
Optimising for Entertainment in the Vote-Reveal

Problem

Aric Fowler

May 2021

Abstract

In many elections or competitions, a set of voters will either rank
a set of candidates from best to worst or will give scores to some of the
candidates, with the winner then being the candidate that gets the highest
total number of points. When it comes to revealing the result after all
votes have been cast, some competitions proceed by having a roll-call of
all the voters in which each announces their votes. This is often done
for entertainment purposes (e.g., the Eurovision Song Contest), raising
the question: Which ordering of voters should be chosen to maximise the
entertainment value of the roll-call?

Contents

1 Introduction 2

2 The Vote-Reveal Problem 3

2.1 Cumulative Values . 4
2.2 An Example Vote-Reveal Problem 4

3 Measuring Entertainment Value 4

3.1 The Lead Function . 5
3.2 The Hotseat Function . 6
3.3 The Unique Hotseat Function . 7
3.4 The Uncertainty Function . 7

3.4.1 Time-Biased Uncertainty 8
3.4.2 Candidate-Biased Uncertainty 9

4 Core Implementation 9

4.1 VRP Framework . 9
4.2 Solution Visualisation Tool . 12

1

5 Single-Objective Optimisation 14

5.1 Background . 14
5.2 Tabu Search . 15
5.3 Implementation . 15
5.4 Results . 16

6 Multi-Objective Optimisation 17

6.1 Background . 17
6.2 Multi-Objective Tabu Search . 18
6.3 Implementation . 20

6.3.1 MOTS Algorithm . 20
6.3.2 Solution Comparison Tool 20

6.4 Results . 20

7 Evaluation 22

7.1 Models for Entertainment . 22
7.2 Tabu Search . 24
7.3 Application of MOCO to the VRP 24

8 Reflection on Learning 24

9 Further Work 25

10 Acronyms 26

11 Appendix 26

12 References 33

1 Introduction

The Vote-Reveal Problem (VRP) is difficult to solve due to the subjective con-
cept of entertainment and the difficulty in finding an optimal solution among a
factorially large set of feasible solutions. The aim of this project is to develop
functions to measure the entertainment value of a given reveal order and to use
optimisation techniques to find solutions that maximise these functions. The
VRP is outlined in section 2 and an example instance is given. In section 3
the concept of entertainment value is discussed and six functions are presented
to measure aspects of a solution’s entertainment value. Section 4 covers the
implementation of the VRP framework in addition to a visualisation tool to in-
spect solutions. Section 5 discusses single-objective combinatorial optimisation
techniques and moves onto Tabu Search, its implementation, and a discussion
of the solutions found. Section 6 covers relevant definitions and terminology for
multi-objective combinatorial optimisation and presents Multi-Objective Tabu
Search, its implementation, a discussion of the solution sets found, and a com-
parison to the results found using the original Tabu Search algorithm. Section 7

2

is an evaluation of the entertainment functions, the choice of algorithms, and the
use of multi-objective combinatorial optimisation to approach the VRP. Section
8 is a brief reflection on learning and section 9 discusses possiblities for further
work.

2 The Vote-Reveal Problem

The VRP is a combinatorial optimisation problem: the aim is to find the best
(i.e. most entertaining) solution from a finite set of feasible solutions. Given a
set of candidates ci ∈ C and a set of voters vj ∈ V , the votes can be represented
using an i× j matrix of weights

W =

w11 w12 . . . w1V

w21 w22 . . . w2V

...
...

. . .
...

wC1 wC2 . . . wCV

Where:

wij is the vote weight given to candidate ci by voter vj

A feasible solution is any permutation of the voters, called a reveal order.
Solutions can be represented using a permutation matrix where each decision
variable dij indicates whether voter vi reveals their vote at position j in the
reveal. The constraints on these decision variables ensure that exactly one voter
reveals their vote at any given point in the reveal and that every voter reveals
their vote exactly once.

D =

d11 d12 . . . d1V
d21 d22 . . . d2V
...

...
. . .

...
dV 1 dV 2 . . . dV V

dij = {0, 1} ∀(i, j)

V
∑

x=1

dix = 1 ∀i

V
∑

x=1

dxj = 1 ∀j

The objective function takes an assignment of D and W and returns a value
E which represents the entertainment value of the solution according to some
metric.

E = fW (D)

Different functions can be used to measure the entertainment value; these
will be covered in section 3.

3

2.1 Cumulative Values

In most instances of the VRP the audience does not only see the points revealed
by each voter but also pays attention to the total points that each candidate
has accumulated so far. These values infer positional information (e.g. which
candidate is in the lead, which candidates are tied in points) and are usually
the point of focus while watching a vote reveal take place.

Cumulative values can be calculated by iterating through each reveal from
1 to r and multiplying every voter’s points by the decision variable indicating
if those points are revealed.

σ(i, r) =

r
∑

x=1

V
∑

y=1

WixDyx

Where:

σ(i, r) is candidate ci’s total points after the rth reveal

Wix is the number of points given to ci by voter vx

Dyx is 1 if voter vx reveals their vote in position y, 0 otherwise

2.2 An Example Vote-Reveal Problem

Four voters V = {v1, v2, v3, v4} are given a set C = {bird, cat, dog, snake} of
pets to choose from. Each voter ranks all pets from favourite (3 points) to least
favourite (0 points). The votes are revealed in the order {v1, v2, v3, v4}.

W =

2 1 1 1
1 3 2 3
0 2 3 2
3 0 0 0

D =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Reveal Stages
bird 2 3 4 5
cat 1 4 6 9
dog 0 2 5 7

snake 3 3 3 3

Here, voter v1 gave 2 points to bird, 1 to cat, 0 to dog, and 3 to snake. The
winning candidate is cat with 9 points.

3 Measuring Entertainment Value

The VRP is especially difficult to solve due to the subjective nature of enter-
tainment value. The entertainment of an audience can depend on any number
of factors, including factors which rely on outside knowledge of the event1. Ely
et al. [1] developed a model of “Suspense and Surprise” for revealing non-
instrumental information to an audience. The model consists of a principal who
reveals information over time and an agent who slowly learns the world state

1Meta-information is not considered in this project, but is a possibility for future work

4

using the revealed information. The agent has preferences over the possible
outcomes and beliefs which determine their expected outcome depending on
the revealed information. Suspense is defined as a period where the variance
of the next period’s belief is large while surprise is defined as a period where
the current belief is very different to the previous period’s belief. Bizzozero
et al. [2] evaluated these factors using data from The Championships, Wim-
bledon, finding evidence to support their contribution towards entertainment
value. Knobloch-Westerwick et al. [3] studied the effects of positive and nega-
tive affect (e.g., hope and despair) on suspense in American football spectators,
finding that both affects contributed significantly to suspense regardless of if the
preferred team was in the lead or not. Pawlowski et al. [4] found that respon-
dents were more likely to watch a live sports match when the game is perceived
to be suspenseful. They also noted that there is no evidence that being a fan of
a participating team has an effect on the relationship between demand for sport
and game uncertainty/suspense.

