

Final Report

My Important Things Project

CM3203 – Individual Project

40 Credits

Alfred Thomas Rowett: C1732088

Supervised by: Catherine Teehan

Moderated by: Michael Daley

Abstract
Looked afteƌ ĐhildƌeŶ aƌe ofteŶ deĐlaƌed ͚ǁaƌds of state͛, ǁith theiƌ paƌeŶtal ƌespoŶsiďilitǇ falliŶg
upoŶ that of the loĐal authoƌities. This is the Đase ǁheŶ theiƌ hoŵe eŶǀiƌoŶŵeŶt is deĐlaƌed ͚uŶsafe͛
and they are removed from the situation for their safety, the result of which is often that these

children are moved between foster homes, group homes and relatives, whilst also bouncing

between social workers and postcodes. CoŶseƋueŶtlǇ, ŵaŶagiŶg eaĐh Đhild͛s doĐuŵeŶts aŶd
personal belongings is a complicated task when moving home and changing hands which is the stem

of problem I aim to resolve during this project.

This project will detail the background, research, design, implementation, testing and user feedback

of ďuildiŶg the ͚MǇ IŵpoƌtaŶt ThiŶgs App͛. IŶ ĐollaďoƌatioŶ ǁith Caƌdiff CouŶĐil ChildƌeŶ͛s “ervices

the project aims to find a digital solution to the problem of lost or damaged documents and

memories of each child within the care system, bringing this all together into a single centralised and

secure storage platform.

The following report will assess the strengths and weaknesses of the project in achieving the original

requirements as well as the development process.

Acknowledgements
I would like to thank my supervisor Catherine Teehan for her dedication to the project and providing

me with all the relevant information which allowed me to work so smoothly. As well as Caitlyn

Poǁell, ǁho uŶdeƌtook the otheƌ half of the ChildƌeŶ͛s “eƌǀiĐes pƌojeĐt to deǀelop aŶ appliĐatioŶ
containing information on being in foster care and leaving care. Both myself and Caitlyn attended

meetings and research groups together, and later shared design and implementation ideas to ensure

both projects were kept similar for the same client.

I would also like to thank Thomas Pughsley and Samantha Anderson from the Child Friendly City

Programme and National Youth Advocacy Service respectively, who were incredibly helpful in

providing an insight to the care system and getting me access to potential users of my app through

test groups which was invaluable for research and testing.

Table of Contents

Abstract ... 2

Acknowledgements ... 3

Table of Figures ... 6

1. Introduction .. 7

2. Background ... 7

2.1 Existing Solutions .. 7

2.1.1 Document Storage Solutions ... 8

2.1.2 Note/Journaling Apps .. 12

2.1.3 Summary of Existing Solutions ... 14

2.2 User Research and Feedback .. 15

2.2.1 User Research Data Storage .. 16

2.2.2 User Research Mobile accessibility .. 16

2.2.3 Web Accessibility Research .. 17

2.3 User Personas ... 17

2.4 Project Justification ... 19

2.5 Project Constraints .. 20

2.5.1 Financial Constraints .. 20

2.5.2 Timescale Constraints .. 20

2.5.3 Coronavirus Constraints ... 21

3. Methods of Development and Planning ... 22

3.1. Agile Development Methodology .. 22

3.2 Learning ... 22

3.2.1 Web development ... 22

3.2.2 Data Storage ... 24

ϯ.Ϯ.ϯ ChildƌeŶ͛s “eƌǀiĐes aŶd the Caƌe “Ǉsteŵ ... 25

4. Specification .. 25

4.1 Functional Requirements .. 26

4.1.1 Must Have .. 26

4.1.2 Should Have ... 27

4.1.3 Could Have ... 27

4.2 Non-Functional Requirements .. 28

4.2.1 Must Have .. 28

4.2.2 Should Have ... 28

4.3. Use Cases ... 29

4.3.1 Use Case Diagram .. 29

4.3.2 Use Cases ... 30

5. Design .. 35

5.1 UML Class Diagram ... 35

5.1.1 UML Overview .. 36

5.1.2 Use Case Mapping .. 37

5.2 User Interface Designs and Wireframing .. 38

5.2.1 Mobile First Development and Intuitive Design .. 38

5.3 Prototype Designs ... 41

5.3.1 Wireframes .. 41

5.3.2 Colour Scheme ... 45

5.3.3 Wireframe Strengths and Weaknesses .. 45

6. Implementation .. 46

6.1 Database Design .. 46

6.1.1 User Profiles ... 47

6.1.2 Document Storage ... 47

6.2 Web Development Best Practices ... 50

6.3 Django Implementation .. 51

6.3.1 Static Page Implementation ... 53

6.3.2 Dynamic Page Implementation .. 53

7. Results ... 63

7.1 Test Cases .. 63

7.1.1 Functional Requirements ... 64

7.1.2 Non-Functional Requirements ... 64

8. User Feedback ... 65

9. Conclusion ... 65

10. Future Work .. 66

11. Project Evaluation ... 67

References .. 69

Table of Figures
Figure 1 - Amazon S3 Monthly Estimates for Data storage .. 20

Figure 2 - Gantt Chart containing my project schedule, deliverables and milestones 21

Figure 3 - Use Case Diagram displaying how a user would interact with the main app functions (must

haves). ... 30

Figure 4 - Upload/Delete image flowchart ... 31

Figure 5 - Upload/Delete Document Flowchart .. 31

Figure 6 - Add/Delete Calendar Entries Flowchart ... 32

Figure 7 - Add/Delete Journal Entry Flowchart ... 33

Figure 8 - Accessing Useful Links Flowchart.. 33

Figure 9 - Login and Logout Flowchart .. 33

Figure 10 - Download/Print Document Flowchart .. 34

Figure 11 - My Important Things App UML Class Diagram ... 35

Figure 12 - Example of Iconography ... 39

Figure 13 - Example of Navigation Bar .. 39

Figure 14 - Example of User feedback through button colour change ... 40

Figure 15 - Navy Blue #051938 ... 45

Figure 16 - Primary Blue #0275d8 ... 45

Figure 17 - Orange #ff5b00 ... 45

Figure 18 - Database User Model ... 47

Figure 19 - Database User Group Model .. 47

Figure 20 - Database Memories Model .. 48

Figure 21 - Database Memory Category Model .. 49

Figure 22 - Memories Upload Screen ... 49

Figure 23 - New image added to database model .. 49

Figure 24 - User database interaction model ... 50

Figure 25 - Base project folder and extending apps. .. 50

Figure 26 - Project Installed Apps ... 51

Figure 27 - Django Password package .. 52

Figure 28 - Settings.py Static File paths .. 52

Figure 29 - Home app folder ... 53

Figure 30 - Document Wallet app folder .. 53

Figure 31 - Document Wallet models.py .. 54

Figure 32 - Admin model registration ... 54

Figure 33 - Page Render View function ... 55

Figure 34 - Document Wallet as seen by users ... 55

Figure 35 - Viewing Page View function ... 56

Figure 36 - Document View as seen by users ... 56

Figure 37 - Xframe Origin fix ... 56

Figure 38 - Document ordering View function ... 57

Figure 39 - New Document View function .. 58

Figure 40 - Upload Document View as seen by users ... 58

Figure 41 - File Deletion View function ... 59

Figure 42 - Navigation HTML Code ... 60

Figure 43 - Navigation as seen by the user ... 60

Figure 44 - Dynamic Loops .. 61

Figure 45 - Document Wallet as seen by the user .. 61

file:///H:/Documents/Uni%20Stuff/Final%20Project/Final%20Report/reportFinished.docx%23_Toc71822746
file:///H:/Documents/Uni%20Stuff/Final%20Project/Final%20Report/reportFinished.docx%23_Toc71822750
file:///H:/Documents/Uni%20Stuff/Final%20Project/Final%20Report/reportFinished.docx%23_Toc71822751
file:///H:/Documents/Uni%20Stuff/Final%20Project/Final%20Report/reportFinished.docx%23_Toc71822752
file:///H:/Documents/Uni%20Stuff/Final%20Project/Final%20Report/reportFinished.docx%23_Toc71822764
file:///H:/Documents/Uni%20Stuff/Final%20Project/Final%20Report/reportFinished.docx%23_Toc71822765
file:///H:/Documents/Uni%20Stuff/Final%20Project/Final%20Report/reportFinished.docx%23_Toc71822767

Figure 46 - PythonAnywhere Dashboard .. 63

1. Introduction

This project was proposed to me by Catherine Teehan as a collaboration with NYAS, Child Friendly

Caƌdiff aŶd Caƌdiff CouŶĐils ChildƌeŶ͛s “eƌǀiĐes with the aim to create a digital solution for the

document storage problems faced by children in care. The hope was to build an application that

allowed for children within the care system to store important documentation and personal

memories securely and easily in the form of photos and journal entries. With the current

infrastructure being very limited and with the young people often changing homes and supervisors it

is very easy for papers or boxes of photos to become misplaced or completely lost, with important

documentation taking weeks to get replaced and personal effects simply being lost forever.

Being a young person in care is already a daunting experience with many people involved and the

possibility of moving homes numerous times along with changing social workers. This was the source

of my motivation to complete this project, the real-world impact it could have on so many people,

both providing a better system for organising their lives, but also to aid in preserving the memories

they already have.

As was originally laid out in the project initiation document the two main objectives for the project

were to:

• Cƌeate a seĐuƌe doĐuŵeŶt ͚ǁallet͛ foƌ Đaƌe eǆpeƌieŶĐed ĐhildƌeŶ.
• Cƌeate a ͚ŵeŵoƌǇ ďoǆ͛ assoĐiated ǁith the doĐuŵeŶt ǁallet.

This was later extended following research collection with groups of young people from the foster

care system to include:

• Create a digital journal feature to allow users to make entries about their lives or notes.

• Create a calendar that would aid in organisation of users lives and help manage documents

further.

These four main functions are what would therefore make up most of the application in a format

that would be easy to use across all devices and in a secure method. All functions would easily offer

filtering and categorisation for improved functionality and ease of use, whilst being stored securely

online using the latest in web-hosting technologies.

The application would be both user and device friendly allowing for access from any device with

internet access, with the hope to later be able to port into a mobile app rather than browser-based

format. Designs would be run past test users to gain feedback and research into Web accessibility

from online resources and webinars would aid in the design of a sleek and user friendly front-end.

The rest of the report will cover in further detail the design, research, and implementation aspects of

the project.

2. Background

2.1 Existing Solutions

Before undertaking the design and production phases of this project, it was important to have a

strong understanding of the existing solutions that are available on the market that aim to resolve

the issues I am trying to fix. Although there are not any specific applications aimed at those in the

care system, there are numerous document storage and general life manager programs available.

From my own research I was able to find that the most popular and widely used included MiĐƌosoft͛s

OneDrive and OneNote, as well as Dropbox, Google Drive and Evernote, all of which fulfilled some of

the objectives that I hoped to achieve with my own project.

However, as my objectives aim to include features from all the existing solutions, there is no other

application currently in widespread circulation that meets every requirement set out by myself and

the test group I spoke to.

Outside of the technological solutions in use, many of the research group we spoke to used physical

storage of documents and memories, which although simple and always available, can easily be

damaged, lost or simply disorganised which was a common response during our initial conversation

with care experienced users. Many of those spoken to said they keep all documents in folders or

cupboards which brings with it many negatives that could easily be avoided using a well-built digital

solution.

Having taken the time to investigate each of the most popular available existing solutions, I have

summarised the results below, looking at the pros and cons to each as well as the aspects I aimed to

replicate for my own project due to their intuitive design or ease of use for the user.

2.1.1 Document Storage Solutions

Application: Microsoft OneDrive

Description: Popular cloud storage service offered by Microsoft in competition with Apple iCloud

and Google Drive. Widely used thanks to the availability across all devices and integrated services

including that of the very popular Microsoft Office Suite that allows for seamless use of Word,

PowerPoint, Excel and more through the application.

UI:

Pros:

- Offers some level of free storage.

- OneDrive mobile is free to use and allows

for file access from anywhere at any time.

- Integration with the powerful Microsoft

Office Suite which is unchallenged in its

document usage.

- Clear UI design with obvious search and

filter options

- Documents and photos displayed in easy

to view layout with clear locations and

dates.

Cons:

- No protection against human error

or malware attacks. Meaning no

version control for stored

documents.

- No obvious options to change the

default style (dark mode, text size)

for improved Web accessibility.

Price Plans:

Free – OneDrive Basic offers 5GB of storage for no cost.

Cheap - OneDrive Standalone offers 100GB of storage for £1.99 a month.

Premium – Microsoft 365 Personal offers 1TB (1000GB) of storage alongside Skype and the

Microsoft Office Suite for £59.99 for a year.

Features to use:

- Layout for documents and photos in clear grid format which is easy to search through and

view for all users.

- Mobile accessibility allowing users access from any internet connected device.

Source: https://www.microsoft.com/en-gb/microsoft-365/onedrive/online-cloud-storage

Costs: https://www.microsoft.com/en-gb/microsoft-365/onedrive/compare-onedrive-

plans?activetab=tab%3aprimaryr1

Application: Google Drive

Description: Very popular cloud storage thanks to the generous 15GB of free storage compared to

other free tiers from competitors. Being owned by Google allows for seamless integration in the

online environment with many great features like collaboration.

UI:

Pros:

- Clear folder structure and filtering

options as well as options to categorise

and group contents.

- Easily sharable with sharing buttons

available at all stages (folders and files).

- Supports version control which is perfect

for making changes to existing

documents.

Cons:

- White UI is hard to look at and read

the text due to consistent brightness

on screen.

- Contents displayed very uniformly

and in an uninteresting manner

(although is clear).

- No automated sorting for file types,

unless organised everything is thrown

in together.

Price Plans:

Free – Google Drive Free offers 15GB of free storage.

Cheap – Google Drive Basic offers 100GB of storage for £1.59 a month.

Standard – Google Drive Standard offers 200GB of storage for £2.49 a month

Premium – Google Drive Premium offers 2TB (2000GB) of storage for £79.99 a year.

https://www.microsoft.com/en-gb/microsoft-365/onedrive/online-cloud-storage

Features to use:

- Option to share files or photos at the click of a button is great addition that offers ease of

use to users.

