

1

Project title: Web platform for live lectures

Final report

CM3203 One Semester Individual Project

Andon Gribachev: C1824840

Supervised by: Dr. Daniela Tsaneva

Moderated by: Dr. Paul L Rosin

Andon Gribachev – C1824840

2

Abstract:

 Ever since the pandemic outbreak, CO-VID 19 impacted the lives of every person around the

globe. Having said that, universities had to adapt to remote teaching and respectively the students had

to adapt to the remote learning process. Many universities already had student web platforms where it

allowed for a mixed way of teaching. However, some universities struggled a lot as they had not had an

implemented system, which caused severe problems in how the teaching process would be delivered

during these pandemic times. The project I chose aims to provide an interactive platform for both the

students and the lecturers, where lectures could be streamed and recorded for later view with a chatbot

that would be able to answer different queries the users might have.

 The project is detailed with background research, design, implementation, testing and

evaluation of the platform built into a Django REST framework. Also, user test cases were evaluated and

conducted, whilst the platform itself was tested with unit tests. Having said that, both the strengths and

the weaknesses of the platform were evaluated using these tests.

Andon Gribachev – C1824840

3

Acknowledgements:

I would personally like to thank my supervisor Dr Daniela Tsaneva. The given guidance and

suppoヴt to the o┗eヴall pヴojeIt, as ┘ell as ﾏe, ┘as IヴitiIal foヴ the pヴogヴess ﾏade o┗eヴ the pヴojeIts’
duration.

Also, I would like to thank my friend Georgi Vasilev for providing me with resources (lectures) on

how the front-end should be designed interactively. That helped me significantly during the

development of the front-end of the platform as I previously had zero to none of experience designing

interfaces.

Andon Gribachev – C1824840

4

Table of Contents
Introduction .. 6

Background ... 7

Existing solutions .. 7

OBS paired with YouTube ... 7

User Research – Personas ... 10

Personas justification: ... 11

Project justification ... 11

Project Constraints .. 11

Approach ... 13

Agile development methodology ... 13

Learning .. 13

Django framework: ... 13

Data storage: ... 14

Chatbot: .. 14

Specification .. 15

Functional requirements ... 15

Non-functional requirements ... 17

Use cases: .. 19

Use case diagram – Django platform .. 19

Use cases – Django platform ... 20

Use case diagram – Chatbot ... 32

Use cases – Chatbot .. 33

Design .. 36

UML Class Diagram ... 36

Overview of the UML Class Diagram: ... 37

User interface prototypes ... 38

Initial prototypes: .. 38

Implementation .. 51

Database design .. 51

ER (Entity Relationship) Diagram - Pages .. 51

Description of the ER Diagram – Pages ... 52

ER (Entity Relationship) Diagram – Sessions ... 58

Andon Gribachev – C1824840

5

Description of the ER Diagram – Sessions .. 58

ER (Entity Relationship) Diagram - Authentication ... 59

Description of the ER Diagram – Authentication .. 60

ER (Entity Relationship) Diagram – Content types.. 60

Description of the ER Diagram – Content types ... 60

Activity diagrams ... 61

User logging in (Both Student and Lecturer interface) ... 61

Student interface .. 62

Lecturer interface.. 62

Overview of the design and implementation practices .. 64

Detailed implementation .. 65

The Django platform ... 65

The chatbot ... 86

Test cases .. 96

Function requirements test cases ... 96

Non-functional requirements test cases .. 100

Comparing my solution to already existing ones: ... 101

Conclusion and Future work ... 102

Innovation ... 103

Reflection on the learning process ... 103

References .. 105

Andon Gribachev – C1824840

6

Introduction

 Whilst I stayed in Bulgaria, I have identified certain issues with the platforms that

Bulgarian universities use for their lectures and live sessions. Some universities do use Teams in

collaboration with their platforms, however, some universities struggle in the teaching process and are

finding it hard to deliver a proper learning process for the students. That motivated me to create a

student web portal for live streamable lectures with featured past recordings that would be suitable

both for the lecturers and the students.

The main objectives for developing the platform are the following:

• Having two separate user interfaces (UI) for lecturers and students

• The lecturers should be able to live-stream lectures

• The module-specific live-streamed lectures should be visible to, only the enrolled to the course

the module is in, students

• The lecturer should be able to both automatically and manually upload past recordings

• The past recordings should be available to the students that are enrolled to a course that the

module is in

• There should be discussion board specific to every module

• There should be chatrooms that could be booked by students to meet with the specific lecturer

if needed. These chatrooms should only be accessible by the student if the specific lecturer has

approved of such meeting. If approved, unique chatroom should be initiated

• There should be chatbot that would interactively answer questions of the students (limited to 5

use-cases)

• There should be dynamically generated module-specific self-assessments for the students

The web platform intends to be user-friendly and effective user design principles would be used to

create a design base for the implementation process.

 The report would include all information regarding processes such as designing, testing,

evaluation, and implementation.

Andon Gribachev – C1824840

7

Background

Existing solutions

OBS paired with YouTube

 Before I started working towards developing the platform, I had to research how the live-

streaming platforms work.

 Initially, my research focused on the software that could broadcast live streamable video onto

these platforms. Having said that, I found that the easiest in terms of usability and most used in that

specific field was the OBS Studio. OBS Studio is a free and open-source recording and cross-platform

streaming program.[1]

 Its interface allows the user to both record and stream video from different sources as captures

and screens.

Andon Gribachev – C1824840

8

In order to stream the video, I had to research further onto different servers and live streaming

platforms. In the following evaluation, I would go through the three main live streaming platforms

(Facebook Live, YouTube Live, Panopto) and explain my decision in more detail [2]:

//Note: The statistics of user ratings could be created as on the website of reference [2] it has an option

to compare different Livestream platforms.

One of the crucial features of the live streaming platform is that it should be easy to admin as I

have no previous experience in live streaming video. Even though Facebook Live is rated easier to use

and Panopto has a better quality of support by the rating, YouTube Live is rated very easy to set up.

Andon Gribachev – C1824840

9

These two factors made YouTube Live the best choice for my student portal, as not only that, but it

makes embedding the video much easier.

Furthermore, YouTube live allows the viewers to chat with the host of the stream and even

though the chat itself is not embeddable it could still be seen as the tab of the Livestream should remain

open whilst streaming video.

When initialising the live session at

YouTube it gives the user a unique to the

user stream key and a stream URL of the

server.

Then the stream key and the Stream URL

of the server are then to be inserted into

the OBS Studio settings.

Andon Gribachev – C1824840

10

User Research – Personas

Name: George Johnson

Age: 21

Technical competency:

Quote:

さI ┘ould like ﾏ┞ uﾐi┗eヴsit┞ to use soﾏe kiﾐd of poヴtal ┘heヴe I ┘ould He aHle to fiﾐd ﾏoヴe ヴesouヴIes
aﾐd leItuヴes that ┘ould help ﾏ┞ leaヴﾐiﾐg pヴoIess duヴiﾐg these paﾐdeﾏiI tiﾏes.ざ

Description:

George is in his final year studying Civil Engineering. He finds himself in a hard situation, since the

covid outbreak, because resources are not as easily accessible for him. Lectures are presented in

Zoom with no option to be seen afterwards, which makes it very hard for him since he is working a

part-time job and is not always online for his lectures.