When choosing a function to measure entertainment value, the entertainer
must consider the preferences of the audience members. For example: are they
impartial viewers or supporters of specific candidates? The example of the
Eurovision Song Contest is used in this project where there are a large number
of candidates in each round, each representing their own country. Due to its
nature as an international competition, a large number of audience members are
supporters of their own country. However, unlike team sports where only two
countries compete at a time, there is a large subset of countries present during
each round. As a result of this, only a handful of candidates are perceived
as having a chance of winning, and many audience members watch from an
impartial standpoint where they are more interested in finding out who will win
overall than in the outcome for their national candidate. With consideration
for both supporters and impartial viewers, functions to measure entertainment
value can be designed to focus on maximising surprise/suspense for either group.

3.1 The Lead Function

Algorithm 1 The Lead Function

procedure Lead(W,R)
total← 0
for stage r in reveal do

Get C∗ ← σ(i, r) ∀i ∈ C

Sort C∗

d← C∗[0]− C∗[1]
if d < thres(W,R, r) then total += 1

return total

The Lead (LEAD) function considers the size of the lead that the first-place
candidate has over second place. The aim is to limit the lead so that second
place is consistently perceived as having a chance to catch up. This is achieved

5

Reveal Stages
bird 2 3 4 5
cat 1 4 6 9
dog 0 2 5 7

snake 3 3 3 3
max 1 3 4 6 9
max 2 2 3 5 7

diff 1 1 1 2
thres 1.5 . . .
d < t T T T F

output 3

Table 1: The Lead function applied to reveal order {v1, v2, v3, v4} in the exam-
ple Vote-Reveal Problem

by comparing the cumulative values in first and second place at each stage of the
reveal and calculating their difference. If the difference is below a threshold value
thres(W,R, r) then the score of the solution is increased by one. A perfect score
(f(W,R) = j where j is the number of voters) indicates that the lead remains
below the threshold throughout the entire reveal. This may not be possible for
some instances of the Vote-Reveal Problem. The threshold that was chosen for
this project is the expected number of points gained in each round (i.e., the
mean value over all elements of W). Table 1 gives an example evaluation of the
Lead function.

3.2 The Hotseat Function

Algorithm 2 The Hotseat Function

procedure Hotseat(R,W)
total← 0
i′ ← 0
for stage r in reveal do

Get C∗ ← σ(i, r) ∀i ∈ C

C ′ ← max(C∗)
i← candidate number for C ′

if i 6= i′ then

total += 1
i′ ← i

return total

The Lead function considers uncertainty in the overall winner as static: It
measures the difference in points at any given time. Another way to consider
uncertainty is to look at how the first-place rank changes between candidates

6

Reveal Stages
bird 2 3 4 5
cat 1 4 6 9
dog 0 2 5 7

snake 3 3 3 3
leader snake cat cat cat

change? N/A T F F
output 1

Table 2: The Hotseat function applied to reveal order {v1, v2, v3, v4} in the
example Vote-Reveal Problem

throughout the reveal. While it may be entertaining for the second-place can-
didate to remain close behind first place, it could be seen as an improvement
to the reveal if the two (or more) candidates swap around in their fight for first
place. The Hotseat (HOT) function measures the number of times the first-
place candidate changes throughout the reveal, with the aim to maximise this
number.

3.3 The Unique Hotseat Function

Algorithm 3 The Unique Hotseat Function

procedure UniqueHotseat(R,W)
Initialise all flags as false
for stage r in reveal do

Get C∗ ← σ(i, r) ∀i ∈ C

C ′ ← max(C∗)
i← candidate number for C ′

set flag i to true

return
∑

f ∀f ∈ flags

A possible downside of the Hotseat function is that, in reveal instances with
more voters, it will reward reveal orders where the same two candidates fight
back and forth for first place. This can be desirable in certain scenarios, however
it may be useful to generate solutions where a high number of unique candidates
take first place throughout the reveal. The Unique Hotseat (HOT-U) function
addresses this by counting the number of unique candidates who have taken
first place at any point in the reveal.

3.4 The Uncertainty Function

Previous functions have been tailored towards an impartial audience with the
assumption that their interest lies only in the battle for first place through-

7

Reveal Stages
bird 2 3 4 5
cat 1 4 6 9
dog 0 2 5 7

snake 3 3 3 3
leader snake cat cat cat
output 2

Table 3: The Unique Hotseat function applied to reveal order {v1, v2, v3, v4} in
the example VRP

Algorithm 4 The Uncertainty Function

procedure Uncertainty(R,W)
total← 0
for stage r in reveal do

Get C∗ ← σ(i, r) ∀i ∈ C

Sort C∗

for Cumulative value C ′ in C∗ do

d← MinDiff(C ′, C∗)
total += d

return total

out the reveal. If we instead assume that the audience consists of an equal
number of supporters for each candidate, it is more appropriate to maximise
uncertainty for all candidates. This can be achieved by minimising the gap
between every candidate and their closest competitor throughout the reveal.
The Uncertainty (UNC) function iterates through every stage of the reveal and
measures the smallest difference in points between every candidate and every
other candidate. The sum of these differences gives an overall score (represent-
ing the amount of uncertainty) which must be minimised. In implementation,
the time complexity of this function can be reduced from O(n2) to O(n log n)
by performing a quicksort on each row of cumulative values before measuring
the differences. Sorting the cumulative values ensures that only the adjacent
values in the array need to be checked instead of performing comparisons with
every other value in the row.

3.4.1 Time-Biased Uncertainty

Consider a reveal where there are small point differences in the early stages
but high differences later on. This solution may score very well according to
the basic UNC function, however the audience may not be entertained by the
reveal due to the relatively quick loss of uncertainty as the candidates’ points
start to spread out. The Time-Biased Uncertainty (UNC-T) function multiplies
the differences by a time-based biased function, ensuring that solutions with

8

Reveal Stages
bird 2 3 4 5
cat 1 4 6 9
dog 0 2 5 7

snake 3 3 3 3
Minimum Differences
bird 1 0 1 2
cat 1 1 1 2
dog 1 1 1 2

snake 1 0 1 2
output 18

Table 4: The Uncertainty function applied to reveal order {v1, v2, v3, v4} in the
example VRP

uncertainty towards the end of the reveal are preferred over solutions with high
uncertainty at the start. The bias function chosen for this project is linear; the
differences are multiplied by the current reveal number.