- Clear and idiot-proof UI layout that is hard to confuse.

Source: https://www.google.com/intl/en-GB/drive/

Costs: https://one.google.com/storage

Application: Dropbox

Description: Dropbox is a cloud storage services that allows for synced online and device file

storage, whilst also offering logical sharing functionality to allow for smoother working and a

reduction in complicated file storage.

UI:

Pros:

- Great UI with basic but functional design

which works well across all devices.

- Version control for all files allowing

recovery of mistakes and lost work.

- Automatic file backup giving users peace of

mind in document safety.

Cons:

- Does not offer the same level of

search functionality as its

competitors.

- Does not offer the same elite-level

security as competitors (has

resulted in a number of high-profile

hacking stories).

Price Plans:

Free – Dropbox Basic offers 2GB of storage for free.

Standard – Dropbox Plus offers 2TB (2000GB) of storage for £9.99 a month.

Family – Dropbox Family offers 2TB (2000GB) of storage for up to 6 users for £16.99 a month.

Features to use:

- Simple but great UI design with layout working flawlessly for all device sizes.

- Automatic backup of important files for improved security/safety of high importance

documents.

Source: https://www.dropbox.com/en_GB/

Costs:

https://www.dropbox.com/plans?_ad=496929751805%7C%7Cc&_camp=1033325279&_kw=drop

box+uk+pricing%7Ce&_tk=paid_sem_goog_biz_b&gclid=Cj0KCQjw9_mDBhCGARIsAN3PaFOCg8yr

poq6N9uMvyO9zkNukyNrd7HVgwNCl-4YLhE5A_x-L2HYyZEaAn3REALw_wcB&tab=personal

Application: Physical Storage

Description: Unlike the other solutions, physical storage of documents and printed photographs

within folders, cupboards or draws is still widely used thanks to the lack of reliance on technology

or an internet connection.

UI:

Pros:

- Always available, without requirements for

digital platform or an internet connection.

- Safe from hacking risks or data leaks.

- Zero cost for storage allowing you to store

as much as you can fit into your storage

cabinet (storage location).

Cons:

- No protection against loss or

damaged files, whether that be due

to water, fire, or other damage.

- Documents can age and lose

integrity.

- Can only be accessed from storage

location and will require physical

moving if changing location.

- No version control, and deletion of

documents is permanent.

Price Plans:

Cost of printing photos and documents varies, but storage is free as it is not a digital solution.

Features to use:

- Being free to store large quantities of documents.

Being the existing non-digital solution, I aim to avoid being similar to physical storage due to the

cons being the main driving force behind the entire project.

Source: N/A

Costs: N/A

2.1.2 Note/Journaling Apps

Application: OneNote

Description: Microsoft OneNote is a free note taking application that allows users to easily create

and share notes, lists and other short form documentation. It is very popular thanks to its ease of

use and integrated mobile app that works seamlessly alongside the website.

UI:

Pros:

- Seamless integration with mobile app that

works perfectly alongside the web

application.

- Links to OneDrive for easy connection and

linked content.

- Offers support for collaborative work.

Cons:

- Limited functionality being solely a

note taking app.

Price Plans:

Free – OneNote is a free application offered by Microsoft.

Features to use:

- Completely free and unrestricted access to all features.

- Ease of use and ability to create new content on the fly from your phone.

Source: https://www.microsoft.com/en-gb/microsoft-365/onenote/digital-note-taking-

app?ms.url=onenotecom&rtc=1

Costs: N/A

Application: EverNote

Description: Evernote is a modern note taking tool aimed at the young entrepreneurs and

creative people and offers a smooth and professional looking interface. However, with limited

free functionality it struggles to have the same widespread use as other options such as OneNote.

UI:

Pros:

- Effortless notetaking and syncing.

- Excellent features provides a premium feel.

- Easy and flexible access to all your content

from both the web and mobile app.

Cons:

- Limited storage and usability

without paying a premium for the

storage space.

- Quite expensive premium plan

for what is offered.

Price Plans:

Free – Evernote Basic offers a 60MB monthly upload limit for zero cost.

Standard – Evernote Premium offers 10GB of monthly uploads for £4.99.

Business – Evernote Business offers 20GB of monthly uploads for £10.99.

Features to use:

- Well designed interface that improves the web accessibility of the application.

- Dark mode and strong layout is clear and concise.

Source: https://evernote.com/

Costs: https://evernote.com/compare-plans

Application: Physical Journal/Notepad

Description: Similarly to physical storage, this is the physical solution to note taking, through a

journal/diary or notepad. Widely used thanks to being so basic, only requiring paper and a pencil

to use.

UI:

Pros:

- Can be taken anywhere and used without

internet access.

- Does not require premium membership to

use.

- Cannot be hacked or leaked due to lack of

digital presence.

Cons:

- Can be lost or damaged through

accidents or the passing of time.

- Can be filled up, not unlimited

storage and will require purchasing

new journals to fill.

- Does not offer any integrated

sorting or search filters.

Price Plans:

Cost of buying pen/pencil and the journal itself varies. No price to simply write down your

thoughts.

Features to use:

- Being accessible anywhere and small enough to carry around with.

Source: N/A

Costs: N/A

2.1.3 Summary of Existing Solutions

Whilst researching the existing digital and physical solutions to the problems; I was shown the

popularity and widespread use of the Apple iCloud which I did not mention in any of my research

above. The reason for this was simply due to it relying on Apple specific devices and the requisite

Apple account which I feel limits the overall accessibility of the application, even though it offers a

premium file storage and note taking functionality. Unfortunately, however I do not own an Apple

device or account and felt it would be unfair to compare a product which I cannot personally access

for research.

As a result, the limitation of being solely Apple products supported meant that I felt it was not a

competitor within the existing solutions as I aim to provide an application that can be used by

anyone on any device. Apple being a premium brand, brings with it a premium cost in both device

ownership and all attached accounts, which is unfair and limits access to those who can afford to pay

entry. I aimed to create a platform which would be free to use for all who qualified and Apples

reliance on their own devices hinders this option.

Coming back to the existing solutions I was able to access, I have gathered together the main

strengths and weaknesses across all of the applications to gain a better understanding of areas I can

learn from and things to try and avoid within my own design.

Strengths:

- All the applications reviewed have uninterrupted transition between mobile and desktop

use meaning that all functionality is mobile responsive and mobile first designed, resulting in

a smooth and highly functional layout across all devices.

- Layouts and designs were practical and clear, comprising of a main body alongside searching

and filtering options via categorisation and other filters. This is effective easy to use meaning

there is little to no learning curve when first using the applications in question.

- Accessibility to stored content is painless and simple to operate, with all applications

allowing for a download to local device or viewing within the application.

- Creation of notes is also incredibly simple and does not overcomplicate what is a very basic

task when done using pen and paper in the real world.

Weaknesses:

- Storage size is limited by pay walls that dictate to what extent you can use the applications.

With all offering some basic level for free that will inevitably fill up quickly, especially when

holding photos and other large document formats.

- The obvious weakness to all the physical solutions is the lack of safety and how easy it is to

lose documents.

- Colour schemes although changeable in some applications, others do not even offer dark

mode, which greatly decreases the web accessibility for those who need it. Options to

change text size and colours would all be greatly beneficial for both personalisation of

applications but also to improve platform visibility.

It was clear after this evaluation that I wanted to use aspects from all the reviewed applications that

currently meet my requirements. With MiĐƌosoft͛s OneDrive and OneNote being the simplest to use

and offering the most at their free tier (OneNote being entirely free), as well as the importance in

mobile responsive design implemented by all, particularly Evernote which offered a premium feel to

note taking. I wish to take these ideas going forward with my own designs, ensuring that my

methods keep mobile and cross-device usability at the forefront to improve users quality of life

across many devices. I plan to take this further, designing the entire application in a mobile stylised

format with large buttons and iconography to clearly label and display all the on-screen information.

Not only this but offering the entire application with relatively unlimited storage for free is of great

importance so that no pay wall limits the applications ability to meet useƌ͛s needs.

2.2 User Research and Feedback

Within the initial stages of research and design, it was important to get a better understanding of

what real-world users want and the driving force behind the project. As a result, a couple of

separate meetings were organised to allow for conversations to be had regarding the struggles

currently being faced and features they would like to see come out of my project. The two main

aspects that became clear as requirements from talking to the young people from NYAS (National

Youth Advocacy Service), were the need for more cloud storage than what is currently available for

free on the market, closely followed by the idea that the application should be easily accessible, not

overcomplicating the basic functionality.

2.2.1 User Research Data Storage

User storage capacity was the most common response when collecting information from the groups

we spoke to. With the most popular cloud storage services currently available offering between 2GB-

15GB within their free/basic tier, it is clear how this could easily become filled and therefore a

limiting factor for functionality. Nobody wants to be faced with the full-storage message and be

required to delete memories to make space for new ones or be forced into a paid subscription

service to keep your photos and documents safe for another month. Speaking with one of the

attendees, she spoke about how she had multiple accounts across all existing free services, having

filled her OneDrive and Dropbox accounts to the brim with thousands of photos and documents

from her time growing up within the foster care system, pictures of friends, pets and school reports.

The paid tiers of the competitor services ranged in price from £5 to £15 upwards for varying

amounts of storage capacity and users. Although this may seem reasonable, in the case of foster

care I would like to ensure that the free storage offered is more than enough to fill their needs. I

estimate that the average user over several years in foster care could acquire dozens of important

documents from social workers, family members or school boards. On top of thousands of personal

photos and other memories that need to be stored, all of this would add up to hundreds of gigabytes

of data storage which is the aim of this project.

Of course, without any financial backing, this project is simply prototyping how the application

would look and function on its most basic level and therefore offering any substantial storage

options is not going to be possible without paying for the server space via one of many potential

services. Therefore, whilst in the real world I would take this project further and increase storage

capabilities, the prototype will only offer limited data storage due to the lack of funding involved (I

will discuss this later within the constraints).

2.2.2 User Research Mobile accessibility

The second most requested feature/functionality brought up during the research collection stage,

was accessibility to the application. With many of the existing apps offering widely supported

programs across both web and mobile platforms, it was obvious that in order to suit the useƌs͛ needs

and compete on the same level, the project would need to be highly web accessible and functional

across all devices.

With one member of the research group requesting that the application supported all in-app

functionality on both mobile and desktop versions of the program, explaining that it would benefit

her if she was able to manage and organise her documents/photos on desktop, but have quick and

simple access to her most common files on the go, thus removing the annoyance of having to carry

around a laptop.

Whilst many of the existing solutions offer a mobile app alongside their desktop counterparts, it was

unfortunately a limitation of the project in terms of development time that I would only be able to

develop the application as a web-based system. However, in order to offer the functionality

requested by the test group, I was keen to ensure that the application was completely mobile-

responsive and functioning on every level which would later lead me to my mobile-first design.

2.2.3 Web Accessibility Research

From the user research, storage capacity and mobile accessibility were the two main features to be

aimed for. However, after having spoken to one user who had dyslexia, the importance of web

accessibility and ease of use for those who have difficulty accessing digital content became

apparent. Most notably, the potential for personalisation of the UI for the application was

mentioned, ideally allowing the user to choose specific colours and combinations of colours and font

sizes that would allow users to both better read the content on the screen but improve attention

capacity to ensure that details were not overlooked.

The user in question continued to illustrate her point by discussing the common option on software

and other applications to switch to dark mode to improve readability and comfort on the eyes.

Expressing that she would be keen to see a similar feature, going further with colour options and

font sizes. This idea was great, and would allow the users to personalise the application to their

aesthetic preference simply for the sake of it, making each account a little more personal and special

rather than a uniform and corporate feeling application.

This direction of conversation also discussed the importance not overloading users with text and

overcomplicated words, especially bearing in mind that the application was aimed at children and

young adults, the project needed to come across as welcoming and not too complicated. On top of

this, going back to supportability for dyslexic users, by ensuring concise information and stressing

text of importance can massively improve application usability for those with learning difficulties.

On the 25th of FeďƌuaƌǇ, ŵǇself aŶd CaitlǇŶ atteŶded aŶ oŶliŶe seŵiŶaƌ titled ͞DeŵǇstifǇiŶg Digital
AĐĐessiďilitǇ ǁith GD“͟ (Thomson 2020), in which the speaker talked at great length about areas of

web accessibility that had been brought up with our user discussions and through our own research.

The speakers discussed many aspects of design I had yet to consider, including the importance of

colour and highlighting in text, to ensure key words are made clear enough for all users and nothing

is misleading in anyway, further that the type of language used is simplified to increase overall user

comprehension. Whilst aspects of accessibility such as colour and font sizes may seem obvious,

ensuring that the word count and language used is kept precise and accessible to screen readers are

not areas which I would have previously considered, and they definitely impacted my designs and

wireframes later on in the project.

2.3 User Personas

Using the information gained during the user research discussion groups as well as looking at

existing solutions and other third-party research into web-accessibility I have created a couple of

user personas that I feel allow me to better target my features and applications during the design

and implementation stages of the project.

The two personas below are realistic portrayals of the type of user I am aiming my application at

(within the care system). The personas include the useƌ͛s needs, wants and requirements for such an

application for them to use it in the real-world.

Name: Cai Hughes

Age: 14

Technical Competency (out of 10): 9/10

Disabilities: None

Description: Cai is super active in the digital world; he loves to play video games with his friends

and keep everyone up to date on his activities through regular social media posts consisting of

photos and messages. He spends much of his time on his phone or laptop when at home and

knows his way around the devices well. Whilst still at school he has a lot of contact with his

teachers and social workers which leads to a lot of paperwork that he has been storing online but

keeps running into storage capacity problems. He also wants somewhere to back up all of his

regular photos to free up space on his devices to allow him to keep taking more photos of his daily

activities including trips with friends and pictures of his dog Rex.

Aims of Use:

• Back up all of his photos to free space on his devices.

• Manage and organise his documents more easily whilst young and receiving paperwork

on a regular basis from numerous different sources.