Goals:

• Would like to have more accessible resources on a web portal of the university

• Would like to be able to watch lectures afterwards they are presented

Name: Jessica Morgan

Age: 19

Technical competency:

Quote:

さ“oﾏetiﾏes I do ﾐot uﾐdeヴstaﾐd the teヴﾏiﾐolog┞ set iﾐ ﾏ┞ Iouヴse, siﾐIe I aﾏ a foreign student. It

would be very helpful if there could be a chatroom meeting with lecturers one on one so I could ask

ケuestioﾐs pヴi┗atel┞ to the pヴofessoヴ.ざ

Description:

Jessica is a foreign student studying biomedical science. She is the first year but has already found

herself struggling with the learning process as due to the pandemic the resources for her modules are

not as accessible and she is finding it hard to get through the learning curve.

Goals:

• Would like to have more accessible resources on a web portal of the university

• Would like to speak one on one with a lecturer in a chatroom meeting

Andon Gribachev – C1824840

11

Personas justification:

 I decided to create personas to get a better understanding of the platform should perform.

Visualising potential end-user is crucial for the further development of the web portal. By imagining the

potential goals of the end-useヴs, I got a good gヴasp of ┘hat the platfoヴﾏ’s fuﾐItioﾐalit┞ should He aﾐd
what features could there be implemented. The interface should be quite user-friendly as the technical

competency of the end-users might vary. Accessible resources are the priority of the project as they

would allow the users (both students and lecturer) to have an easier time studying and teaching in those

pandemic times.

Project justification

 Whilst performing the background research I did investigated and understand that such

platforms barely exist in Bulgaria and rarely integrated into Bulgarian universities.

 In specific, Bulgarian Universities do use different resources such as Zoom, Discord and Teams

for their regular lectures/meetings, but they do not have a platform that would be in favour of the

students. For such platform to succeed and provide the students more pleasurable experience it would

need to satisfy certain requirements:

• Cleaﾐ ﾏiﾐiﾏalistiI aﾐd iﾐtuiti┗e desigﾐ of the platfoヴﾏ, so the appliIatioﾐ’s iﾐteヴfaIe is
allowing easy usage for both the lecturers and the students.

• Flexibility in terms of that users might and should have different permissions (Students

and Lecturers) from adding streamable lectures to past recordings

Project Constraints

 During the final-year project undergoing I faced a couple of project constraints that might have

affected the outcome of the project itself. I worked hard to minimise the impact of the following

constraints.

Firstly, the impact the covid-19 outbreak had over the project. It made the developing and

designing process a bit more diligent. It mainly impacted the usability testing and testing of the

platform. Furthermore, I was not on university premises, which limited my resources that I could have

obtained.

“eIoﾐdl┞, I had ﾐe┗eヴ used p┞thoﾐ’s fヴaﾏe┘oヴk Djaﾐgo. It ﾏeaﾐt that I had to ヴeseaヴIh aﾐd
implement things along with learning. I was using mainly the documentation of the framework as

guidance of how certain things should be implemented on the platform. That made the implementation

of the platform a slightly more complicated task as I was experimenting, whilst implementing and

designing.

Last, but not least, the scale of the project is enormous and with the time given I could develop

the platform as a proof-of-concept project, not as a finished product. Personally, I had not taken any

Andon Gribachev – C1824840

12

project of this scale and I had not developed a working web portal from scratch. To keep on track with

all the mini-goals, I set myself to implement on the platform I had regular meetings with my supervisor

where I was explaining my ideas in further details and showed the progress weekly made.

Andon Gribachev – C1824840

13

Approach

Agile development methodology

 Due to my lack of experience developing web portals/platforms the project is to follow an Agile

development methodology. In order to deliver the project in time, I will follow an iterative approach to

set milestones. This will allow me to learn, develop and expand my skills in the Djaﾐgo fヴaﾏe┘oヴk’s
usage. Having said that, it will leave an opportunity for research if needed and issues occur.

 The main idea is that the project will be split into specific milestones with an expected finish

date. Doing so will make the project more manageable since I do not have current experience in

delivering projects of such scale to a finish. The initial idea is that I deliver a minimum viable product,

after which I would work mainly on the chatbot or any other additional features as all the main

functionalities would be working. Ensuring that would help me deliver the project in time and all the

requirements and the acceptance criteria are met.

 Regular reviews of the milestones and the progress made will be discussed with the supervisor

of mine. That way any issues could be addressed on time.

 Personally, I choose agile over other methodologies because it suited the project the most. Agile

allows easy and quick adaptivity. If problems do occur during the process of the development phase I

would be able to react quite fast and adapt to them. As I want to continue working on the platform even

after the project finishes I want as much higher quality product as I can produce. Furthermore, it would

help me planning and predict estimated delivery dates.

Learning

Django framework:

 Django is a REST framework that is a powerful and flexible toolkit for building web APIs. I

decided personally to use Django as I have no previous experience in developing web APIs. It has quite

extensive documentation and great community support, which is quite beneficial as I can learn and build

a reasonable skillset during the developing part of the project. Furthermore, Django is very customisable

as I can use function-based views returning different requests and responses. Also, it has serialization

that is supported for both ORM and non-ORM sources. Last, but not least – it is used and trusted by

many international companies such as Mozilla, Red Hat, Eventbrite and Heroku. Django is considered a

very secure framework, which is very helpful for me as well because security is a serious concern if

private data (lectures, student and lecturer data, university data) is stored. Even though, I have taken

the project as a proof-of-concept I still consider issues that might occur if security gets exploited.

 Researching and getting to know the MVC framework was crucial for the development of the

web API. MVC(Model-View-Controller) is an architectural pattern that separates the application into

three main logical components – Model, View, Controller. Each of them is built to handle different

specific development aspect. The model component stores data and its related logic, the views are

concerned with how the data would be represented back to the user and the controller is responsible

Andon Gribachev – C1824840

14

for the part of the application that requires user interaction. The controller, for example, will send a

command to the model part to update its state, resulting in saving a specific document. Many

advantages could be said about the MVC architecture pattern, but I believe the most beneficial for the

project was the fact that the code was easy to extend and grow, as well as being easy to maintain.

Django follows the MVC pattern quite closely, but it uses different terminology. It is essentially

MTV(Model-Template-View) framework. The framework uses the terms:

• Templates for the Views

• Views for the Controllers.

Having said that, Django is a very appropriate framework for me to use as it covers and solves

potential problems I might have with the web API in further phases.

Data storage:

 Initially, my idea was to use the university Oracle service, since I did have experience with the

DBMS from the modules studied in the second and the third year (CM2102 Database Systems, CM2305

Group Project and CM3104 Large-Scale Databases). However, Django primarily uses SQLite and whilst

researching and reviewing different key attributes of different DBMS, I found that SQL lite would be

appropriate as the project even though of a large-scale - it is a proof-of-concept. I found SQLite very

easy to use as Django allows the migrations to the database to be made dynamically. As the project is a

proof-of-concept, problems such as concurrency (no more than one user can be writing to the database

at the same time) are not as hard to deal with. Furthermore, it makes the project independent as SQLite

is a single-file database and thus serverless. Resulting in making the process of designing the database

aﾐd its’ pヴopeヴties uﾐdeﾏaﾐdiﾐg as I Iould e┝peヴiﾏeﾐt o┗eヴ the desigﾐ aﾐd Ihaﾐge it aloﾐg the ┘a┞ to fit
the requirements.