3.4.2 Candidate-Biased Uncertainty

The Candidate-Biased Uncertainty (UNC-C) function is an adaptation of the
Uncertainty function to meet the assumption that impartial viewers are more
interested in the eventual winner. This time, the domain of the bias function
is the rank of each candidate instead of the reveal number. This focuses the
search towards solutions with high uncertainty among the leading candidates.
The candidate bias chosen for this project assigns a weight of 1 to the minimum
differences of the first five candidates at each stage of the reveal, and 0 other-
wise2. This was chosen to reflect the emphasis that is usually placed on the top
three candidates as well as on any candidates that have a chance at getting onto
the podium (i.e., fourth and fifth place).

4 Core Implementation

4.1 VRP Framework

An initial implementation of the VRP was developed before focusing on an
optimisation method. The Java language was chosen for this task because it
combines the benefit of fast, compiled code with an object-oriented paradigm
that allows for the creation of modular code. Figure 1 gives a UML diagram of
the classes used to implement the VRP framework. The VRPDataReader class

2Note that, given a bias function that gives a weight of 1 to the first-place candidate and

0 otherwise, UNC-C would reward a very similar set of solutions as LEAD.

9

Figure 1: UML Diagram for the VRP framework

10

Example Vote Reveal % Title

4 % Number of candidates

bird % Candidate names

cat

dog

snake

4 % Number of voters

v1 % Voter names

v2

v3

v4

2, 1, 0, 3 % Weights (one line per voter,

1, 3, 2, 0 % votes in order of candidates)

1, 2, 3, 0

1, 3, 2, 0

Figure 2: Text template used to represent VRP instances

reads the problem instance from a file, so a template for notating VRP instances
was created (listed in figure 2).

The VRPDataReader parses the template and creates an instance of Reveal-
Problem. Random feasible solutions can be fetched from it with the method
getRandomSolution(). This will be used by the optimisation algorithm to get
a starting solution. The RevealProblem instance has public properties which
are read-only so that any class can look up information about the VRP instance.
The RevealProblem passes a self-pointer to any RevealOrder instances that it
creates. Each RevealOrder can create neighbours of itself, each of which receives
a copy of the pointer. This ensures that only one instance of the RevealProblem
exists and prevents data duplication.

RevealOrder was designed with the getCost() and getWeightedCost()

functions built into it so that any algorithm operating on instances of the class
can easily evaluate them using the functions presented in section 3. Some of
the objective functions are costly to evaluate, so a measure was put in place to
prevent re-calculation of solution costs. Whenever getCost() or getWeighted-
Cost() is called, the RevealOrder first checks if it has the relevant cost stored.
If so, it uses the function name as a key to fetch the cost from a HashMap

with a time complexity of O(1). If the cost has not been calculated before, the
RevealOrder calls EntertainmentFunction to calculate the cost and stores the
cost in the HashMap before returning it.

Another improvement was made to the storage of cumulative values: all six
of the entertainment functions require the use of cumulative values to evaluate
a solution. Therefore, if a solution is measured using several functions, time
can be saved by storing the cumulative values to prevent recalculation. Based
on the assumption that every RevealOrder will be evaluated at least once, the

11

cumulative values are calculated and stored privately during class construction
so that they can be passed to EntertainmentEvaluation when required.

The EntertainmentEvaluation class contains static methods only. It is
responsible for calculating the cumulative values for a given solution and eval-
uating a solution according a given entertainment function. The cumulative
values are calculated by adding the current weight to the cumulative value
from the previous row, reducing the time complexity from O(n3) to O(n2).
The getEvaluation() function uses a switch on the function identifier. Since
strings are not supported by java switches, the function is represented using
a char. Objective evalution can be one of the slower parts of optimisation so
execution speed was considered the main priority. All three variants of the un-
certainty function use java’s built-in Arrays.sort() method (which implements
a merge sort with O(n log(n)) average time complexity) to sort each row of cu-
mulative values before iterating over them to check differences. This is faster
than the O(n2) method where an iteration over the whole row is performed for
each element.

4.2 Solution Visualisation Tool

An additional goal listed in the Initial Report was the development of a visuali-
sation tool to inspect solutions. Java’s Swing library was chosen to create the UI
because of its widely available documentation. For the charts themselves, the
open-source JFreeChart library was chosen for the same reason. The single-
solution visualisation tool loads a solution and VRP instance and displays a
bar chart of the candidates’ points. The user can click “next” and “prev” to
move forwards and backwards through the reveal order, with the current reveal
number displayed next to the buttons.

Several highlighting modes were implemented to make it easier to spot cer-
tain features within a solution. These highlighting modes re-colour the bars
from their default grey to the correct highlight colour. JFreeChart’s BarChart
class uses a BarRenderer to colour each bar based on its row and column and
was unable to highlight the bars as desired because of the limitation that all
bars in the same row must be the same colour. This problem was overcome by
creating a CustomBarRenderer which inherits from JFreeChart’s BarRenderer
class and overrides the getItemPaint() function.

The highlighting information must be fetched from the solution visualiser,
however, the CustomBarRenderer is not given a pointer to the visualiser when
it is instantiated, leaving no way to access the visualiser instance. The solu-
tion visualiser was refactored to run statically from the main() method and the
static getColour() method was added to the class so that it can be called by
the CustomBarRenderer to fetch the colour for each bar. Highlighting rules are
controlled by a set of checkboxes to allow any number of rules to be applied at
a time. The rules include: (1) highlighting the current leader, (2) highlighting
any candidates who have previously been in the lead, (3) highlighting tied can-
didates, and (4) highlighting candidates’ positional changes. Examples of the
highlighting modes are included in the appendix.

12

Figure 3: UML Diagram showing classes used to implement the single solution
visualiser

13

The relevant stats that control the highlighting rules are calculated by the
SolutionAnalyser class which takes a RevealOrder and iterates through the
cumulative values to produce several tables with relevant values. It can then
be queried by the visualiser using one of a set of functions (e.g., isLeader() or
isTied()).

5 Single-Objective Optimisation

5.1 Background

It is not possible to use Gurobi for the Vote-Reveal Problem (as the initial report
suggested) because Gurobi only supports linear and quadratic mixed-integer
programming problems. Instead, it was decided to implement a combinatorial
optimisation metaheuristic from scratch. A shortlist of single-solution search
algorithms was produced using Gendreau’s comparison of combinatorial opti-
misation metaheuristics [5]. The shortlist consists of (1) Greedy Randomised
Adaptive Search Procedure, (2) Simulated Annealing, and (3) Tabu Search.

