FINAL REPORT:

MOBILE JOB LIFECYCLE AND PARTS
MANAGEMENT APPLICATION

Author: Daniel) Workman
Supervisor: Dr. Andrew Jones
Moderator: Dr. Xianfang Sun

Table of Contents

0T e T LW T 4T o T 4
INEEEIM REPOIT FEEUADACK.oveeeeeeiiiee ettt e e e e e et e e e et a e e s sstaaeeessssteaeensasees 4
SPeCification aNd DESIZN c.ceuuuiiiiiiiiiiieiiiiiiiiiieeieieesterreeenneessesssetresnnsssssssssssreesnnssssssssssssssnnnnssssnss 4
Updated FUNCLIONGI REGUITEIMENTScc.vveeeeeeiiiieeeeiiee ettt estta e e ettt e e e sstaa e e ssstea e e ssssseeaeennnsees 5
R =T gl [1 =] o Lol -2 PSP PRR 5
=] =1 Y ol -2 PSPPSR 6
LR =T e ol 4 T TSP PRR 6
DAt CONSIAEIALIONS ..ottt ettt e e e e e e s e sttt e e e e e e e e s s sasssbbbaaeaaaaaeeeas 7
REAAING @NA WIITING ..eeiiiiiiiiiii ettt ettt e e e e e s s et re et e e e e e e s s s aabbbbeeaeeeas 7

(O U T A1 Ao D - [PPSR 8
IMPIEMENTALION .cceeeeeeiiiiiiiiiirisece et ssee e s et e reasssssee st eeesnnnsssssssssseesnnnsssssssssseessnnnsssssssssssesnnnns 9
=] Y =1 Y ol -2 PSPPSR 9
APPLICALION FIAMEWOIK...oocoeiiieeeeeiiiee ettt e ettt e e e ettt e e e et e e e e s sttaa e e esasteaaessasteaaeesssees 10
COMMUNICALION MOGUIBS ...ttt e e et e ettt e e e sttt e e s s ssttaeeesaasaeaasssstanaesaans 10
HTTP REOUESES ..ttt s e s e s e e e e e e e e e eeeeeeeeee et e et ebeabebnbasssas e e e eees 10
T 1 PSPPSR 11
oY= { T g o [o) o] SR PP PPPTPTRTRPPIRE 11
LR =T o ol 4 T TP 11
BAICOAE SCANNING ..ccovvviieeaeeeeeee ettt et ettt e e e e e e e e sttt e e e e e e e s s s sssbttteaaaaeaeenas 12
ISSUCS ENCOUNTEIOU ...ttt et et ettt e et e e e e e sttt e e e e e e e e s sasssbtttenaaaaeeenas 13
Results and EVAlUAtiON.......ciiiieeeiiiiiiiiiiiiiiessceniinerrenssssseessesessnssssssssssesessnnssssssssssesesnnnssssssssssssnnnns 14
TOSTINIG et et ettt ettt bttt ittt bttt aaa e e e e e e e eeeeeas 14
(8= Y o111 AV =T PSP 15

Lo T L =TS 4 o V- PSP 15

(T e (oY uaa T [aTol o =T AT Y- SR UPT 15
SECUNITY TESTING eeeeiiiiiiiiiiiiit e e e e e e e e e e e e e e e ettt et ettt e et ee b e b et ab e e s e e e seeeeeaaaaaaaeaeneenes 16
Client Testing ANd FEEADACKcccuueeieeeiiieeeeeieee et e et s st e e e et a e e s sttaa e s s attaaassssssnnaesans 16
D@SIGN PIrOCESS .. e e ettt s s e s e e e e e e e e e e e e eaaaaaaasaeeeaeeaebestsabtstneeaas 17
FURUPE WOTK .ociiiiiiiieiiiiiiiiiniiniessscsninseseaneessssesstaessnnssssssssssessssnnsssssssssssessnnssssssssssssssnnnssssssssssssnnnns 17
SECUIIEY IMPIOVEMENTS ...ttt e ettt e s s s e e n e n e e e e e eeeeeas 17
IMProvements t0 DAA STOIAGEcoooeeeeeeeeeeeeeeeee et eeeeeeeeeeaeaaaabaaaas 18
EXEIQ FEATUIES ...ttt ettt e e e ettt e e e ettt e e e e et aaaae e e e eeeenaaaees 18
Re-factor IN@IEGANT SOIULIONScccuuveeeeeeiiiieeeeieee ettt eet e e et e e e e sttt e e e s suttaaeesasteaasssstnaaesans 18
CommMUNICATIONS IMOAUIE ...uviiiiiiiiie ettt et e e s e st e e e s sbtae e e e ssataeeessanbeneeesannes 18
LT I Y=T Vo SRR 19
Extraction of Business Logic from the Ulcoooiiiiiiiiiiii et 19
CONCIUSTONS...ciiiieeeeiiiiiiiiitiiensreertteeereansseesteeerannssssssssssesssnssssssssssasessnssssssssssssesnnnsssssssssssssnnnnssssns 19
(3023 =T 4 oY TP UTTPON 20
Glossary and ABDreviationscciciieeiiiiiiiiiiiiiiiiieieersssrrreereesssssssssssesnssssssssssssessnnnssssns 21

References

Introduction

In the period between the interim report and completion of the project a number of changes have
been made which require highlighting.

Firstly the client and | discussed some minor changes to the requirements, which have been
discussed in the Design section. Although the project began by following the agreed AGILE approach
a loss of project code during the implementation phase caused some delays and a somewhat
modified development process. This will be discussed in detail later in the project report.