• Is very digitally minded and wants to be able to access everything from his phone so he is

not stuck on his computer.

• Wants a large enough storage capacity that will keep him going for a number of years and

will not regularly bother him with notifications.

Name: Sara Evans

Age: 17

Technical Competency (out of 10): 5/10

Disabilities: Dyslexia

Description: Sara is a rather quiet teenager who has been diagnosed with dyslexia, as a result she

struggles to access many digital tools offered to her and wishes that everything had improved

web-accessibility for dyslexic users. Sara is also quite forgetful and likes to daydream so has filled

a notebook with important notes and general thoughts which she carries everywhere with her.

She does not take too many photos, but the ones she does have her very precious to her and

wants to know they are safe and far away from danger at all times. Spending most of her time

with friends or in the great outdoors, she has not had as much experience with technology as

ŵaŶǇ otheƌ people heƌ oǁŶ age, theƌefoƌe ĐaŶ easilǇ get ĐoŶfused ǁheŶ digital tools aƌeŶ͛t
simple to use or offer too much functionality without any explanation.

Aims of Use:

• Wants a secure and safe place to store her photos of loved ones.

• A simple UI that allows for ease of use and that does not require any extended training to

use.

• Customisation options to improve the accessibility for dyslexic users including colour and

font changes.

• A note taking functionality to replace her growing collection of notepads/journals.

2.4 Project Justification

From end to end of the research process into existing applications, speaking with my target users,

and attending other research sessions I was made very aware that the project was indeed necessary.

HaǀiŶg ďeeŶ ďƌought oŶ ďǇ ChildƌeŶ͛s “eƌǀiĐes aŶd Caƌdiff CouŶĐil foƌ this pƌojeĐt, I ǁas iŶitiallǇ ŵet
with the feeling that there must already be an existing application that suits the useƌs͛ needs and

would therefore not justify the need for my own attempt to meet the brief provided. However

,having completed all of my research I proved myself wrong by finding that the existing options were

held back by numerous constraints that I felt I would be able to overcome.

With roughly 65,000 children within the UK living with foster families as of March 2020 (The

Fostering Network 2020), and more specifically 4,990 children in the foster care system in Wales

there is a clear and large portion of the population that could benefit from the project I was hoping

to build. On top of this, there are only 3,700 foster families within Wales, meaning that many

families were caring for multiple children simultaneously which further solidified the clear need for a

system that would better allow foster children to organise and store aspects of their lives. Caring for

multiple foster children becomes even more complicated when you must take into consideration the

need to keep all paperwork and memories separate to avoid confusion and lost information, adding

even more demand for my project from foster families as well as foster children themselves.

Having completed all the research, I knew this was a project I could see myself doing for all of the

right reasons, not only could I easily see how the project would benefit the lives of thousands of

people including children and adults; but I could also see where existing solutions had fallen short

and could be improved to meet the very specific user requirements given to me.

For the project to be deemed a success by both myself future users, the application would need to

offer:

• A mobile first design that will allow all users to seamlessly switch devices and have a fully

functioning application wherever they are. A user must be able to complete all functions

from both a mobile phone or a desktop computer.

• A large storage capacity that will ensure safe storage for all documents, photos, and

thoughts for all users. Providing free storage without any tiers or paid elements to ensure

that any barrier to entry is completely nullified.

• Options to personalise and customise the user interface in order to maximise web

accessibility for all users. As well as to make each account more personal and therefore

private.

• An intuitive design that is both simple but functional and enjoyable to use. Thinking mobile

first with clear navigation and user feedback.

• Functionality that allows for users to store photos, documents (PDFs), journal entries and

calendar alerts. Acting as a centralised application for organising the lives of foster children

that will better their lifestyles and organisation of important elements of their daily lives.

• A secure and safe place for all personal affects to take the pressure off safe keeping all

documents. Encrypted user accounts with databases of data stored in secure locations with

numerous levels of protection.

• Coherent and consistent feedback to ensure the user is fully aware of all functions of the

application and the processes being completed. As it must always be obvious what is

happening on screen to avoid confusion to the less technically minded users.

2.5 Project Constraints

When planning for this project, there are several constraints that will likely impact the finished

article. I have taken the time to discuss the constraints and their implications further, in order to

minimise their effect on the project.

2.5.1 Financial Constraints

As a student project, the most frequently experienced hurdle in a project of this scale and using the

technologies in question is that of finance. Whilst it is possible to design and create an application of

this kind simply using code and a free development software, the question of hosting and in

particular the hosting of the database is all down to money. Much like the existing solutions I had

looked at during my research, the option to host my website and related database was offered by

numerous different services with free tiers, however none offering more than 15GB of free storage

(Amazon Web Services S3 Bucket). Any more than this or using a different server host would

consequently incur substantial expense to store the levels of data that I would ideally want to offer if

this project left prototype stages and went into production. If I were to attempt to offer unlimited

storage to thousands of users, the result could be many thousands of pounds in expenses for the

database alone. Talking specifically about Amazons Web Services and using their own estimate

calculator, I would be having to spend $100 USD minimum to host just 5000 GB of data for a month

in London, this is excluding any extra costs for backup storage which may be desirable when storing

personal documents.

Figure 1 - Amazon S3 Monthly Estimates for Data storage

Clearly this is not affordable, and I aim to produce to the entire project with no budget. As a result,

the main constraint for the prototype is the storage capacity I will be able to demonstrate in the

finished version. Whilst ideally, I would promise unlimited storage to my users, in the case of testing

this project, storage will be very limited to ensure no issues are caused and all test users have the

capacity to test the functionality even in a finite case such as this. Further expense could be incurred

if I were to properly host the project on my own domain, however for my prototype there were

enough free options available to allow me to sidestep this financial hurdle.

2.5.2 Timescale Constraints

The next major constraint to the project was that of the given timescale. Whilst we began in

February of 2021 and had until May to having a working prototype and final report, there was a

great deal to try and fit into this timeframe. Not only was there a great deal of research required on

the subject and deliverables, but I also needed to fully design and implement a working front-end

and backend to the project to ensure a usable and functioning prototype by the final deadline.

Prior to starting this process, I had never undertaken a project of this scale, starting from nothing,

and having to build up upon every stage until I had a finished product. On top of this I would be

working independently when it came to actual design and eventual implementation which was a

daunting task for one so large. The entire timeline was only fourteen weeks and as a result it was key

for me to be able to break this down into manageable chunks to avoid looking at the big picture and

instead at each step that I needed to cover. I managed this by producing a Gantt chart within my

initial report and design phase, that allowed me to visualise the aspects I would have to cover in a

timely manner and keep me on top of the overall schedule. The Gantt chart was produced simply

within Microsoft word, but worked well enough to allow me to tick off tasks as and when I

completed them. However, at the end of the day I also knew that given the time available I would

still need to be careful not to set my sights to high and fall short with a broken prototype. I really

wanted to finish this project with a basic but working prototype of a high standard, therefore

planning my time efficiently would help me achieve this.

Figure 2 - Gantt Chart containing my project schedule, deliverables and milestones

2.5.3 Coronavirus Constraints

Finally, there was the obvious constraint that came from the ongoing covid-19 pandemic. Whilst it

might not have directly impacted my ability to code or produce the project, the impact that it did

have was on my background research and contact with support. Unfortunately, the coronavirus had

limited my access to university resources, meaning all work was produced on my own personal

computer which required a great deal of initial set-up, installing the correct software and packages

(which did hinder my timely progress in the early stages of development). Not only this, but I was

also kept from meeting directly with my supervisor or any members of the client party, which

resulted in all communications being made via email or Microsoft Teams. Although this solution was

perfectly adequate for my needs, it did slow down response times in some situations, and towards

the end of the project the user testing was no longer able to be completed in person. As it would be

difficult to complete in person user testing without breaking covid restrictions, specifically social

distancing. All the testing needed to be completed remotely which further added complications at

such a late stage, which resulted in testing being carried out on a smaller less intimate scale.

3. Methods of Development and Planning

3.1. Agile Development Methodology

In order to compensate for the lack of a development team (as this was an independent project), as

well as the timescale I was faced with I chose to follow an Agile approach in my development

methodology. I felt this was the safest and easiest method for my timeline, providing me with

increased flexibility, better control, and clearer metrics for success in the form of targets/goals along

my schedule. On top of this, due to my lack of experience of similar sized projects, the iterative

approach within the agile methodology would give me time to both implement and learn

throughout the process, whilst also providing extra time for research and bug fixes which were

inevitable.

Using the previously mentioned Gantt chart, I was able to split the large scale of the project down

into bitesize and considerably more manageable portions, with individual milestones to reach

including expected completion dates for each. By giving myself this plan, I was allowing myself to

better organise and efficiently arrange my time to ensure the development was at maximum

efficiency and the project was completed on time with the requirements I aimed for completed and

working. The degree to which I felt my project would be complete would change throughout the

process, as and when I met my required targets for the main functions, allowing me to consider

adding improvements or further functionality to the application.

Throughout the entire timeline, I gave myself time to allow for regular progress reviews with my

supervisor to ensure I was on target; meanwhile keeping up with my own milestones. By having this

time set aside I was able to keep my supervisor up to date whilst also addressing any issues or

concerns either of us felt had arisen since the previous catch-up.

3.2 Learning

3.2.1 Web development

Early in the research and initial briefing of the project I felt it would be best to produce the

application as a web-based application. Whilst it would most likely go on to become an android and

IOS compatible mobile app, the initial prototype with functionality and design would need to start

from a web-based application. Not only did I have no experience in developing mobile apps before,

but realistically a project like this would always initially be developed as a web application first,

before being ported into a mobile specific format and paired to the existing solution. Now that I

knew I was going to develop the project as a web-based application, I needed to look at the methods

of doing this available to me. I eventually decided the best option would be to develop the entire

project from the ground-up using the Django Web development framework, this was down to my

coding strengths lying largely within Python programming in which Django is written, as well as the

endless documentation and support the framework offers from online resources (both official and

third party). Not only this, but Django is a very powerful framework that comes with dozens of

handy plugins and predefined packages that encourage rapid development and clean design.

When considering the project ǁas ďeiŶg deǀeloped foƌ ChildƌeŶ͛s “eƌǀiĐes, I had to bear in mind that

my program would likely need to be accessed later on by other developers. Django would allow me

to develop using a popular and widely understood framework, creating clear structure and

pragmatic design that could easily be picked up and worked upon by someone else. This would have

been an issue if I had chosen to develop the project solely using HTML and CSS, without the aids of a

framework. Whilst there were other possible frameworks and languages I could have used for this

project, Django offered me the best support given the requirements I was hoping to complete.

There were numerous frameworks I considered using, however as seen in this simple breakdown of

the most popular, Django was a clear winner for my own needs:

Framework/Library Advantages Disadvantages

Django - Written in python, offering little

required learning to support the very

powerful language.

- Fast processing offered by Djangos

architecture ensures smooth and

efficient transmission over the

internet.

- Rapid development is easy thanks to

being able to work parallelly on

coupled components and using pre-

existing configs.

- Django offers great scalability, which

is very important when creating a

project with potential growth. The

framework supports high traffic and

increased number of tools and

functions in new apps.

- Due to popularity, Django offers

high level of security with few

loopholes all inbuilt and easy to use.

- With a wide variety of prebuilt packages

and tools available, the initial learning

curve can be a lot for newcomers.

- Does not easily support smaller projects,

due to the file structure and processing

time. However, this will not be a problem

for my own project.

Flask - Flask is very simplistic offering fewer

features than competitors which

makes it very easy to learn and

master.

- Flexible framework that does not

force the user down certain

methodologies. Majority of the

framework can be changed and

ŵoulded to the useƌs͛ speĐifiĐ Ŷeeds.
- Testing is very easy thanks to unit

testing and a powerful debugging

tool.

- Being based around a single source, all

requests must be handled one by one,

meaning scalability is very limited and not

recommended.

- Flask does not offer great support for

third party modules due to the risk of

security threats.

Drupal 8 -I do have some past experience with

Drupal 7/8 which would help when

beginning to relearn the framework.

- Drupal is an easy to use open-source

framework which brings with it a long

of documentation and online support

from a robust user community.

- Provides many prebuilt themes and

styles that would massively shorten

development times for front-end and

design processes.

-Poorly written plugins are badly

supported and can cause security liabilities

which I aim to avoid.

- Use of modules can become redundant

when they are abandoned by developers

and lose updates.

- Not as widely used as Flask or Django so

does not offer the same level of scalability

and maintainability if the project were to

go on past the prototyping stage.

React JS - Creation of dynamic web

applications is easy thanks to in-built

components that handle syntax and

other irritants during development.

-Poor quality documentation due to the

rapid development of the library meaning

that methods change regularly, and the

environment needs to be constantly

relearnt.

- Components are often reusable

which lends to faster development

and scalability/maintainability.

- Huge amounts of documentation

and user support is offered (although

must bear in mind that changes to

the library are frequent).

-Rapid development is required due to the

constant environment changes.

Developers must reach production before

a major update is released and breaks

everything previously produced.

- I have no experience with ReactJS so

would require significant learning time at

the beginning of the project which is not

viable given the timeframe.

After breaking down the advantages and disadvantages of all the potential frameworks/libraries at

my disposal, I concluded that Django was the best tool for me. Django offered the high-level

programming and scalability that I desired, whilst including numerous packages and in-built libraries

that I knew I could use to rapidly and efficiently develop my project. Not only this but having already

previously had experience with the framework within my first year module ͞Web Applications͟, as

well as the huge supply of documentation and community support thanks to its popularity, Django

offered a stable and realistic entry point for me to learn and develop from.

As I already had some existing knowledge of using the framework, I was able to start the new project

with little problem and did not find the need to specifically complete any online courses before I

began. I did however utilize both the official Django documentation (Django documentation 2021) as

well as the documentation available on the Mozilla Developer Network, which offered guides on all

aspects of the framework and its uses. The use of these guides was useful throughout the project

and gave me a better grasp of some of the fundamentals I would using a lot, whilst providing

inciteful and useful examples that related well to what I was hoping to achieve. I felt that the

explanations were for the most part very clear and ensured that I was continually learning during the

implementation process. I most used the documentations when faced with an error as I found they

usually offered the most accessible response, in one case when trying to store PDF files and display

them to the user, Django was blocking the file source as a security risk. As a result, I looked at the

guides provided by Django and found that it was required for me to state that all file sources from

the same location as the existing page were to be accepted. I later also used the documentation a

great deal to implement user groups, users and the login/logout features which can be accessed

through prebuilt Django modules that improve security and general usability and maintainability for

future development.

