p = y where b represents the degrees of freedom 

between the groups, w the degrees of freedom within the groups, x is the F-value and 

y the p-value. 

2.9. Well-known Convolutional Neural Network Architectures 

LeNet-5 is a CNN architecture made up of 7 layers. It consists of 2 convolutional layers 

followed by 2 subsampling layers and 3 fully connected layers (Lecun et al., 1998). The 

original architecture used average pooling in the subsampling layers however, more 

recent implementations favour the use of max-pooling for better results as well as us-

ing ReLU instead of sigmoid as the activation function (Zhang et al., 2019). Each 

convolutional layer uses a 5x5 kernel. The LeNet-5 architecture, as shown in Figure 3, 

is well-known for its small memory footprint and fast training times, making it suitable 

for working with large amounts of data (Zhang et al., 2019) such as the case of MRIs. 
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Figure 3:  A depiction of the LeNet-5 architecture, as illustrated in its original paper (Lecun et al., 1998)  

VGG is another well-known CNN architecture. It is a very deep convolutional network 

used for large scale image recognition. Its structure is simple, relying only on 3x3 con-

volutional layers stacked on top of each other in increasing depth (Simonyan and 

Zisserman, 2015). One VGG block consists of sequence of convolutional layers with a 

padding of one (keeps height and width), followed by a 2x2 max pooling layer with 

stride of 2 for spatial down sampling which halves the resolution after each block 

(Zhang et al., 2021), as shown in Figure 4 by Nash, Drummond and Birbilis, (2018). 

 

Figure 4: A depiction of the VGG-16 model architecture (Nash, Drummond and Birbilis, 2018) 

VGG remains one of the most used image-recognition architectures and it appears fre-

quently in brain age prediction papers with some modifications (Cole, Poudel, et al., 

2017; Nash, Drummond and Birbilis, 2018; Jiang et al., 2020; Dinsdale et al., 2021). 

The problem with the original VGG-16 architecture is that it is too deep and therefore, 

requires large amounts of computational power. 

This project implements a reduced version of the VGG architecture and an improved 

LeNet-5 to compare our BrainAge model against these well-known robust architec-

tures. VGG was chosen for comparison because it is a popular structure for brain age 

prediction. On the other hand, LeNet-5 was chosen as it is noticeably light and able to 

handle MRIs easily. The changes made to these structures will be detailed in the meth-

odology section.  

2.10. Software and Libraries 

In this section, we list all the software and library related choices. Most libraries were 

chosen based on being well-known tools with ample support available online.  
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• Python: The chosen programming language due to its high compatibility with 

most machine learning tools. Besides, it is a high-level language with strong 

community support, making it an ideal choice. Python is the most used lan-

guage in machine learning and data science because it is easy to understand 

(Python, 2020). 

• Keras: High-level API for developing neural networks. “Designed for human 
beings, not machines” (Keras, 2020). It makes the creation of CNNs quick and 

easy, with consistent APIs, and runs seamlessly on CPU and GPU. In this pro-

ject, TensorFlow was used as a backend for Keras. 

• TensorFlow: Open-source machine learning framework which enables to de-

velop, train and test models (Abadi et al., 2015).  

• Scikit-learn: Collection of machine learning algorithms for supervised and un-

supervised learning in Python (Scikit-learn, 2021). It provides efficient tools for 

data science such as mean absolute error (MAE) as metrics and other tools for 

fine tuning a model. 

• Scikit-image: Collection of tools to manipulate images (Van Der Walt et al., 

2014). Useful to resize MRIs and crop unnecessary black edges. 

• Numpy: Provides support for large, multi-dimensional arrays and matrices in 

Python as well as a wide range of mathematical functions to manipulate these 

data structures (Numpy, 2020). 

• Pandas: Useful library to manipulate, visualise and analyse data in csv, txt or 

sav format (among others) such as demographics (Pandas, 2021).  

• Matplotlib.pyplot: A collection of functions that make matplotlib work like 

MATLAB. Enables the creation of graphs and displaying brain slices 

(Matplotlib, 2021). 

• Seaborn: A python data visualisation library based on matplotlib. It provides a 

high-level interface for plotting graphs with many colour themes available 

(Seaborn, 2020). 

• Nibabel: Library that provides read and write access to common medical and 

neuroimaging file formats such as NifTi (.nii) (Brett et al., 2020).  We use it to 

convert NifTi files into numpy arrays.  

• Supercomputing Wales: Provides access to powerful computing facilities for 

high performance computing tasks (Supercomputing Wales, 2021). Access is 

only available to authorised users, and the connection is established through 

SSH. Supercomputing Wales allows training and testing 3D convolutional neu-

ral networks thanks to its powerful GPUs. 

• CHPC: Similar to the Supercomputing Wales cluster, CHPC is the supercom-

puting provider for Stellenbosch University (CHPC, 2016). 
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• FileZilla: Enables the transfer of scripts and files between our workstation and 

the supercomputing cluster using SFTP (FileZilla, 2014). 

• PuTTY: Program that enables connection through SSH to both supercomputing 

clusters (PuTTY, 2020). 

• Google Colab: Created for data science projects, allows writing and executing 

python code through the web browser making it easy to experiment with differ-

ent configurations (Google, 2019).   

• GitHub: We used GitHub for version control (GitHub Inc., 2020). It is a valua-

ble tool used widely in the industry which allows to backup code and revert back 

to a previous working version before a bug was introduced. 

• Microsoft Excel: Allows statistical analysis of the results with a simple interface. 

2.11. Cam-CAN and Shared Roots datasets 

The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) is a large scale col-

laboratively research project based at the University of Cambridge. The Cam-CAN 

project uses epidemiological, behavioural and neuroimaging data to understand how 

individuals best retain cognitive abilities into old age (Cam-CAN, 2011). The dataset is 

within public domain, upon submitting an authorisation form and it has been featured 

in research multiple times (Shafto et al., 2014; Taylor et al., 2017).  

The Cam-CAN dataset, used for training the CNN models, consists of T1-weighted 

MRIs of 653 healthy subjects. The age of the subjects in this dataset is in the range 18-

88 (mean age: 54.6) and the size of each 3D image is 181 x 217 x 181. Three types of 

segmentations were provided originally: grey matter, white matter, and cerebrospinal 

fluid. We used grey matter segmentation images because grey matter is more relevant 

to brain ageing (Wang et al., 2019). 

Shared Roots, a project run by Stellenbosch University, aims to understand the simi-

larities of neuropsychiatric disorders and modifiable risk factors for cardiovascular 

disease (Shared Roots Study, 2014). The original Shared Roots dataset consists of 974 

subjects divided into healthy controls and patients of Schizophrenia (SZ), Parkinson’s 
Disease (PD) and Post Traumatic Stress Disorder (PTSD). However, we have only been 

provided with a reduced dataset of 290 participants out of which 124 were discarded 

due to bad quality, presenting motion artifacts or signs of brain atrophy in the control 

group. After discarding the unsuitable subjects, the distribution of individuals per 

group is as indicated in Table 1. The images are T1s in MNI linear space. The ages are 

in the range 19 to 81 (mean age: 45.4) and each T1-weighted image is of dimensions 91 

x 109 x 91. 

Group Controls (N = 92) Patients (N = 74) 

Schizophrenia 37 21 

Parkinson’s Disease 15 15 

PTSD 40 38 

Table 1: Shared Roots data distribution 
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Attributes related to each participant’s gender, age, smoking, alcohol intake and edu-

cation are available for both datasets. Nevertheless, this project only needs the 

chronological age of the subjects. All MRIs are originally in NifTi (.nii) file format and 

have been converted into numpy arrays (.npy).  

For comparative purposes, Figure 5 below shows the age distributions for male and 

female subjects in the Cam-CAN and Shared Roots datasets. It should be noted the 

male to female ratio in Cam-CAN, on the left, is fairly even whereas in Shared Roots, 

there are more female subjects than male. Besides, the ages in Cam-CAN are more 

evenly distributed than in Shared Roots, in which most subjects are middle-aged. We 

will discuss the implications of these distributions in more detail in the Results and 

Evaluation section.  

 

Figure 5: Distribution of ages per gender in Cam-CAN (left) and Shared Roots (right) datasets 

Both datasets have been approved by the ethics committees at Cardiff University as 

well as their origin institutions. Ethics statements can be found in the Appendix. 

2.12. Transfer Learning 

Transfer learning is a technique in which the best model weights acquired from train-

ing on the original dataset are selected. Then, we freeze the first few layers so that only 

the top layers are trainable. The reason behind this is the first layers are simple image 

processing filters and should not change significantly if looking at data that is similar 

to the training data. Next step is to train the convolutional neural network on a small 

randomly selected portion of the data from the new site, e.g., 10%, it should not take 

long because the network was already trained, and we are only fine tuning it for the 

new dataset. However, since our dataset is small, we will use the whole group of con-

trols instead of 10%. Transfer learning is useful because variations in the MRI scanner 

used and image processing methodology may result in unwanted differences and by 

doing this, the network adapts to these small differences in the new dataset and the 

accuracy increases.  

3. Methodology 

The aim of this project is to develop a convolutional neural network trained on a 

healthy dataset to predict brain age based on neuroimaging data. We will apply the 

trained model, through transfer learning, to a clinical dataset which includes 
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Schizophrenia, Parkinson’s disease, and PTSD data samples to evaluate whether the 

brain age delta in subjects with a neurological disease is not the same as for healthy 

controls. 

This section covers in detail the design of the proposed model and data pre-processing 

aspects. Due to the highly iterative nature of the project, the best methodology was an 

agile approach. A clear plan could not be designed from the start because information 

about the data is discovered as the project progresses. The agile approach enabled to 

tune hyperparameters and make subtle changes to the model to improve performance.  

Essentially, the predictive model takes as input a multi-dimensional numpy array con-

taining all the cropped MRIs and the labels, also as a numpy array, containing integers 

corresponding to the subjects’ ages. The output is the estimated brain age. Mean ab-

solute error is used to measure the accuracy of the predictions on the unseen MRIs. 

We will calculate the brain age delta (negative residuals) on the clinical data because 

an absolute value would not reflect younger-looking brains. Lastly, we will evaluate 

our results graphically and statistically. 

3.1. Data pre-processing 

For the first part, tuning the model before applying it to clinical data, the Cam-CAN 

dataset is used exclusively. The grey-matter segmentation MR images are stored in a 

shared directory on the Supercomputing Wales cluster and must be extracted from 

there. We iterate over all directories, which correspond to different subjects, and con-

vert the grey matter segmented images from NifTi (.nii) into a numpy array using the 

Nibabel library. Then, we use scikit-image to crop 19 pixels around all the edges to 

remove unnecessary black edges. Next, depending on whether we use more filters with 

a smaller image size (low res) or fewer filters with a bigger image size (high res), we 

resize the MRIs down to 96 x 112 x 96 or 143 x 167 x 143, respectively, using scikit-

image. Figure 6 below illustrates the difference in detail for each dimension. 