Other than this set back the client required an application that was much the same as was originally
agreed and the design phase began almost immediately following the interim report.

Interim Report Feedback

After reading the feedback provided by both the supervisor and moderator it was decided that there
were two main points that should be addressed:

Firstly, it was noted by the supervisor that the interim report lacked an architecture diagram, which
would have given a better idea of how the system interacted as a whole and how data flowed
between each area. | have therefore included an appropriate architecture diagram, which is
discussed in the Design section of this report.

Secondly, the moderator suggested that changing the language of the web service from C# to a
better-known language would overcome the problems caused by a lack of intimate knowledge of
said language. After some discussion with the client it was agreed that this would not be an issue
and | made the decision to move to a PHP and MySQL implementation. These are both technologies
that | have used before and am comfortable developing in and should therefore speed up the
implementation process quite considerably. Again, this is covered in more detail during the Design
section of this document.

Specification and Design

This stage of the development was approached in the following manner:

* After liaising with the client minor updates were made to the requirements.

* A basic user interface design was created via storyboarding whilst inspecting the
requirements and system flow diagram.

* The technologies behind web services were considered and selected.

* Asystem for storing and logging in users was considered.

* How the system should interact with data was considered and a solution found.

Updated Functional Requirements

The following are the functional requirements provided by the client and covered previously in the
interim report. They have been reformatted in a more technical and concise manner and include
some minor updates, which were not originally stated at the beginning of the project.

1. The solution shall be designed with a job lifecycle centric workflow.
1.1. The solution shall be able to accept, complete and abort jobs.
1.1.1. The solution shall be able to view all waiting jobs (for a specific engineer).
1.1.2. When a job has been accepted all waiting jobs shall be made unavailable.
1.1.3. When aborting a job a valid reason shall be provided.
2. The solution shall be able to view the details of a job (waiting or accepted).
2.1. A job contains details pertaining to the job as a whole, the company (client) the job is for
and the specific ATM the company has/needs.
2.2. Job details shall include the job name, number and type.
2.3. Company details shall include name, address, and a contact number.
2.4. ATM details shall include the make, model and any relevant notes.
3. The solution shall be able to add parts to an accepted job.
3.1. The solution shall be able to scan part barcodes.
3.1.1. Barcodes shall use the Code 128 symbology.
3.2. The solution shall allow for manual insertion of part numbers.

It could be argued that there are very few functional requirements provided by the client for this
project. However, considering the scope of the project and its intended final use (an internal tool
rather than a marketable product) the client was not overly concerned with the look and feel of the
application but rather that it could meet the needs of the engineer in their day-to-day work flow.
This is therefore a good example of a project that prioritises function over form.

The additional features requested by the client remain as before and a summarised version has been
reiterated below:

* Provide extra information with each job such as:

o Parking details

o A ’‘street view’ map showing the location of the site.

o An area where job specific documents can be viewed (most likely PDF files).
* Alist of all completed jobs, for the specific engineer and for that day only.

User Interface

Using both these requirements and the provided system flow diagram | went about mocking up a
basic Ul design at the earliest opportunity. | began by creating some quick sketches, which showed
the general flow of the application from view to view and the Ul elements one would expect for this
style of application. The client liked both the look and feel of the application and the layout of the Ul

elements so | took this feedback and decided to storyboard the application using XCode’s built in
storyboarding feature.

The storyboarding feature in XCode was introduced relatively recently in version 4.2 (released
October 12, 2011) and allows for very quick creation of GUI’s and also automatically creates code to
control navigation and events for each view. This allows the user to create a multi-view application
that can be fully navigated before even writing any code. This amalgamation of XCode’s existing
Interface Builder with automated code generation was invaluable when designing the interface as it
highlighted design issues long before any code need have been written. | was therefore able to go
through multiple revisions of Ul design without having to scrap or modify any code. It also allowed
the client to get a good idea of how the application would operate and navigate with little effort on
my part. Some lightweight dummy data was also hardcoded into specific views such that the client
could even select an example job and view its individual sections, again with no written code.

A screen shot of the final storyboard layout has been included in Appendix B. The arrowed links
between each view demonstrate a ‘segue’ (a transition from one view to another). The left most
view named the ‘Navigation Controller’ provides each subsequent view with inherited navigation
controls so that ‘Back’ buttons are automatically generated and need not be coded individually.

Web Service

As stated in the interim report my main priority was to get a working implementation of the web
service up and running as soon as possible. The decision to move to PHP from C# meant that most of
my initial research toward a C# implementation was no longer of use. My knowledge of PHP
however was much greater than that of C# so this did not provide a significant set back.

Before thinking about language specific details it was important to decide what type of web service
should be used. There exist two main routes one can take when considering implementing a web
service. The well structured and strongly typed SOAP protocol and the more lightweight RESTful
approach. Having studied both approaches only this year | already had a good idea of how each
method worked and therefore did not feel the need to perform much background research on
either. It is my opinion that creating a RESTful API is both simpler and quicker to implement rather
than the somewhat bulky and potentially over-engineered approach provided by SOAP. Taking into
account the delays that the web service had already incurred the obvious choice to me was to take
the RESTful approach.

The next decision was to select an appropriate relational database to store my application data.
Although the client utilises a Microsoft SQL Server database it made more sense to develop using
readily available databases that would require no set-up cost. The school hosts both Oracle and
MySQL implementations for which | already have credentials for each. | therefore made the choice
to use the MySQL implementation as it is the one with which | am most familiar.