Greedy Randomised Adaptive Search Procedure (GRASP) uses a randomised
greedy construction heuristic to produce initial solutions which are then im-
proved using local search. After a fixed number of iterations, the best overall
solution is returned. The construction heuristic builds up a partial solution by
considering candidates to be added and creating a restricted candidate list con-
sisting of the best candidates, from which a random candidate is selected and
added to the partial solution.

Simulated Annealing (SA) is a randomised local search heuristic where a
random neighbour of the current solution is selected and its cost is evaluated.
If the neighbouring solution has a better cost (a downhill move), it is accepted
as the new current solution. If the neighbouring solution has a worse cost (an
uphill move), it has a probability of being accepted which depends on the current
temperature. The temperature is gradually decreased according to some cooling
schedule until some stopping criterion is met, at which point the search returns
the best solution found so far.

Tabu Search (TS) is a deterministic local search heuristic where at each iter-
ation the best neighbouring solution is selected, even if it is an uphill move. To
avoid moving back towards previously visited local optima, TS uses a form of
short-term memory called the tabu list. The tabu list can store either previously
visited solutions or attributes of previous moves. When generating the neigh-
bourhood of the current solution, any neighbours which are prohibited by the
tabu list are not considered. The search continues until some stopping criterion
is met, at which point it returns the best solution found so far.

All three metaheuristics are feasible for use in the Vote-Reveal Problem.
GRASP was considered out-of-scope for this project due to its solution con-
struction approach; the entertainment functions all use cumulative values and
as such it would be very difficult to meaningfully evaluate candidates for partial
solutions when future cumulative values cannot be predicted. The decision was

14

ultimately between TS and SA, with TS being selected because of its determin-
istic approach and the use of short-term memory to inform decisions.

5.2 Tabu Search

Algorithm 5 Tabu Search Algorithm as described in A user’s guide to tabu

search [6]

procedure TabuSearch(s)
s∗ ← s

k ← 1
while stopping criterion not met do

k += 1
Generate V ∗ ⊆ N(s∗, k)
Choose the best s′ in V ∗
s← s′

if f(s′) < f(s∗) then s∗ ← s′

The two important components of Tabu Search are the neighbourhood func-
tion and the tabu list, which work together to generate N(s∗, k). In permutation
problems it is common to use pairwise swaps of elements to define a neighbour-
hood and to keep track of these pairs in the tabu list (instead of recent solutions)
[7]. The size of this neighbourhood has an O(n!) relationship with the number of
voters, making the evaluation and sorting of the neighbourhood slow for larger
VRP instances. To improve execution speed, a smaller neighbourhood can be
used where each neighbour is generated by swapping adjacent voters in the
current reveal order. The adjacency requirement for swapped elements reduces
the size complexity of the neighbourhood to O(n). Both the reduced and full
neighbourhood functions will be used and compared. Various stopping criteria
can be used; the criterion used in this project checks if the number of iterations
since the best solution was last updated has exceeded a set limit.

5.3 Implementation

Using the existing VRP framework, the implementation of TS remained very
true to the pseudocode in algorithm 5. The tabu list was implemented in its
own class with add() and contains() functions. Over time the TS algorithm was
re-worked to optimise for speed, however the algorithm was very fast to begin
with and there was little difference in execution time after the changes were
made.

The first optimisation was to change the implementation of the tabu list.
The original TabuList class kept a list of actions and performed a linear search
when the contains() method was called. It was able to add new actions with
complexity O(1) and check if an action was contained in the list with worst-case
complexity of O(t) (where t is the tabu list length). The TabuListMap class

15

Eurovision Final 2018 Eurovision Final 2019
Random TS Random TS

Mean Best R F Mean Best R F
LEAD 3.35 18 16 21 6.19 22 21 25
HOT 2.92 17 14 20 4.59 20 20 23
HOT-U 2.64 8 7 8 3.25 9 8 11

UNC 2740 1752 1697 1431 2495 1683 1550 1321
UNC-T 44816 29620 29096 25295 40713 27942 27084 24108
UNC-C 1552 638 544 450 927 336 291 201

Table 5: Best scores achieved in 50 attempts with Tabu Search using reduced
(R) and full (F) neighbourhood functions compared to the mean and best scores
using 1 million random solutions.

uses a HashMap to store actions, allowing the contains method to be executed
in O(1) time complexity. The tradeoff is that each action contained in the map
needs to individually store a value indicating how long they’ve been in the list,
which increases the complexity of adding elements to O(t) because each element
in the map needs to be updated. Since the contains function is used more often
than the add function, this should theoretically improve performance however
the difference in the overall execution time of the TS algorithm was negligible.

The second optimisation was a change in the generation of neighbours. The
first TS implementation would iterate over all possible neighbours given by the
getNeighbours() function to find the first neighbour that is allowed by the
tabu list. This required the costly evaluation and sorting of every neighbour.
Time spent on these costly operations can be reduced by discarding tabu moves
before generating the neighbours. The process was refactored so that the TS
algorithm would generate the list of actions itself and discard any actions which
are prohibited by the tabu list. The reduced list of “legal actions” is then passed
to the current solution, which evaluates and sorts each neighbour represented
by an action. The new algorithm was run using a non improve limit of 1000 to
ensure sufficient iterations and a list length of 300 to ensure that a significant
number of moves were considered tabu at any time. Despite the considerable
reduction in the number of solutions being evaluated with the new system, the
time to perform 1000 iterations remained unchanged (about 4.32 seconds).

5.4 Results

TS was tested using example data from the Eurovision Song Contest Database3.
Two instances of the Vote-Reveal Problem were constructed: one from the 2018
grand final and the other from the 2019 grand final (these datasets are listed
in tables 7 and 8 in the appendix). Benchmarks for each of the six evaluation
functions were generated for both VRP instances by evaluating one million

3Available to the public at https://eschome.net/, accessed 2021

16

randomly generated feasible solutions. The mean score and best overall score
from the samples are given in table 5 alongside the best solutions found with
TS.

The tabu list size and non-improve limit were decided based on experimen-
tation. Glover’s guidance for choosing the tabu list size is to watch for “the
occurrence of cycling when the size is too small and the deterioration in solu-
tion quality when the size is too large” [6]. In both VRP instances used, the
reduced neighbourhood function could produce a maximum of 25 neighbours
and the full neighbourhood function 325. Even with the tabu list length very
high (20 for reduced and 300 for full), the best solution was found very quickly
(i.e., within 20 iterations or so) and the search was unable to improve on this
solution. This could be an indicator of cycling (although the very high tabu list
length would presumably combat this) or it could perhaps indicate very wide
and tall barriers between local optima. As such, the non-improvement limit was
brought down to 100 and later to 50 with the list length being set to 18 for
reduced neighbourhood and 250 for full neighbourhood.