 

Figure 6: Brain slices showing the difference in dimensions and detail between the low-res (left) and high-res 
(right) images, to scale 

The bigger images require more computational power hence why the need to reduce 

the number of filters to prevent running out of memory. 
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The demographics for the Cam-CAN dataset are stored in a file called ‘CC700_mt.txt’ 
located in the directory with the MRI files. The age for each subject is matched to their 

MRI by taking their unique ID, designated in the SubCCIDc column, and looking it up 

in the demographics text file using pandas. This value is inserted into a numpy array. 

All ages are added in the same order as their corresponding MRIs. The MRIs are saved 

in a mris.npy file and the ages, in an ages.npy file. 

For the second part of the project, applying the model to the Shared Roots dataset, 

data is processed in a similar way as described above. The MRIs in this instance are 

stored in the CHPC cluster in T1-weighted format. Similarly, we iterate through the 

directories and convert NifTi into a numpy array using Nibabel and resize to match 

the data from Cam-CAN (96 x 112 x 96) with scikit-image. As a consequence of the 

different conditions in the Shared Roots data, subjects were split into Schizophrenia, 

PTSD, Parkinson’s disease, and controls arrays, using the naming format [condi-
tion]_mris.npy and [condition]_ages.npy. 

Details about participants in Shared Roots data are stored in a file called ‘de-

mographics.sav’. Again, the age for each subject was found matching the unique 

subject ID, using pandas, to the value in the text file and then added into a numpy 

array. It should be mentioned that ages for the Shared Roots data are in decimal num-

bers in contrast to integers in the Cam-CAN dataset therefore, we used python’s round 
function to round up each value before adding it to the array. 

We used 3D images because, even though they require more computational power, 

they are a more accurate representation of the brain than 2D slices. 

3.2. Creating the model 

Initially, the BrainAge model was created on Google Colab (Google, 2019) as it is better 

suited to experimentation. Only 50 MRIs out of 653 were used for this preliminary 

stage due to Google Colab’s memory restrictions.   

The first iteration of the model had 4 convolutional layers with ReLU as the activation 

function. Each convolutional layer was followed by a max-pooling layer. There was a 

single batch normalisation layer before the last max-pooling layer, and only one fully 

connected layer with one unit. The number of filters started at 32 and incremented by 

a scale factor of 2 per each convolutional layer. Training the CNN on 50 images using 

a train/test split of 80/20 with a batch size of 16 and 20 epochs, resulted in a MAE of 

6.85 years. 

Some changes were made to this initial model to improve performance. The structure 

was modified using Dinsdale et al., (2021)’s model as inspiration. The convnet now 
had 5 convolutional layers (number of filters per successive layer: 32, 64, 128, 128, 

256), each followed by a batch normalisation layer and a max-pooling layer. The acti-

vation function remained as ReLU. Two more fully connected layers were added with 

256 and 128 units, respectively. The 3D convolutional layers were set to stride 1x1x1 

and kernel size 3x3x3. The max pooling layers were set to stride 2x2x2 and kernel size 
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3x3x3. All layers had padding set to same to prevent the images from shrinking. Figure 

7 displays the architecture of the BrainAge model. 

 

Figure 7: Architecture of the proposed BrainAge model. The picture reflects the structure of the low-res model 
though the high-res remains the same structure with different filter sizes. The model shows five convolutional 

blocks, each containing a convolutional layer (orange), followed by batch-normalisation (yellow) and max 
pooling (green). 

These changes significantly increased the number of trainable parameters and it was 

no longer possible to use Google Colab. Training and testing the model on the Super-

computing Wales cluster using the whole dataset (653 MRIs: 522 for training, 131 for 

testing) over 200 epochs with a batch size of 4 resulted in a considerably reduced MAE 

of around 4.4 years which is in line with values in the literature, as mentioned in sec-

tion 2. 

Consequently, some other changes were tested to see if they improved performance. 

For example, changing the loss function from the previously used mean squared error 

to mean absolute error, altering the batch size, changing ReLU to ELU, adding a drop-

out layer before the fully connected layers and changing the number of units in the 

fully connected layers. The best performing changes are detailed in section 4.1, omit-

ting attempts that performed considerably worse. 

Two main versions of the model emerged as a solution to memory issues that came 

about when loading the full-size MRIs as opposed to the reduced version previously in 

use. We will refer to them as high-res and low-res, named after the size of the MRIs. 

The high-res version consists of fewer filters (8, 16, 32, 32, 64, 128, 64 in order of lay-

ers) and takes as input larger MRIs (143 x 167 x 143). In contrast, the low-res version 

has more filters (same as Figure 7) and takes as input smaller MRIs (96 x 112 x 96). 

The loss function used to measure how close the prediction is to the label is the mean 

squared error. The convolutional neural network was optimised with the Adam 
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optimiser with the default parameters. The batch size was kept at four; having a low 

batch size helps reduce memory consumption. Early stopping was used to monitor the 

loss value. It checks if the validation loss is lower, if there is no improvement for ten 

epochs, training stops.  

The training time of the network was quite long to experiment with many design op-

tions. Both ELU and ReLU activation functions were compared, however, other ReLU 

variants could have better performance (e.g., leaky ReLU). The Adam optimiser was 

chosen because it is the most versatile. Dropout was only used in some versions and it 

was placed before the fully connected layers. All of the code for the convolutional neu-

ral network was written in Python using Keras. 

3.3. Measuring errors 

Each version of the model was run ten times in a for loop. Each time, the train and test 

data were split differently thanks to the train_test_split function from scikit-learn. 

This is done as a way to cross-validate the results since the network performs differ-

ently depending on what data falls into the train and test splits. As the model was run 

ten times, it was simple to calculate the mean MAE with its corresponding standard 

deviation to have an idea of how the model performs overall in the best and worst sce-

narios. 

The epochs were set to 100 with an early stop watching the loss parameter over 10 

epochs. If the loss does not improve for 10 consecutive epochs, the early stop is trig-

gered, the model stops training and moves on to the next iteration in the for loop. 

Although the model performs better at 200 epochs, training for 100 epochs provides 

sufficient insight into which combination performs better and executes substantially 

faster. This assumes that if a model configuration is the best at 100 epochs, it will be 

even better at 200 epochs.  

All combinations are compared in the Results and Evaluation section. Then, the best 

performing model will be compared against the LeNet-5 and VGG-13 implementations 

to demonstrate how the BrainAge model performs compared to well-known architec-

tures. 

The LeNet-5 version we implemented uses ReLU activation functions instead of sig-

moid and max-pooling instead of average pooling. We used these modifications 

because they significantly improve the performance of the LeNet architecture (Zhang 

et al., 2021). It has two convolutional blocks with 32 and 64 filters respectively and a 

kernel size of 5x5x5. The max-pooling layers have a kernel size of 2x2x2 and strides set 

to 2. It has 3 fully connected layers with 120, 84 and 1 units, respectively. 

The VGG-13 adaptation we used is based on Jiang et al., (2020). It consists of five 

convolutional blocks, each with two convolutional layers, a batch normalisation layer, 

activation layer and max pooling. The number of filters started at 8 and doubled after 

each convolutional block (8, 8, 16, 16, 32, 32, 64, 64, 128,128). The activation was set 

to ReLU, kernel size to 3x3x3 and the padding to same. The max-pooling layers have 
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kernel size set to 2x2x2 and strides to 2. The VGG adaptation has 3 fully connected 

layers with 128, 64 and 1 units respectively and activation function ReLU. 

3.4. Application to clinical data 

The best performing version of the BrainAge model was selected. The model was 

trained on the Supercomputing Wales cluster for 200 epochs using the whole Cam-

CAN dataset (N = 653, mean age = 54.6 years, SD = 18.6, age range 18-88 years) and 

all the weights were saved into a h5 file. Saving the weights allows to perform transfer 

learning, as outlined in section 2.12. This method enables the BrainAge model to retain 

the knowledge it gained from the Cam-CAN dataset when predicting brain age and 

apply it to the Shared Roots dataset. 

The h5 file containing the trained model with its weights was transferred to the CHPC 

cluster via SCP using FileZilla. We loaded the BrainAge model on the CHPC cluster 

and froze the first 17 layers so that only the top layers are trainable. We trained the 

CNN on all the healthy controls from the Shared Roots dataset (N = 92, mean age = 

45.6 years, SD = 16.9, age range 19-81 years), to allow the network to familiarise itself 

with the differences from the new dataset. 

The model was tested for four different groups to highlight differences between neu-

ropsychiatric conditions: PTSD (N = 38, mean age = 45.0, SD = 11.8, age range 22-72 

years), SZ (N = 21, mean age = 32.3, SD = 8.0, age range 19-50 years), PD (N = 15, 

mean age = 61 , SD = 6.8, age range 49-73 years) and all of them combined (N = 74, 

mean age = 44.6, SD = 14.0, age range 19-73 years), referred to as patients. We also 

tested on the controls with a 80/20 train/test split to compare patients against them. 

All participants included in the training set were healthy according to local study data. 

All data was visually quality controlled to ensure quality and accuracy of image pro-

cessing. Demographics were error-checked, and exclusions made if age values were 

unavailable. We discarded 124 in total. 

We ran the model individually for each condition a for loop for 10 iterations, epochs 

were set to 200 and batch-size to 4. Like before, we included an early stop monitoring 

the loss for 10 epochs to prevent overfitting. 

3.5. Correction of brain age bias 

As mentioned in the background section, the predicted ages displayed a bias; the age 

for younger subjects was overestimated, and it was underestimated for older subjects. 

Therefore, we corrected the predicted ages using the equation in section 2.2 (De Lange 

et al., 2019) after making predictions with the CNN.  

We performed a Lasso regression on x = chronological age, y = uncorrected predicted 

age. We chose Lasso because it improves prediction accuracy and reduces overfitting. 

Then, we used the gradient and intercept from the regression on the equation below 

where Ω is the chronological age, ゎ the gradient and β the intercept. Corrected Predicted Age = Predicted Age + [Ω − 岫ゎ ∗ Ω + が岻] 
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We calculated the correlation coefficients between chronological and predicted ages 

both before and after correction, as well as the correlation between the chronological 

ages and brain age delta. This was done both for training and testing to allow for com-

parison.  

It should be noted that the chronological ages array needs to be reshaped into a column 

vector. This is because the Lasso regression expects a 2D array as input. The chrono-

logical and uncorrected ages need to be reshaped back into a 1D array before putting 

them in the equation to avoid any dimensions errors when calculating the MAE or 

correlation coefficients. 

3.6. Analysis and statistics 

All results were saved in csv files to facilitate the creation of graphs and tables. We read 

the csv values using pandas and created graphs with seaborn.  

We computed the mean brain age delta values for each condition by subtracting the 

chronological age from the predicted age and averaging it over all the subjects. Also, 

we calculated the correlation coefficients between chronological ages and predicted 

ages both before and after correction as well as the correlation coefficients between 

chronological ages and brain age delta. Lastly, we used Microsoft Excel to perform a 

one-way ANOVA test. 