User Tracking

| realised very soon as | began the implementation phase that | had overlooked an important area of
the application. Within my initial design phase | had not considered how different users (engineers)
were to be differentiated within the application.

| initially saw two methods of achieving this:

* Store the engineer’s identifier with each new installation of the application (thereby
hardcoding each instance of an installation to a specific engineer).

* Implement a login feature such that any engineer might use any device that had an instance
of the application.

Considering each engineer were provided with their own device the first method would seem an
adequate method of achieving the required functionality. It would also require much less effort to
implement than a full user tracking system. After discussing this with the client however they felt
that it would not be unreasonable for an engineer to either borrow another device in the event of
their own devices failure or to use another engineer’s device if two engineers were assigned to the
same job. It was therefore decided that a method of logging a user into the system would be
required.

The main storyboard was updated to include an initial login screen, which would prompt the user for
their credentials (a username and password) and the database schema ensured the engineer table
stored the credentials in the correct manner (a password hash and salt rather than plaintext
passwords).

Data Considerations

It is important we understand at an early stage how data flows through the system. Using the
architecture diagram included in Appendix A, we can get a basic idea of how both the workflow and
data flow should be achieved.

The left side of the diagram shows a simplified view of the equipment in use at the client’s office.
One or more employees, based at the office, create and modify jobs using fixed terminals. These
jobs are then stored in the client’s relational database.

The right sight of the diagram illustrates one or more field engineers with smartphones who are
communicating via the Internet with the web service, which is hosted on the client’s server. The web
service then communicates with the database to return or modify any data the mobile application
has requested.

Although the interim report specified a Microsoft SQL Server database | will be using a MySQL
implementation to develop this application. Considering the access of data is abstracted by the web
service a change in database implementation would not present a major problem. The application
will never need to directly interact with a database so all that would require modification is the web
service itself.

Reading and Writing

Of interest is the balance between the reading of data and the writing of data. By inspecting the
requirements we can see that the majority of data interactions within the application are that of the
reading and display of data only. There are only two specific times that the application may write
any data back to the database:

* When adding parts to a job.
* When changing the status of a job (accepted, completed or aborted).

This provides some insight into how we might structure the communication elements of the project.
Had the application needed to write large amounts of data or done so quite frequently then one
method of improving efficiency could be to store up a number of write requests to reduce the
amount of times the application sends a request to the web service. Considering how little time the
application should be sending write requests however, | feel that it would be adequate to
immediately send write requests as and when they are generated by the application.

Quantity of Data

Another important consideration is the amount of data we are expecting to receive and transmit. If
the application were to require the transmission of large amounts of data such as audio or video we
would need to think carefully about how frequently we communicate with the database and
whether we need to cache data to reduce the time spent downloading that which could have been
stored in memory from a previous communication session.

Data that could potentially benefit from being cached might include:

* An engineer’s waiting jobs.

* Anengineer’s current job.

* Anengineer’s completed jobs.
¢ Alist of all recognised parts.

Considering the purpose of the application we know that we need only be sending and receiving
textual and numeric data in nearly all cases. This should mean that all responses and requests from
and to the web service should be relatively small in size and therefore not require considerable
bandwidth. This is extremely relevant when we take into consideration that the data rate achieved
by mobile phones can vary greatly due to variances in cell signal strength and also the supported
data service of the currently utilised Base Transceiver Station (cell tower). Older stations may only
support the GPRS service whereas newer ones the more modern third or even fourth generation

services.

As a result | believe that it should not be necessary to a design a system whereby data is stored
temporarily as a method of reducing overall application bandwidth.

There are two main advantages to this methodology:

* We do not need to worry about cached data that has become invalid between
communication windows (e.g. a waiting job has been removed by head office yet it still
appears within the application).

* The sending and receiving of data is highly simplified as we need only communicate with the
web service as and when the data is required.

There is however one instance where the application would be required to download (potentially)
large quantities of binary data. The “Associated Documents” feature, which the client has requested
as a potential extra feature and is not a requirement, would mean that the application might need to

8

download PDF data in certain cases. | feel however that this feature should not denote the overall
design of the project. If the feature were to be implemented then a standalone method of caching
for these documents could likely be implemented without considerable effort.

Implementation

Once | was happy that enough consideration had been given toward the overall design | began the
implementation stage of the project. | felt that the important design considerations that denoted
fundamental design decisions were complete and that any additional design problems could most
likely be finalised as | learnt more about how | could achieve my goals using the tools available.

The implementation phase involved the following events in priority order:

* Implementation of a working web service.
¢ Creation of a basic multi-view iOS application using the storyboard as a guide.
o Creation of a module that could communicate with the web service via HTTP.
o Implementation of user tracking (logging in of specific users).
o Use of the two previous features to pull job data from the server and display it
within the app as appropriate.
Implementation of the acceptance, completion and abortion of jobs.
Implementation of the scanning feature for an accepted job.
Implementation of the extra features the client requested.

Web Service

| began by ensuring | still had access to the school’s MySQL database. The location of the database
can be resolved using the following URL: ephesus.cs.cf.ac.uk, assuming the use of a suitable database
client and valid credentials.

Once access had been confirmed | liaised with the client so as to agree on a valid schema for the
database. | began by creating a basic SQL schema that would provide storage for all data that had
been agreed as a minimum requirement and also made sure that the table structures and data types
were compatible with the client’s database. This would allow for a much smoother integration once
the client wished to run the application using live data from their own database. The SQL script was
designed such that it could be run repeatedly without conflicting with the existing tables in the
database. The script first deleted all tables (if they existed), then recreated them and finally seeded
them with dummy data for testing purposes.