Chatbot:

 In order to find the appropriate library to implement the chatbot into the platform, I had to

research existing libraries that could help with the task. Rasa API is an open-source machine learning

library for automated text and voice-based conversations. It understands messages, holds conversation

and could be connected to external API. Having said that, I decided to use Rasa API for the chatbot

service on the web platform. To recognise what the user is saying the Rasa API uses NLU(Natural

language understanding) and different intents with different examples are needed to train the bot. Also,

the Hot has diffeヴeﾐt ヴespoﾐses ﾐo┘ that it さkﾐo┘sざ ┘hat the useヴs iﾐteﾐt is. Foヴﾏulatiﾐg the seケueﾐIe
of responses allows the user to make custom-based actions(methods) that would retrieve data from the

given database and return it to the user. I found that feature very useful as I am able to retrieve data

such as timetable within the chatbot scope.

Andon Gribachev – C1824840

15

Specification

Functional requirements

1. FR1 – The system would provide the user its own secure space, which could only be personally

accessed. (Student interface) – Type: Must have

Acceptance Criteria:

o User can log in with a username and a password to the system.

o Method of signing up would be provided to the users.

2. FR2 – The system would allow the user to watch past recordings (Student interface) – Type:

Must have

Acceptance Criteria:

o After entering the past-recordings interface the user should be able to see all

past recordings from the module

o Video player should be generated for every lecture/past-recording

o Only lectures from the course in the university of the specific user(student)

should be allowed to be seen

3. FR3 – The system would allow the user to watch live-streamed lecture (Student interface) –

Type: Must have

Acceptance Criteria:

o After entering the live-streaming interface the user should be able to choose in

between live-streamed lectures in the current moment

o Video player should allow the user to see the content

o Oﾐl┞ Li┗estヴeaﾏ leItuヴes speIifiI to the useヴ’s Iouヴse should He seeﾐ

4. FR4 – The system would allow the user to interact with the chatbot (Student interface) – Type:

Must have

Acceptance Criteria:

o The chatbot, as well as the platform, is considered as a proof-of-concept and the

chatbot would be limited to five use-cases.

o The chatbot should be able to retrieve the timetable that is student-specific

o The chatbot should be able to give more information on different terms that are

discussed during the lectures

5. FR5 - The system should allow the user to book a chatroom with the intent of meeting a specific

tutor (Student interface) – Type: Must have

Acceptance Criteria:

o Booking a chatroom to meet with a specific lecturer would require a timeframe

of initialisation and date on the initialisation of the chatroom. Also, it would

require the specific lecturer that the student would like to meet. If the meeting

Andon Gribachev – C1824840

16

is approved by the qualified personnel to do so (Lecturers), a chatroom would

be created.

6. FR6 – The system should allow the user to join in a chatroom (Student interface) – Type: Must

have

Acceptance Criteria:

o The student would be able to join in the already approved chatroom.

o The student would be able to discuss and chat with the lecturer.

o The chatroom itself should be unique and discussion between lecturer and

student should remain confidential as that might cause privacy issues if violated.

7. FR7 – The system should allow the user to participate in discussion board discussions (Both

Lecturer and Student interface) – Type: Must have

Acceptance Criteria:

o The student would be able to discuss freely on the discussion board that would

be specific to the module.

8. FR8 – The system should allow the user to take a self-assessment specific to the module taken

(Student interface) – Type: Should have

Acceptance Criteria:

o The student would be able to have a module-specific self-assessment that

would generate random questions in the context of the module.

9. FR9 – The system would provide the user its own secure space, which could only be personally

accessed. (Lecturer interface) – Type: Must have

Acceptance Criteria:

o User can log in with a username and a password to the system.

o Lecturers can only log in with admin-regulated credentials. They should only be

given an account to work with, instead of registering as lecturers as that might

cause potential authentication issues.

10. FR10 - The system should allow the user to upload past recordings both automatically and

manually (Lecturer interface) – Type: Must have

Acceptance Criteria:

o The user/lecturer would be able to upload past recordings both manually –

where the lecturer would attach the lecture and upload it and automatically –

where the lecture would be taken straight from the folder and uploaded into

the database.

Andon Gribachev – C1824840

17

11. FR11 – The system should allow the user to upload a live streamable lecture for specific module

(Lecturer interface) – Type: Must have

Acceptance Criteria:

o The user would be able to upload live streamable lecture with fields being

required such as caption of the lecture, URL of the Livestream, starting time and

ending time

12. FR12 – The system should allow the user to approve a chatroom meeting with a student

(Lecturer interface) – Type: Must have

Acceptance Criteria:

o The user would be able to approve a chatroom meeting with a student. After

approval, the meeting room will be created.

13. FR13 – The system should allow the user to participate in discussion board discussions (Lecturer

interface) – Type: Must have

Acceptance Criteria:

o The user would be able to participate in discussion board discussions freely.

14. FR14 – The system should allow the user to join in a chatroom meeting (Lecturer interface) –

Type: Must have

Acceptance Criteria:

o The user would be able to join in a chatroom meeting with a student and write

freely messages that are chatroom specific.

Non-functional requirements

1. NON-FR1 – The system would store entries such as:

▪ Data needed to store the live streamable lecture and portray it back to the students.

▪ Data needed to store the past recordings

▪ Data needed to store the self-assessments specific to the modules

▪ Data needed to store the chatroom meetings

▪ Data to store the discussion board specific to the module

– Type: Must have

Acceptance Criteria:

o Once a new entry is submitted it should be stored instantaneous and be

portrayed back to the user.

2. NON-FR2 – The system will be intuitive and easy to use. (Student and Lecturer interface) – Type:

Must have

Andon Gribachev – C1824840

18

Acceptance Criteria:

o The User interface should be appropriate and consistent to use.

3. NON-FR3 –The user will have accessibility over the past lectures (Student interface) – Type:

Must have

Acceptance Criteria:

o The user will be able to see all the past recordings

4. NON-FR4 – The user will have accessibility over the live-streamed lectures (Student interface) –

Type: Must have

Acceptance Criteria:

o The user should be able to see the live-streamed lectures that are part of the

modules in his/her course

5. NON-FR5 – The user will have the given permissions to upload past recordings and live-

streamable lectures. (Lecturer interface) – Type: Must have

Acceptance Criteria:

o The user should be able to upload both past recordings and live-streamable

lectures to the platform.

Andon Gribachev – C1824840

19

Use cases:

Use case diagram – Django platform

Andon Gribachev – C1824840

20

Use cases – Django platform

 In the use cases section, I will discuss in more detail the use cases including both base and

alternative flow with STNs (State Transition Network) visualising how the system would be performing.

Use case No: 1

Users having their own secure space (Both

Student and Lecturer interface)

Type: Must have

Goal: The goal is that a user can log in to an account. If the user is not registered, the

system would provide a way for the user to log in on the platform.

Preconditions: The user might have no profile on the system. Otherwise, none.

Basic Flow: Student:

1) The user is then redirected into the login page

2) The user enters username and password

3) The user is logged in and is redirected to the home page

Alternative Flow: Student:

1) The user is presented the login screen

2) The useヴ seleIts the さsigﾐ-upざ optioﾐ

3) The user enters personal details such as: - Email address, Username,

Password, University and Course

4) The user is then redirected into the login page

5) The user enters username and password

6) The user is logged in and is redirected to the home page

Lecturer:

 The lecturer is provided with an account as otherwise, it might cause

potential identity issues.