4. Results and Evaluation 

The aim of the project has been achieved. We created a convolutional neural network 

able to predict brain age with a MAE of 4.03 years in healthy subjects in the Cam-CAN 

dataset and we applied it to clinical data where it obtained a MAE of 17.76 years in 

healthy subjects from Shared Roots dataset. It is important to bear in mind the images 

used for each dataset are in different formats (grey-matter and T1-weighted) and this 

is reflected in the significantly higher MAE for the healthy controls in Shared Roots. 

The mean brain age delta (predicted age – chronological age on clinical patients sug-

gests abnormal brain ageing, with the largest difference seen on Schizophrenia 

patients which have a numerically older brain (+5.19 years), followed by PTSD (-1.72 

years) and Parkinson’s disease (-0.65 years) which appear to have numerically 

younger brains. Yet, none of the results are significant at p<.05 meaning the null hy-

pothesis is accepted. 

In this section, we will outline the results obtained from the preliminary stages which 

helped to refine the model, and lastly, we will evaluate the final results. 

4.1. Early Development Results 

The results in this section reflect some of the assumptions made early on and justify 

the design choices made. At an early stage, the Cam-CAN dataset was used for evalua-

tion, using a train/test split of 80/20. Each variation of the model was run for 100 

epochs in a for loop for 10 times as a cross-validation method. The train_test_split 

function from scikit-learn selected a different division of data into training and testing 
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groups in each iteration of the for loop, ensuring different combinations of training 

and testing sets were run using different parts of the data, as mentioned in section 3.3. 

Each variation of the model was run for high-res and low-res MRIs, see section 3.2. 

However, we will discuss only the most significant results for clarity. 

It should be noted that running each model for 200 epochs instead of 100 significantly 

improves the performance of each one, reducing the MAE value by around one year. 

However, it would be very time consuming to execute 200 epochs 10 times for each 

variation so instead, 100 epochs provide very substantial insight into the performance 

of each model. This was based on the assumption that the best model at 100 epochs 

will remain the best model at 200 epochs.  

4.1.1. Effect of activation function 

We discussed how the activation function are essential to obtain results in section 2.5. 

Jonsson et al., (2019) used ELU activation functions in their ResNet architecture and 

achieved a good MAE of 4.006 years. Motivated by this result, we decided to compare 

the ELU function against the most versatile and famous ReLU function. 

The results, as shown below on Table 2, suggest that for this particular task, ReLU is a 

better choice (MAE = 5.6019) when using the low-res version whereas ELU performs 

better (MAE = 6.8334) in the high-res version of our model.  

Version Activation MAE ± SD 

Low-res ReLU 5.6019 0.811 

Low-res ELU 6.3696 1.531 

High-res ReLU 8.4138 6.110 

High-res ELU 6.8334 1.969 

Table 2: Exploring the effect of using different activation functions, namely ReLU and ELU. The best results for 
the low-res and high-res images are in bold. 

4.1.2. Effect of MRI size 

Following on from the results on Table 2, we can observe that the MAE is lower for the 

low-res images regardless of the activation function used (MAE = 5.6019 with ReLU; 

MAE = 6.3696 with ELU). This is due to the low-res version having more filters in the 

CNN which can therefore extract more features relevant to brain age. Contrary to that, 

the high-res version uses slightly more detailed images but has to compromise on the 

number of filters on each convolutional layer due to the high computational power that 

would be required for such operation. The errors remain the lowest for the ReLU func-

tion. Also, the standard deviation is lower for ReLU which implies there is less variance 

in the results. 

4.1.3. Effect of dropout 

Findings from the two previous sections indicated the best choice of activation func-

tion for this task is ReLU and that the low-res version performs better than the high-
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res due to including more filters. Thus, we focused on the low-res with ReLU functions 

model to examine the effects of dropout.  

A single dropout layer was employed in the model, located before the fully connected 

layers to reduce the number of active neurons. We compared not having a dropout 

layer with using a factor ρ = 0.2 and 0.5, where ρ is the fraction of neurons randomly 

dropped in a layer. The best results were achieved when setting ρ to 0.2 (MAE = 

5.4660) (see Table 3). 

It is possible that better results could have been achieved with a lower ρ value, such as 

0.1. This is because lower dropout values perform best due to the small dataset size 

available, in relation to the network architecture. 

Dropout MAE ± SD 

none 5.6019 0.811 

0.2 5.4660 0.857 

0.5 5.9104 2.364 

Table 3: Results from different dropout factors (no dropout, 0.2, 0.5). Best result in bold. 

4.1.4. Comparison with LeNet and VGG 

We compared our model against LeNet and VGG architectures to demonstrate the 

BrainAge model performs better. For the comparison, we used the low-res images, 

ReLU activation functions and no dropouts for the LeNet and VGG models, but a drop-

out of 0.2 for the BrainAge model since it achieved the best results in the previous 

section. 

Cross-validation was implemented in the same way as the previous section, running 

100 epochs of each model for 10 times in a for loop.  

The BrainAge model performed slightly better than VGG (MAE = 5.4660 vs MAE = 

5.4929) as shown in Table 4, which makes sense given that the BrainAge model is an 

adaptation of VGG with the main advantage being it does not take as long to run be-

cause there is only one convolutional layer per convolutional block as opposed to two 

in VGG. The LeNet model showed the worst performance in this instance, probably 

due to the fact that the architecture is not deep enough to extract all the features rele-

vant to brain age. 

Model MAE ± SD 

BrainAge 5.4660 0.857 

LeNet 5.8748 0.545 

VGG 5.4929 1.031 

Table 4: Comparison of the BrainAge model against LeNet and VGG. All models were trained on the low-res 
images and used ReLU activation functions. Best results shown in bold. 

Although the number of epochs was set to 100 for each of the models, the early stop-

ping call-back was set to monitor the loss, and if no improvements were seen after 10 

epochs, stop. As mentioned before, the purpose of early stopping is to prevent overfit-

ting and reduce the training time when no improvement is seen. Both LeNet and VGG 
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models stopped significantly before 100 epochs, at 34 and 52 epochs, respectively as 

shown in Figure 8. On the other hand, the BrainAge model continued to make pro-

gressive improvement and the early stopping did not get triggered until the 98th epoch. 

 

Figure 8: Graphs of MAE for each model, from left to right: BrainAge Model, LeNet and VGG 

These graphs only illustrate the behaviour of each model on the last iteration of the for 

loop and are therefore not representative of all the other iterations which could have 

had better or worse performance.  

4.1.5. Summary  

Based on the results from this section, it was assumed that the best possible variation 

of the BrainAge model uses the low-res version, employs ReLU functions and has a 

dropout layer set to 0.2. 

At the beginning of section 4, we established the assumption that the best performing 

model at 100 epochs will still be the best one at 200. We can prove this is the case as 

the BrainAge model achieves an MAE as low as 4.4406 (SD: 0.513) when trained for 

200 epochs and using cross-validation. The correlation between chronological and 

predicted age is 0.95, indicating they are very closely related. 

4.2. Testing the BrainAge model on clinical data 

We plotted a graph of the training set of healthy subjects’ predicted ages against their 

chronological age (see Figure 9) and experienced the brain age bias phenomenon dis-

cussed in section 2.2. The black line represents the identity line (x=y), the blue 

regression line should be close to it if the predictions are accurate, but they are not. 

Predicted ages for subjects aged between 20-40 are overpredicted and ages for indi-

viduals over 50 are severely underpredicted. This phenomenon occurred in all the 

patients groups as well. 
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Figure 9: Demonstration of brain age bias; young subjects are overpredicted, old subjects under predicted 

Once we implemented the brain age bias equation from De Lange and Cole (2020) to 

correct the ages, we plotted the corrected and uncorrected predicted ages against the 

chronological ages. We were successful in our implementation as the orange regres-

sion line representing the corrected ages lies perfectly on the x=y line (see Figure 10). 

This means the predictions are much more accurate now. The correlation between pre-

dicted and chronological ages increased, on average, from around 0.2 to around 0.5 

meaning that they are moderately related. The correlation between brain age delta and 

chronological ages also changed from around -0.4 to close to 0. This is ideal as we want 

their correlation to be as close as possible to zero so that the predicted values are ac-

curate. 

 

Figure 10: Corrected and uncorrected predicted ages against chronological ages 

We tested the brain age bias correction equation on the Cam-CAN data as well and it 

reduced the MAE from 4.44 to 4.03 years, it also increased the correlation from 0.95 

to 0.96. This demonstrates it is highly beneficial to use the equation to correct the bias. 

Applying the BrainAge model to the Shared Roots dataset yielded interesting results. 

The training set was the same for every group (healthy controls) and the testing set 
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was the corresponding clinical group. Predictions on the healthy controls group were 

made using an 80/20 train/test split.  

A graphical representation of the results can be found in Figure 11 and a table with the 

full results in Table 5. 

   

Figure 11: Both graphs plot the predicted ages against chronological ages. The dashed black line represents the 
identity line (x=y). The left graph shows the difference between all patients and all controls. On the right, the 

graph details the differences between each clinical group. 

Group N MAE ± SD Δ Brain Age ± SD 

Schizophrenia 21 13.1273 5.056 5.1873 15.572 

Parkinson’s 15 11.0247 4.866 -0.6493 11.476 

PTSD 38 13.5461 2.132 -1.7188 17.823 

Patients 74 10.3269 7.598 0.0822 13.342 

Controls 18 16.5921 6.423 0.9364 18.168 

Table 5: MAE and mean brain age delta results for the different clinical groups. The healthy control group is 
included for comparison. 

From the graph on the right, we can see that out of the 21 Schizophrenia subjects, 8 

appear significantly older than chronological age but the rest are younger. The mean 

brain age delta for Schizophrenia subjects is 5.1873 (Table 5) which is numerically 

larger than for the controls. It suggests that SZ brains are, on average, 5 years older. 

However, the dataset is small (N = 21), and the oldest Schizophrenia subject is 50 con-

sequently, it is difficult to determine whether older subjects would present accelerated 

brain ageing too. Looking at the trend, it gives the impression that for subjects over 

50, the predicted age would be slightly higher than for healthy subjects, but fairly close 

to the x=y line. These results are in line with previous findings from literature 

(Koutsouleris et al., 2014) implying Schizophrenia patients have older brains by 5.5 

years.  

For Parkinson’s disease, the graph on the right shows 5 subjects out of 15 display 

slightly accelerated brain ageing but the rest are younger than healthy subjects. The 

mean brain age delta is -0.65 years which is numerically smaller than for controls, 

indicating subjects with PD present slightly decelerated brain ageing. The green line 
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of best fit suggests that younger patients would have, in theory, severely accelerated 

brain ageing. Contrary to the Schizophrenia dataset where there were no patients older 

than 50, in the Parkinson’s dataset the youngest participant is 50. It would be note-

worthy to see what the predicted ages would be in younger people with Parkinson’s, 
but it is usually undiagnosed until the age of 60. 

In the case of PTSD, the graph on the right suggests decelerated brain ageing on almost 

half of the subjects. In this instance, the graph correlates with the brain age delta value 

quite well as it indicates PTSD patients have, on average, a 1.72-year younger brain. 

The PTSD data set is better distributed in terms of age than the previous two groups. 