The reduced neighbourhood function performed very poorly compared to
full neighbourhood, although it was significantly faster. For LEAD, HOT, and
HOT-U, the reduced neighbourhood was unable to produce a better score in 50
attempts than the best score found through random sampling. It was, however,
able to beat the randomly sampled results in all three variants of the uncertainty
function. The full neighbourhood search found the best solutions for every
objective, beating the reduced neighbourhood and random sampling results by
large margins in some cases.

6 Multi-Objective Optimisation

When trying to model entertainment value, single-objective optimisation can
be limiting. In reality, the most entertaining solution may be entertaining due
to a variety of factors that all contribute in different ways. A solution that
scores well on multiple entertainment measures may be preferred to a solution
that is optimal on a single measure but scores poorly on all others. After
the completion of the Tabu Search algorithm and solution visualisation tool,
it was decided to extend the project to cover multi-objective optimisation and
to consider its effectiveness in the VRP. In addition to implementing a multi-
objective optimisation algorithm, a second visualisation tool was developed to
compare the performance of solutions across several objectives.

6.1 Background

It is possible to combine multiple functions into one objective that produces a
weighted output of their combined scores, however the loss of dimensionality
creates difficulty in optimisation and obscures each objective’s individual scores
from the search algorithm. Therefore it is more effective to use multi-objective

17

optimisation techniques. The explanation below is a brief summary of informa-
tion given by Hansen [8].

Multi-Objective Combinatorial Optimisation (MOCO) problems take the
following general form:

Maximise f(x)

Subject to x ∈ S

Where f(x) = {f1(x), f2(x), . . . , fn(x)}

and S is the set of feasible solutions

The word “maximise” here is not strictly accurate because it is usually im-
possible to find a single solution that has the optimal value for each objective.
For any solution xn, its cost f(xn) is a vector and can be considered a point
in cost-space (the word “point” is used to refer to a solution’s cost evaluation).
Solution x1 is “superior” to x2 if the point f(x1) dominates f(x2), which occurs
when f i(x1) ≥ f i(x2) for all objectives and f i(x1) > f i(x2) for at least one
objective. Therefore, domination indicates that a point is strictly better than

another point. A Non-Dominated (ND) Set consists of solutions where no so-
lution dominates any other solution in the set (therefore no single solution is
strictly better than any other solution). By definition, the ND set is pareto op-
timal: increasing one value by moving to a different item in the set will always
result in a decrease in value on another axis. The optimal ND set is a set where
there exist no feasible solutions which dominate any solution in the set. The act
of finding the optimal ND set is very difficult and therefore the aim of MOCO
is to obtain a reasonable estimate of the ND set. The example VRP only has
24 feasible solutions, meaning that the optimal ND set can be found through
brute force. This set (shown in figure 4) contains four solutions, each of which
achieves the optimal value for all six objective functions.

6.2 Multi-Objective Tabu Search

Multi-Objective Tabu Search (MOTS) was proposed in 1997 [8]. The proce-
dure uses a population of current solutions, each with its own tabu list, which
are iterated over and optimised towards the Non-Dominated frontier. For each
solution, an optimisation direction is chosen which assigns a weight to each ob-
jective. The distance between two solutions can be measured as the distance
between their points; a function of the distance is used to give nearby points
a greater influence on the optimisation direction in order to spread the search
across the pareto frontier. Neighbours are sorted by their weighted score (calcu-
lated as the sum of each normalised objective cost multiplied by some weight) so
that the neighbour that maximises the score in the desired direction is selected
first. When calculating the optimisation direction, population points which are
dominated by the current point are ignored.

18

Figure 4: Optimal ND set for the example VRP instance

Algorithm 6 Multi-Objective Tabu Search

procedure MOTS

Initialise X as a set of random feasible solutions
Initialise ND ← ∅
k ← 0
while stopping criterion not met do

for solution xi ∈ X do

λ← 0
for solution xj ∈ X where f(xi) is non-dominated by f(xj) and

f(xi) 6= f(xj) do
w ← g(d(f(xi), f(xj), π))
for objective k where fk(xi) > fk(xj) do

λk += πkw

if λ = 0 then set λ to random weights

normalise λ

find solution yi ∈ N(xi, k) which maximises λ ∗ f(yi)
xi ← yi
if f(yi) non-dominated by all points in ND then

ND += yi
Remove solutions in ND that are dominated by f(yi)

k += 1
return ND

19

6.3 Implementation

6.3.1 MOTS Algorithm

The main MOTS algorithm was implemented as seen in algorithm 6. The calcu-
lation of weights is the same, with random weights being assigned by choosing
a random float from 0 to 1 for each element and then normalising the vector
so that it sums to 1. This is sufficient for the purpose of choosing a random
vector since no specific probability distribution is required. Domination was
handled by implementing a dominates() function in Revealorder. This allows
a solution to compare itself to another solution and return true or false accord-
ingly. Additional neighbourhood functions and evaluation functions were added
to RevealOrder to support the use of a weights vector across several objec-
tives. The range equalisation factors could have been hard-coded for each VRP
instance and objective, however this will not extend to new VRP instances or
new objective functions. Therefore, the equalisation factors are evaluated in the
initialisation stage using 100,000 random solutions4. Distances between points
are calculated using Manhattan distance as recommended by Hansen.

6.3.2 Solution Comparison Tool

The solution comparison tool reads a list of solutions from a CSV file and
creates the appropriate RevealProblem instance. It then displays each solution
as a coloured polygon on a spider chart. The SpiderChart class evaluates the
costs for each pairing of solution and objective and scales them to the range
[0, 1]. This must be done because JFreeChart’s spider chart does not normalise
the axes and does not support negative values5. Examples of the multi-solution
visualisation tool can be seen in figures 5 and 6.

6.4 Results

MOTS was tested using the same VRP instances as TS with the same settings
(list length 20, non-improve 50) using the full neighbourhood function. A sample
size of 50 was used to match the 50 restarts given to TS. The ND set for the
2018 data contained 50 solutions and the ND set for the 2019 data contained
122 solutions. The sets were both too large to meaningfully compare, so the
sets were trimmed by hand in an excel spreadsheet. Solutions that did not have
the optimal value on at least one measure were removed, and if any solutions
existed which had the optimal value on multiple measures, solutions which only
had a single optimal value on one of said measures were removed. The sets were
reduced to 4 solutions and 6 solutions respectively.