For further guide I did also use several YouTube series from various creators that substantially

improved my understanding of various aspects to Django. The series produced on User Registration

and Login Authentication (Ivy 2020) as well as Full-Featured Web Apps (Schafer 2018), offered quick

and easy tutorials on these topics which I had previously little to no experiences on. I came across

these series through searching and finding that these creators were very popular members of the

Django community.

3.2.2 Data Storage

Throughout the project I was aware that I would need to host all the user data somewhere for the

application to be safe and functional. With so many options available to me it was overwhelming

trying to decide what was the best path to go down. During my research I looked at the possibility of

using AWS S3 and RDS services to store all the relational data and user documents (whether that be

files or photos), however having had a deeper look I felt this was not going to be a plausible

approach due to the learning curve required to properly implement Amazon Web Services into the

project. Although there is substantial AWS documentation available online, I felt that I would not be

able to fully utilize the technology correctly or have a proper understanding, which I felt was key to

working on the project as I wanted to know I had learnt the technology I was using rather than

copying examples from digital resources until my own worked. Other options also included creating

a MySQL database for all my own data storage, however due to the time constraints and the

constant changes that would need to be made throughout the development process, this was not a

very viable option. I do not have a great deal of experience using MySQL for building databases from

scratch and felt that I did not have enough time within my timeline to learn the required level of

knowledge to correctly utilise the technology.

SQLite is an already supported format for data storage within the Django environment, even being

prebuilt when you start a new project. As a result, I felt that this was the best approach for

realistically meeting the requirements I had set out. SQLite offered a portable and simple approach

to data storage, although it did not offer the security and scalability of MySQL, for the purposes of

building my functional prototype it met my needs and did not require any external work or setup

which massively helped me with my time management and progression for the project.

On top of this I also chose to host the files such as images and PDF documents in a static local folder

for my prototype build. Whereas, in a real-world launch I would aim to store this data within an

Amazon AWS S3 bucket, this was not an option at this stage due to the financial constraint for the

service as well as the steep learning curve required to use the service properly. The combination of

SQLite with the static folders has worked well for this small-scale project and has allowed me to

implement private accounts, user data and storing all the files with little need for further instruction.

With Django offering preinstalled support for SQLite, it was an easy decision to use this database

management system.

3.2.3 ChildƌeŶ͛s “eƌǀiĐes aŶd the Caƌe “Ǉsteŵ

When faced with a project for real-world application it was important for me to feel that I knew the

industry and people I was developing for. Having had no personal experience with the care system

oƌ ChildƌeŶ͛s “eƌǀiĐes ;otheƌ thaŶ soŵe ĐoŶtaĐt ǁith fƌieŶds ǁho gƌeǁ up in the system), I felt very

out of my depth in the beginning. Although this would not necessarily impact the final result of the

project, I feel that from a developer point of view, it is always best to have the best understanding of

the world of the user and what it is they experience and need from the application I hope to build.

Whilst initial research and learning was completed through reading of official government

documentation and guidelines publicly available on the internet (StatsWales 2021), this mostly only

offered a statistical view of the care system and did not give me a personal interaction with those

my project would impact. However, later discussions with groups of young adults from the care

system gave me a better understanding of the circumstances they were in and how their lives have

been impacted by the problems faced in document storage. On top of this, regular communication

with Thomas Phugsley from the Child Friendly City Programme and Samantha Anderson from the

National Youth Advocacy Service continued to provide information regarding the world of foster

care and guardianship which helped solidify my own understanding of the target user.

4. Specification

4.1 Functional Requirements

4.1.1 Must Have

-1 Requirement: The platform must allow users to upload PDF documents and images in any

common format to be stored within their Document Wallet and Memory Box, respectively.

 Acceptance Criteria:

• User can upload any PDF file from their local device and for it to be viewable from the

platform after.

• User can upload an image in any common format (whether that be JPG, PNG or other) and

for it to be viewable in app after.

• User must not be limited or blocked from adding any new files to the platform due to lack of

storage capacity or other reason.

-2 Requirement: The application must allow users to submit journal entries containing diary entries

or simply notes from the day.

 Acceptance Criteria:

• A user must be able to submit a journal entry, and have it displayed on screen in the order

than they wish.

• Journal Entries are submitted with an automated timestamp to aid in organisation and date

the entry for later use.

-3 Requirement: The application must allow for organisation of all stored files.

 Acceptance Criteria:

• Organisation can be used via adding categories, allowing users to create and use custom

categorisation models to group sets of documents and images for easier access.

• The user must be able to filter all of their stored files, preferably in terms of date of upload

(ascending and descending).

-4 Requirement: Users must have a private space through personal accounts in order to separate

their data from that of other users and protect their files from being viewed by others.

 Acceptance Criteria:

• User can login to the system via a secure login page with their username and password.

• If a user has not got an account, the system will block access to content through shared links

or entry of the URL to the application.

• Accounts must be separate, with all data related to individual users having an owner class

within the model that specifies which is to be authorised for which users.

• When logged in, no user can access the files from another account.

-5 Requirement: The platform must allow users to delete any stored data or other account content.

• All documents submitted and stored in application must allow be able to be removed

through a delete functionality, removing it from the database.

• All other content must also be able to be deleted from the account.

-6 Requirement: All uploaded documents must have the option to redownload to the local device.

 Acceptance Criteria:

• All files uploaded to the ͞DoĐuŵeŶt Wallet͟ ǁill ďe doǁŶloadaďle fƌoŵ a doǁŶload ďuttoŶ
accessed from the document view screen.

• All images stoƌed iŶ the ͞MeŵoƌǇ Boǆ͟ ĐaŶ ďe saǀed to Ǉouƌ loĐal deǀiĐe thƌough doǁŶload
and save in image viewing page.

4.1.2 Should Have

-7 Requirement: Users will have the option to share the content of their account with others.

 Acceptance Criteria:

• All ĐoŶteŶt fƌoŵ the ͞DoĐuŵeŶt Wallet͟ aŶd ͞MeŵoƌǇ Boǆ͟ featuƌes ĐaŶ ďe shaƌed ǁith
others via email by clicking a Share button within the relevant pages.

• Email received by the recipient containing the content of the document shared by the user.

-8 Requirement: Account usernames and passwords can be reset for existing accounts.

 Acceptance Criteria:

• ͞Foƌgot ŵǇ passǁoƌd͟ optioŶ aǀailaďle at the logiŶ sĐƌeeŶ to alloǁ useƌs to ƌeset theiƌ
password in the case that they forgot the current password.

• Within the account, profile settings can be changed to alter the current username and

password of the logged in user.

-9 Requirement: All stoƌed files ǁithiŶ the ͞DoĐuŵeŶt Wallet͟ ĐaŶ ďe pƌiŶted fƌoŵ app to aŶǇ
connected printer device.

 Acceptance Criteria:

• From the view document screen, users can click an icon that will allow them to print straight

to any connected printer.

4.1.3 Could Have

-10 Requirement: Users are able to delete their accounts from the system.

 Acceptance Criteria:

- Any user should have the option to delete their account along with all the related account

information and data within the database.

-11 Requirement: Users can edit their profiles to contain personal information and a profile picture.

 Acceptance Criteria:

- Useƌ pƌofiles ĐaŶ ďe edited to iŶĐlude pƌofile piĐtuƌes of the useƌ͛s ĐhoiĐe.
- User profile pages can be edited to include important information related to the user,

including contact details for their social workers, closest GP, and school name etc.

-12 Requirement: Calendar app can send alerts of upcoming events.

 Acceptance Criteria:

- UpĐoŵiŶg eǀeŶts oŶ the useƌ͛s ĐaleŶdaƌ seŶds aŶ aleƌt ǁheŶ ǁithiŶ Ϯϰhouƌs.
- User receives an email or alert ping on their mobile device.

- When an event begins, a second alert is pinged to the user via email or mobile push

notification.

4.2 Non-Functional Requirements

4.2.1 Must Have

-1 Requirement: All features of the application must be functional and accessible from both mobile

and desktop devices.

 Acceptance Criteria:

- Users can access their accounts from both desktop and mobile devices.

- Useƌs ĐaŶ aĐĐess all fuŶĐtioŶalitǇ ǁithiŶ the ͞DoĐuŵeŶt Wallet͟ aŶd ͞MeŵoƌǇ Boǆ͟ as ǁell
as the other features from both a desktop and mobile device.

- Downloading any stored documents will download to your current device, whether that be

mobile or desktop

-2 Requirement: The entire platform will be designed in a web-accessible format.

 Acceptance Criteria:

- The colour schemes and font sizes in use will be web-accessible for the majority of users and

improve visibility and readability of all on-screen content.

- Navigation and use of iconography and buttons will be implemented in such a way as to

benefit those who struggle with accessing digital content. Creating clear paths of navigation

and making distinct impressions for each feature and function available.

- Word count as well as the language used in the application will be kept at a manageable

level and suitable for the majority of users.

-3 Requirement: The entire platform must be easily navigable, with as few actions as possible

required for all processes.

 Acceptance Criteria:

- Users can simply and easily get around the entire application without any direction.

- All processes in app can be achieved within just a few actions.

4.2.2 Should Have

-4 Requirement: Platform should provide support for users through other resources.

 Acceptance Criteria:

- Platform provides quick links to other resources available for those in the care system.

- Application should offer support through access to support lines and other important

information for those in the care system.

-5 Requirement: User accounts can be personalised/customised for better web accessibility and

personalisation preferences.

 Acceptance Criteria:

- Account customisation page allows for personalisation of the useƌ͛s accounts, including

options to change the colour scheme, overall theme of their account and other smaller

details including font sizes and font styles.

-6 Requirement: The project should be implemented in a maintainable fashion to allow for future

developments.

 Acceptance Criteria:

- All code will be written in a functional and readable way to improve maintainability.

- Code is formatted to improve readability and flow of functions within each module.

- Comments will be implemented within all areas of the code to ensure future developers

understand the existing functionality and use of functions and classes.

- Existing codebase will be implemented with space to develop and grow the current

platform. Project will be capable of scaling with growth of the user base and functions

through simple appending of new features to current code.

4.3. Use Cases

4.3.1 Use Case Diagram

The following Use Case Diagram is used to demonstrate the way in which a user would interact with

the application. The use cases included in the diagram are largely fƌoŵ the ͞Must Haǀe͟ ĐategoƌǇ of
functional requirements as these are the features that need to be working for the project to meet

the brief and to satisfy the majority of the functions I aim to complete.

Figure 3 - Use Case Diagram displaying how a user would interact with the main app functions (must

haves).

4.3.2 Use Cases

The following section will go into further detail of each of the use cases shown in the above Use Case

Diagram. In this section I aim to demonstrate how a user will navigate the application as well as any

alternative routes available to them, through Use Cases as well as flowcharts for each functionality

path.

4.3.2.1 Use Case 1

Use Case: User must be able to upload photos or delete existing photos.

Goal: User wants to upload a selection of new photos to the ͞MeŵoƌǇ Boǆ͟ for

safe storage. It must allow them to create a new category or choose an

existing one, before prompting them to upload as many files as they like

from the local device.

Basic Flow: 1. User Logs in and is directed to the homepage.

2. Useƌ seleĐts ͞Meŵoƌies͟ fƌoŵ hoŵepage.
3. Useƌ theŶ seleĐts ͞Upload Ŷeǁ photos͟.
4. User completes digital form and uploads attached photos.

5. Fill in file(s) name(s).

6. Select a category from existing list or create a new one.

7. Attach all desiƌed iŵages usiŶg ͞Choose files͟.
8. Upload iŵages ďǇ pƌessiŶg ͞Upload Iŵages͟.

9. Useƌ is ƌediƌeĐted ďaĐk to the ͞Meŵoƌies͟ page aŶd ĐaŶ ǀieǁ the
newly added images.

Alternative Flow: 3a. User chooses an existing image they want to delete.

 4a. User is shown the chosen photo in the view image page.

 5a. User clicks the dustbin icon to delete the image from the database.

 ϲa. Useƌ is ƌetuƌŶed to the ͞Meŵoƌies͟ page.
Use Case 1 Flowchart:

Figure 4 - Upload/Delete image flowchart

4.3.2.2 Use Case 2

Use Case: User must be able to upload PDF files or delete existing files.

Goal: User wants to upload a selection of new PDF documents to the ͞DoĐuŵeŶt
Wallet͟. It must allow them to create a new category or choose an existing

one, before prompting them to upload as many files as they like from the

local device.

Basic Flow: 1. User Logs in and is directed to the homepage.

2. User selects ͞DoĐuŵeŶt Wallet͟ fƌoŵ hoŵepage.
3. Useƌ theŶ seleĐts ͞Upload Ŷeǁ documents͟.
4. User completes digital form and uploads attached documents.

5. Fill in file title.

6. Select a category from existing list or create a new one.

7. AttaĐh all desiƌed files usiŶg ͞Choose files͟.

8. Upload documents ďǇ pƌessiŶg ͞Upload Files͟.
9. Useƌ is ƌediƌeĐted ďaĐk to the ͞Document Wallet͟ page aŶd ĐaŶ

view the newly attached files.

Alternative Flow: 3a. User chooses an existing document they wish to delete.

 4a. User is redirected to document viewer screen.

 5a. User clicks the dustbin icon to delete the document.

 6a. User is returned to the ͞DoĐuŵeŶt Wallet͟ page.

Use Case 2 Flowchart:

Figure 5 - Upload/Delete Document Flowchart

4.3.2.3 Use Case 3

Use Case: User must be able to append new calendar events.

Goal: User wants to add a new upcoming date/event to their calendar. Calendar

must allow for the user to create a new event with date, title and

description.

Basic Flow: 1. User Logs in and is directed to the homepage.