This means the results are more generalisable. Nonetheless, taking into account PTSD 

is a result of an external stressor, it is difficult to determine if the changes in brain age 

delta are caused by the stressor itself as it may have appeared earlier or later on in life 

for each individual and thus, impacted the brain more if the trauma occurred at a 

younger age. 

The graph on the left shows the controls are further away from the identity line than 

the group of all patients together. This is also reflected by the brain age delta on the 

table which implies the controls have the second oldest brains after Schizophrenia. We 

believe this abnormal result is fruit of having a smaller training set for the controls due 

to splitting all the controls (N = 92) into training and testing sets whereas, for the pa-

tients’ groups, the whole controls group was used for training. It would be a good idea 

to retest on a larger dataset to determine if the abnormal results were due to the data 

itself or whether the subjects appeared younger due to other factors such as lifestyle 

choices. We should also keep in mind the ‘healthy’ controls group does not necessarily 

mean the subjects were overall healthy, it simply means they have not been diagnosed 

with SZ, PD or PTSD.  

In order to test the hypothesis that brain age delta in subjects with neurological dis-

eases is not the same as in healthy controls, a one-way between-groups ANOVA test 

was performed. The control and patient distributions were sufficiently normal for con-

ducting the ANOVA (i.e., skew <|2.0| and kurtosis <|9.0|; Schmider et al., 2010).  

The one-way between-groups ANOVA suggested that there was not a statistically sig-

nificant difference in brain age delta across the groups, F(4, 162) = 0.71, p = .583. Thus, 

we have to accept the null hypothesis that brain age delta is the same in subjects with 

neurological conditions as in healthy subjects. 

4.3. Discussion 

Despite obtaining results suggesting abnormal brain ageing, the results are not statis-

tically significant at p<.05. We accept the null hypothesis. We believe these unexpected 

results were caused by having training and testing data in different formats. The Brain-

Age model was trained on grey-matter maps and despite trying to minimise the 

differences by training the model again on the healthy controls from Shared Roots in 

T1-weighted format, both datasets should have been in the same format to have more 

valid results.  
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Another issue was that the Shared Roots dataset is fairly small. We were provided with 

290 images but after discarding 124 due to low-quality, we were left with only 166 im-

ages. 92 were healthy controls used for further training which meant the clinical 

groups only had 21 (SZ), 15 (PD) and 38 (PTSD) scans each. Having such a small da-

taset does not allow to generalise the findings unless they can be replicated on a bigger 

dataset. The subjects’ ages were not distributed evenly either. For example, in SZ the 
oldest individual was 50 (range 19-50) and in PD the youngest was 49 (range 49-73) 

meaning that in both conditions an extensive range of ages was unaccounted for. On 

the other hand, ages in PTSD were distributed better (range 22-72). The global average 

life expectancy is around 73 years (Max Roser, Esteban Ortiz-Ospina and Hannah 

Ritchie, 2019). Schizophrenia reduces life expectancy by 15 to 25 years (Wildgust, 

Hodgson and Beary, 2010) which explains why the oldest individual in the SZ group 

was 50. Mortality in PD patients occurs around 12 years after initial diagnosis which 

is usually in the early 60s (Morgan et al., 2014), making it difficult to gather better age 

distributed sample.  

The solution does not account for differences between male and female brains. As 

mentioned in the Background section, male and female brains age differently. There-

fore, it would have been interesting to have two separate models, one for male and one 

for female subjects, or an ensemble architecture like Dinsdale et al., (2021) to allow to 

see differences. We could have also accounted for these differences by passing a sex 

label alongside the chronological age during training and have the model predict both. 

There could be ethical implications related to the results as the data is not distributed 

the same way in both datasets. In Cam-CAN the ratio of male to female subjects is even 

but, in Shared Roots, most individuals are female. This makes it once again difficult to 

generalise the results as they are not an accurate representation of the general popu-

lation and also females’ brain predicted ages are younger than chronological age 
whereas males’ are older (Cole et al., 2018). Moreover, ages in Cam-CAN are better 

distributed whereas in Shared Roots, it is mostly middle-aged subjects as evident in 

Figure 5.  Besides, both datasets come from distinct locations so individuals will have 

been exposed to different lifestyle factors such as diet and schooling. Most subjects in 

the Shared Roots dataset are bilingual in Afrikaans and English which is shown to af-

fect brain development and is linked with more grey matter and higher white matter 

integrity (Pliatsikas et al., 2020). On the other hand, most subjects in Cam-CAN are 

monolingual.  

Lastly, the solution cannot predict age for one person alone, we have to use mean er-

rors because the model is off by 4.03 years so if a person’s chronological age is 70 but 
their predicted age is 74, is that difference because of the model error or person expe-

riencing accelerated ageing? 

5. Future work 

The discussion made evident areas that need improvement to use brain age delta as a 

biomarker in the detection of neurological conditions. In this section, we explore the 



30 

 

changes that could be made to this project in the future to obtain more accurate and 

generalisable results. 

5.1. More data and same format 

We mentioned in the discussion that the datasets we used were small, especially the 

testing one. We believe training the BrainAge model on a larger dataset (or combina-

tion of datasets) would help reduce the MAE and generate more generalisable results 

on the clinical data. There are several healthy datasets publicly available, e.g., IXI, UK 

Biobank, OASIS, that have been previously featured in several papers (Wang et al., 

2014; Jonsson et al., 2019; Smith et al., 2019; Dinsdale et al., 2021; Peng et al., 2021). 

We were unable to use said datasets due to time constraints as they require the sub-

mission of an application form which takes two to three weeks for approval.  

It is more difficult to find publicly available datasets with neuropsychiatric conditions 

as it involves more ethical concerns. Nonetheless, there are some available such as 

ADNI which contains subjects with mild cognitive impairment and dementia and has 

also appeared in the literature (Kaufmann et al., 2018).  

It is worthy emphasising again that the healthy and clinical datasets should be in the 

same format e.g., both T1-weighted. This would help reduce anomalous results and 

reduce the testing MAE.  

It would be interesting to not only use larger datasets but also to explore different con-

ditions i.e., autism, anxiety, or depression which have not been researched thoroughly 

yet to be able to say if they affect brain ageing. 

5.2. Data Augmentation 

Following on from the previous point, if it were impossible to access a larger dataset, 

data augmentation would be an appropriate solution. Data augmentation consists of 

modifying the available data by reflecting images horizontally or vertically, rotating 

them or adding noise. Through this technique, we could triple the number of images 

to be used in training and testing. Adding noise would be the most suitable way to 

augment data in the training set because, if used in a clinical scenario as a biomarker, 

the images would at times have worse quality than others. Ideally, the model should 

be robust all around and be able to manage worse quality images almost as accurately 

as better-quality MRIs. 

5.3. Follow-up study on subjects with largest brain age delta 

A large brain age delta means the predicted brain age is significantly bigger or smaller 

than the subject’s chronological age. It would be a promising idea to have a follow-up 

study after three or five years on subjects which exhibited the largest brain age delta 

to see whether they got a diagnosis for a neurodegenerative disease. With a follow-up 

study we could determine if we predicted the disease before it happened which could 

make predicted brain ages through deep learning a valid biomarker to be used in di-

agnosis. 
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However, we should keep in mind that we did not collect the data ourselves and the 

subjects’ identities are anonymous for confidentiality. The follow-up study would 

therefore need to be conducted by the researchers who originally collected the data, 

providing the participants agreed to be contacted again. 

5.4. Multivariate and Qualitative Analysis  

Despite having access to demographic information about the subjects we decided not 

to undertake any multivariate or qualitative analysis as it would require substantial 

amounts of time we did not have. We believe we could gather valuable knowledge from 

including variables such as gender and smoking/drinking habits in our neural net-

work. Instead of passing these parameters alongside the chronological age, we could 

have different networks for each of these binary choices i.e., separate female and male 

networks, smokers and non-smokers. 

Further qualitative analysis could also be done after getting the results from the net-

work. For example, looking at the subjects who had a remarkably high or exceptionally 

low predicted ages and exploring their demographics. Perhaps their predicted age was 

very low because they have a very healthy diet, meditate and exercise regularly and do 

not drink or smoke, all of these being factors often linked with longer lifespans. On the 

other hand, for those with higher predicted ages maybe it is not a sign of a neurodegen-

erative disease but an indicator of mortality due to poor lifestyle choices. It is 

important to take a holistic approach and look at all the possible variables that could 

have affected the predicted age. 

5.5. Further Optimisation 

As a result of time constraints, we could not optimise the model as much as we would 

have liked to. It is possible that adjusting more hyperparameters such as the learning 

rate and the batch size could result in lower MAEs.  

Other parameters such as kernel size, number of filters, padding and strides could have 

been optimised further by running different variations and comparing them. However, 

this would be a very time-consuming task because CNN require large amounts of com-

putational power.  

Key decisions such as the model architecture, loss functions and activation functions 

were choices made on experimentation to find the best results. But values for other 

parameters were only chosen because they were the widely accepted default value 

across different papers. Training the model with different kernel sizes for instances 

could have made smaller steps to a better performing model.  

5.6. Different Network Architecture 

The network architecture we implemented for our BrainAge model was inspired by 

classic architectures like VGG that stacks layers on top of each other sequentially. Most 

recent papers in brain age prediction have implemented ResNet or Ensemble archi-

tectures (Couvy-Duchesne et al., 2020; Da Costa, Dafflon and Pinaya, 2020; Levakov 

et al., 2020; Dinsdale et al., 2021; Peng et al., 2021). Although most of these papers 
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only perform brain age prediction using a healthy dataset instead of applying it to clin-

ical data, they have been able to achieve MAE values as low as 2.86 years by 

implementing an ensemble architecture (Dinsdale et al., 2021). We believe a more 

modern network architecture would allow for more efficient learning and better per-

formance overall.  

6. Conclusions 

Recent publications have shown that by training supervised regression methods on 

MRI brain imaging, age-related brain changes can be used to predict the age of an 

individual with high precision. These predictions can be used to estimate the biological 

age of the brain and to detect diseases and genetic components associated with abnor-

mal brain ageing.  

In this paper, we developed a method to predict brain age on healthy and clinical sub-

jects, corrected brain age bias, and evaluated the model’s performance. We developed 

and trained a convolutional neural network on grey-matter segmented MRIs to predict 

brain age. The CNN architecture implemented a single dropout layer for regularisa-

tion. We compared our model against VGG-13 and LeNet-5 and discovered our model 

performed better. After correcting for brain age bias (the underprediction for old sub-

jects and overprediction for young subjects), our model had an MAE of 4.03 years and 

0.96 R2 on the test set of Cam-CAN (healthy), which is in line with values from the 

literature even though our dataset was smaller. We used transfer learning to transfer 

the knowledge gained from the Cam-CAN data to Shared Roots. We obtained an MAE 

of 17.71 years on healthy controls and 13.13 years on Schizophrenia, 11.02 years on 

Parkinson’s disease, 13.55 years on PTSD and 10.33 years on the combination of all 

patients. However, for clinical data, the negative residual or brain age delta was a bet-

ter measurement. Subjects with Schizophrenia had a larger positive brain age delta 

compared to healthy controls. Schizophrenia patients were predicted, on average, a 

brain age 5.19 years older. On the other hand, subjects with Parkinson’s and PTSD 
were predicted a brain age 0.65 and 1.72 years younger, respectively. However, after 

conducting an ANOVA test, we found that our results were not statistically significant. 