Table 6 compares the best solution scores found for each function using TS
and MOTS. MOTS achieved very similar results, even beating TS on the two

4Perhaps a cleaner system would check a file for equalisation factors and, if they are not

found, generate the factors and write them to the file for future reference.
5Values calculated for the uncertainty functions are returned as negative values so that

every function can be treated as ”maximising” by the optimisation algorithm

20

Instance Eurovision Final 2018 Eurovision Final 2019
Algorithm TS MOTS TS MOTS
LEAD 21 21 25 25
HOT 20 21 23 24
HOT-U 8 9 11 12

UNC 1431 1639 1321 1541
UNC-T 25295 28246 24108 25877
UNC-C 450 511 201 239

Table 6: Comparison of best scores achieved with TS (50 attempts) and MOTS
(1 attempt, sample size 50).

hotseat functions. MOTS did not perform as well as TS on the uncertainty
functions, falling slightly behind on all three with both instances. Overall the
best values found with MOTS are about the same as TS.

There is the possibility that solutions found with TS could coincidentally
perform well on other objectives. This depends on similarities in the way each
objective is evaluated as well as a bit of luck. To observe these links between
solutions, ND sets for both VRP instances were created using the optimal so-
lutions produced by TS (see figures 11 and 12 in the appendix). In both cases,
solutions optimised for Uncertainty performed very well in Time-Biased Uncer-
tainty and vice versa (in fact, in the 2018 set the UNC-T solution outperforms
the UNC solution on its own metric). This is not the case for Candidate-Biased
Uncertainty, with both of the UNC-C solutions performing poorly on UNC and
UNC-T. This difference is most likely due to the difference in bias function used,
with the linear bias producing similar solutions to unbiased while the cutoff bias
ignores part of the dataset. In both sets, the Hotseat and Unique Hotseat func-
tions do not perform well on the other objective, indicating the lack of overlap
there. The Hotseat solution in both sets performs very well on the Lead func-
tion, indicating an overlap where - intuitively - reveal orders with a high number
of changes at pole position will likely have a very small gap between the top two
candidates at any time. The Unique Hotseat solutions in both sets consistently
perform poorly in all other metrics, indicating that the HOT-U function has
very little overlap with other objectives. Coincidentally, the Uncertainty solu-
tion in the 2018 dataset matched the optimal HOT-U value. While high-scoring
Uncertainty solutions have the possibility of scoring well on the Hotseat func-
tions (because they group the candidates together as much as possible before
the candidates inevitably drift apart in points), there is no explicit incentive to
have a high HOT score.

The ND sets produced by MOTS show a significant improvement in the
scores of solutions across all objectives. For example, solution 0 in the 2019 set
holds the optimal value for the LEAD and UNC-C objectives and scores well in
three of the remaining objectives. Solution 0 of the 2018 set holds three optima
and performs consistently well in the other three objectives. Once again, the

21

Figure 5: ND set for the 2018 eurovision final

best solutions in UNC and UNC-T tend to perform well in the other function,
with solution 1 from the 2018 set and solution 4 from the 2019 set holding
optimum or near-optimum values in both objectives.

7 Evaluation

7.1 Models for Entertainment

Optimised solutions for each objective function successfully captured the in-
tended results, although some with more success than others. It is very easy
to observe the changes between leaders when looking at high-scoring HOT and
HOT-U solutions. Both of these functions achieve their intended outcome very
well. The LEAD and UNC-C functions were successful, with high-scoring so-
lutions showing very small gaps in points between the leading candidates. In
high-scoring UNC-C solutions it is often very clear that the top 5 candidates
are in close competition. The success of the UNC-C function may be due to the
weighting of the bias which ignores any candidates not in the top five. Solutions

22

Figure 6: ND set for the 2019 eurovision final

optimised for LEAD are sometimes underwhelming; this may be due to the fo-
cus on the top two candidates being too narrow, reducing the payoff and making
the function very dependant on the reveal instance (e.g., in the 2018 instance
the lead function performs poorly because of the dataset - Israel had a very
popular candidate and won by a large margin). Solutions optimised for UNC
and UNC-T do well at creating small gaps in points - often managing to create
many ties in the rankings throughout the reveal. The presence of so many ties
may be helped by the new eurovision scoring system which combines national
votes and panel votes, since it is often the case that slight differences in the
preference order produce ties in the number of votes assigned by the country as
a whole. This can be observed in many solutions optimised for UNC where the
very first vote that is revealed places the majority of point-receiving candidates
into a tie with at least one other candidate. Many solutions optimised for UNC
have the majority of small point differences in the early stages of the reveal,
likely because all candidates start at zero points and it is easier to minimise
point differences towards the start before the candidates inevitably spread out
to reach their final point counts. Despite the emphasis that UNC-T places on

23

the later stages of the reveal, there were no significant noticeable differences
between these solutions and solutions optimised for UNC. To achieve more no-
ticeable results It may be necessary to use a more aggressive bias function such
as the one used for UNC-C.

7.2 Tabu Search

Both TS and MOTS outperformed random sampling significantly but it is not
clear if the TS metaheuristic is ideal for the VRP. Even when using very high
tabu list sizes, the algorithm consistently found the optimal solution within 20
iterations and would return after the non-improve limit. This is an indicator
that the search may be returning the first local optima that it finds and is unable
to escape the pit to move towards new local optima. It may be the case that
additional concepts such as intensification and diversification need to be applied
to TS to allow it to move between optima, or perhaps a different metaheuristic
would have unique advantages that allow it to overcome this problem (e.g.,
GRASP’s solution construction approach). It could equally be the case that
the solution space has exceedingly high amplitude in cost evaluations, therefore
different approaches may be required such as population-based algorithms or
the use of larger neighbourhood functions.

7.3 Application of MOCO to the VRP

While both algorithms achieved simlar optima for each objective function, MOTS
had the significant advantage of producing solutions that maximise several func-
tions (and often meet the optimum value in several functions). Multi-Objective
Combinatorial Optimisation is very appropriate for VRP because it addresses
the difficulty in defining entertainment value in any single cost function by al-
lowing entertainment value to be modelled as multi-faceted, therefore generating
solutions that try to meet a set of goals. Another advantage is that the result-
ing Non-Dominated set can feasibly be reduced by the entertainer to a set of
options to choose from. This gives the entertainer the advantage of being able
to view a small and manageable set of solutions in order to choose one that
meets their requirements. The results generated with MOCO can be seen as a
set of recommendations instead of a final answer, placing the power of selecting
a final solution back in the hands of a human who can use intuition to choose
a solution based on factors outside of those modelled by the set of objective
functions.