2. Useƌ seleĐts ͞CaleŶdaƌ͟ fƌoŵ hoŵepage.
3. User completes digital form.

4. Fill in the event name.

5. Write a description of the event in question.

6. Select a date for the event from built-in calendar.

7. Add eŶtƌǇ to ĐaleŶdaƌ ďǇ ĐliĐkiŶg ͞Add EŶtƌǇ͟.
8. New event is displayed beneath the form in ascending order of

date.

Alternative Flow: 3a. User chooses clicks bin icon on event they wish to remove from the

calendar.

Use Case 3 Flowchart:

Figure 6 - Add/Delete Calendar Entries Flowchart

4.3.2.4 Use Case 4

Use Case: User must be able to add new journal entries and delete existing entries.

Goal: User wants to add a journal entry or set of notes from a meeting to the

͞Journal͟. It ŵust alloǁ theŵ to Đƌeate a entry to the journal and choose

from private or public categories before being uploaded.

Basic Flow: 1. User Logs in and is directed to the homepage.

2. User seleĐts ͞Journal͟ fƌoŵ hoŵepage.
3. Useƌ theŶ seleĐts ͞Add Journal Entry͟.
4. User completes digital form to create new entry.

5. Fill in file title.

6. Select a category from dropdown.

7. Enter journal entry.

8. Add eŶtƌǇ to jouƌŶal ďǇ ĐliĐkiŶg ͞Add EŶtƌǇ͟.
9. User is redirected ďaĐk to the ͞Journal͟ page aŶd ĐaŶ ǀieǁ the

newly entered entry.

Alternative Flow: 3a. User chooses an existing entry they wish to delete.

 4a. User is redirected to entry viewing screen.

 5a. User clicks the dustbin icon to delete the entry from the journal.

 20a. Useƌ is ƌetuƌŶed to the ͞Journal͟ page.
Use Case 4 Flowchart:

Figure 7 - Add/Delete Journal Entry Flowchart

4.3.2.5 Use Case 5

Use Case: User should be able to access other useful resources from other sites.

Goal: The user should be able to find links quickly and easily to other resources

available for those in the care system.

Basic Flow: 1. User Logs in and is directed to the homepage.

2. Useƌ seleĐts ͞Useful Links͟ fƌoŵ hoŵepage.
3. User can click on any provided links from this screen and are

redirected to other sites.

Alternative Flow: No alternative route available for this use case.

Use Case 5 Flowchart:

Figure 8 - Accessing Useful Links Flowchart

4.3.2.6 Use Case 6

Use Case: User must have their own private account.

Goal: The user must have their own private account which only displays their

personal information and not the data of other users.

Basic Flow: 1. User uses their personal account information to login through

account portal.

2. User can only see content related to their own account and no

other user information.

3. User can logout of the account at any time.

Alternative Flow: No alternative route available for this use case.

Use Case 6 Flowchart:

Figure 9 - Login and Logout Flowchart

4.3.2.7 Use Case 7

Use Case: User must be able to print or download any stored documents from the

Document Wallet.

Goal: If a user needs to have offline access or regular access to a specific file, they

have the ability to download or print the chosen file to a local printer or

have it saved onto their current device.

Basic Flow: 1. User Logs in and is directed to the homepage.

2. Useƌ seleĐts ͞DoĐuŵeŶt Wallet͟ fƌoŵ hoŵepage.
3. User selects the document they wish to download/print

4. User can choose the icons to download or print the current

document and following any further printer instructions.

Alternative Flow: No alternative route.

Use Case 7 Flowchart:

Figure 10 - Download/Print Document Flowchart

5. Design

5.1 UML Class Diagram

The following UML Class

Diagram is used to portray the

basic structure of the

application, including all of the

main functional classes.

I have however avoided adding

every variable and method for

the sake of clean design and

ease of reading (for example

all pages can navigate to all

other features).

Figure 11 - My Important Things App UML Class Diagram

5.1.1 UML Overview

The pƌiŵaƌǇ Đlass foƌ the ͞MǇ IŵpoƌtaŶt ThiŶgs App͟ is Homepage. From here the user is able to

access the rest of the classes and the additional content within each. In order to initially reach the

Homepage, the user must Login to their account through the portal, from here the diagram then

extends to Document Wallet, Memories, Calendar, Journal and Useful Links.

Within the Document Wallet the user can see a list of all the currently stored files they have on their

account, this consists of buttons containing the document title given by the user upon creation.

From this page, the user can also filter through the documents, either via date or by category

(School, Medical, Social Services etc). Document Wallet extends again to New Document Upload in

which the user is able to upload a new document, containing variables such as document title,

related category as well as attaching the desired file. Returning to the Document Wallet, this can

also extend to View Document which allows the user to inspect the file chosen by selecting it from

the previous screen. Within View Document the user has the option to delete the file from their

account, as well as print or download the file to the local device. This whole path of the UML

Diagram will only handle PDF files due to the complexity of hosting other formats online without

access to Microsoft services.

Memories is the next biggest feature within the diagram, again extending from the Homepage, users

are faced with a grid of all their currently stored images. Similarly, to other classes within the UML,

users can again filter their images by category or ascending/descending age from upload date.

Memories extends to View Image, which allows the user to view the image as well as image title and

postdate. The user can save the image to their local device or delete the image from this page also.

An alternative route Memories will take the user to Upload New Images which will take user inputs

of image title and category, before uploading attached images to the database to be seen within the

Memories page.

The Journal class has the same functionality as the Document Wallet, allowing users to initially see a

list of all their currently stored journal entries, this is just another button containing the title, date

and timestamp of the day it was originally submitted. From here the class extends to New Journal

Entry and View Entry, which allows the user to submit a title and entry text, before choosing

whether they want this entry to be private. View Entry, allows the user to view the full text of the

entry they chose at Journal as well as the title, date and timestamp; they can also delete the entry

fƌoŵ heƌe ďut doŶ͛t haǀe the optioŶ to update the eŶtƌǇ as I didŶ͛t ǁaŶt useƌs to ďe aďle to edit past
journal entries.

Calendar is kept to a single class and does not offer any extension, keeping the functionality to a

single page. The user can submit a new calendar event, with event name, description, and date. Or

view the existing calendar events below the form, which displays a list of details for all current

events. The user can filter by date and delete any events from this page as well.

Finally, the most basic class simply extends from the Homepage and this is Useful Links, which offers

links to other digital resources for the user to access as they please.

There are a number of functions that are consistently available to the user and as a result were not

included here or within the UML diagram. Most notably this would be the available navigation bar

which allows a user to access all other functions on the application, as well as Logout of their

account once they have finished. From all functions there is also access to the SQLite database which

I have avoided linking to simplify the UML, however I have referenced specific variables when used

within each class.

5.1.2 Use Case Mapping

In order to make certain that I was meeting the Must Have use cases, I have mapped these cases

within the UML to display how each requirement will be met.

Memories:

- Use Case 1: To allow for a user to upload as many image files as they want and delete

existing images.

- Through the extensions of Upload New Images and View Image the user can manage their

memories easily.

- Upload New Images offers a digital form for attaching and detailing any new uploads.

- View Image provides a page to view and delete any unwanted content.

Document Wallet:

- Use Case 2 and Use Case 7: To allow the user to upload any PDF documents and delete

currently stored documents. Or print/download documents from the application.

- New Document Upload offers an easy digital form method to attach and detail any new files

a user wishes to store.

- View Document will allow the user to delete, print or download the file in question.

Calendar:

- Use Case 3: User must be able to add new events to their calendar.

- Within the calendar function, user can add new events to the calendar through the provided

form.

Journal:

- Use Case 4: User can add and delete entries from their personal journal.

- The journal function can allow the user to visit View Entry to read and delete any current

journal entries.

- The extension to New Journal Entry will allow users to submit new entries through the

provided form.

Useful Links:

- Use Case 5: Extra resources are available to the user via attached links.

- Useful links is very simple and offers a list of useful resources via URL links to other sites

within the care system.

User Account Login Activity:

- Use Case 6: To allow for each user to have a private account to securely store their content, I

need a login screen, this is achieved using my Login Portal.

- Username authentication selects which account the user is trying to access.

- Password authentication ensures user has permissions to access this account.

Having now been able to cover the requirements I need to achieve; I can begin to think about

potential User Interface designs.

5.2 User Interface Designs and Wireframing

During my research both online and with the test user groups, the clearest priorities from a design

standpoint were that the application needed to be easily navigable on any device, meaning simple

and clear layout for any device whether that be desktop or mobile/tablet. Next was the need to

make the platform as web accessible as possible, aiming to offer high contrast colours, clear icons

and understandable text. With this is mind I delved deeper into these areas of mobile first design

and web-accessibility.

To guarantee the usability of the platform I also aimed to incorporate design principles such as

NielseŶ͛s Heuristics (Nielsen 1994), which covered aspects such as recognition, user freedom and

minimalist design. Other ideas such as those noted by Adobe (Babich 2019) include the importance

of giving the user control, providing a forgiving environment that makes the user feel more

comfortable. When applied correctly to an application, these principles can massively improve the

usability and positive feedback from users.

For the wireframes (or mock-ups) produced I used Balsamiq Cloud (Balsamiq, 2021) which is a

powerful, web-based software for user-interface design. Having been previously exposed to the

software during my Human Computer Interaction module in first year, I felt this gave me a familiar

yet suitable tool to begin my designing on. I also felt that Balsamiq offered a strong range in icons

and features that I knew I would need to have the desired effect on interface usability.

5.2.1 Mobile First Development and Intuitive Design

The UI ;Useƌ IŶteƌfaĐeͿ Ŷeeded to ďe desigŶed ǁith ŵoďile useƌs iŶ ŵiŶd. Whilst ͞MǇ IŵpoƌtaŶt
ThiŶgs͟ is ďeiŶg aiŵed at all deǀiĐes, iŶ oƌdeƌ to offeƌ the fleǆiďilitǇ of aĐĐess aŶd ease of use I aiŵ to
achieve, designing the application for mobile users and then porting the application to a desktop

format was the way to go. Not only is it easier to move from a mobile to desktop design (rather

than visa versa), but with 52.2% of all global web traffic being from mobile devices (Angle Studios

2020) in 2018 and this percentage only growing since, it was not hard to imagine that my target

market was also going to likely fit into this bracket. Furthermore, with my audience being within the

care system, the need to have easy access to important documentation regarding their school

results, social workers, and social services paperwork, offering this from a mobile device is much

better than expecting my users to always have access to a computer or print their documents.

Whilst I was not specifically designing for Apple devices, I did refer to the Apple iOS developer

guidelines on iOS design (Apple 2021). This guide offered general advice for developing for a mobile

device and solidified principles that would benefit user comprehension of the platform. An example

of this would be use of well-known icons and terminology, which benefit the user who most likely

have already seen these terms used in other UI and the real-world. This guide along with the

principles laid out by Nielsen reminded me to keep the design sleek and minimal to keep clarity

high.

Example: Use of iconography throughout the application

By implementing the use of icons that users may have already seen and used before, gives the user a

starting knowledge base the moment they open the application for the first time. This use of

recognisable symbols can settle a new user and make sure they feel more comfortable

in a new platform.

Figure 12 - Example of Iconography

Example: Navigation

Offering a navigation bar throughout the platform, can keep the user connected and make the

features feel more flexible and user led. At no point should the user feel like they are being led down

a linear route without the option to change direction, on top of this adding back buttons and

navigation allows the user to undo mistakes they may have made using a feature, giving control back

to the user which a important theme highlighted within the iOS developer documentation.

Figure 13 - Example of Navigation Bar

Example: User Feedback

Going back to NielseŶ͛s heuƌistiĐ desigŶ pƌiŶĐiples, a keǇ idea is that of the ͞ǀisiďilitǇ of sǇsteŵ
status͟ aŶd useƌ feedďaĐk. It should ďe Đleaƌ to the useƌ at all stages ǁhat the sǇsteŵ is doiŶg,
whether that be loading a new screen or highlighting a key point. The example below shows how

when a user hovers over an icon within the main menu, it highlights by changing in appearance to

clarify what the user is looking at. This is also a great benefit to those with learning difficulties such

as dyslexia, as it provides reinforced feedback to user actions which can help with concentration and

user understanding where a plain button may be unclear.

Figure 14 - Example of User feedback through button colour change

5.3 Prototype Designs

5.3.1 Wireframes

The following prototype designs were built before any final use case changes were made; therefore, wireframes may include features that did not make it

into the final version of the platform. The designs however were created with the user personas in mind, specifically that of Sara Evans who had dyslexia

and would require specific design elements to create a functional platform.

Wireframes Description

Login Screen: This is the login screen for the entire application. It requires a u

sername and password to access, which can

be submitted into the relevant text fields before ĐliĐkiŶg the ͞LogiŶ͟ ďuttoŶ.

The create account link was later removed from designs. This was due to the

service being for ChildƌeŶ͛s Services and therefore any users will be provided

with an account rather than being able to create new ones as they wish.

The profile photo was initially put in place to suggest the platform inside was

a social media, centralised hub type of application which I hoped would

appeal to the younger audiences. I later decided this was misleading as the

accounts were meant to be private and not shared.

Homepage/Main Menu: The homepage is the hub for the entire application,

therefore access to all the other features was available here.

To keep inline with principles of minimalism laid out by Nielsen and the iOS

guide, I chose to keep the desktop version feeling very mobile oriented, with

larger-than-life buttons for user interactions. I felt that this made the

purpose of the app clearer whilst not overcomplicating or cluttering the

screen with numerous panels and excessive text.

Further use of iconography on the menu buttons continued to confirm user

ideas of each feature and better clarified each function without the need for

written descriptions.

As well as this, the layout provided a seamless transition between mobile and

desktop which I felt was important to ensure users did not feel lost

if they accessed the platform from a new device. By creating a very similar

laǇout aĐƌoss all deǀiĐes, Ǉou solidifǇ the platfoƌŵs͛ theŵe aŶd keep all
variations unified.

Memory Box: The purpose of this page is displaying all of the user stored

images. I aimed to keep the wireframe here minimalist to allow the user to

not be distracted by any other on-screen elements. When a user wants to

look at their photos, they should not have to work around other areas of the

screen.