As | had never implemented a web service myself and had only studied them theoretically |
performed some basic research so as to find a suitable starting point. | soon came across a very good
tutorial that provided a basic framework from which a RESTful API could be implemented using both
PHP and JSON [1].

| would need somewhere to host my web service and | looked into the options available to me.
Considering the school provided server space to students this seemed like the most logical choice
rather than to either run my own server from home or to pay for server space from a commercial

source. The web service was therefore hosted on the schools users server, which can be found at
users.cs.cf.ac.uk.

Once | had somewhere to host my service | moved on to the implementation. As PHP includes
bindings for MySQL, connecting to my database and accessing the required data was achieved with
ease. | implemented the service such that requests could be sent using the POST data included in the
HTTP request. Conditional statements checked for the requested functionality and return the
requested data or a message denoting success or failure. Any data that is to be returned is encoded
using JSON such that it can be unpacked on retrieval by the application.

Both the web service and accompanying database schema have been added to a ZIP archive and will
be available with the submission of this report.

Application Framework

As stated previously in the Design section XCode’s storyboarding feature had already created a basic
and navigable application without the need for any user-generated code. To begin customising each
view however ‘view controller’ classes needed to be created. | therefore went about creating
individual controller classes for each view in the application. Once this was complete | was able to
make programmatic changes to each view that were not possible using the static nature of the
storyboarding tool.

| then went on to create a basic Constants header file that could be used to store any relevant
constants the application may need as the project evolved.

Communication Modules

HTTP Requests
To successfully communicate with the web service the application must be able to send and receive
HTTP requests. Although i0OS provides full support for creating, sending and receiving such requests
the built in tools are somewhat bulky to use and require a relatively large amount of configuration
before each request can be sent [2]. The tutorial [3] used during the creation of the web service
recommended the use of a library called ASIHTTPRequest [4], which greatly simplifies the process
and allows for requests that can be created and sent in only a few lines of code:

ASIFormDataRequest *request = [ASIFormDataRequest requestWithURL:[NSURL URLWithString:urlString]l];

[request setPostValue:@"login" forKey:@"request"];

[request setPostValue:username.text forKey:@"username"];

[request setDelegate:self];
[request startAsynchronous];

The first line takes the destination URL (in our case the location of the web service) and creates a
new request object that is ready to accept POST data. We then set the POST data values (in this
instance we want the credentials for a specific user so we may log them in) and finally we set the
delegate to the current class (so that we can catch the request response) and then send the request
asynchronously.

The data the web service returns must be encoded in an appropriate format such as XML or JSON.
XML’s inherent verbosity (the need for closing tags for example) makes for a somewhat larger data
footprint when compared with JSON, which has a considerably simpler notation. My personal

10

preference would be to use JSON as it is easy to parse and, from my own experience, appears to be
the more favoured approach when considering web services.

JSON
The JSON library suggested by the tutorial is SBJson [5]. An example from my project of the library in
use is as follows:

NSString *responseString = [request responseString];

NSDictionary *responseDict = [responseString JSONValue];

NSString *hash = [responseDict objectForKey:@"pw_hash"];
NSString *salt = [responseDict objectForKey:@"pw_salt"];

First we take the response string as returned by the web service (text containing JSON encoded data)
and we call the JSONValue procedure on our string. This returns us a dictionary of key-value pairs,
which can be queried with ease.

Progress Indicator

A problem associated with asynchronous communication is that the user has no indication that the
application is performing the task. The web service tutorial recommended the use of a library called
MBProgressHUD [6], which solves this issue by displaying a throbber in the centre of the users
display and a suitable message so that users a) know that they must wait until we have received a
response and b) cannot use the application until the action is complete. The library was created
because although the OS does have a similar feature its APl is both private (Apple do not allow its
use in commercial applications) and undocumented [7].

The progress view can be created with the following lines of code:

MBProgressHUD *hud = [MBProgressHUD showHUDAddedTo:self.view animated:YES];
hud.labelText = @"Logging in...";

And dismissed with the following:
[MBProgressHUD hideHUDForView:self.view animated:YES];

Screenshots showing the feature in operation can be found in Appendix C.

User Tracking

To store credentials securely we must always store them as a hash of the original plaintext
password, which has been salted with a suitably large and unique salt. We must also select a
cryptographic algorithm that is strong enough to resist attacks from methods such as brute-force
and rainbow tables.

As one would expect, we are provided with cryptographic functions within iOS, which can be used
for this very purpose. | did, however, elect not to use these built-in tools. | did so for the following
reasons:

* The built-in tools do not provide an implementation of an “adaptive” algorithm.
* There are no built-in salt generation tools.

11

An adaptive cryptographic function provides the ability to slow the work factor by increasing the
number of iterations required. This renders brute-force attacks unfeasible, as each encryption cycle
can take considerably longer to perform than other popular non-adaptive algorithms.

An algorithm that satisfies these requirements is bcrypt [8], which makes use of the Blowfish cipher
and allows for a variable number of rounds as defined by the user. An implementation for Objective-
C exists by the name of JFBCrypt [9], which | incorporated to my project.

The following two lines illustrate the generation of a random salt for the user (including the number
of rounds we wish the hash function to use) and the hashing of the actual password and salt:

NSString *salt = [JFBCrypt generateSaltWithNumberOfRounds: 10];
NSString *newhash = [JFBCrypt hashPassword: password.text withSalt: salt];

This newly generated password hash and accompanying salt are then stored in the database and
read whenever a user tries logging into the system.