8 Reflection on Learning

Although I learned about Tabu Search in CM3109 Combinatorial Optimisa-
tion, I did not have the opportunity to fully familiarise myself with it until
this project where I developed and tested my own implementation of the algo-
rithm from scratch. This project has allowed me to further explore the field of

24

combinatorial optimisation while working on a previously unseen problem. The
focus on measuring entertainment value has allowed me to come up with my
own ideas to evaluate solutions and I have learned how to incentivise certain
features of a solution by designing and implementing functions that model my
ideas. A notable learning point involving the objective functions was the use
of biases to create variants of the Uncertainty function. The idea of using a
higher-order function was very interesting to me, and I think that it can be
very useful to model entertainment value because of the flexibility of applying
any bias function to the general Uncertainty function in order to apply different
preferences. In the future, it could be interesting to consider more higher-order
functions and to perform tests on various configurations to see which functions
produce desirable results.

The main learning area of this project came from my exploration of Multi-
Objective Combinatorial Optimisation. MOCO was not considered until part-
way into the project when I had completed the TS algorithm and visualisation
tool. At first I had developed ideas for my own algorithm to simultaneously op-
timise several objectives, however after doing some research I came across the
field of multi-objective optimisation and read about important concepts such as
dominance and pareto optimality. I realised that my algorithm idea was limited
compared to the approaches used by others, however I thoroughly enjoyed ex-
ploring the field of multi-objective optimisation and will likely continue to read
about its applications and the ways in which single-objective metaheuristics can
be adapted to optimise over multiple objectives.

9 Further Work

Further work on the VRP could cover a wide range of new approaches. Any
number of new objective functions can be devised to model particular desirable
features of the reveal order. This includes the consideration of meta-factors from
the audience’s perspective: Has the audience already seen the performance of
each candidate? How have the candidates performed in past competitions? Are
there any known biases among the voters? Other insights into definitions of
entertainment for VRP could be gained from interviewing audience members
and there may be some use in presenting solutions to volunteer audiences in
order to measure how well the model being used reflects the actual entertainment
of the audience. Different optimisation techniques may yield better results for
the same set of objectives; there are variants of the Tabu Search procedure not
explored within this project which could perform better and be more suitable
to the Vote-Reveal Problem. It could also be useful to develop an algorithm to
trim the ND set to produce a smaller set of recommendations that are likely to
be desirable to the entertainer.

25

10 Acronyms

GRASP Greedy Randomised Adaptive Search Procedure. 14, 24

HOT Hotseat. 1, 6, 7, 16, 17, 21, 22

HOT-U Unique Hotseat. 1, 7, 8, 16, 17, 21, 22

LEAD Lead. 1, 5, 6, 9, 16, 17, 21–23

MOCO Multi-Objective Combinatorial Optimisation. 2, 18, 24, 25

MOTS Multi-Objective Tabu Search. 2, 18–21, 24

ND Non-Dominated. 18–22, 24, 25

SA Simulated Annealing. 14, 15

TS Tabu Search. 2, 14–17, 20, 21, 24, 25, 29, 30

UNC Uncertainty. 1, 7–9, 16, 21–25

UNC-C Candidate-Biased Uncertainty. 9, 16, 21, 22, 24

UNC-T Time-Biased Uncertainty. 8, 16, 21–23

VRP Vote-Reveal Problem. 1–4, 6–12, 14–21, 24, 25

11 Appendix

26

Figure 7: Visualisation with leader(s) highlighted in yellow

Figure 8: Visualisation with previous leaders highlighted in gold

27

Figure 9: Visualisation with ties highlighted in blue

Figure 10: Visualisation with candidate rank changes highlighted in green and
red

28

Figure 11: Optimal solutions generated by TS for 2018 dataset

29

Figure 12: Optimal solutions generated by TS for 2019 dataset

30

Candidates
A
L
B

A
U
S

A
U
T

B
G
R

C
Y
P

C
Z
E

D
N
K

E
S
T

F
IN

F
R
A

D
E
U

H
U
N

IR
L

IS
R

IT
A

L
T
U

M
D
A

N
L
D

N
O
R

P
R
T

S
R
B

S
V
N

E
S
P

S
W

E

U
K
R

G
B
R

V
ot
er
s

ALB 0 0 2 14 20 1 0 4 0 12 14 0 7 6 24 0 2 0 0 0 3 0 0 4 0 3
AUS 0 0 5 0 7 4 10 8 4 0 12 0 12 18 0 3 7 0 1 0 0 0 7 12 0 6
AUT 9 0 0 6 1 15 5 2 0 0 16 3 8 19 10 0 0 1 0 0 8 5 0 8 0 0
BGR 7 0 16 0 15 11 0 2 0 5 6 5 1 14 6 10 8 0 0 0 7 0 0 2 1 0
CYP 6 0 2 12 0 13 0 5 0 4 3 4 0 10 15 6 10 0 5 0 0 0 7 12 2 0
CZE 6 0 5 5 8 0 7 5 3 0 3 2 14 22 2 1 6 0 0 0 0 7 0 8 12 0
DNK 0 12 18 1 6 6 0 7 0 2 24 0 4 3 0 0 0 5 8 0 0 0 6 11 0 3
EST 0 0 18 7 12 5 8 0 12 0 6 3 0 0 7 22 1 1 6 3 0 0 0 5 0 0
FIN 0 0 10 10 7 5 13 12 0 9 1 8 2 19 10 0 0 2 0 0 0 0 0 8 0 0
FRA 0 10 7 0 3 4 2 7 0 0 8 0 1 24 10 0 6 6 0 8 1 2 5 5 4 3
DEU 0 7 15 0 9 8 3 2 0 0 0 2 15 11 12 8 0 5 0 0 0 0 6 12 0 1
HUN 10 7 11 0 7 8 24 0 0 0 1 0 3 16 6 5 2 8 7 0 0 0 0 1 0 0
IRL 2 0 5 10 17 7 2 7 0 4 16 0 0 13 0 12 1 3 0 6 0 0 1 0 0 10
ISR 0 7 13 1 2 12 6 8 6 6 8 3 0 0 5 0 10 0 0 0 0 4 0 10 7 8
ITA 12 0 7 0 8 0 12 10 0 0 13 2 5 9 0 0 10 0 12 0 1 0 0 1 8 6
LTU 0 0 15 0 7 8 10 12 0 15 7 2 4 7 7 0 0 3 0 7 0 0 0 12 0 0
MDA 0 7 3 11 13 6 0 13 0 0 8 2 0 22 8 0 0 1 7 0 0 0 0 0 15 0
NLD 0 0 13 0 11 6 8 4 0 0 24 2 4 15 7 7 0 0 4 2 0 1 0 8 0 0
NOR 0 6 16 0 7 4 10 0 0 8 18 0 1 7 0 15 0 9 0 0 0 0 2 13 0 0
PRT 10 0 8 7 5 0 2 19 0 5 8 0 3 2 14 6 6 0 0 0 0 3 14 0 4 0
SRB 1 0 4 2 10 5 4 3 0 0 10 12 0 9 14 0 6 7 9 0 0 8 0 12 0 0
SVN 5 0 12 0 14 11 7 5 0 2 4 3 0 1 10 0 6 7 5 0 12 0 0 12 0 0
ESP 0 0 8 5 20 14 0 3 0 10 13 0 6 22 10 0 0 0 3 0 0 0 0 2 0 0
SWE 0 8 12 6 16 3 12 0 9 5 6 0 4 17 0 7 0 1 10 0 0 0 0 0 0 0
UKR 0 2 7 0 4 14 11 4 0 19 0 1 0 22 5 2 6 8 0 0 0 5 0 6 0 0
GBR 7 1 12 14 8 5 2 6 4 0 3 0 13 17 0 12 4 0 5 0 0 0 1 2 0 0