Thus, we accepted the null hypothesis that brain age delta is the same in subjects with 

neurological conditions as in healthy subjects. We concluded that our datasets were 

quite limited and biased and thus, the results cannot be generalised. Besides, other 

variables such as biological sex and lifestyle factors should be considered in the future.  

7. Reflection on Learning 

This project was a challenge from start to end. It has enabled me to develop technical 

and soft skills along the way. 

Before starting the project, I had no tangible experience in deep learning. I had taken 

a couple of in person and online courses as I am very interested in the field but had 

never produced anything due to lack of data. Finding appropriate datasets is one of the 

biggest challenges in data science because data is sensitive and often needs ethical ap-

proval which is more difficult to obtain without an affiliation to an academic 

institution. Also, DNNs require high computational power which I normally do not 
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have access to. While doing this project, I was granted access to two different super-

computing clusters. It was quite difficult at first to understand how to load modules, 

submit jobs and get the GPUs to work, but reading the documentation and asking the 

IT helpdesks was extremely useful. I am grateful for the experience I gained from doing 

my final year project. Now, I feel confident in programming a CNN and using transfer 

learning and believe this will allow me to apply said knowledge to future deep learning 

tasks as I hope to pursue a career in data science. I also feel more confident program-

ming in python and finding libraries that help me make tasks easier. 

Choosing the topic of research was a fairly easy decision. I knew I wanted to do a data 

science project, but also something that could have an impact on people, such as al-

lowing early diagnosis of complex diseases. Having studied some psychology and 

neuroscience in the past boosted my fascination for the brain and encouraged me to 

take on a project studying its ageing process. 

Throughout the whole developmental process, I was faced with multiple issues. This 

gave me a valuable insight into data science research: it is never a linear process, and 

many unexpected problems arise, the key is to stay motivated.  I was incredibly lucky 

to have the guidance of my supervisors and their colleagues’ who provided support at 

the times I found myself stuck. Knowing when to ask for help was especially important 

too. For example, I contacted the researcher who published the brain age correction 

formula I used, and she was very kind and pointed me in the right direction; I was 

regressing on the wrong values. 

This task enabled me to build upon my soft skills significantly. Project management 

was a key skill while undertaking this project. I stuck fairly well to my initial plan alt-

hough I saw it more as a general guideline than a strict plan due to the iterative nature 

of the project. It was very important to set small, achievable, weekly goals along the 

way to ensure some progress was made regularly but also, it is even more important 

to know when to move on when something is not working. For example, half-way 

through my project I tried to implement a toolbox to correct brain age prediction bias. 

I tried to implement it as a single layer at the end of the CNN, taking the inputs of the 

last convolutional layer and passing them through, but no matter what I did, I kept 

seeing dimensional errors. Despite believing this tool would make my model more ac-

curate, I was unable to implement it. Most likely due to lack of knowledge but perhaps 

incompatibility as it had only been tested on machine learning tasks and not convnets. 

Thus, I had to make the decision of not giving it more than five days and move on to 

the next part in order to meet deadlines. I also got dimensional errors when I corrected 

the bias mathematically. It turned out that fitting a regression model requires a 2D 

array, but I was passing a 1D array. However, I had to reshape it back into a 1D array 

to pass the values through the equation. Looking back, I could have probably used the 

toolbox to correct brain age bias as the dimensional errors were the same. 

It was a reoccurring problem to keep wanting to tinker hyperparameters and different 

layers combinations. This was particularly bad because each small tweak would result 

in 3 hours or more of runtime on the Supercomputing cluster due to the large amount 
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of data. Therefore, it was crucial to move on once results in line with literature values 

were achieved.  

I used GitHub (GitHub Inc., 2020) as a version control for my project to minimise the 

risks of losing my work. It is a valuable tool that saved me in multiple occasions when 

I needed to revert back to a previously working stage of the code after making a mis-

take. I pushed my code at least once a day to ensure it was all up to date. I believe this 

is a very important practice in the workplace and I am glad I feel confident pushing 

and pulling code from the command line.   

In order to get the most out of the meetings with my supervisor, I wrote down non-

urgent questions the days prior to each meeting to make sure I did not forget to ask 

anything. I took notes during the meetings as well so that I could refer back to them as 

I was working. Moreover, I kept a daily project journal with bullet points of the strug-

gles, achievements and to-do lists which proved to be useful while writing the whole 

report and especially this reflection. 

Attention to detail is essential when working on data science projects. For example, 

when I worked out the residuals for the clinical data, I calculated them the usual math-

ematical way (true value – predicted value) but in the case of brain age delta, we want 

the negative residuals. That means the calculation is reversed (predicted value – true 

value) in order to make the results more intuitive. Otherwise, the results would seem 

to indicate 5 years younger when they are actually older.  

Problems related to the datasets also hindered progress. For instance, I was not given 

access to the Shared Roots dataset until significantly further on in my project and 

when I did, the dataset was in a very different format (T1) than the Cam-CAN dataset 

(grey-matter segmentations) I had used for training. This led to many emails to see if 

the person responsible for each dataset could provide the other format i.e., have both 

datasets in T1 or both in grey-matter segmentations. I was not sure how long it would 

take to receive the datasets in matching formats, so I had to set up a contingency plan: 

keep the training set the same (grey-matter segmentation from Cam-CAN), freeze the 

first layers of the model and train it again on the controls from the Shared Roots da-

taset so that the model was somewhat familiar with this new format, lastly, test on the 

patients from Shared Roots. The results would not be as accurate as using the same 

format in both training and testing, but it was the only way to overcome the obstacle 

in a short amount of time. In the future, I would ensure the datasets are available in 

the same format before starting the project. 

Thanks to this project, I have improved my communication skills too. Doing a project 

in collaboration with Cam-CAN and Stellenbosch University meant I had to give 

presentations on what my project was about, the goals and methodology so that they 

could provide me with the data I needed and guide me on the best approach. This was 

a key part of the project, a deliverable early on which gained me access to both datasets. 

I include the slides of these presentations in the Appendix. 

Writing the report was also part of the communication skills I developed. Before this 

project I had not written anything of similar length or detail. In school we were taught 
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to start reports or essays with the introduction, then the main body with the results, 

and lastly the evaluation and conclusions. I learnt that I do not like writing reports this 

way and I prefer starting with the main body, results and evaluation, conclusions and 

lastly the introduction and abstract. I feel that writing reports this way is easier as oth-

erwise I would have to keep changing the introduction as my methodology and results 

evolve. However, I was not very strict with the order of writing these sections and I 

found that jumping back and forth between methodology and results while writing 

bullet points of what needed to be included in the introduction and background 

worked well for me. Also, formatting the report at the beginning and including refer-

ences as I went along saved me a lot of time and prevented forgetting where I got each 

reference from. In the future, I would stick to these methods. 

To ensure good organisation, I kept all my files in subfolders within the same folder. 

All the literature was organised using Mendeley (Mendeley, 2018) which also helped 

me format references. I also had a table on Notion (Notion Labs Inc., 2021) with the 

papers I read which divided the paper into the network structure, methodology and 

findings as well as my thoughts about each paper. This was particularly useful as it 

allowed me to compare all papers at a glance and made writing the background section 

significantly easier. 

The national lockdown due to Covid-19 made it very difficult to separate working on 

the project from personal life. I like to keep my workspace separate from my personal 

space by working in the library or labs. It was difficult to be disciplined because being 

at home meant I had more distractions but also no clear division from working area to 

personal area. This led me to work over ten hours a day on many occasions which im-

pacted my sleeping and eating habits. I learnt that I need to work on my discipline and 

have a strict working schedule by specifying my working hours on my calendar or other 

methods. 

Halfway through my project I had a change of supervisors. It was scary at first not 

knowing whether my new supervisor was going to be familiar with my research topic. 

However, it is important to be flexible and adapt to challenges as they arise. Therefore, 

we had a handover meeting where I briefed Stuart on my progress to date and the 

overall aims of the project. In the end, the change of supervisors ended up being quite 

beneficial. I was very lucky that Matthias remained available for me to ask any ques-

tions more centred around neuroimaging data and Stuart helped me with more 

general questions regarding python, analysis of results and the report itself. 

Once I obtained my results, I realised I needed a statistical test to find out if my results 

were significant and supported the alternative hypothesis. I do not know much about 

statistics, so it was very tough choosing an appropriate test. At first, I chose a t-test, 

but it is not very sophisticated and does not test if all the samples are in the same 

population. After discussing with my supervisor, I chose an ANOVA test which evalu-

ates the variance between and within groups. I believe getting further training on 

statistics would be very beneficial in order to pursue a data science career. 
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Overall, I believe I handled the difficulties successfully and am proud of my final prod-

uct as well as the skills and knowledge I gained throughout the project.  
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9.  Appendix 

Raw results early-development 

Version Activation Dropout MAE ± SD RMSE ± SD 

Low-res ReLU 0.2 5.4660 0.857 6.7949 0.925 

High-res ReLU 0.5 5.5147 0.572 7.0488 0.707 

Low-res ELU 0.2 5.5317 0.843 6.9057 1.172 

Low-res ReLU none 5.6019 0.811 6.9103 0.842 

Low-res ELU 0.5 5.7307 0.910 7.0729 0.969 

Low-res ReLU 0.5 5.9104 2.364 7.3959 2.508 

High-res ELU 0.5 6.2304 1.632 7.8383 1.831 

Low-res ELU none 6.3696 1.531 7.9870 1.871 

High-res ELU none 6.8334 1.969 8.1601 1.981 

High-res ELU 0.2 7.4948 3.185 9.1071 3.274 

High-res ReLU none 8.4138 6.110 9.9449 6.125 

High-res ReLU 0.2 10.3688 9.714 11.9076 9.897 
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Raw results on clinical data combined 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

chrono corrected delta chrono corrected delta chrono corrected delta chrono corrected delta chrono corrected delta

69 78.590 9.590 54 47.718 -6.282 30 30.974 0.974 31 27.305 -3.695 54 48.962 -5.038

22 16.321 -5.679 57 59.152 2.152 26 19.133 -6.867 30 82.907 52.907 57 56.129 -0.871

41 53.671 12.671 51 47.703 -3.297 46 42.557 -3.443 44 62.055 18.055 51 50.297 -0.703

59 38.847 -20.153 61 59.133 -1.867 60 47.945 -12.055 36 57.348 21.348 61 58.953 -2.047

56 72.668 16.668 69 48.326 -20.674 31 22.486 -8.514 30 27.744 -2.256 69 47.005 -21.995

26 29.027 3.027 65 52.771 -12.229 59 54.101 -4.899 44 41.563 -2.437 65 59.314 -5.686

39 28.128 -10.872 65 55.890 -9.110 51 27.254 -23.746 19 28.416 9.416 65 54.720 -10.280