Related use cases All the use-cases require the user to be logged in an account

Andon Gribachev – C1824840

21

Basic flow diagram of Use case No: 1 –

Alternative flow diagram of Use case No: 1 –

Use case No: 2

Users viewing past recordings (Student interface)

Type: Must have

Goal: The goal is that a user can view past recordings. All the past recordings would be

displayed on a single screen.

Preconditions: Firstly, the user would need to be logged as a student to watch the past

recordings. Furthermore, the past recordings are module-specific, so the student

should be enrolled for the specific module.

Basic Flow: 1) After logging in the user is redirected to the home page

2) The useヴ seleIts the さﾏodulesざ seItioﾐ fヴoﾏ the ﾏeﾐu

3) The user chooses the module and gets redirected to the module-specific

page

4) The user selects past recordings in module panel

5) The module-specific past recordings are presented to the user on the

screen

Alternative Flow: N/A

Related use cases Use case No:10, Use case No: 1

Andon Gribachev – C1824840

22

Basic flow diagram of Use case No: 2

Use case No: 3

Users viewing live streamable lectures (Student

interface)

Type: Must have

Goal: The goal is that a user can view live-stream lectures. The lectures that are

currently live streaming would be portrayed as hyperlinks to a page with a

media player that would portray the live streaming content

Preconditions: The user should be enrolled and enrolled on the module the live streaming

lecture is a part of.

Basic Flow: 1) After logging in the user is redirected to the home page

2) The useヴ seleIts the さﾏodulesざ seItioﾐ fヴoﾏ the ﾏeﾐu

3) The user selects the module and gets redirected to the module-specific

page

4) The user seleIts さLeItuヴes li┗eざ fヴoﾏ the ﾏodule paﾐel aﾐd gets
redirected to the page of lectures that are live streaming currently

5) The page presents the lecture as a hyperlink and the user shall choose

the lecture wished to be seen

6) Media player is opened for the live streaming lecture

Alternative Flow: N/A

Related use cases Use case No: 9, Use case No: 1

Andon Gribachev – C1824840

23

Basic flow diagram of Use case No: 3

Use case No: 4

Users booking a chatroom for a meeting with a

lecturer (Student interface)

Type: Must have

Goal: The goal is that a user can book a chatroom meeting with a lecturer

Preconditions: The user is logged onto the system as a Student.

Basic Flow: 1) After logging in the user is redirected to the home page

2) The useヴ seleIts さBook a ﾏeetiﾐg ┘ith leItuヴeヴざ fヴoﾏ the ﾏeﾐu

3) The user enters timeframe of the meeting, date of the meeting and

lecturer that he/she wants to meet with

4) Select the button that would book the chatroom meeting

Alternative Flow: N/A

Related use cases Use case No:8, Use case No:6, Use case No: 1

Andon Gribachev – C1824840

24

Basic flow diagram of Use case No: 4

Use case No: 5

Chatting freely with the chatbot (Student

interface)

Type: Must have

Goal: The goal is that user should be able to chat freely with the chatbot

Preconditions: The user needs to be logon to the system as a student

Basic Flow: 1) After logging in the user is redirected to the home page

2) Fヴoﾏ the ﾏaiﾐ ﾏeﾐu the useヴ seleIts the さIhatHotざ
3) The user might need to wait 5-6 seconds, since the chatbot server and

the Django server are corresponding

4) The user is presented the chatbot and can chat freely with it

Alternative Flow: N/A

Related use cases Use case No: 1

Basic flow diagram of Use case No: 5

Andon Gribachev – C1824840

25

Use case No: 6

Joining and interacting within the chatroom

meeting (Both Lecturer and Student interface).

Type: Must have

Goal: The goal is that a user can join and interact within the chatroom meeting.

Preconditions: The user needs to be logged onto the system as a student. Furthermore, the

user needs to have the chatroom meeting booked by the student and approved

by the lecturer before both users joining.

Basic Flow: Student:

1) After logging in the user is redirected to the home page

2) The useヴ seleIts さBook a ﾏeetiﾐg ┘ith leItuヴeヴざ from the main menu

3) The user selects join a meeting

4) Meetings of the user are then presented as the approved ones are

hyperlinks that lead to the specific chatroom

5) The user then clicks into the hyperlink of a meeting that he/she wants to

join in and is redirected to the specific chatroom

6) Within the chatroom the user can message the lecturer privately

Lecturer:

1) After logging in the user is redirected to the home page

2) The useヴ seleIts さApprove a meeting with a studentざ from the main

menu

3) The user selects to join a meeting

4) Meetings of the user are then presented as the approved ones are

hyperlinks that lead to the specific chatroom

5) The user then clicks into the hyperlink of a meeting that he/she

wants to join in and is redirected to the specific chatroom

6) Within the chatroom the user can message the student privately

Alternative Flow: N/A

Related use cases Use case No:8, Use case No:4, Use case No: 1

Andon Gribachev – C1824840

26

Basic flow diagram of Use case No: 6 for the student

Basic flow diagram of Use case No: 6 for the lecturer

Andon Gribachev – C1824840

27

Use case No: 7

Users discussing on the discussion board (Both

Student and Lecturer interface)

Type: Must have

Goal: The goal is that both types of users can discuss in a module they are part of.

Preconditions: The users should have logged onto the system.

Basic Flow: Both the lecturer and the student follow the same flow:

1) After logging in the user is redirected to the home page

2) The user seleIts the さﾏodulesざ seItioﾐ fヴoﾏ the ﾏeﾐu

3) The user selects the module and gets redirected to the module-specific

page

4) The discussion board is presented on the module-specific page. The user

can write any caption and it will be published to the discussion board.

Alternative Flow: N/A

Related use cases Use case No: 1

Basic flow diagram of Use case No: 7

Andon Gribachev – C1824840

28

Use case No: 8

Approving the chatroom meeting (Lecturer

interface)

Type: Must have

Goal: The goal is that a user (lecturer) can approve a chatroom meeting with a student

Preconditions: The user should have logged onto the system as a lecturer.

Basic Flow: 1) After logging in the user is redirected to the home page

2) The useヴ seleIts さApprove a meeting with a studeﾐtざ from the main

menu

3) The user selects to join a meeting

4) Meetings of the user are then presented as the approved ones are

hyperlinks that lead to the specific chatroom

5) Button is presented on the right side of the unapproved meetings

6) The user selects the button approving the meeting and the chatroom is

initiated

Alternative Flow: N/A

Related use cases Use case No:4, Use case No:6, Use case No: 1

Basic flow diagram of Use case No: 8

Andon Gribachev – C1824840

29

Use case No: 9

Uploading live streamable lectures (Lecturer

interface)

Type: Must have

Goal: The goal is that a user can upload live-streaming lectures.

Preconditions: The user should be logged onto the system as a lecturer.

Basic Flow: 1) After logging in the user is redirected to the home page

2) The useヴ seleIts the さﾏodulesざ seItioﾐ fヴoﾏ the ﾏeﾐu

3) The user selects the module and gets redirected to the module-specific

page

4) The user enters the URL of the Livestream, the caption of the

Li┗estヴeaﾏ, its’ staヴtiﾐg tiﾏe aﾐd eﾐdiﾐg tiﾏe and clicks the button the

upload a live streamable lecture

Alternative Flow: N/A

Related use cases Use case No: 3, Use case No: 1

Basic flow diagram of Use case No: 9

Andon Gribachev – C1824840

30

Use case No: 10

Uploading past recordings (Lecturer interface)

Type: Must have

Goal: The goal is that a user can upload past recordings.