Table 7: Vote Data from the 2018 Eurovision Final

Candidates
A
L
B

A
U
S

A
Z
E

B
E
L

C
Y
P

C
Z
E

D
N
K

E
S
T

F
R
A

D
E
U

G
R
C

IS
L

IS
R

IT
A

M
L
T

N
L
D

M
K
D

N
O
R

R
U
S

S
M
R

S
R
B

S
V
N

E
S
P

S
W

E

C
H
E

G
B
R

V
ot
er
s

ALB 0 3 11 0 7 0 0 0 3 0 6 0 0 13 0 7 18 5 13 10 0 0 0 6 14 0
AUS 0 0 3 0 0 7 0 0 13 3 0 18 0 5 4 12 7 12 4 0 1 0 0 20 7 0
AZE 7 2 0 6 3 0 0 0 0 0 6 0 0 11 14 7 11 1 24 10 0 4 2 0 8 0
BEL 0 2 11 0 8 0 0 0 0 0 3 7 0 10 12 16 10 8 13 1 0 5 0 2 8 0
CYP 2 2 6 0 0 0 0 0 7 0 24 0 5 16 3 11 0 1 20 0 0 0 4 7 8 0
CZE 0 8 12 0 0 0 0 2 2 0 0 10 3 10 3 10 7 10 12 0 0 10 0 12 5 0
DNK 0 2 9 0 0 0 0 10 0 8 0 4 0 4 0 14 10 17 3 0 0 0 1 22 12 0
EST 0 2 6 1 0 8 8 0 3 0 0 5 0 0 0 15 0 10 18 0 4 7 0 15 14 0
FRA 0 10 6 0 0 3 5 0 0 0 0 6 12 18 0 17 7 8 3 0 0 0 7 10 4 0
DEU 0 15 0 0 0 0 5 0 4 0 0 2 0 18 3 15 7 17 8 0 0 3 0 3 16 0
GRC 8 5 8 0 24 0 0 0 1 0 0 2 0 17 5 6 1 0 18 6 0 4 4 0 7 0
ISL 0 20 4 0 0 8 4 3 1 0 0 0 0 9 0 12 8 12 0 1 2 0 0 20 12 0
ISR 0 11 10 0 0 1 1 8 6 0 0 0 0 18 4 14 0 10 12 0 0 0 5 6 10 0
ITA 13 12 8 0 0 4 16 5 5 0 0 7 0 0 8 5 10 10 8 0 0 0 0 2 3 0
MLT 2 3 10 0 6 0 0 0 0 0 4 1 0 24 0 17 8 7 14 1 0 0 0 11 8 0
NLD 0 4 4 0 1 4 12 0 0 0 0 7 0 16 8 0 4 12 5 0 0 0 3 20 16 0
MKD 20 10 5 0 1 0 0 0 0 0 0 2 0 15 11 14 0 5 6 8 10 2 0 0 7 0
NOR 0 4 8 0 1 12 9 2 0 0 0 10 0 10 0 15 10 0 1 0 0 0 0 20 12 2
RUS 3 4 24 15 8 0 0 0 0 0 10 9 0 1 6 5 4 10 0 5 3 6 1 0 2 0
SMR 7 0 8 0 12 0 0 0 0 0 18 8 1 20 0 9 1 3 22 0 0 0 0 0 7 0
SRB 0 7 3 0 0 4 2 6 1 0 0 5 0 17 0 3 24 4 8 1 0 10 2 8 11 0
SVN 0 2 10 0 0 12 7 1 3 0 0 7 0 16 1 11 14 6 0 0 10 0 0 7 9 0
ESP 0 15 8 0 5 6 0 0 4 0 0 3 0 16 0 16 0 7 4 0 0 1 0 18 13 0
SWE 0 11 8 0 7 1 7 10 0 0 0 8 0 12 2 18 2 16 3 0 0 0 0 0 11 0
CHE 10 4 0 0 0 0 1 0 5 6 0 0 0 17 0 16 14 15 3 0 7 0 5 12 0 1
GBR 0 18 10 0 1 1 9 0 2 0 0 8 0 0 0 10 12 12 4 0 0 0 2 15 12 0

Table 8: Vote Data from the 2019 Eurovision Final

12 References

[1] Jeffrey Ely, Alexander Frankel, and Emir Kamenica. Suspense and surprise.
Journal of Political Economy, 123(1):215–260, 2015.

[2] Paolo Bizzozero, Raphael Flepp, and Egon Franck. The importance of sus-
pense and surprise in entertainment demand: Evidence from wimbledon.
Journal of Economic Behavior & Organization, 130:47–63, 2016.

[3] Silvia Knobloch-Westerwick, Prabu David, Matthew S. Eastin, Ron Tam-
borini, and Dara Greenwood. Sports Spectators’ Suspense: Affect and Un-
certainty in Sports Entertainment. Journal of Communication, 59(4):750–
767, 12 2009.

[4] Tim Pawlowski, Georgios Nalbantis, and Dennis Coates. Perceived game un-
certainty, suspense and the demand for sport. Economic Inquiry, 56(1):173–
192, 2018.

[5] Michel Gendreau and Jean-Yves Potvin. Metaheuristics in combinatorial
optimization. Annals of Operations Research, 140(1):189–213, 2005.

[6] Fred Glover and Eric Taillard. A user’s guide to tabu search. Annals of

operations research, 41(1):1–28, 1993.

[7] Manuel Laguna. A guide to implementing tabu search. Investigación Oper-

ativa, 4(1):5–25, 1994.

[8] Michael Pilegaard Hansen. Tabu search for multiobjective optimization:
Mots. In Proceedings of the 13th international conference on multiple criteria

decision making, pages 574–586. Citeseer, 1997.

33