Barcode Scanning

As stated in the interim report the selected library for barcode scanning was ZBar [10]. Having
already created a ‘proof of concept’ application during the early stages of the project | was already
familiar with the library’s APl and how to go about integrating it with my own application.

The scanner operates by creating a pop-up modal view, which shows a live feed from the camera. A
message is sent to the delegate class when a code has been found so that we may handle the
response. The following code achieves this:

ZBarReaderViewController *reader = [ZBarReaderViewController new];
reader.readerDelegate = self;

// Disable all other symbologies
[reader.scanner setSymbology: ©
config: ZBAR_CFG_ENABLE
to: 0];

// Enable Code 128 only
[reader.scanner setSymbology: ZBAR_CODE128
config: ZBAR_CFG_ENABLE
to: 1];

reader.readerView.zoom = 1.0;

[self presentViewController:reader animated:YES completion:nil];
We begin by creating a reader object and setting our current class as the delegate (so that we may
catch any messages the reader returns). By default the reader will recognise all types of barcode it

provides support for. As we only care about barcodes that conform to the Code 128 standard we
first disable all symbologies and then enable only the Code 128 symbology.

Lastly we ensure the cameras zoom level is set to the lowest possible value to give us the greatest
possible viewable area and display the scanner view to the user.

We also implement a handler function called didFinishPickingMediaWithinfo, which will fire once the
reader finds one or more barcodes within the target image.

12

The contents of this function are as follows:

[reader dismissViewControllerAnimated:YES completion:NO]J;
id<NSFastEnumeration> results = [info objectForKey: ZBarReaderControllerResults];

ZBarSymbol *symbol = nil;
for (symbol in results) {

NSInteger partId = [[symbol.data stringByTrimmingCharactersInSet:[NSCharacterSet
characterSetWithCharactersInString:@"!A"]] integerValue];

partIdField.text = [NSString stringWithFormat:@"%d", partId];

// Turn on the add button as we have scanned a code
self.navigationItem.rightBarButtonItem = addButton;

// We don't care if the scanner finds multiple codes as the engineer should only scan one code
break;

}

Here is a summarised list of what we are achieving with the above code:

¢ Dismissal of the scanner view as it is no longer required

* Retrieval of a list of barcodes the scanner was able to recognise.

* For the first code we take the barcode data and strip the preceding “!A” encoding. This is
done because part numbers are not stored in this format in the database.

* We set the Ul element that holds the part number to our scanned part number.

* We enable the “Add” button on the view so the user may add the part to the job.

* We break out of the loop, as we are only ever interested in one barcode.

Issues Encountered

During the course of the implementation period there were a number of issues, which affected both
project timescales and the quality of the overall application.

By far the greatest problem encountered during development was the steep learning curve
presented by Objective-C, a language that | had previously not used or studied. Although | was quite
familiar with other high-level object-oriented languages such as Java and C++, Objective-C has quite
a different approach toward object-oriented programming and a syntax that differed enough to
cause frequent confusion. The on-going learning process of both the language and the tools
provided meant that the initial implementation phase of the application began much slower than |
had anticipated.

Fortunately these delays were alleviated by a fantastic wealth of knowledge that could be found
from either Apple’s own documentation site or sites such as stackoverflow.com. | found that many
other developers had experienced similar problems and as a result good quality and professional
resolutions could usually be found. This method of learning ensured that although slow to begin, the
project remained, for the most part, on schedule.

Another serious and often aggravating set back came about from Apple’s strict certification process.
Although XCode comes bundled with a good device emulator it is always necessary to test software
on a physical device. To do this Apple requires the user to register any devices they wish to use for
testing within their developer portal. Certificates must also be issued for any computer used for
development. Even when these requirements had been met XCode would often give rather cryptic

13

error messages relating to invalid certification or insufficient user rights. The problems were also
compounded by the fact that being a member of an organisation meant | was unable to interact
directly with the developer portal and would need to liaise with Rob Davies who had the
administrator privileges required to make the changes | required. This problem was finally resolved
as | was fortunate enough to know another iOS developer who had his own personal developer
account with Apple. | was therefore finally able to interact with the portal directly and ensure all the
correct certificates were in place. It did mean however that for the first month of development | was
only able to use the emulator to test my code. This becomes even more relevant when we consider
that the emulator cannot provide testing of the scanning feature, as a physical camera is required to
do this.

During the process | did not find that any of the libraries | was using were lacking in documentation
or features. Each and every library | used integrated seamlessly with my project and interfacing with
them was extremely simple. | was fortunate therefore not to incur any project delays due to issues
that were potentially out of my control without switching to alternative libraries or by implementing
my own solutions.

The final significant issue encountered was that of the loss of much of my project code due to the
theft of my laptop. Although considerable amounts of my project were backed up I lost what was,
conservatively, a months worth of coding, which would therefore need repeating. When | returned
to the coding process | was fortunate to have a better understanding of the language and could get
back to a similar stage in considerably less time. | was however quite worried about the reduced
timescales | was going to have to face and as a result took some shortcuts and poor design choices
which | would not have made had | had a longer period of time to perform the implementation. Of
more importance to myself was that although the design was not as elegant as it could be | was
aware of the shortcomings | had introduced and could therefore address them in the future if
necessary. | will therefore cover these issues in the Evaluation section of this report.

Results and Evaluation

At the point at which the implementation phase came to an end the project included all of the
required features as well as the majority of the additional features. | had found during the
implementation that the extra features requested did not require much effort to complete and | had
therefore found the time to complete them as | was writing the other features.