Preconditions: The user should be logged onto the system as a lecturer.

Basic Flow: 1) After logging in the user is redirected to the home page

2) The useヴ seleIts the さﾏodulesざ seItioﾐ fヴoﾏ the ﾏeﾐu

3) The user selects the module and gets redirected to the module-specific

page

4) The useヴ attaIhes the ┗ideo oﾐ the seItioﾐ さupload a past ヴeIoヴdiﾐg aﾐd
IliIks the Huttoﾐ さupload past ヴeIoヴdiﾐgざ

Alternative Flow: N/A

Related use cases Use case No: 2, Use case No: 1

Basic flow diagram of Use case No: 10

Andon Gribachev – C1824840

31

Use case No: 11

The user could self-assess the skills acquired

from a specific module (Student interface)

Type: Must have

Goal: The goal is that a user could self-assess the skills acquired from a specific module

Preconditions: The user should be logged onto the system as a student.

Basic Flow: 1) After logging in the user is redirected to the home page

2) The useヴ seleIts the さﾏodulesざ seItioﾐ fヴoﾏ the ﾏeﾐu

3) The user selects the module and gets redirected to the module-specific

page

4) The user selects the self-assessment hyperlink from the module panel

and gets redirected to the self-assessment page specific to the module

Alternative Flow: N/A

Related use cases N/A

Basic flow diagram of Use case No: 11

Andon Gribachev – C1824840

32

Use case diagram – Chatbot

Andon Gribachev – C1824840

33

Use cases – Chatbot

Use case No: 12

The chatbot returning the timetable of the

student

Type: Must have

Goal: The chatbot returns information about the timetable of the student

Preconditions: The user needs to be logged onto the system as a student and be on the chatbot

page.

Basic Flow: 1) The machine learning algorithm behind the RASA API will detect if such

aItioﾐ is to He e┝eIuted fヴoﾏ the useヴs’ iﾐput
2) Timetable being returned

Alternative Flow: N/A

Related use cases Use case No: 1, Use case No: 5

Use case No: 13

The chatbot returning further information about

different terminology

Type: Must have

Goal:

Preconditions: The user needs to be logged onto the system as a student and be on the chatbot

page.

Basic Flow: 1) The machine learning algorithm behind the RASA API will detect if such

aItioﾐ is to He e┝eIuted fヴoﾏ the useヴs’ iﾐput
2) Information about different terminology being returned

Alternative Flow: N/A

Related use cases Use case No: 1, Use case No: 5

Andon Gribachev – C1824840

34

Use case No:14

The chatbot returning module information

Type: Must have

Goal:

Preconditions: The user needs to be logged onto the system as a student and be on the chatbot

page.

Basic Flow: 1) The machine learning algorithm behind the RASA API will detect if such

aItioﾐ is to He e┝eIuted fヴoﾏ the useヴs’ iﾐput
2) Module information being returned

Alternative Flow: N/A

Related use cases Use case No: 1, Use case No: 5

Use case No: 15

The chatbot returning information about the

leading lecturers of different modules

Type: Must have

Goal:

Preconditions: The user needs to be logged onto the system as a student and be on the chatbot

page.

Basic Flow: 1) The machine learning algorithm behind the RASA API will detect if such

aItioﾐ is to He e┝eIuted fヴoﾏ the useヴs’ iﾐput
2) Information regarding leading lecturers of different modules is being

returned

Alternative Flow: N/A

Related use cases Use case No: 1, Use case No: 5

Andon Gribachev – C1824840

35

Use case No: 16

The chatbot returning the enrolled modules of

the student

Type: Must have

Goal:

Preconditions: The user needs to be logged onto the system as a student and be on the chatbot

page.

Basic Flow: 1) The machine learning algorithm behind the RASA API will detect if such

aItioﾐ is to He e┝eIuted fヴoﾏ the useヴs’ iﾐput
2) The enrolled modules of the student being returned

Alternative Flow: N/A

Related use cases Use case No: 1, Use case No: 5

General basic flow diagram of Use Case No: 12-16

36

Design

UML Class Diagram

37

Overview of the UML Class Diagram:

 The UML Class Diagram of a Django application is different in a way from most of the UML class

diagヴaﾏs of otheヴ appliIatioﾐs. The ヴeasoﾐ foヴ this to happeﾐ is that oﾐe of the ﾏost po┘eヴful Djaﾐgos’
features is the Django ORM(Object-relational mapper)[7]. There are no ordinary classes and interfaces

as Djaﾐgos’ MVT divides the main sections into the discussed earlier models, views and templates.

Having said that, the Class Diagram of a Django application is very close to what the entity-relationship

diagram might look like, where the ER diagram describes the way Djangos models work (database). In

the following example, I have shown how a normal class is defined within the ORM of Django.

38

User interface prototypes

 One of the main priorities of the project was the usability of the web platform. It was essential

to create mock-ups and prototypes of the system before I started developing the whole web platform.

For the mock-ups to be precise, I kept in mind the personas, the functional requirements of the system

and the use cases.

 The main principles I looked upon applying were the CARP principles – contrast, alignment,

proximity, and repetition. The heuristics of Nielson were also applied when it came down to evaluate

the prototypes. [8]

 Since in the HCI coursework (Human-Computer interaction) we used the Balsamiq cloud, I

decided to use it again, because I was familiar with how it works, for my prototypes and mock-ups as it

is aﾐ effiIieﾐt tool foヴ its’ puヴpose.

Initial prototypes:

 With all the requirements in mind, the initial prototype was a MVP design of the platform. The

following prototypes do not follow the STNs precisely, but the final prototypes do. After evaluating the

initial prototype I derived a final prototype, which would be precisely based on the STNs and all the

requirements.

Prototype No: 1

Description The user logging onto the system(Both Student and Lecturer interface)

This screen is where the user would log onto the system. To do so, the user

would have to fill in his/her username and password and press the login button.

Andon Gribachev – C1824840

39

The option of signing up would redirect the user to the registration page/panel.

Colour differentiation is one of the concepts of the CARP principles. The blue,

white and grey gamma would be used all around the web platform. Having said

that, all the elements are also aligned, which is the CARP principle as well.

Related use cases: Use case No. 1

Prototype No: 2

Description The user registering on the platform

On the following screen is presented the registration page, where the user can

register by filling the fields of username, password, university and course. The

colour scheme, as well as the alignment, are present here also.

Related use cases: Use case No. 1

40

Prototype No: 3

Description The user interacting with the chatbot(Student interface)

The following screen presents the chatbot page. The user will be able to

correspond with the chatbot by typing a message in the text field and pressing

the button send.

Related use cases: Use case No.5 and Use cases No. 12-16

Andon Gribachev – C1824840

41

Prototype No: 4

Description The main panel including the modules of the user(Both Student and Lecturer

interface)

The following screen portrays the modules panel. All the enrolled modules of the

student are portrayed as hyperlinks that would redirect to the module-specific

page. The colour gamma and the aligning factor are present.