58 45.343 -12.657 67 93.952 26.952 32 25.024 -6.976 50 45.048 -4.952 67 92.459 25.459

55 43.289 -11.711 73 66.937 -6.063 34 46.201 12.201 37 26.401 -10.599 73 74.352 1.352

27 20.841 -6.159 64 68.072 4.072 62 53.131 -8.869 27 20.577 -6.423 64 63.524 -0.476

31 33.879 2.879 49 63.641 14.641 51 53.291 2.291 46 43.766 -2.234 49 59.661 10.661

78 62.624 -15.376 54 64.904 10.904 36 39.066 3.066 33 19.276 -13.724 54 60.164 6.164

45 61.728 16.728 59 61.424 2.424 32 -8.429 -40.429 23 21.496 -1.504 59 59.559 0.559

37 28.306 -8.694 60 47.991 -12.009 38 20.219 -17.781 27 44.828 17.828 60 46.931 -13.069

33 93.586 60.586 67 67.646 0.646 41 26.434 -14.566 35 66.182 31.182 67 66.090 -0.910

52 52.729 0.729 48 119.892 71.892 32 37.720 5.720 30 30.324 0.324

80 58.236 -21.764 Kurtosis: 0.954 44 46.171 2.171 28 26.514 -1.486 26 21.124 -4.876

55 52.681 -2.319 Skew: 0.703 61 63.501 2.501 27 25.854 -1.146 46 41.400 -4.600

26 36.298 10.298 Mean: -0.649 72 91.226 19.226 26 20.492 -5.508 60 48.255 -11.745

SD: 11.476 51 61.312 10.312 30 24.300 -5.700 31 25.738 -5.262

Kurtosis: 5.022 22 21.581 -0.419 23 37.140 14.140 59 53.041 -5.959

Skew: 1.814 46 29.316 -16.684 51 34.238 -16.762

Mean: 0.936 27 24.395 -2.605 Kurtosis: 2.782 32 20.860 -11.140

SD: 18.168 44 52.250 8.250 Skew: 1.588 34 41.640 7.640

51 52.531 1.531 Mean: 5.187 62 53.571 -8.429

61 72.935 11.935 SD: 15.572 51 54.809 3.809

46 55.960 9.960 36 35.516 -0.484

32 49.581 17.581 32 2.829 -29.171

48 49.701 1.701 38 25.411 -12.589

50 28.722 -21.278 41 29.002 -11.998

46 39.483 -6.517 48 105.713 57.713

56 47.897 -8.103 44 42.027 -1.973

54 50.901 -3.099 61 67.891 6.891

61 31.947 -29.053 72 88.578 16.578

33 37.064 4.064 51 55.413 4.413

44 25.774 -18.226 22 20.366 -1.634

50 70.301 20.301 46 33.066 -12.934

35 23.860 -11.140 27 25.112 -1.888

44 51.070 7.070

Kurtosis: 6.740 51 50.714 -0.286

Skew: 1.559 61 65.719 4.719

Mean: -1.719 46 57.099 11.099

SD: 17.823 32 50.436 18.436

48 46.892 -1.108

50 33.968 -16.032

46 41.142 -4.858

56 47.160 -8.840

54 50.387 -3.613

61 39.272 -21.728

33 33.824 0.824

44 30.513 -13.487

50 67.760 17.760

31 27.475 -3.525

30 71.580 41.580

44 59.555 15.555

36 53.154 17.154

30 27.810 -2.190

44 41.821 -2.179

19 27.178 8.178

50 39.940 -10.060

37 28.045 -8.955

27 22.665 -4.335

46 45.200 -0.800

33 22.139 -10.861

23 21.983 -1.017

27 42.821 15.821

35 60.501 25.501

32 36.841 4.841

28 27.129 -0.871

27 25.578 -1.422

35 25.814 -9.186

26 23.111 -2.889

30 24.624 -5.376

23 35.121 12.121

Kurtosis: 4.624

Skew: 1.476

Mean: 0.082

SD: 13.342

Healthy Parkinson's PTSD Schizophrenia Patients
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ANOVA results 

 

healthy parkinsons ptsd schizo patients

9.590295 -6.282111 0.973942 -3.69477 -5.03803

-5.67886 2.1523445 -6.86711 52.90684 -0.87075

12.67093 -3.296674 -3.44348 18.05532 -0.703

-20.1533 -1.867406 -12.0547 21.34838 -2.04694

16.6682 -20.67377 -8.51362 -2.25592 -21.9948

3.027158 -12.22879 -4.89934 -2.43668 -5.68583 Anova: Single Factor

-10.8718 -9.110175 -23.7464 9.415572 -10.2799

-12.6571 26.952387 -6.97624 -4.95186 25.45923 SUMMARY

-11.711 -6.063355 12.20059 -10.5986 1.351618 Groups Count Sum Average Variance

-6.15947 4.0719573 -8.8694 -6.42272 -0.47641 healthy 19 17.79131259 0.936385 348.3960411

2.878679 14.640757 2.291121 -2.23422 10.66083 parkinsons 15 -9.739422095 -0.64929 141.1155218

-15.3762 10.904058 3.065614 -13.7239 6.163596 ptsd 38 -65.31484365 -1.71881 326.2500829

16.72755 2.4243182 -40.4286 -1.50365 0.558788 schizo 21 108.932991 5.187285 254.598768

-8.69391 -12.00931 -17.7805 17.82783 -13.0686 patients 74 6.08625137 0.082247 180.4446498

60.586 0.6463415 -14.5664 31.18178 -0.90981

0.728907 71.89213 5.719949 0.323554

-21.7636 2.170504 -1.48603 -4.87624 ANOVA

-2.31877 2.501461 -1.14641 -4.59976 Source of Variation SS df MS F P-value F crit

10.29769 19.22595 -5.50782 -11.7447 Between Groups 680.8394789 4 170.2099 0.714677538 0.583029 2.427460599

10.31155 -5.69975 -5.26247 Within Groups 38582.43391 162 238.1632

-0.41897 14.13966 -5.95945

-16.6842 -16.7615 Total 39263.27339 166

-2.60513 -11.1398

8.249657 7.639591

1.530672 -8.42892

11.93467 3.809253

9.95958 -0.48357

17.58139 -29.1714

1.700847 -12.5887

-21.2779 -11.9982

-6.51651 57.71314

-8.10279 -1.97305

-3.09932 6.890803

-29.0529 16.57773

4.06431 4.4129

-18.2258 -1.63386

20.30058 -12.9337

-11.14 -1.88764

7.069792

-0.28583

4.719305

11.0994

18.43568

-1.10774

-16.0322

-4.85754

-8.84037

-3.61257

-21.728

0.824293

-13.4865

17.76027

-3.52526

41.58042

15.55514

17.15364

-2.19026

-2.17943

8.178227

-10.0599

-8.95545

-4.33462

-0.80008

-10.8614

-1.01695

15.82132

25.50121

4.840876

-0.87121

-1.42198

-9.18566

-2.88938

-5.37588

12.12103
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Do not use this form if your research is with the NHS or NHS-linked: please refer

instead to the NHS Local Research Ethics Committee.

Do not use this form if your research involves adults who do not have the capacity

to consent. Such projects have to be submitted to the National Research Ethics Service

(NRES) system: http://nres.nhs.uk/

Please carefully review:

• School Research Ethics documentation

• Data management, collecting personal data, data protection act requirements

• Information Security Framework

• Research Integrity and Governance

• Research Ethics

Please complete the Research Integrity Online Training Programme (Staff link, Student

link) prior to submitting this form.

Please complete this form at least 2 weeks before starting your data collection/human

involvement activities and send to comsc-ethics@cardiff.ac.uk along with all the relevant

attachments:

• Full Project plan/proposal

• Participant Information Form, either:

– hard copy, e.g briefing and debriefing (if appropriate)

– online equivalent

• Consent Form or online equivalent (or justification as to why this is not possible)

• Certificate(s) of completion of the Research Integrity Online Training Programme

(RIOTP) for all staff associated with a project (and students if applicable).

• (If applicable) Details concerning external funding

• (If an extension is requested) Provide a list of motivations and list of amendments to

any previous approvals

Submissions will be reviewed at the next COMSC Research Ethics Group meeting held
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If this approval refers to an Undergraduate or Masters Student Project:

Student(s) Names and IDs:

Supervisor Name(s):

If this approval refers to a research project (e.g. Staff, Postgraduate Research Student):

Principle Researcher:

Other Researchers:

Project Start Date: — End Date:

Attachments: Yes NA Document Version ID

Full project plan/proposal

Participant Information Form

Consent Form

RIOTP Completion Certificates

Details concerning external funding

Motivations for and list of amendments
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2 Recruitment Procedure

Yes No NA

1 Does your project include children under 18 years of age?

If “Yes,” have you read and understood Cardiff University’s Code

of Practice for researchers Working With Children and Young

People which forms part of the Safeguarding Children and

Vulnerable Adults Policy? The Interim Guidance is at Appendix 1,

Page 9 of this Policy

2 Does your project include people with learning or communication

difficulties?

3 Does your project include people in custody?

4 Is your project likely to include people involved in illegal activities?

5 Does your project involve people belonging to a vulnerable

group, other than those listed above?

6 Does your project include people who are, or are likely to become

your clients or clients of the department in which you work?

7 Does your project provide for people for whom English / Welsh is

not their first language?

If any of the blue boxes has been ticked, please explain how the potential ethical issue(s)

will be handled:

Please describe how do you plan to recruit participants:
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3 Consent Procedures

Yes No NA

8 Will you tell participants that their participation is voluntary?

9 Will you obtain written consent for participation?

10 If the research is observational, will you ask participants for

their consent to being observed?

11 Will you tell participants that they may withdraw from the

research at any time and for any reason?

12 Will you give potential participants a significant period of time to

consider participation?

If any of the blue boxes has been ticked, please explain how the potential ethical issue(s)

will be handled:
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4 Possible Harm to Participants

Yes No NA

13 Is there any realistic risk of any participants experiencing either

physical or psychological distress or discomfort?

14 Is there any realistic risk of any participants experiencing a

detriment to their interests as a result of participation?

If any of the blue boxes has been ticked, please explain how the potential ethical issue(s)

will be handled:

If there are any risks to the participants, please explain how you intend to minimise these

risks:
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5 Data Protection

Yes No NA

15 Will any non-anonymised and/or personalised data be

generated and/or stored?

16 Will you have access to documents containing sensitive data Sensitive data are inter
alia data that relates to
racial or ethnic origin,
political opinions,
religious beliefs, trade
union membership,
physical or mental
health, sexual life,
actual and alleged
offences.

about living individuals?

If “Yes” will you gain the consent of the individuals concerned

17 Are you planning to use Cardiff University installation of

OneDrive to store data

If “No” is your data storage policy compliant with Cardiff

University ISF

Please describe how you will securely collect and store any data (required):

If any of the blue boxes have been ticked, please explain how the potential ethical issue(s)

will be handled:
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6 Researcher Safety

Yes No NA

18 If relevant to your research, have you taken into account the

Cardiff University guidance on safety in fieldwork / for lone

workers?