Once the implementation phase was complete | began to think about the formal testing phase of the
application. Although | had been testing during the implementation phase there were certain extra
tests that were carried out once the application was compete. | have covered all the tests performed
and the results of these in the following sections.

Testing
| performed extensive testing of the application both during the implementation process and once

the required feature set had been implemented. Once | felt that my own testing phase had been
adequately completed | provided the client with a copy of the application such that they may

14

perform there own testing which would undoubtedly highlight problems or oversights that | had not
considered during my own testing phase.

Usability Tests

The earliest testing | performed was to ascertain how well the Ul layout had been designed. Before
the implementation of any of the major features | provided a few people who had no prior
knowledge of the system or its purpose with the basic navigable Ul and observed how they
interacted with it. | also asked them questions about whether they could work out what the
application was trying to achieve and whether the navigation system and general flow were logical.

In general it could be seen that the design was straightforward and logical to follow but it was noted
that the flow from waiting jobs to accepted jobs was a little confusing. Although I initially considered
changing the design of the home screen in an attempt to better illustrate the flow of jobs through
the system | inevitably decided against this. The reason for this is that it must be remembered that
this application has been designed for internal use only and is not something that would be released
to the wider world. Our intended users (engineers) are those who are already fully aware of how the
business operates and should therefore understand the flow of the application without further
instruction. Even if an engineer were to misunderstand an area or feature of the application it would
be possible to provide them a small amount of training in the use of the app as we have direct
contact with our application users.

Fault Testing

Once the application could successfully communicate with the web service | began to notice that in
certain cases the application was not reporting errors to the user correctly. To fully test the
application’s error reporting code | constructed web service requests that were intentionally
incorrect or malformed. Using this method | was able to trigger accurate error responses that would
be the same as those encountered when the application was live.

The first stage of this testing phase was to manually send POST requests to the web service from
outside the application. This tested the response of the web service rather than how the application
dealt with those responses. To do this | made use of a tool called curl [11]. curl is a command line
tool that allows the user to create and send HTTP requests with ease. The following is an example
usage of the tool and the corresponding response from the web service:

> curl --data "request=part&part_id=123456" users.cs.cf.ac.uk/D.J.Workman/
Part id <123456> does not exist

The second stage was to test the application’s handling of these errors as reported by the web
service. This test was somewhat slower to complete, as it required modifications to the coded
requests within the application rather than the speedy approach provided by curl. It was however an
extremely worthwhile test as | found a number of examples whereby the application would either
send no error message whatsoever or a generic error message, which would not be very helpful to
potential users. Examples of error handling responses can be seen in Appendix C.

Performance Testing

As highlighted earlier in the report the application will have to perform well in a range of differing
signal strengths and data schemes. To ensure the application would perform well in all realistically
expected situations two performance tests were undertaken. The first was carried out using the

15

device emulator and not on a physical device. A tool provided by Apple called the Network Link
Conditioner allowed for artificial throttling of the computer’s Internet connection speed to emulate
different mobile data schemes. | tested the application using schemes that would likely be
encountered in the field such as GPRS, EDGE and 3G. Even testing at the slowest throughputs
expected (approximately 60kbps as provided by a poor GPRS connection) the application still
operated within acceptable timescales with no download or upload taking more than about 5 or 6
seconds.

Once | was able to test the application on a physical device | performed similar tests by forcing the
device to use slower data schemes (3G can be disabled in the device’s settings) and was able to see
similar results. In all tests the application communicated well within acceptable limits.

Security Testing

It was noticed during the implementation stage that the security of the web service was very poor.
By transmitting data using insecure HTTP requests the service is vulnerable to unauthorised access
whether via eavesdropping or by directly accessing the service itself. The lack of authentication of
which user is making the requests also means it is very easy to modify the contents of the database
without being a valid user.

This problem was discussed with the client but considering that this is only a test database they did
not feel time should be spent securing a web service that would inevitably change before the project
is made available to live data. Considering also the overheads involved with buying valid security
certificates to allow for secure transmission it was decided that this should not enter the scope of
the project. As a result of this decision no further security tests were undertaken, as it was well
known that the service was insecure and testing would therefore not be required.

This problem has been covered in the Future Work section of the report.

Client Testing and Feedback

Once the application was deemed to be of an acceptable quality and had been tested thoroughly a
version was supplied to the client so that they may perform their own tests. This section of the
report does not go into detail about the specific tests the client performed but on the feedback they
provided as a result of their testing.

The client reported that they were happy with the general look and feel of application and that the
method in which the application interacted with jobs was adequate. They were also very impressed
with the scanning feature, which was able to accurately recognise barcodes in nearly all test cases.
This came as no surprise as the scanning library had performed well during the early prototyping
stage. The client used the test database | had myself been using for database. This was done because
the client was not happy opening the application to live data until they were happy that the
application was secure and provided their required functionality.

There was however an important piece of feedback which could potentially undermine the
fundamental design of the application. The client informed me that it was common for engineers to
work in conditions where no mobile phone signal was available whatsoever. The application would
therefore be unable to work reliably as requests are always sent immediately as the user makes

16

them. The client recommended that the application have a feature whereby modifications to jobs
(mainly the adding of parts as this is what we would expect an engineer to be doing once at the site)
could be stored in memory and then sent back to the database once reception returns. The fact that
this advice came so late in the development cycle meant that it was not feasible to include this
before the project’s end and it is therefore covered in the Future Work section of this report.