Inspiration for this page came from Pinterest (Pinterest 2021) with its feature

board layout which appears fun and inviting. Images on mobile stack to allow

sizes to stay at a viewable scale.

A description of the images is added beneath each to separate and provide a

ny extra details the user felt necessary.

Journal: The journal feature is there to allow users to make notes of events

or jot down quick diary entries quickly and easily for each day.

In order to keep the user from thinking too much about the process, I

wanted to keep the functionality as natural as possible, therefore a user can

create a new entry within just a few actions of the mouse and keyboard. In

order to replace the notepad and pen, it needed to be as easy to use.

The journal screen is kept to just entry titles to avoid cluttering of the screen.

To read each entry the user can simply select them and be redirected to a

separate viewing page. The layout keeps all keeps all onscreen actions visible

and within reach at all times.

Document Wallet: This screen allows users to add and view documents

stored in the database.

List format is used to suggest organisation and easy navigation through the

stored documents. Also, with many potential users keeping their current

documents in a physical format, I felt that creating the appearance of folders

and grouping documents similar to that of a filing cabinet.

Consistent use of icons through download and bin icons keeps the platform

theme consistent whilst making the features accessible for all (specifically

making it clearer for users with dyslexia).

Calendar: The calendar is for users to keep on top of their events.

Again, to try and stay related to the real-world version, the design for the

calendar is that of the physical paper version we all know. Users should be

able to select any day of their choice and input any event.

Personal Profile: This is the personal profile page that later became Useful

Links.

Users can access stored information written on the screen easily. Basic

functionality led to basic design to keep use of use high. Being the only

element on the screen, I centralised this to make it the sole target of the

useƌ͛s attention.

5.3.2 Colour Scheme

Having completed the UI designs, I did not include any colour scheme as I wanted to be sure the

layout was working before I added any further aesthetic. In the end I decided on blue to be my

primary colour, with a darker navy blue as the secondary colour; the use of these blues works well as

they maintain an inviting colour palette whilst offering enough colour contrast to clearly identify the

areas of change on screen. In order to avoid feeling too corporate and uniformly designed, I later

decided to add orange as the feature colour. The use of orange was strategic, to draw the useƌ͛s

attention to the vastly different colour and improve human interface interaction.

The colour blue is widely perceived as being the colour of freedom and imagination, with

representation in both the sky and sea (Bourn, 2011). By using two very different shades of blue, I

aimed to create a platform in which users also felt free and capable of doing whatever they wished,

on top of this blue is known to be a colour of trust, confidence, and stability which I hoped would

install some increased faith in the platform and its ability to safely store useƌs͛ personal affects.

I used the colour orange as the main contrast with the blue, adding a bright colour to cut through as

the main features of the project. Orange colours promote creativity and emotional energy, which I

aim to give the users to guide them through using each feature. I hope that by using a warmer

colour such as orange, that the users will also feel more welcome and at ease when navigating the

platform.

5.3.3 Wireframe Strengths and Weaknesses

The stƌeŶgths of ͞MǇ IŵpoƌtaŶt ThiŶgs͟ lies iŶ its ĐoŶsisteŶĐǇ of the desigŶ aŶd the use of
iconography throughout to develop a base understanding of each feature early on. By offering a

consistent layout across all pages and devices, I hope to keep the user in control at all stages, they

should always know how to navigate back from a mistake, find a feature on a different device or

know where their photos are located.

Iconography and symbolism throughout the designs allows for the navigation of the application

without the need to read any text. This is to increase web-accessibility and improve user

comprehension and usability of the platform. The idea is to provide the user with a set of icons they

have most likely already been exposed to in the real-world and will already understand their

Figure 15 - Navy Blue #051938 Figure 16 - Primary Blue #0275d8 Figure 17 - Orange #ff5b00

meaning. By using well-known icons such as clouds for cloud storage, bins for deletion and plus for

adding new elements, I can reduce the required learning curve for new users and lower the barrier

to entry.

Jakob͛s Laǁ of user experience ;Jakoď͛s Laǁ, ϭ99ϰͿ explains that most users will spend more time on

other websites than your own, and therefore by pulling from features and designs they might have

already spent time with can improve the usability of your own website. It is to this effect that I

designed my Memories board to be like that of Pinterest or OneDrive, whilst creating a layout similar

to that of Outlook for the other features.

I feel the weaknesses of my platform begins with the lack of error prevention on delete functions,

without the implementation of confirmation screens, a user can quite easily accidentally delete

items from their account with a single button click. To prevent this, I should implement confirmation

pop-ups to confirm if the action was deliberate. In its current state this is a minor usability problem

on Nielsons impact of usability scale.

Similarly, to the deletion, creating a new element is also unclear as once the user form is submitted

to create a new item the user is instantly redirected back to the original screen without any on

screen confirmation of their actions, instead relying on spotting the new item within their account.

Again, this is not a major usability problem as it does not break the functionality, therefore will be

given low priority to correct, however fixing this would improve useƌ͛s quality of life.

For the duration of the designing, I tried to regularly update Samantha (at NYAS) and her group of

test users. This allowed me to gain valuable feedback on the designs I was developing, this provided

me with a space to bounce ideas of real users and gage whether aspects of my design needed

changing or completely removing. For instance, the introduction of image filtering by date was

suggested within one of these discussions as well as the change from Diary to Journal in the app

phrasing. This was altered as the group felt the term diary suggested the need for regular updates,

where as a journal provides more flexibility and simply acts as a space for note taking. The users

were particularly keen on the lack of on screen clutter, which made the available features more

obvious when navigating.

6. Implementation

The next section of this report will cover the implementation, detailing how the platform was built

and the techniques used. I will show how I have implemented the technologies I previously chose,

including extracts of my code and database diagrams to demonstrate how I utilized the technology

to meet my requirements.

6.1 Database Design

Using the Django framework, you are provided with SQLite by default and as a result you also get a

number of pre-configured models that you can use to develop your database design, most notably

this includes the User model which worked perfectly for my own project as I did not require any

unique variables which would require me to create a custom User model. SQLite offered a very

efficient and flexible design given the models I needed to store and on the small scale used for my

prototype, the database handles all requests very responsively.

6.1.1 User Profiles

Using the Django User profile, I was easily able to add users to the pre-existing model, however

without the need for some variables which were left blank for this project.

All users are generated by an admin to avoid members of the public registering for the service

without authority. From here the User is given an ID to uniquely identify them, as well as the

username and password which Django hashes before being stored in the database, the use of the

hashing configuration is another great reason to use Django as it simplifies the security measures to

keep each account safe. The user model also continues to store user permissions as well as general

account information such as the initial date joined to the platform as well as the last login.

To avoid security risks and to simplify user testing, I have removed the need for names and email

addresses from the accounts, however ideally in the future these could be added to increase

functionality. Potential uses for the email field, could include sharing documents via email or

receiving alerts to your email inbox regarding upcoming events on the calendar.

Figure 18 - Database User Model

In order to allow for users and admins to have different privileges within the system, I also

implemented user groups to better control the actions available to the different user types. I wanted

to make sure that admins had the capacity to do anything and everything on the platform, whilst

users could only access their own accounts and not the administration panel offered within the

Django framework. The user group table is very simple and just highlights the ID of the group as well

as the group name, which is later linked to each user account.

Figure 19 - Database User Group Model

6.1.2 Document Storage

Where I used the pre-defined model for users, I was not able to do the same for all the contents of

the accounts. In this section I will be using the Memories feature as an example, as the database

design is the same for the rest of the stored content.

Within my Memories app I built out the models that would become the database table for the

relevant content, I chose to add categories to allow the users to group and organise all their images,

as well as the following:

Collection: Memories_photo

Fields:

Id: int

Image: image

ImageDate: date

descriptionImage: string

category_id: int

owner_id: int

The IDs for each image is a integer and allows for the unique identification of that particular image,

this is then followed by the relevant image as an attached file. Next comes the imageDate in a date

format, this is automatically generated by the system at the time the user uploads the image to the

database, this is in order to then allow the user to sort by date in terms of ascending or descending

time order.

Image description is captured as a string and simply holds any description the user wished to add to

the image, this could be the location name of the image, or just some general thoughts regarding

the image. Finally, there are category ID and owner ID, both of which are used to identify the

category to which the image variable belongs to, as well as the owner of the image to whom the

image can be seen by. Users on another account are not able to access the content for a different

user thanks to the use of the ownership variables which I have implemented across the entire

platform.

Figure 20 - Database Memories Model

Using this database design enabled me to understand each variable and the ownership of all the

stored images quickly and easily. With each image ID being related to a category_ID and owner_ID

which can be seen above in the User Model table. Category ID extended to a separate table in which

I stored all the user categories along with their relevant owners that would allow for the grouping of

images within accounts (this table can be seen below).

Figure 21 - Database Memory Category Model

The process of adding a new category from the front-end is very simple and joins together

seamlessly with the database to create a very efficient and smooth program. By using the upload

feature within the Memories function and entering in all the details requested the user can quickly

update their database to include the new image.

Figure 22 - Memories Upload Screen

Which instantly displays within the database as a new row.

Figure 23 - New image added to database model

The following diagram displays how the database responds to a user request, in this case the user

send a POST request to the system to login to the account, this is then verified using the Django

authentication configuration. Once in to the platform, if the user goes to access the Memories

function they send the request to view the html render for this page; in order to actually see any

contents of this page the method first checks who the request user is, before matching the request

user id from the user model linked with the account, to that of the owner_id of the elements to be

displayed.

Once it has been clarified which images belong to the requesting user from the database, the

database begins to return the files as a list of on-screen elements. This includes the image Id (which

appears in the page URL when viewing an image), the image file itself, category Id and description of

the image. The same process is done when also using the Document Wallet, Journal and Calendar

features, checking the request user before returning the requested information from the relevant

tables within the SQLite database.

Figure 24 - User database interaction model

6.2 Web Development Best Practices

Given that the project had a very limited timeline from initial research all the way through to final

prototype build, I aimed to follow the industry standard best practices for web development. Not

only did I think this would make my workflow more time efficient, but knowing that I was developing

this foƌ ChildƌeŶ͛s “eƌǀiĐes aŶd Caƌdiff CouŶĐil, I Ŷeed to ďe suƌe that the Đode I ǁas pƌoduĐiŶg ǁas
maintainable and scalable for future developments.

Following the best practices laid out by Thinkful (Thinkful, 2021) I started the implementation

process with vigorous planning. I knew which use cases I need to meet to satisfy the requirements

set for myself, from here I was able to plan the routes down which the Django apps would work. As I

wanted each function to be a separate independent module, I knew this meant they would all need

to be contained within their own app, apart from any cases where the functionality was basic, in

which case I felt it was best practice to keep these pages limited to paths within the Homepage app.

Connecting these apps together also would require a navigation bar, which I planned to have

positioned in the same location on every page to maintain consistency and coherency between

pages.

Figure 25 - Base project folder and extending apps.

Through the use of my agile development plan, the next element of industry best practice I tried to

keep to was the idea of constantly making small improvements. In an attempt to avoid making large-

scale errors and project breaking problems, I avoided deploying major changes and instead chose to

implement smaller elements at a time to ensure the code was functional. The use of Git for version

control was of great use here, as well as backing up local versions in zipped folders. By using version

control to my advantage, on the few occasions where I deployed larger portions of codebase that

caused problems, I was easily able to revert my changes and come back to a working version of the

project. Mentally I also benefited by using agile development and my Gantt chart, by cutting the

overall workload down into manageable chunks which I could go through as a checklist. Not only did

this improve my moral when working independently on such a large task, but it also kept me up to

date and avoided mistakes or forgetting things when simply looking at the big picture.

Coming back to the prospect of handing this project over to future developers, I also needed to be

sure that all the code made sense and served its purpose efficiently and without over dramatization.

Not knowing who will pick this project up going forward, I wanted to develop the code in a way that

was reusable and therefore scalable where necessary. With many of my features sharing similar

functionality, it was easy to move my functions around and reuse a great deal of my code, not only

saving me time in the development process, but making the entire project more unified and

relatable. If a developer could understand one feature, they would most likely understand the rest.

This is what is referred to as thinking smarter and not harder within the industry, reusing code is not

always lazy and benefited myself during this project, and will benefit anyone who works on it in the

future.

6.3 Django Implementation

In this section I will details exactly how I implemented the Django framework to create the platform

as it is now. As there is a great deal of repetition within the views.py and functionality, for the

examples in this section I will be referring to the Homepage and Document Wallet features from the

project.

When a new Django project is created, the folder structure and required files are all created for you.

Most importantly this includes the paths to each app directory within the project, user validation,

database settings and a list of all the installed apps.

It is important to register any new apps within the project settings to allow the directory to be

activated within the system, this is accomplished by taking the AppConfig name from the apps.py file

and inserting it within the settings.py list (this can be seen here). This list not only includes any app

made by myself, but also any Django contrib packages which will come in handy when creating

accounts and administrator permissions.

Figure 26 - Project Installed Apps

The passwoƌd ǀalidatioŶ paĐkage pƌoǀided ǁith DjaŶgo is a ǀeƌǇ poǁeƌful tool aŶd ŵeaŶt I ǁasŶ͛t
required to build out my own validation for user profiles. This is yet another reason why I chose to

use this framework, as I knew the packages available would both save me time, but also be

recognised as a industry standard.

Figure 27 - Django Password package

The most important change that I made to the settings.py file is that of the Static file directories.

With the prototype storing image and documents within this folder, providing root access for the

platform was necessary to ensure documents were properly located and rendered.

Figure 28 - Settings.py Static File paths

Similarly to the urls.py that can be found within each app, the project as a whole contains a main

urls.py file that is used as a switch board, directing the user to each individual folder as requested. In

this list of paths is included the URL path which then includes any paths extending on within the

individual apps. As a ƌesult if I ǁeƌe to aĐĐess ͞hoŵepage/͟ path, I͛d ďe ƌediƌeĐted to the uƌls.pǇ
within the home folder to be further rerouted depending on my actions.