Related use cases: N/A

Prototype No: 5

Description The module-specific page(Student interface)

Andon Gribachev – C1824840

42

The following screen portrays the modules-specific page. The user can access the

self-assessment, the live lectures and the past recordings by clicking on the

hyperlinks. A discussion board is present as well, where the user can interact

with other users that are part of the module. For the user to write anything on

the discussion board, the caption should be written in the text field and the

button send should be clicked. The message will then be portrayed on the

discussion board.

Related use cases: Use case No. 7

Prototype No: 6

Description The user having access over the module-specific self-assessment(Student

interface)

The following screen portrays the self-assessment page, where the user can self-

assess the skills acquired from a specific module. The questions are shown above

the answers. Different answers could be selected as they are presented as radio

buttons. When the user decides on submitting by pressing the button send, the

result would pop under the button indicating the result he/she got.

Related use cases: Use case No. 11

Andon Gribachev – C1824840

43

Prototype No: 7

Description The user having access over the streaming lectures(Student interface)

The following screen portrays the page that represents to the student the live

lectures. The live lectures are presented as hyperlinks that redirect to the

specific live streaming lecture. Below the hyperlink, a text is written of who is

the lecturer that leads the lecture.

Related use cases: Use case No.3

Prototype No: 8

Andon Gribachev – C1824840

44

Description The user having access over the streaming lecture (Student interface)

On the following screen, the media player of the live streaming lecture is being

portrayed.

Related use cases: Use case No.3

Prototype No: 9

Description The user having access over the past recordings of a module(Student interface)

The past ヴeIoヴdiﾐgs sIヴeeﾐ is poヴtヴa┞iﾐg ﾏedia pla┞eヴs iﾐside diffeヴeﾐt さIaヴdsざ
with the title of the leItuヴe Heiﾐg pヴeseﾐted oﾐ the top of the さIaヴdざ.
Related use cases: Use case No.2

s

45

Prototype No: 10

Description The user being able to book a meeting with a lecturer(Student interface)

The following screen represents the book a meeting section in the student

interface. By entering the timeframe of the meeting, date of the meeting and

choosing the lecturer the student wants to meet with, a chatroom meeting is

iﾐitiated H┞ pヴessiﾐg the Huttoﾐ さHook a ﾏeetiﾐg ┘ith a leItuヴeヴざ. Oﾐ the other

hand, if the user would like to join a specific meeting, the button that would join

a meeting with a lecturer would redirect the student into the screen of the

meeting.

Related use cases: Use case No. 4; Use case No. 6; Use case No. 8;

Andon Gribachev – C1824840

46

Prototype No: 11

Description The user having access over the chatroom meetings (Student interface)

The meetings screen of the student interface portrays the chatroom meetings

that the user can join. The joinable ones are presented as hyperlinks and the

unapproved ones are presented as the text below.

Related use cases: Use case No. 4; Use case No. 6; Use case No. 8;

Andon Gribachev – C1824840

47

Prototype No: 12

Description The user having access over a chatroom meeting (Both Lecturer and Student

interface)

The chatroom meeting screen is portraying the chatroom itself. Messages are

presented in a typical manner. By entering the text field and pressing the button

send, the user (both lecturer and student) can send a message privately.

Related use cases: Use case No. 4; Use case No. 6; Use case No. 8;

Andon Gribachev – C1824840

48

Prototype No: 13

Description The user having access over the module-specific page (Lecturer interface)

The module-specific page screen portrays the interface of the lecturer. The

lecturer can add a live-streaming lecture by writing the URL of the live stream,

the caption of the lecture, its starting time and ending time. With filled fields, by

pressing the button add a live stream the live-streaming lecture would be added.

Furthermore, the lecturer can attach a video and upload it as a past recording by

pressing the button upload past recording. On the other hand, the lecturer can

also automatically add past recordings to the database. Just like the student, the

lecturer can also type in the discussion board and see its content. Even though,

portrayed below, the discussion board has the same functionality and interface

as in the students' module-specific page.

Related use cases: Use case No.7; Use case No.9, Use case No.10

Andon Gribachev – C1824840

49

Prototype No: 14

Description The user having access over the chatroom meetings (Lecturer interface)

Just as in the student interface, in the lecturer interface the accessible chatroom

meetings are portrayed as hyperlinks. However, the lecturer has the permission of

approving a specific meeting by pressing the button on the right-side of a booked

by the student meeting. That way the chatroom goes from unapproved to

approved and from text to hyperlink.

Related use cases: Use case No. 4; Use case No. 6; Use case No. 8;

Andon Gribachev – C1824840

50

Prototype No: 15

Description The user having access over the navigation bar(Both Lecturer and Student

interface)

The navigation bar has different options depending on the interface:

Lecturer:

• Home screen

• Modules screen

• Approve a meeting with a student screen

• Logout screen

Student:

• Home screen

• Modules screen

• Book a meeting with a lecturer screen

• Chatbot screen

• Logout screen

Related use cases: N/A

 Since I needed a basic MVP before I started implementing the system, I did not carry a heuristic

e┗aluatioﾐ usiﾐg Nielsoﾐ’s usaHilit┞ pヴiﾐIiples. The sIヴeeﾐs poヴtヴa┞ed ga┗e ﾏe a better understanding of

what my task is and how I should design the interface. The project is considered as a proof-of-concept

and the base screens

51

Implementation

Database design

ER (Entity Relationship) Diagram - Pages

52

Description of the ER Diagram – Pages

 In Django, the pages section is for the main models/tables of the application. Portrayed in the

diagram are the main models/tables of the web platform and the relationships in between them. The

design of the database is in 3NF (Normalisation form) in order to reduce data duplication, avoid data

anomalies, simplify the management of the data, and ensure integrity. To do so, the relationships

between the tables are primarily many to one. In the following section, I will look further into the tables

and their properties to justify the creation of the specific tables. Having said that, I would also discuss

the relationships between the tables/models to justify them, as well.

Table University

Properties -name: CharField ()

Relationships N/A

Justification Fields:

The university could have had many different

properties, but in the specific case I did not need

anything more, but the name of the university

Relationships:

N/A

Table Lecturer

Properties -user: ForeignKey (User)

-university: ForeignKey (University)

Relationships -University table

-User table

Justification Fields: N/A

Relationships:

The table of lecturer has a direct relation with the

university that would store the university the

lecturer is a part of.

The primary User table that the Lecturer is

related to will be discussed further into the

Authentication part of the database design.

Table Course

Properties -name: CharField ()

Relationships N/A

Justification Fields:

The course could have had many different

properties, but in the specific case I did not need

anything more, but the name of the course

Relationships:

Andon Gribachev – C1824840

53

N/A

Table Module

Properties -course: ForeignKey (Course)

-leading_lecturer: ForeignKey (Lecturer)

-module_code: CharField ()

-module_name: CharField ()

Relationships -Course table

-Lecturer table

Justification Fields:

-module_code – is the specific module code of

the module

-module_name – is the specific module name of

the module

Relationships:

The module table has two relationships with the

course table and the lecturer table. I assumed

that one lecturer could lead the module and that

the module could be part of one course. That way

every module has a course and leading lecturer.

Table Student

Properties -user: ForeignKey (User)

-university: ForeignKey (University)

-course: ForeignKey (Course)

Relationships -User Table

-University table

-Course table

Justification Fields: N/A

Relationships:

The student has three relationships with the

primary user table, the university table, and the

course table. I assumed that one student could

be a part of one university and just one course.