Other than this problem the client was generally happy with all other aspects of the application.

Design Process

Although the interim report had stated that my intention had been to follow an AGILE method of
development a number of issues during the project meant that the project did not manage to follow
this methodology effectively. After the loss of the initial project codebase there was considerably
less time to implement the project than before. As a result much of the features were implemented
without the frequent client contact you would expect from an AGILE approach. The fact that the
client was based quite some distance away also made it difficult to demonstrate features effectively
without taking considerable time out to travel and meet. The project therefore took more of a
traditional Waterfall method whereby features were implemented and then tested once complete
with a final deliverable which had had little input from the client during the implementation process.
Had the project not suffered the delays it had | am sure that more input would have been possible
and the issue raised by the client could have been addressed before the project came to an end.

Future Work

Considering the problems and shortcomings illustrated during the projects evaluation | have
identified four main areas in which the project could benefit from additional work.

Security Improvements

Of high importance is the security between the web service and the application. The following steps
should be taken to ensure the web service is secured against unauthorised access.

By using the HTTPS protocol rather than simply HTTP alone we would be able to create a secure
channel of communication in which to send and receive our requests. This would protect against
eavesdropping, which an attacker may utilise to gain sensitive information such as a user’s password
when they are attempting to authenticate with the web service. Security certificates would need to
be acquired (ideally from a recognised Certificate Authority) which would likely carry a cost
overhead. This factor contributed to the initial decision not to implement a secure service.

The second important stage of the security improvements would be to authenticate the user for
every web service request they make. At present the only authentication that is performed is when a
user is attempting to log in to the application itself. No authentication is performed at the request
level and as such is vulnerable to modifications that do not originate from a specific user
whatsoever.

17

To remedy this problem the user’s credentials (encrypted due to the HTTPS protocol) should be sent
with each request. An error could then be returned if the credentials do not match those that are
stored within the database.

Improvements to Data Storage

As highlighted by the client the application does not allow for the use of the application when
reception is unavailable. To remedy this issue in-memory containers for job data should be
implemented such that the application can use this data when an active data connection is
unavailable. When reception does become available these in-memory containers can be refreshed
and waiting updates can be sent.

Specific Job and Part classes could be created which contain lists of job and part items. The “Current
Job” view could incorporate a “Save” or “Update” button, which the user could press when they
notice they have regained mobile reception. The functionality could also be triggered automatically
when a valid data connection is recognised by the application itself.

Extra Features

The majority of the additional features the client requested were incorporated during the
implementation stage. The only feature that was missed was the “Associated Documents” area. The
effort to implement did not fit the timescale available and was therefore not included in the final
deliverable.

The files themselves should be stored on the client’s server but not within the database itself.
Storing large amounts of BLOB data in a relational database is inefficient so instead the database
should store a URL, which points to the files location on the server.

The application should use the built-in file download tools to download the PDF data and store it in a
“documents” list associated with the Job class as discussed in the previous feature. Considering that
the files may have the potential to be quite large (in the order of megabytes) they should only be
downloaded if the user explicitly requests to view one. The document should then be stored in-
memory so that the user can view it multiple times without the need to re-download. On completion
of the job the memory could be released, as the document would no longer be required.

Re-factor Inelegant Solutions

Due to the implementation delays a number of shortcuts and inelegant solutions were made when
implementing the application. Although the features work the code should be re-factored so as to be
neater, more efficient and less likely to cause issues in the future.

Communications Module

The ASIHTTPRequest library would benefit from sub-classing so that we may add our own
specialisations in one centralised location. At present these two lines appear anywhere that we are
performing a web service request:

NSString *urlString = [[NSUserDefaults standardUserDefaults] stringForKey:@"database_url"];
ASIFormDataRequest *request = [ASIFormDataRequest requestWithURL:[NSURL URLWithString:urlString]];

18

First we check the applications settings to find the currently set database location, we then use this
database URL to create a request object.

This could be reduced to a single line if we created our own request class, which automatically
checked the database URL before each request. The reduced code could then be:

ASIFormDataRequest *request = [MyRequestClass getRequest];

Web Service

The web service is at present one large file and differing functionality is acquired using a ‘request’
string, which is provided with the POST data. Although this works it is inelegant and makes the PHP
code difficult to read and modify.

By splitting the web service code into separate files and placing them under different directories we
end up with a much neater solution and an easier service to modify when necessary. Instead of
sending all requests to our root URL (in this case users.cs.cf.ac.uk/D.J.Workman/) the structure could
be split into logical directory structures such as:

* users.cs.cf.ac.uk/D.J.Workman/user
* users.cs.cf.ac.uk/D.J.Workman/jobs
* users.cs.cf.ac.uk/D.J.Workman/jobs/job
* users.cs.cf.ac.uk/D.J.Workman/part

This would remove the need for a request string and create PHP files that are considerably more
human readable.

Extraction of Business Logic from the Ul

The present solution blends Ul code with the business logic of the application. This violates the
Model-View-Controller paradigm we strive to keep when implementing GUI application such as this.
All code relating to jobs or parts should be extracted to custom-made job and part classes and only
the methods of these classes should be called from the Ul code. This step is not required if the other
improvements are made as they already address these issues as part of their implementation.