If any of the blue boxes have been ticked, please explain how the potential ethical issue(s)

will be handled:
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7 Researcher Governance

Yes No NA

19 Does your study include the use of a drug?

You will need to contact Research Governance before

submission (resgov@cf.ac.uk)

20 Does the study involve the collection or use of human tissue?

You will need to contact the Human Tissue Act team before

submission (hta@cf.ac.uk)

If any of the blue boxes have been ticked, please explain how the potential ethical issue(s)

will be handled and please attach approvals received from Research Governance and/or

Human Tissue Act team:
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8 Prevent Duty

Yes No NA

21 Has due regard been given to Prevent duty, in particular to

prevent anyone being drawn into terrorism?

Prevent Duty Guidance

Procedure Freedom of Speech

If any of the blue boxes have been ticked, please explain how the potential ethical issue

will be handled:
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9 Other Ethical Considerations

If there are other potential ethical issues that you think the Committee should consider

please explain them in the following space. It is your obligation to bring to the attention of

the Committee any ethical issues not covered on this form.
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10 Any other comments

If there is additional information that you think the Committee should consider please

explain in the space below:
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  A(1(46J 3 !CC ,-30'(/ 6' ,F( !3*]!>C /3,3+(, ,6 J-(/08, M-30' 3<( M3+(/ 6' '(2-60*3<0'< /3,3 
  >JJ4N ,F( *6/(4 ,6 ,F( )F3-(/ @66,+ /3,3+(, DF08F 0'842/(+ )8F0I6JF-('03P 53-E0'+6'X+ /0+(3+(P 3'/ Z.G /3,3 +3*J4(+ ,6 (13423,( ,F( M-30' 3<( /(4,3 6' '(2-6/(<('(-3,01( /3,3 
  ($)*!536$'5*07 ./(',0?N DF08F M-30' -(<06'+ J43N 3 <-(3,(- -64( DF(' J-(/08,0'< M-30' 3<(  KF( ?6446D0'< 6M7(8,01(+ +2<<(+, F6D ,F( 3M61( 30*+ D044 M( 38F0(1(/;  

23#$%&*4$)'
  @(+(3-8F 38,013,06' ?2'8,06'+ 3'/ (13423,( DF08F *6/(4 0+ M(+, +20,(/ ?6- ,F( J-6M4(* (R<RP K3'FP @(Y2P Y(3EN @(Y2P )6?,"3S 
  B+( K('+6-L46D ,6 /(1(46J 3 !6'1642,06'34 C(2-34 C(,D6-E T!CCU ,6 (S,-38, ?(3,2-(+ ?-6* 3 -3D "@. 0' #A 
  K-30' ,F( !CC 2+0'< ,F( !3*]!>C /3,3+(, 2+0'< 8-6++]1340/3,06' 
  dSJ(-0*(', D0,F 3 -3'<( 6? !CC 3-8F0,(8,2-(+ ,6 /(,(-*0'( DF08F <01(+ ,F( M(+, -(+24,+ 
  B+( ,F( "G5> ,664M6S TK-(/(-P $%$%U 0' ,F( 43+, 43N(- 6? ,F( '(,D6-E ,6 -(/28( M03+ 0' M-30' 3<( J-(/08,06' 
  )(4(8, 3 *(,F6/ 6? W23',0,3,01( (13423,06' ,6 /(,(-*0'( F6D 0',(-J-(,3M4( 3'/ 2+(?24 ,F( /3,3 J-6/28(/ MN ,F( *6/(4 0+P 3'/ F6D 0, 0'8-(3+(+ ,F( ,-3'+J3-('8N 6? ,F( !CC 
  !-(3,( /3,3 10+2340+3,06'+ ?-6* ,F( -(+24,+ 6? ,F( /3,3 3'34N+0+ 2+0'< *3,J46,40M 
  A-3D 86'842+06'+ 3M62, ,F( 40*0,+ 6? !CC 0',(-J-(,3M040,N 3'/ DF(,F(- /((J 4(3-'0'< *6/(4+ 83' ,-24N M( ,-3'+J3-(', 0' ,F( 86',(S, 6? 840'0834 "@. J-(/08,06'+   'FA
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8"!9' 65,'
:;+$!4*)"!'<$$&*,=)'. F31( +8F(/24(/ 0'/010/234 *((,0'<+ 3, QQ;%% (1(-N KF2-+/3N D0,F *N +2J(-10+6-P "3,,F03+ K-(/(-P 2J 2',04 *0/]"3-8FR > /0??(-(', +2J(-10+6- D044 M( ,3E0'< 61(- ?-6* ,F(' D0,F J-(+2*3M4N D((E4N *((,0'<+ 3+ D(44R  KF(+( *((,0'<+ D044 M( F(4/ 61(- "08-6+6?, K(3*+ 3'/ D044 M( 2+(/ ,6 /0+82++ J-6<-(++ 3'/ 3'N J-6M4(*+ ('862',(-(/R 
8$$96>' 65,'Z(-( 0+ 3' 62,40'( 6? ,F( E(N ,3+E+ ,6 M( 86*J4(,(/ MN ,F( ('/ 6? (38F D((ER KF0+ 0+ '6, 3 +,-08, J43' +0'8( ,F( J-67(8, 0+ 3' 0,(-3,01( J-68(++ 3'/ . D044 F31( ,6 -(10+0, J-(1062+ ,3+E+ 0' 43,(- D((E+R >4+6P ,F(-( D044 M( 2'38862',(/ 8F344('<(+ 3'/ 0++2(+ DF08F 8624/ ,3E( 46'<(- ,F3' 3 D((ER 

  8$$9'?7'%Qf%$ 9 %Of%$ 
  =38E<-62'/ -(+(3-8F; !6'1642,06'34 C(2-34 C(,D6-E+ 3'/ 40,(-3,2-( 6' M-30' 3<( J-(/08,06' 
  .'0,034 *((,0'< D0,F +2J(-10+6- ,6 /0+82++ 0'0,034 J43' 3'/ 3+E ,(8F'0834 W2(+,06'+ 
  e-0,( 0'0,034 -(J6-,  

  8$$9'@7'%_f%$ 9 Q:f%$ 
  !6',0'2(/ M38E<-62'/ -(+(3-8F 
  L0'0+F !6'1642,06'34 C(2-34 C(,D6-E+ 862-+( 
  A(80/( F6D *3'N 43N(-+P F6D *3'N ?04,(-+ J(- 43N(-P 38,013,06' ?2'8,06' 3'/ <('(-34 !CC +,-28,2-( 

  8$$9'A7 Qgf%$ 9 $Qf%$ 
  !6',0'2(/ M38E<-62'/ -(+(3-8FP 8-(3,( 3 +2**3-N ,6 M( 2+(/ 0' ?0'34 -(J6-, 
  =204/ 86-( 6? #A !CC 2+0'< K('+6-L46D 

  8$$9'B7 $$f%$ 9 $_f%$ 
  =204/ 86-( 6? #A !CC 2+0'< K('+6-L46D ,6 J-(/08, 3<( 3'/ <(, ,-30'0'< 3'/ ,(+, (--6- 
  K-30' !CC 2+0'< !3*]!>C 0*3<(+ 

  8$$9'C7 %Qf%# 9 %Of%# 
  L2-,F(- ,-30'0'< 3'/ 0*J-61(*(',+ ,6 ,F( !CC 
  dSJ(-0*(', D0,F /0??(-(', !CC 3-8F0,(8,2-(+ TY(C(,]gP GHHP @(+C(,U 

  8$$9'D7 %_f%# 9 Q:f%# 
  dSJ(-0*(', D0,F /0??(-(', !CC 3-8F0,(8,2-(+ 3'/ (13423,( DF08F 6'( J(-?6-*+ M(+, 

  8$$9'E7 Qgf%# 9 $Qf%# 
  K(+, 2+0'< 3' 2'+((' J6-,06' 6? ,F( !3*]!>C /3,3+(, 3'/f6- ,F( )F3-(/ @66,+ /3,3R KF( !CC +F624/ ,3E( 0' 2'+((' "@.+ 3'/ 86--(8,4N J-(/08, 3<( 
  d13423,( F6D D(44 0, J(-?6-*+ 2+0'< 3JJ-6J-03,( ,(+,0'< ,(8F'0W2(+ 

  8$$9'F7 $$f%# 9 $_f%# 
  d13423,( ,F( +,-('<,F+ 3'/ D(3E'(++(+ 6? ,F( +642,06' 
  A(*6'+,-3,( D0,F /3,3 DF3, 0, +F6D+ 
  KF0'E 3M62, DF3, 8624/ M( 0*J-61(/ 

  -5)&$!'G$%$))7 $Of%# 9 Q_f%: 
  !3,8F0'< 2J 0? '((/(/ 
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  8$$9'H7 Qbf%: 9 $gf%: 
  ),3-, D-0,0'< ?0'34 -(J6-,; =38E<-62'/P >JJ-638FP .*J4(*(',3,06'P d13423,06' 