Table Video

Properties -module: ForeignKey (Module)

-video: FileField ()

-caption: CharField ()

Relationships -Module table

Justification Fields:

-caption – is the title caption of specific the past

recording

Andon Gribachev – C1824840

54

-video – file field where the past recording is

stored

Relationships:

The video table has one relationship. I assumed

that one video (past recording) could be a part of

just one module.

Table Livestream

Properties -module: ForeignKey (Module)

-livestream: URLField ()

-starting_time: DateTimeField ()

-ending_time: DateTimeField ()

Relationships -Module table

Justification Fields:

-livestream – is the URL to the live streaming

lecture

-starting_time – is the starting time of the live

streaming lecture

-ending_time – is the ending time of the live

streaming lecture

Relationships:

The live stream table has one relationship. I

assumed that a live streamable lecture could be a

part of just one module.

Table Board

Properties -caption: CharField ()

-user: ForeignKey (User)

-module: ForeignKey (Module)

-timeframe_on_comment: DateTimeField ()

-type_of_user: CharField ()

Relationships -Module table

-User table

Justification Fields:

-caption – the comments caption of the

discussion board

-timeframe_on_comment – the time at which the

comment was posted

-type_of_user- is the type of user, either a

student or a lecturer

Relationships:

The discussion board table has two relationships.

I assumed that the discussion board should be

Andon Gribachev – C1824840

55

module-specific. The user table is related as I

assumed that comment on the discussion board

should be related to a specific user.

Table ChatBoard

Properties -student: ForeignKey (Student)

-lecturer: ForeignKey (Lecturer)

-timeframe_on_initialisation: TimeField ()

-date_on_initialisation: DateField ()

-approved: BooleanField ()

Relationships -Student table

-Lecturer table

Justification Fields:

-timeframe_on_initialisation-date of the

chatroom meeting

-date_on_initialisation- date of the chatroom

meeting

-approved- Boolean field indicating if the

chatroom meeting is approved by the lecturer

Relationships:

The ChatBoard table has two relationships. I

assumed that for a chatroom meeting there

should be a specific student and specific lecturer

attending.

Table Message

Properties -ChatBoard: ForeignKey (ChatBoard)

-message: CharField ()

-timeframe_on_message: TimeField ()

-type_of_user: CharField ()

Relationships -ChatBoard table

Justification Fields:

-message-message at the chatroom meeting

-timeframe_on_message- the time at which the

message was posted at the chatroom meeting

-type_of_user - is the type of user, either a

student or a lecturer

Relationships:

The message table represents the messages sent

in the chatroom meeting by both the lecturer and

the student. I assumed that to make it meeting

Andon Gribachev – C1824840

56

specific the message would need a chatroom

meeting.

Table Description

Properties -description: CharField ()

-module: ForeignKey (Module)

Relationships -Module table

Justification Fields:

Description – Short description of the module

Relationships:

The description table represents the description

of a specific module. That is why I assumed that a

description could have one module to refer to.

Table Term

Properties -term_name: CharField ()

-term_description: CharField ()

-module: ForeignKey (Module)

-info_term: URLField ()

Relationships -Module table

Justification Fields:

-term_name – name of the specified terminology

-term_description – short description of the

specified terminology

-info_term – URL field leading into the Wikipedia

page for the specified terminology

Relationships:

The table of terms represents the terminology

studied in a module. I assumed that a term could

be related to just one module.

Table Timetable

Properties -caption_lecture: CharField ()

-livestream_lecture: ForeignKey (Livestream)

Relationships -Livestream table

Justification Fields:

-caption_lecture- the title caption of the lecture

Relationships:

Andon Gribachev – C1824840

57

The timetable table represents the timetable of a

student. I assumed that a title of a live-streaming

lecture would refer to just one lecture in

particular

Table Question

Properties -module: ForeignKey (Module)

-question_caption: CharField ()

Relationships -Module table

Justification Fields:

-question_caption – the caption of the specific

question

Relationships:

The question table represents the questions

portrayed to the user when self-assessing. I

assumed that a question should refer to a single

module.

Table Answer

Properties -question: ForeignKey (Question)

-answer_caption: CharField ()

Relationships -Question table

Justification Fields:

-answer_caption – caption of the answer

Relationships:

The answer table represents the answers

portrayed to the user when self-assessing. I

assumed that an answer could refer to a single

question.

Table Correct_Answer

Properties -correct_answer: ForeignKey (Answer)

Relationships -Answer table

Justification Fields: N/A

Relationships:

The correct_answer table represents the correct

answer to a question of a user portrayed when

self-assessing. I assumed that the correct_answer

could be just one answer.

58

ER (Entity Relationship) Diagram – Sessions

Description of the ER Diagram – Sessions

 In general, sessions are a group of user interactions within the platform. A single session might

vary from logging in and uploading past recordings on the platform (Lecturer perspective) to logging and

seeing them (Student perspective). Django as a framework provides full support for anonymous

sessions. The session framework lets the admin store and retrieve arbitrary data on a basis per-site-

visitor. It stores data on the server side and abstracts the sending and the receiving of cookies. Cookies

contain a session ID, but not the data itself. By default Django stores the sessions on the default

database – but it could be set up to save the data on a separate database. The sessions in Django work

the same way as in other web frameworks such as (.Net) and (flask).

59

ER (Entity Relationship) Diagram - Authentication

60

Description of the ER Diagram – Authentication

 Django has a reliable authentication system. It handles user accounts, permissions, groups, and

cookie-based user sessions. The Authentication system of Django handles both authentication and

authorization. In general, authentication is verifying that the user is who he claims to be and

authorization is what privileges are given to the user with respect to the functionality of the platform.

The authentication system consists of users, groups, permissions (binary flags of whether the user is

permitted to do a specific task), restricting content and logging in users.

ER (Entity Relationship) Diagram – Content types

Description of the ER Diagram – Content types

 Django includes a content types application that tracks the models installed in the project,

providing a high-level, generic interface for working with the models/tables. Every model/table is

represented as a row in the content type table, maintained and created by Django. There are many

manipulations and operations that could be performed to a model/table using the Content-type

module.

What Django does is using the content types table to reference a model or a table and link it with an id.

61

Activity diagrams

User logging in (Both Student and Lecturer interface)

62

Student interface

Andon Gribachev – C1824840

63

Lecturer interface

Andon Gribachev – C1824840

64

Overview of the design and implementation practices

 There are several good practices when working with models/tables in Django. The database is

one of the main aspects of the web platform and these practices were very useful when it came down to

implementing the system. Furthermore, the database and the chatbot (The machine learning algorithm

underneath) are the most complex topics of the platform and good practices should be held in mind in

implementing.

The following good practices were taken into consideration whilst developing the platform:

• Correct Model/Table naming – Generally it is recommended to use single nouns for model

naming

• Correct related-naming – It is reasonable to indicate as a plural the related-name that returns

and query set

• Adding the models via migrations – By the commands makemigrations and migrate the admin

keeps the database up to date

• Field duplication in Model Forms – When developing the model forms the model fields are not

duplicated

• Flags misuse – In the models/tables the flags are not to be used as often, only when necessary

However, there are good practices when it comes down to code-writing as well. I implemented

methods that would be commonly used in the system beforehand, so I could reduce code duplication.

Furthermore, I did not hard-code any of the solutions to the problems I faced. During the development

of the platform, I tend to try to write efficient code whilst it is readable. I used git as a version control

system and keep my project as updated as possible, keeping a backup of it if needed. I have avoided

deep nesting during the development process, also.