6.3.1 Static Page Implementation

Within the application there are a number of static pages, these

pages tend to be basic text-based pages without any dynamic

content such as the Homepage and required considerably less

work to produce. In this case, these pages were all built within

the Home app folder. As you can see from the file structure

here, it contained the same files as for dynamic content,

however this was largely unused.

For the implementation of the login/logout pages, the Django

preconfigured methods were used and therefore will not be

shown here.

With the templates folder storing all related html files and then

all the .py files containing the backend code that rendered and

structured the app. I will go into more detail about these files

within the dynamic content examples.

6.3.2 Dynamic Page Implementation

For the following examples I will be referring to the Document

Wallet app and its relevant files (the functionality of which is

shared across all apps). On the right you can see the identical

file structure used when working with dynamic apps compared

to the static apps mentioned above. Within this I will not be

covering the _init_.py file or the tests.py files as neither were

altered during this project. _init_.py is the file which identifies

the folder as a module within the python directory and allows

the user to execute any code at the beginning of the module as

it is the first file accessed. tests.py is a file to allow for quick and

easy unit testing offered by Django, however for this project

was unnecessary.

To begin with in order to register the app as a working module within the project directory and

ensure the app is accessible from the platform once hosted, the apps.py lets you name and register

the app for appending within the project settings file. Now that the app is visible to the whole

project it is key to properly structure the module using urls.py to create various paths that the user

can go down when using different features. The purpose of the paths is to update the page URL as

well as to call the relevant views from views.py which will ultimately render the new page, in the

example below (right), the paths include routes to add new documents, view documents or sort

documents.

Figure 29 - Home app folder

Figure 30 - Document Wallet app folder

The next stage to making the app was adding the models that would be needed to populate the

SQLite database and allow users to store documents. In order to achieve this, I first needed to create

custom models for categories as well as the documents. The models contained unique identifiers as

well as variables such as date, title and owner within the classes that would become columns in the

database tables later on. It is important to create unique and clear variable names at this stage to

avoid confusion later on, by doing so improves the developer user experience with strong naming

conventions which save time in the long run.

Note that I imported the User model from the Django auth.models which was a pre-existing user

model which I am using for my profiles. Therefore, I was not required to create a bespoke user

model.

Figure 31 - Document Wallet models.py

To then allow these new models to be used

and recognised by the database, I needed to

register them within admin.py which also

moved the newly made models to the

administrator pages.

Finally in order to implement all of the above code and provide the dynamic features to the pages

created, I had to create the views within views.py that would enable the options to create, delete

sort and other features of the platform.

Figure 32 - Admin model registration

6.3.2.1 Page render

The initial view is used to render the Document Wallet page for users, this view is activated from the

Homepage when a user clicks through to the feature using the CTA (call to action). The following

view is used to initially collect the categories using a GET request to the database, before also

collecting all Document objects filtered by the current account. It then returns the found categories

and documents for this particular user and appends them into a dictionary where they can be

referenced from the template. Finally the view renders the new template HTML file along with the

context dictionary containing all the account variables needed.

Figure 33 - Page Render View function

Figure 34 - Document Wallet as seen by users

6.3.2.2 View Document

Once on the Document Wallet page it is possible to then choose to view any of the documents being

stored, this is obviously key to making the feature useful and also provides the options for the user

to later delete, download or print the document they view.

This view works by collecting the file Id passed with the request to view the document, the system

finds the document object with the matching Id private key, before running some user permissions.

The if statement double checks whether the owner of the document is the same person as the user

who requested to view it, if so then the document view is displayed, however if not then the user is

faced with a 403 Permission Denied error. In the case that a malicious user has the private key Id for

a file that is not their own, then this user authentication catches the permissions and blocks them.

All user accounts needed to be secure and not viewable by the public, therefore adding in this

increased level of security is crucial to manage account permissions and keep content private.

Figure 35 - Viewing Page View function

Figure 36 - Document View as seen by users

In order to be able to render the pdf files, it was also required that I add a section of code to manage

eƌƌoƌ haŶdliŶg. UŶfoƌtuŶatelǇ due to the default settiŶgs, DjaŶgo doesŶ͛t suppoƌt the aĐĐess of files

hosted at the same origin as the page, therefore the addition of the code seen here as well as

changes to the project settings was required to allow these files to be rendered.

Figure 37 - Xframe Origin fix

6.3.2.3 Document Ordering

As is with the basic page render view function, the ascending and descending functions render the

page in the date order selected by the user. The only difference here is that the files when collected

from the database are ordered by the fileDate variable, before being appended to the dictionary and

rendered.

Figure 38 - Document ordering View function

6.3.2.4 Add New Documents

Within this function, the user is creating a new document within the database. The initial request is

received as a POST method from the form within the HTML template. The system then collects all of

the attached files that came with the form, checking if a category was selected or a new category

created, before adding the new file with all the related information. When this process is finished,

the function renders the Document Wallet page again, with the addition of the newly uploaded files.

Figure 39 - New Document View function

Figure 40 - Upload Document View as seen by users

6.3.2.5 Delete Documents

Lastly, is the function used for deleting files that already exist within the database. This function

works by receiving the deletion request along with the specific document Id (private key), which is

then again double checked to be received from the user with the correct account permissions before

finally deleting the file and returning the user to the Document Wallet screen. The user

authentication was again added here to ensure that URL splicing was not possible for a method of

deleting other users files.

Figure 41 - File Deletion View function

6.3.2.6 HTML Templates

From the perspective of the front-end the view functions are all accessed via user actions using CTAs

or other interactions. The functions are all processed before a rendering of the changes is displayed

within the template for the user to view.

Across the board the navigation bar is available on almost every page, this is rendered using HTML

along with some basic inline CSS and use of the Bootstrap libraries for functionality and layout. The

general layout for this navigation bar was taken from the Boostrap documentation (Bootstrap, 2021)

which permitted me to easily provide user flexibility as well as mobile optimisation through the

conversion into a burger menu on smaller devices.

For all of my templates I also took the time to correctly format them to ensure readability and

functionality was clear to developers. Comments were also added to notify the reader of particular

aspects that needed attention such as functions.

Figure 42 - Navigation HTML Code

Figure 43 - Navigation as seen by the user

When rendering the individual elements of a user account, it was important for me to keep this code

as ĐleaŶ aŶd optiŵised as possiďle, this ƌesulted iŶ the use of ŵaŶǇ ͞if iŶ list͟ loops ǁhiĐh kept the

necessary code to a minimum whilst providing the same functionality. This can be seen clearly when

loading the categories and documents on the Document Wallet screen, by doing this the loading of

database elements is also kept dynamic and will not require user actions to reload any updates.

IŶ the Đase that the useƌ hasŶ͛t uploaded aŶǇ doĐuŵeŶts Ǉet, I also displaǇed a shoƌt ŵessage to the
user to keep them in the loop, following NielseŶ͛s principle of system status visibility.

Figure 44 - Dynamic Loops

Figure 45 - Document Wallet as seen by the user

I have chosen to only show examples from the Document Wallet, this is due to the same functions

and features being widely used across all other apps within the project and I wanted to avoid

repetition. The examples shown above are implemented throughout my platform using different

database models and information to offer the user with all the features I laid out within my

requirements in the initial project plan.

6.3.2.7 Project Structure

Having now finished the entire implementation of all apps and functions

within the prototype version I can view the project structure as a whole.

Django does a great job of providing a comprehensive and usable

structure that improves workflow, but also comes with a great deal of

documentation and support.

In the example of creating the Login and Logout pages, by referring to the

documentation (Django, 2021) I was able to create the route recognised

by the framework as well as template names that would be instantly

incorporated using the packages available to me. Naming conventions for

files and folders was highly relevant for this project as the entire

framework is based on using understood pathways, in doing so however

the project was very similar to that of other Django projects and followed

the best practice principles for this level of development.

6.4 Platform Hosting

Once the platform was completed, and in order to facilitate user testing remotely, I was required to

get the system hosted. In the end I used a popular free web-hosting service called PythonAnywhere

(PythonAnywhere, 2021), which offered Django support and a free tier with enough storage to allow

users to test general functionality.

Following the detailed guides provided by PythonAnywhere I was able to quickly and easily deploy

͞MǇ IŵpoƌtaŶt ThiŶgs͟ to theiƌ platfoƌŵ usiŶg a ǀiƌtual eŶǀiƌoŶŵeŶt aŶd the pƌoǀided ďash
consoles. With the provided 512mb of storage and 3 months of free hosting, this was a very simple

and affordable method for me to get the platform operational outside of my local server. Not to

mention the fact that having the project hosted did help in providing closure to the project as this

was the last step required before testing could happen.

PythonAnywhere is a very popular and powerful tool that offered insight into user activity on the

platform as well as being able to let me change and track everything from the dashboard (see

below).

Figure 46 - PythonAnywhere Dashboard

7. Results
This portion of the report will detail the test cases implemented to check that requirements were

met, in particular the Must Have functional requirements described in part 4.1 of the report.

7.1 Test Cases

In order to objectively see whether I was able to meet the requirements for this project, I have set

up a number of test cases which I will run through to validate the success of the platform. I have

done tests for every functional and non-functional requirement with a pass or fail as well as any

changes that were made as a result.

Of the total 18 test cases, 11 passed giving me a 61% success rate. To view the complete test case

results please refer to the Appendix Test Cases, detailing the test procedure, prerequisites, and

further comments where applicable.

7.1.1 Functional Requirements

1-Requirement: The platform must allow users to upload PDF documents and images. Pass

2-Requirement: The application must allow users to submit journal entries. Pass

3-Requirement: The application must allow for organisation of all stored files. Pass

4-Requirement: Users must have a private space through personal accounts with private content.

Pass

5-Requirement: The platform must allow users to delete any stored content. Pass

6-Requirement: All uploaded documents must downloadable. Pass

7-Requirement: Users will have the option to share the content of their account with others. Fail

8-Requirement: Account usernames and passwords can be reset for existing accounts. Fail

9-Requirement: All stored files ǁithiŶ the ͞DoĐuŵeŶt Wallet͟ ĐaŶ ďe pƌiŶted fƌoŵ the platform. Pass

10-Requirement: Users are able to delete their accounts from the system. Fail

11-Requirement: Users can edit their profiles to contain personal information and a profile picture.

Fail

12-Requirement: Calendar app can send alerts of upcoming events. Fail

7.1.2 Non-Functional Requirements

1-Requirement: All features of the application must be functional and accessible from both mobile.

Pass

2-Requirement: The entire platform will be designed in a web-accessible format. Pass

3-Requirement: The entire platform must be easily navigable. Pass

4-Requirement: Platform should provide support for users through other resources. Pass

5-Requirement: User accounts can be personalised/customised. Fail

6-Requirement: The project should be implemented in a maintainable fashion. Pass

All testing was carried out on both a Honor 10 Lite smartphone on chrome as well as a desktop

tower computer running windows 10 and Chrome browser. User testing was also carried out on a

range of devices using differing browsers.

Regarding the failures, the problem with these features was largely due to time constraints that

resulted in the functionality not being implemented or not fully being finished. The only initial failure

that I was able to resolve was the security and private space for Test case number 4 of the functional

requirements. Where user content was able to be accessed via the URL from a different account,

this was quickly patched to check user authentication of the request user.

Test case 1 of the functional requirements was to check the correct functionality of uploading

documents and pdf files to the system, although this passed within the test case as it did allow the

user to achieve the goal, I did notice there was no validation for file type which therefore allowed

users to upload images to the Document Wallet and documents to the Memories board. Again, this

problem has been quickly resolved by adding accepted formats to the forms for uploading within

these apps.

8. User Feedback
Upon completing the project and carrying out my own functional testing, I also hosted the project

live using PythonAnywhere. By doing so I was able to collect user feedback through hands-on

testing. The completed feedback forms can be found attached within the appendix, however the

consensus regarding the overall quality of the finished prototype was positive.

Whilst the question of functionality could be tested by myself, my ability to fairly judge the design

was limited. Luckily, through questioning the test group who had access to the platform I was able to

find that they had no issues navigating the platform. Test user 1 statiŶg that ͞HaǀiŶg just a liŵited
Ŷuŵďeƌ of taďs to Ŷot oǀeƌǁhelŵ soŵeoŶe͟ ǁas a stƌoŶg poiŶt, also saǇiŶg that the platform was

͞ŵoƌe thaŶ easǇ eŶough to Ŷaǀigate͟. GiǀeŶ that usaďilitǇ aŶd ŶaǀigatioŶ ǁeƌe keǇ aspeĐts that I
wanted to achieve with this project, I am very happy to receive this feedback from real users and

acts as evidence that my planning and design phases were worth the time. Test user 2 further

ďaĐked up the stateŵeŶts ŵade ďǇ useƌ ϭ, saǇiŶg that ͞I fouŶd the app ǀeƌǇ easǇ to use aŶd it was

stƌaight foƌǁaƌd͟.

From the four user responses I received, all four of them found the application easy to navigate and

operate the majority of the functions, with the Document Wallet and Journal features being the

most popular aspects of the platform.

As for the areas that users felt required some improvement, these largely revolved around the

accessibility of the calendar feature and the lack of colours used on some pages. Whilst the colour

scheme was implemented on some screens, I left the design basic for what I had felt was improved

visibility; however this sentiment was not found in some of my test users. Within the feedback from

User 1, they suggested an increase in colour merely due to personal preference. On the other hand

User 2 found that the calendar and journal features were hard to use for dyslexic users, stating that

an option for custom styling and colour would have been an improvement to this fact.

This feedback was much appreciated and has allowed me to better understand how the platform

has met the requirements and where there are areas that can stand to improve. I͛ve used the

information given to me by the care experienced users and applied it within the section on future

work.

9. Conclusion
This project began as a relatively simple idea to digitise and organise the often-scattered

documentation possessed by those in the care system (in Wales specifically). With the two main

features briefed as a secure document storage location and an image cloud storage solution, this

was a solid foundation for me to build upon with new features and ideas that came from research

with the young adults of NYAS (National Youth Advocacy Service). Speaking with the target audience,

allowed me to develop a personal relationship with the people I was aiming to help and provided me

with the drive to complete the project.