  8$$9'?I7 $Vf%: 9 %$f%g 
  !6',0'2( D-0,0'<; @(+24,+P .',-6/28,06'P >M+,-38, 

  8$$9'??7 %#f%g 9 %bf%g 
  !6',0'2( D-0,0'<; L2,2-( D6-EP !6'842+06'P >JJ('/08(+ 

  8$$9'?@7 Q%f%g 9 Q:f%g 
  Y3+, *0'2,( ,D(3E+P ,(+,0'<P /(M2<<0'<P -(?38,6-0'< 86/( 
  5640+F -(J6-, 3'/ F3'/ 0, 0'  '
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J*36*"=!5+.>'>N8F(FP ZR "R  !"#$% T$%Q_U h=0646<0834 M-30' 3<( J-(/08,06' 2+0'< 86-,0834 ,F08E'(++ /3,3; > 43-<( +834( 86F6-, +,2/NXP &*62!' *7"'2"8('2("- )*67.' 2. P Q%T>BHUP JJR Q9Q:R /60; Q%R##_bf?'3<0R$%Q_R%%$g$R !3*]!>C T$%QQU ,#04*'3( ", 2!* "96*"8( '2("#23"- )*67.' 2. ": 7 #*./"7!*#! (5R >13043M4( 3,; F,,J+;ffDDDR83*]83'R6-<f0'/(SRJFJi86',(',j T>88(++(/; : L(M-23-N $%$QUR !64(P cR ZR  !"#$% T$%QOU h5-(/08,0'< M-30' 3<( D0,F /((J 4(3-'0'< ?-6* -3D 0*3<0'< /3,3 -(+24,+ 0' 3 -(403M4( 3'/ F(-0,3M4( M06*3-E(-XP - )*6;0#( P QV#TC61(*M(-UP JJR QQg9Q$:R /60; Q%RQ%QVf7R'(2-60*3<(R$%QOR%OR%gbR !64(P cR ZR  !"#$% T$%Q_U h=-30' 3<( J-(/08,+ *6-,340,NXP <6$ .)$#*"=75./'#!*5P $#TgUP JJR Q#_g9Q#b$R /60; Q%RQ%#_f*JR$%QORV$R A3 !6+,3P 5R LRP A3??46'P cR 3'/ 50'3N3P eR ZR YR T$%$%U h=-30']><( 5-(/08,06' B+0'< )F3446D "38F0'( Y(3-'0'<; 5-(/08,01( >'34N,08+ !6*J(,0,06' $%QbXP &*62!' *7"'2"
=75./'#!*5P QQR /60; Q%R##_bf?J+N,R$%$%RV%::O_R A6+('M38FP CR BR LR  !"#$% T$%Q%U h5-(/08,06' 6? .'/010/234 =-30' "3,2-0,N B+0'< ?"@.XP 
>.' 2. P #$bTgbbOUP JJR Q#g_9Q#VQR /60; Q%RQQ$Vf+80('8(RQQb:Q::R H3+(-P !R  !"#$% T$%Q#U h=-30'>Hd 0' "04/ !6<'0,01( .*J30-(/ 53,0(',+; 5-(/08,0'< ,F( !6'1(-+06' ,6 >4IF(0*(-X+ A0+(3+(XP =?6>"@-AP _TVUR /60; Q%RQ#OQf762-'34RJ6'(R%%VO#:VR Z(P KR  !"#$% T$%$%U hA((J '(2-34 '(,D6-E+ 3'/ E(-'(4 -(<-(++06' 38F0(1( 86*J3-3M4( 3882-380(+ ?6- ?2'8,06'34 86''(8,010,N J-(/08,06' 6? M(F3106- 3'/ /(*6<-3JF08+XP 
- )*6;0#( P $%VTc24N $%QbUP JR QQV$OVR /60; Q%RQ%QVf7R'(2-60*3<(R$%QbRQQV$OVR c6'++6'P =R >R  !"#$% T$%QbU h=-30' 3<( J-(/08,06' 2+0'< /((J 4(3-'0'< 2'861(-+ 3++6803,(/ +(W2('8( 13-03',+XP -#!)* ",600)2'.#!'627P Q%TQUP JJR Q9Q%R /60; Q%RQ%#_f+:Q:VO]%Qb]Q#QV#]bR ^32?*3''P KR  !"#$% T$%Q_U hH('(,08+ 6? M-30' 3<( +2<<(+, 3' 61(-43J D0,F 86**6' M-30' /0+6-/(-+XP 4'6:B'CR M06@S01R /60; Q%RQQ%Qf#%#QV:R ^3D3F3-3P cR  !"#$% T$%QOU h=-30'C(,!CC; !6'1642,06'34 '(2-34 '(,D6-E+ ?6- M-30' '(,D6-E+` ,6D3-/+ J-(/08,0'< '(2-6/(1(46J*(',XP - )*6;0#( P Q:VP JJR Q%#_9Q%:bR /60; Q%RQ%QVf7R'(2-60*3<(R$%QVR%bR%:VR Y(13E61P HR  !"#$% T$%$%U hL-6* 3 /((J 4(3-'0'< *6/(4 M38E ,6 ,F( M-30'k./(',0?N0'< -(<06'34 J-(/08,6-+ 3'/ ,F(0- -(43,06' ,6 3<0'<XP D)0#2"E*#'2"<#11'2(P :QTQ$UP JJR #$#g9#$g$R /60; Q%RQ%%$fFM*R$g%QQR Y03'<P ZRP aF3'<P LR 3'/ C02P lR T$%QbU h.'1(+,0<3,0'< +N+,(*3,08 M03+ 0' M-30' 3<( (+,0*3,06' D0,F 3JJ4083,06' ,6 J6+,],-32*3,08 +,-(++ /0+6-/(-+XP D)0#2"E*#'2"<#11'2(P :%TQQUP JJR #Q:#9#Qg$R /60; Q%RQ%%$fFM*R$:g__R 5('<P ZR  !"#$% T$%$QU h>882-3,( M-30' 3<( J-(/08,06' D0,F 40<F,D(0<F, /((J '(2-34 '(,D6-E+XP < 3'.#$";0#( "82#$57'7P V_P JR Q%Q_OQR /60; Q%RQ%QVf7R*(/03R$%$%RQ%Q_OQR 5(,(-+P @R T$%%VU h><(0'< 3'/ ,F( M-30'XP =67!(*#3)#! "< 3'.#$"F6)*2#$R ="c 52M40+F0'< H-62JP JJR _:9__R /60; Q%RQQ#VfJ<*7R$%%gR%#VVVgR )!e T$%QbU >)1 *.601)!'2("G#$ 7"=6*!#$R >13043M4( 3,; 
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F,,J+;ffJ6-,34R+2J(-86*J2,0'<RD34(+f0'/(SRJFJf T>88(++(/; : L(M-23-N $%$QUR )F3?,6P "R >R  !"#$% T$%Q:U hKF( !3*M-0/<( !(',-( ?6- ><(0'< 3'/ C(2-6+80('8( T!3*]!>CU +,2/N J-6,6864; > 8-6++]+(8,06'34P 40?(+J3'P *24,0/0+80J40'3-N (S3*0'3,06' 6? F(34,FN 86<'0,01( 3<(0'<XP E<,"- )*6$6(5P Q:TQUP JR $%:R /60; Q%RQQ_Vf+Q$__#]%Q:]%$%:]QR K3N46-P cR @R  !"#$% T$%QOU hKF( !3*M-0/<( !(',-( ?6- ><(0'< 3'/ C(2-6+80('8( T!3*]!>CU /3,3 -(J6+0,6-N; ),-28,2-34 3'/ ?2'8,06'34 "@.P "dHP 3'/ 86<'0,01( /3,3 ?-6* 3 8-6++]+(8,06'34 3/24, 40?(+J3' +3*J4(XP - )*6;0#( P Q::P JJR $V$9$VbR /60; Q%RQ%QVf7R'(2-60*3<(R$%QgR%bR%Q_R K-(/(-P "R )R T$%$%U h"G5>]Y0<F,; > !43++0?083,06' 3'/ @(<-(++06' K664M6S ?6- "24,0]A0*('+06'34 A3,3XP &*62!' *7"'2"- )*67.' 2. P Q:Tc2'(UP JJR Q9QbR /60; Q%R##_bf?'0'+R$%$%R%%$_bR K-(/(-P "R )R  !"#$% T$%$QU h!6--(43,06' 86'+,-30',+ ?6- -(<-(++06' *6/(4+m; 86',-6440'< M03+ 0' M-30' 3<( J-(/08,06'XP &*62!' *7"'2"=75./'#!*5P Q$P JJR Q9$#R /60; Q%R##_bf?J+N,R$%$QRVQgOg:R  
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Crrtqxcn"Ngvvgt
Rtqitguu"Tgrqtv

5212814242""
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Crrtqxcn"fcvg<"45"Cwiwuv"4242

Gzrkt{"fcvg<"44"Cwiwuv"4243
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Rngcug"tgogodgt"vq"wug"{qwt"Rtqlgev"Kf"4556"cpf"gvjkeu"tghgtgpeg"pwodgt"P3512:1337"qp"cp{"fqewogpvu"qt"eqttgurqpfgpeg"ykvj"vjg"JTGE"eqpegtpkpi
{qwt"tgugctej"rtqvqeqn0"
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"
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Eqqtfkpcvqt<"Jgcnvj"Tgugctej"Gvjkeu"Eqookvvgg"4
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cu"ygnn"cu"vjg"Fgrctvogpv"qh"Jgcnvj"*4237+0"Gvjkeu"kp"Jgcnvj"Tgugctej<"Rtkpekrngu."Rtqeguugu"cpf"Uvtwevwtgu"*4pf"gfkvkqp+0

"
Vjg"Jgcnvj"Tgugctej"Gvjkeu"Eqookvvgg"tgxkgyu"tgugctej"kpxqnxkpi"jwocp"uwdlgevu"eqpfwevgf"qt"uwrrqtvgf"d{"vjg"Fgrctvogpv"qh"Jgcnvj"cpf"Jwocp"Ugtxkegu."qt"qvjgt"hgfgtcn
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14/05/2021

1

Project Goal

• Develop a CNN able to predict brain age accurately using MRIs as 
input
• Apply the CNN model to the SharedRoots dataset to suggest if a brain 

shows early signs of a neurodegenerative disease when the predicted 
age varies largely from the chronological age

DATASETS

Cam-CAN: 653 MRIs from healthy individuals

SharedRoots: MRIs from individuals with neurodegenerative diseases (Parkinson’s, 
Schizophrenia, PTSD)

APPROACH
Create a CNN with 5 layers and see how it performs on Cam-CAN data

Tweak kernel sizes, strides, optimizer, activation function to see what gives better results 
using recommended values from literature

Use cross-validation to evaluate the model

Use Matthias’ correlation constrained regression module after the NN to reduce bias in brain 
age prediction

Create a function that can take MRIs in NIfTI format and pre-process them (normalize and 
convert into .npy)

Compare my NN with LeNet and VGG architectures and a model trained already for MRIs, 
best performing used to test on SharedRoots data

Apply the model to the SharedRoots dataset to evaluate changes in brain age delta in 
brains with neurodegenerative diseases

CNN MODEL ARCHITECTURE
(Conv3D -> Batch Normalization -> Max Pooling) * 5
-> Flatten -> (Dense) * 3

1 2

3 4



14/05/2021

2

WORK DONE SO FAR
Created a 5 layers CNN

Using a 80/20 train/test split

Using mean_squared_error as loss function, Adam optimizer, MAE and RMSE as metrics

With 200 epochs 

Implemented cross-validation with 5 folds (MAE: 4.59)

Working on adding correlation-constrained-regression to reduce bias on predictions
 At the moment, the MAE seems to only be calculated for the NN and not for the final Linear Regression

Model seems to overfit at 200 epochs, will reduce to around 40

5 6

7
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PROJECT GOAL

To develop a CNN able to predict brain age using MRIs as input

Ideally suggest if brain shows early signs of a certain neurodegenerative disease if 
the predicted age varies largely from chronological age

APPROACH
Firstly, create a basic CNN with 5 layers and see how it performs on Cam-CAN data – data 
used is in .npy format

Run on google colab first on limited dataset (50 MRIs) and then run it on the supercomputing 
cluster with whole dataset

Tweak kernel sizes, strides, optimizer, activation function to see what gives better results 
using recommended values from literature

Create a function that can take MRIs in NIfTI format and pre-process them (normalize and 
convert into .npy)

Use the correlation-constrained-regression toolbox on the last layer to reduce bias in brain 
age prediction

Apply the model to the SharedRoots dataset to evaluate changes in brain age delta on 
neurodegenerative brains

WORK DONE SO FAR
Downloaded 50 MRIs from the Cam-CAN dataset in .npy format and familiarised myself 
visualising cross-sections of the MRIs

Combined all the MRIs in an array and another array for the corresponding chronological 
ages 

Created the core of a basic CNN structure (conv3D -> max pool)*4 -> conv3D -> 
BatchNormalization ->max pool -> flatten -> dense

Using 80/20 train/test split at the moment

Evaluating using mean_squared_error as loss function, Adam optimizer and MSE and MAE as 
metrics

With batch size 16 and epochs 20:
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