Conclusions

Considering what the project aimed to deliver compared with the end result | would personally claim
the project a success. The required features the client requested were met and some additional
features were also delivered. The main problem was that the client failed to stipulate in our
interactions some important non-functional requirements, which would have resolved the issues we
encountered once the solution was presented to the client. If | had been better aware of the need
for a system that could continue operating in sub-optimal conditions then the client would have
undoubtedly been happier with the solution. It would be unfair however to claim that this is solely
the fault of the client. Had the project not suffered the set backs it did then the client should have
seen a working version of the application long before the project deadline and the issues regarding
data flow could have been avoided much earlier. | could also have been more pro-active in obtaining
a full set of project requirements, which may also have helped resolve the issue.

19

Of most importance to myself is the fact the client was still happy with the solution presented and as
a result the project should continue beyond the scope of a university project and become a
commercial solution in itself.

As an application | am not particularly proud of the outcome. The implementation was rushed and
although the solution works, it is sub-optimal. Given a little more time to polish the implementation
and tidy some inelegant solutions | feel | could obtain a project with which to be proud of.

Reflection

This project has undoubtedly been a hugely beneficial process. | have added a new language to my
repertoire (Objective-C), learnt the processes behind creating iOS applications and created my very
first web service. These are all skills | would expect to be able to put to good use in the future. | feel
however that these things are not the most important learning outcomes of this project.

Rather than individual skills themselves | have gained a new respect for the importance of the
procedures we use. When attempting to implement a project of this scale it soon becomes
unfeasible to “hit the keyboard running” as design issues soon become major problems if they have
not been considered properly. | have also realised the importance of frequent communication if we
are to be implementing a solution for a client. When writing code for oneself we are aware of exactly
how we expect the system to be as we are the ones with the idea and the vision. When working for a
client however it is very easy to misunderstand what is wanted or to miss important points that
should guide the direction of the project. As a result priority should be placed on frequent and
effective communication to reduce as much as possible an end result that does not meet the clients
requirements or expectations. Making assumptions about how the project should work can easily
result in solutions that do not meet the client’s expectations and as a result one should always clarify
any points that they are unsure of.

If | were to approach this project again | would make some important changes. Of highest priority
would be to make sure the client provides as rich a set of requirements as possible (both functional
and non-functional) and to clarify any points which they have not fully explained. | would also spend
more time communicating with the client during the process such that any problems can be dealt
with as soon as possible and in a manner that the client is happy with. | would also change the way
in which | go about implementing features. Although taking shortcuts is often quicker at the time the
problems these shortcuts produce are far greater compared to the small amount of time saved. |
therefore feel that the features should be fully considered such that the most elegant solution is
used from the outset. This reduces many problems that are encountered later in the project.

20

Glossary and Abbreviations
ATM (Automated Teller Machine): A computerized device providing automated financial transaction
services to customers without the need to interact with a human cashier.

IDE (Integrated Development Environment): An application that provides the user with all the
necessary tools for developing software for a specific environment.

SDK (Software Development Kit): A suite of software development tools which allow the user to
develop software for a particular platform or operating system.

iOS (previously iPhone 0OS): The operating system deployed on Apple iPhone and Apple iPad devices.
XCode: An IDE designed specifically for the development of iOS and OS X applications.
App Store: A service operated by Apple to distribute applications for iOS devices.

Throbber: An animated graphic to demonstrate that a background task is currently in progress.
Unlike a progress bar it does not give an indication of how long the task may take or how much has
been completed.

21

References

1. Wenderlich, Ray. How to Write A Simple PHP/MySQL Web Service for an iOS App.
www.raywenderlich.com. [Online] 7 April 2011. [Cited: 12 March 2013.]
http://www.raywenderlich.com/2941/how-to-write-a-simple-phpmysql-web-service-for-an-ios-app.

2. Apple Inc. Making HTTP and HTTPS Requests. developer.apple.com. [Online] 28 January 2013.
[Cited: 23 May 2013.]
http://developer.apple.com/library/ios/#documentation/NetworkinginternetWeb/Conceptual/Netw
orkingOverview/WorkingWithHTTPAndHTTPSRequests/WorkingWithHTTPAndHTTPSRequests.html.

3. Wenderlich, Ray. How to Write an iOS App That Uses a Web Service. www.raywenderlich.com.
[Online] 12 April 2011. [Cited: 7 March 2013.] http://www.raywenderlich.com/2965/how-to-write-
an-ios-app-that-uses-a-web-service.

4. Copsey, Ben. allseeing-i.com. [Online] 15 May 2011. [Cited: 28 May 2013.] http://allseeing-
i.com/ASIHTTPRequest/.

5. Brautaset, Stig. SBJson for Objective-C. [Online] [Cited: 28 May 2013.] http://sbjson.org/.

6. Bukovinski, Matej. MBProgressHUD. github.com. [Online] 13 March 2013. [Cited: 28 May 2013.]
https://github.com/jdg/MBProgressHUD.

7. iPhone Dev Wiki. iphonedevwiki.net. [Online] 11 December 2009. [Cited: 28 May 2013.]
http://iphonedevwiki.net/index.php/UIProgressHUD.

8. BCrypt Wikipedia Page. [Online] [Cited: 1 June 2013.] http://en.wikipedia.org/wiki/Bcrypt.

9. Fuerstenberg, Jay. http://www.jayfuerstenberg.com/. [Online] 28 July 2011. [Cited: 1 June 2013.]
http://www.jayfuerstenberg.com/blog/bcrypt-in-objective-c.

10. ZBar. ZBar Bar Code Reader. ZBar Project Sourceforge page. [Online] [Cited: 1 December 2010.]
http://zbar.sourceforge.net/.

11. curl Project Page. [Online] [Cited: 1 June 2013.] http://curl.haxx.se/.

22