Designing the project around my discussions with the target group, I was able to create my two

personas to whom which I aimed the platform specifically. Having now finished the project, I can

confirm that I was able to accomplish most of the aims for each persona; only missing the options

for platform personalisation from Sara and the storage capacity capabilities of Cai. These were either

down to the lack of time or available money for the project which were both constraints I was aware

of going into this process. The rest of the persona goals have been achieved however:

• Offering a secure and private account to store photos of loved ones and documentation.

• A simple UI that promotes usability and functionality.

• A journaling tool to offer a replacement for the physical notepads.

• Organisational tools to better manage the large quantities of content held by each user.

• Providing a smooth and functional platform across all devices.

• Cloud storage to free up space on device hard drives.

During design and implementation phases of the project I was focused on making the platform as

intuitive and relatable as possible, pulling from applications I knew the user group already had

experience with and understood well. Following NielseŶ͛s principles of design along with industry

standard practices for web applications I was able to apply beneficial elements such as consistent

navigation bars, iconography and colour schemes that improved usability and user comprehension,

which in turn led to a more natural and comfortable experience for the test users.

Whilst the constraints previously spoken about did hinder the final product, they did not impact my

ability to deliver upon the bulk of the Must Have requirements within the timeframe originally given

to me. Regrettably, there were aspects which I wish I had been able to improve upon throughout the

process, however I was always sure to keep my eye on the end goal to provide a working prototype

to ChildƌeŶ͛s “eƌǀiĐes to deŵoŶstƌate that suĐh a platfoƌŵ was possible and could in fact benefit the

lives of all of those who used it.

In the end, the finished system surpassed the initial expectations of brief, offering a structured clean

manner. Although additional features could be added, the finished product accomplished all that I

set out to do and I am delighted that I was able to deliver the pƌojeĐt to ChildƌeŶ͛s “eƌǀiĐes iŶ a high-

quality state.

10. Future Work
The project has been finished to a high standard with which I am very pleased. Most of my

requirements have been met and as a result I would call the prototype a success however I know if I

were to continue working on the platform there are many changes and new additions I would make.

To start with in terms of the technology used I would aim to migrate all the data storage hosting

over to an AWS system, whilst this was researched earlier on in the project timeline the financial

constraint as well as the limited time available to learn the technology resulted in my avoiding this

option for the prototype. If I were to take the project on however, I would definitely make the effort

to move all document storage into an S3 bucket for improved security and accessibility among other

features. The current database whilst functional is very limited in terms of sĐalaďilitǇ aŶd ǁouldŶ͛t
work for a project containing thousands of users and their content.

To further improve upon the service provided to the users, I would also plan on improving existing

features such as the search filtering for content, to include a more precise date searching function as

well as specific search bar for document titles for example. Using the feedback I received from my

user feedback forms, I can see that the calendar feature is the biggest flaw of the current features

and would most likely require a full rework. Whilst some users did find the calendar useful, I believe

the chaotic state of the page leaves something to be desired in terms of the design and visual

appeal.

In terms of new features, the addition of requirements that I was unable to implement for the

current version would be incredible. Functionality such as the platform personalisation was

unfortunately missed in prototype stages and being a request from test user 2 for the future, I would

hope to include this in any future versions. Smaller inclusions would be the calendar alerts which

could apply an API to carry out email alerts or mobile push messages, as well as increased account

control for the user (whether that be account deletion or password and username changes). Whilst

my test cases did for the majority return as passes, I feel that the inclusion of these missing features

and functions would vastly improve the overall usability and user experience. Providing a more

rounded and complete package is always going to be the end goal for a project such as this, as a

result constant changes and updates would inevitably happen to keep users in control and provide

tools that will improve their lives within the care system.

Finally for future work I would love to be able to migrate the platform over to a fully supported

mobile app. Whilst being functional on mobile browsers, offering a separate app from the

Apple/App store would be great for user flexibility and allow me to develop more bespoke features

not limited by the frame of browsers.

11. Project Evaluation
I have thoroughly enjoyed my time working on this project and felt that is has provided me with the

opportunity to learn a great deal from all aspects of the development lifecycle. The project has been

invaluable at teaching me the importance of proper planning and research before commencing on

any implementation and has also given me the time to focus on industry standards and principles

that I may have previously ignored in past modules.

Throughout this project I have been constantly learning and progressing my knowledge of Python

and in particular the use of the Django framework. Providing me a platform from which to

experiment, but also learn from a very popular community of developers. Although I did have some

Django and general web-development experience from the previously mentioned Web Applications

module (CM1102), the process of designing and building an entire platform from scratch was

fascinating with plenty of chances to learn. Looking back on the project as a whole, I have wider

appreciation for those within the industry and a stronger understanding of the huge amounts of

work that go into the platforms that I use on a daily basis and yet take for granted. This sense of

appreciation was only further developed by my use of Django, which has been used to create some

of the ǁoƌld͛s most popular digital platforms including Youtube, Spotify, Instagram, Dropbox and

Pinterest, some of which are websites I aimed to improve upon or took inspiration from as a result

of their success and popularity.

My ability to find resources has also been refined, through constant reference to official

documentation and guidelines, YouTube tutorials and other online forums. I found that I was better

equipped to resolve problems I encountered towards the end of the timeline as opposed to the

beginning where I felt quite lost in the wealth of support offered online.

Regarding the success of my organisation, I would argue that I did a remarkably good job and kept

the standard of organisation high throughout the timeline. Not only did I manage to stick to my

development schedule as initially shown in the Gantt chart, but I was also in regular contact with

ďoth ŵǇ supeƌǀisoƌ, as ǁell as “aŵaŶtha aŶd Thoŵas fƌoŵ NYA“ aŶd ChildƌeŶ͛s “eƌǀiĐes. This
consistency in communication was more than enough to satisfy all parties involved which was a key

concern of mine when I first started as I felt the responsibility and weight of the project may keep

me from doing my university work and updating the client.

As is the case with all independent projects, the last couple of weeks of the project were the most

stressful due to finding several bugs during the testing stages. Thankfully however with the use of

GitHub for version control, this was not a major problem during the larger portions of coding. I

managed to maintain regular commits to my git repository which reduced the risk of any lost work

from accident or buggy deployments. On top of personal backups within zip folders and cloud

storage, the process of developing using industry practices was a contemporary concept for me and

involved regular commenting, commits and testing which I had typically never done on past work.

Even though I was never faced with any large-scale problems, having this security in my work

bestowed me with confidence that helped alleviate stress whilst working. Please refer to my git

repository found here: https://github.com/alfierowett/Final-Project .

To conclude, this project has helped me in my determination to learn and join the web-development

industry upon finishing university. With high expectations from myself, my supervisor, and the client,

I am proud of the work I achieved and feel grateful for the opportunity to work on a project that can

benefit so many people in the care system. I found the entire experience very rewarding from both a

moral and an educational standpoint and I hope to take all the fundamentals I learnt from this

independent project and apply them to all of my future work and career in computer science.

https://github.com/alfierowett/Final-Project

References

Thomson, D. 2020. Demystifying Digital Accessibility with GDS.[Online Webinar hosted by texthelp].

25th February 2020. Available at: https://mautic.texthelp.com/digital-accessibility-gds-webinar-

resources?utm_content=Accessibility%20and%20inclusion%20advice%20from%20GDS&utm_mediu

m=Email&utm_source=Mautic&utm_campaign=Government%7CUK-WP-RD-GDS-Webinar-WBN-

2021-FEB&fbclid=IwAR088a1SebAxFf_RVMtp83WWYim4dzzy3-OOYTxpqmJLmGWjDNWQ7EkKefs

The Fostering Network. 2020. Fostering Statistics. Available at:

https://www.thefosteringnetwork.org.uk/advice-information/all-about-fostering/fostering-

statistics?fbclid=IwAR0n5koLMuY9JHfNhtQqtfMEYI7dnnYIM-8IoD5b0zxUFp-ckuKDCFb5KOg

Django, 2021. Django Documentation. Available at: https://docs.djangoproject.com/en/3.2/

[Accessed: Feb-April 2021]

Mozilla Developer, 2021. Django Web Framework (Python). Available at:

https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django [Accessed: Feb-April 2021]

Ivy, 2020. Django (3.0) Crash Course Tutorials. Available at:

https://www.youtube.com/watch?v=tUqUdu0Sjyc&t=210s&ab_channel=DennisIvy

Schafer, 2018. Python Django Tutorial: Full-Featured Web App. Available at:

https://www.youtube.com/watch?v=a48xeeo5Vnk&t=866s&ab_channel=CoreySchafer

StatsWales, 2021. Children’s Services. Available at: https://statswales.gov.wales/Catalogue/Health-

and-Social-Care/Social-Services/Childrens-Services

Nielsen, J. 1994. 10 Usability Heuristics for User Interface Design. Available

at: https://www.nngroup.com/articles/ten-usability-heuristics/

Babich, N. 2019. The 4 Golden Rules of UI Design. Available

at: https://xd.adobe.com/ideas/process/ui-design/4-golden-rules-ui-design/

Balsamiq. 2021. Introduction to Balsamiq Mockups 3. Available at:

https://balsamiq.com/assets/wireframes/mockups3fordesktop/balsamiq-mockups-3-for-desktop-

documentation.pdf [Accessed: February, March 2021]

Angle Studios. 2021. Why Mobile-First Web Design Is Becoming More Important. Available

at: https://anglestudios.co.uk/blog/why-mobile-first-web-design-is-becoming-more-

important/ [Accessed: February 2021]

Apple. 2021. IOS Design Themes. Available at: https://developer.apple.com/design/human-

interface-guidelines/ios/overview/themes/ [Accessed: February, March 2021]

Pinterest. 2021. Pinterest. Available at: https://www.pinterest.co.uk/

NielseŶ, J. ϮϬϭϳ. Jakoď͛s Laǁ of IŶteƌŶet Useƌ EǆpeƌieŶĐe. Aǀailaďle at:
https://nngroup.com/videos/jakobs-law-internet-ux/

Bourn, J. 2011. Color Meaning. Jennifer Bourns Color Meaning Blog Series. Available at:

https://www.bourncreative.com/meaning-of-the-color-blue/ [Accessed: March 2021]

https://mautic.texthelp.com/digital-accessibility-gds-webinar-resources?utm_content=Accessibility%20and%20inclusion%20advice%20from%20GDS&utm_medium=Email&utm_source=Mautic&utm_campaign=Government%7CUK-WP-RD-GDS-Webinar-WBN-2021-FEB&fbclid=IwAR088a1SebAxFf_RVMtp83WWYim4dzzy3-OOYTxpqmJLmGWjDNWQ7EkKefs
https://mautic.texthelp.com/digital-accessibility-gds-webinar-resources?utm_content=Accessibility%20and%20inclusion%20advice%20from%20GDS&utm_medium=Email&utm_source=Mautic&utm_campaign=Government%7CUK-WP-RD-GDS-Webinar-WBN-2021-FEB&fbclid=IwAR088a1SebAxFf_RVMtp83WWYim4dzzy3-OOYTxpqmJLmGWjDNWQ7EkKefs
https://mautic.texthelp.com/digital-accessibility-gds-webinar-resources?utm_content=Accessibility%20and%20inclusion%20advice%20from%20GDS&utm_medium=Email&utm_source=Mautic&utm_campaign=Government%7CUK-WP-RD-GDS-Webinar-WBN-2021-FEB&fbclid=IwAR088a1SebAxFf_RVMtp83WWYim4dzzy3-OOYTxpqmJLmGWjDNWQ7EkKefs
https://mautic.texthelp.com/digital-accessibility-gds-webinar-resources?utm_content=Accessibility%20and%20inclusion%20advice%20from%20GDS&utm_medium=Email&utm_source=Mautic&utm_campaign=Government%7CUK-WP-RD-GDS-Webinar-WBN-2021-FEB&fbclid=IwAR088a1SebAxFf_RVMtp83WWYim4dzzy3-OOYTxpqmJLmGWjDNWQ7EkKefs
https://www.thefosteringnetwork.org.uk/advice-information/all-about-fostering/fostering-statistics?fbclid=IwAR0n5koLMuY9JHfNhtQqtfMEYI7dnnYIM-8IoD5b0zxUFp-ckuKDCFb5KOg
https://www.thefosteringnetwork.org.uk/advice-information/all-about-fostering/fostering-statistics?fbclid=IwAR0n5koLMuY9JHfNhtQqtfMEYI7dnnYIM-8IoD5b0zxUFp-ckuKDCFb5KOg
https://docs.djangoproject.com/en/3.2/
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django
https://www.youtube.com/watch?v=tUqUdu0Sjyc&t=210s&ab_channel=DennisIvy
https://www.youtube.com/watch?v=a48xeeo5Vnk&t=866s&ab_channel=CoreySchafer
https://statswales.gov.wales/Catalogue/Health-and-Social-Care/Social-Services/Childrens-Services
https://statswales.gov.wales/Catalogue/Health-and-Social-Care/Social-Services/Childrens-Services
https://www.nngroup.com/articles/ten-usability-heuristics/
https://xd.adobe.com/ideas/process/ui-design/4-golden-rules-ui-design/
https://anglestudios.co.uk/blog/why-mobile-first-web-design-is-becoming-more-important/
https://anglestudios.co.uk/blog/why-mobile-first-web-design-is-becoming-more-important/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://www.pinterest.co.uk/
https://nngroup.com/videos/jakobs-law-internet-ux/
https://www.bourncreative.com/meaning-of-the-color-blue/

Thinkful. 2021. Web Development Best Practices. Available at: https://thinkful.com/blog/web-

development-best-practices/

Bootstrap. 2021. Navs. Available at: https://getbootstrap.com/docs/4.4/components/navs/

PythonAnywhere, 2021. Deploying an existing Django project on PythonAnywhere. Available at:

https://help.pythonanywhere.com/pages/DeployExistingDjangoProject/

https://thinkful.com/blog/web-development-best-practices/
https://thinkful.com/blog/web-development-best-practices/
https://getbootstrap.com/docs/4.4/components/navs/
https://help.pythonanywhere.com/pages/DeployExistingDjangoProject/