Andon Gribachev – C1824840

65

Detailed implementation

The Django platform

Overview of the implementation structure

 The portrayed image is showing the

structure of the project. Inside the virtual

environment, there are five directories. In the

include directories, I was running different scripts

locally to test them before uploading them to the

production of the project. Inside the Lib directory

is all the libraries used in the project as packages.

Having said that, the Scripts directory stores all the

scripts for the libraries. Last, but not least in the

src directory I have stored all the needed source

files for the project. It stores actions, models of

the machine learning algorithm and data – needed

for the chatbot. On the other hand, in templates,

static, pages, media, tests and

livestream_platform are stored the Django files

needed for the project.

The following data is stored in these directories:

-templates directory – the static HTML files

-static directory – the static javascript and

bootstrap CSS

-pages – the main files of the Django project

-media – the media or more specifically the past-

recordings

-livestream_platform – the configuration files of

Django

-tests – the unit tests that I did not use in

particular, but if I decide on working on the project

afterwards I would.

Andon Gribachev – C1824840

66

User logging in and registering(Both lecturer and student interface)

Andon Gribachev – C1824840

67

The shown pictures portray how to use is supposed to register and log into the system. The form

asks for the first name, last name, email address, username, password, university and course as the first

name, last name and email are part of the Django base user model.

In the shown code snippet are portrayed the login view and register view. As said earlier

Djaﾐgos’ MVT ふModel – View – Template) allows the view to be the functional part of the framework. In

the code snippet, the user is logged in by authenticating the password and the username with the

system. If the user is not none and such user exists the login sequence is completed and the user is

redirected to the home page.

On the other hand, when the user registers there are two forms to be filled. One is for the base

user of Django, which is a UserForm and a student form – StudentForm. If both forms are valid the base

user is filled with the details and so is the student user. If the registration is successful the user is

redirected to the login page, where he/she would log into the system.

Andon Gribachev – C1824840

68

Navigation around the platform and home page(Both Student and Lecturer interface)

Andon Gribachev – C1824840

69

 The navigation all around the platform is done through a navigation bar at the top of the pages.

It is different to the type of user having the session.

 Both the student and the lecturer could enter the modules panel by clicking on the module

section of the ﾐa┗igatioﾐ Haヴ. The studeﾐt Iaﾐ pヴess the さHook a ﾏeetiﾐg ┘ith a leItuヴeヴざ h┞peヴliﾐk aﾐd
get redirected to the book a meeting with a lecturer panel. Also, the student can enter into the chatbot

page, where the chatbot could be asked many questions. Both the student and the lecturer have a

logout section in the navigation bar if they would like to close their session. On the contrary, the lecturer

Iaﾐ pヴess the Huttoﾐ さAppヴo┗e oﾐ a ﾏeetiﾐg ┘ith a studeﾐt oヴ joiﾐ a ﾏeetiﾐgざ ┘heヴe the leItuヴeヴ ┘ould
get redirected to the meeting's panel directly.

Modules panel(Both Student and Lecturer interface)

Andon Gribachev – C1824840

70

 The panel portrays the enrolled modules of the user if a student, or the modules that the user is

a part of if a lecturer. The code - extracts the current user and then for every module in the database

checks if the user is part of the course or if is enrolled on the course. All of the modules portrayed on the

panel are university-specific as that is one of the main requirements as otherwise, it might cause

potential security, privacy and copyright issues.

Module-specific page (Student interface)

Andon Gribachev – C1824840

71

Module-specific page (Lecturer interface)

Andon Gribachev – C1824840

72

Discussion of the module-specific page(Both Student and Lecturer interface)

Andon Gribachev – C1824840

73

Andon Gribachev – C1824840

74

The code snippet generates the module-specific page for the user. Depending on if the user is

either a student or a lecturer, different forms are portrayed on the interface as shown in the images. As

could be seen in the two images of the interfaces, the student has access to the module-specific panel of

live lectures, past recordings and self-assessment with the discussion board. When it comes down to the

lecturer, however, the discussion board is also portrayed, but the lecturer can upload past recordings

both manually and automatically. Also, the lecturer can upload a live-streaming lecture.

Even though, the code snippet might look quite laヴge its’ fuﾐItioﾐalit┞ is ケuite HasiI. It geﾐeヴates
5 forms for all the users and checks if they are valid. The more complex part of the code is how the

lecturer can upload past recordings automatically. Within the media directory, there is a sub-directory of

past recordings, where each module has a directory. If the lecturer puts the video file into a specific

module directory then the algorithm would take the file from the said directory and would import it

automatically without the caption/title of the past recording. The algorithm is executed when the

lecturer clicks on automatically upload past recordings. Since it checks the database first for the videos

within it, no duplications of module-specific past recordings could be uploaded.

Past recordings page (Student interface)

Andon Gribachev – C1824840

75

 On the past recordings page, all the module-specific past recordings are displayed with their

titles/captions. Shortly, the code snippet shows that only the module-specific past recordings are

returned to the front-end bit of the platform.

Live lectures panel (Student interface)

Andon Gribachev – C1824840

76

 As portrayed in the image, the caption/title of the live stream is represented as a hyperlink. Only

the live-streaming lectures that are module-specific are shown to the user and this is the main

functionality of the view

Livestream page (Student interface)

Andon Gribachev – C1824840

77

 As portrayed in the image of the interface, the live-streaming lecture is being represented to the

student. The view functionality includes further checks if the lecture is module-specific and uses the

ﾏethod さtヴaﾐsfoヴﾏ_┞t_liﾐkざ to ﾏaﾐipulate the stヴiﾐg to ﾏake it the appヴopヴiate h┞peヴliﾐk to the li┗e

streaming lecture on YouTube.

Andon Gribachev – C1824840

78

Self-assessment page (Student interface)

Andon Gribachev – C1824840

79

 On the image of the interface is portrayed the self-assessment page, where the student can self-

assess given skillset acquired in a specified module. The algorithm underneath the page works by

filtering the module related questions and answers. Then it randomises the questions from the database

and their specified answers to present the user unique answers and questions. If the user fills in the

form/self-assessment test and presses submit the counter would count how many correct answers did

the user have and return the result of the self-assessment to the user.

Andon Gribachev – C1824840

80

Chatbot page (Student interface)

Andon Gribachev – C1824840

81

 On the first image, it could be seen the chatbot interface. To make it user-specific I had to write

a script that would be used for the two servers: - the chatbot server; – the Django server; to correspond.

As seen in the code snippet I send data from the Django server two times. The first time is to send data

to the chatbot server and the second one is to give a command over the first action that the chatbot

should execute. The chatbot page is a bit different from the other pages on the system. It is different by

the way it works. The user might need 5-6 seconds before the two servers connect and send the data in

between them. The chatbot itself would be discussed further in the next section.

Andon Gribachev – C1824840

82

Book a meeting with a lecturer page/panel (Student interface)

Andon Gribachev – C1824840

83

 As portrayed on the image of the interface the student can book a chatroom meeting with a

lecturer by filling in the date of the meeting, the time of the meeting and the lecturer - the student

wants to meet with. The code snippet is not as complex it has one form and validation of the form itself.

The form is used to store a chatroom meeting between the student and the lecturer.

Approve a meeting with a student or join a chatroom meeting page/panel (Lecturer interface)

Andon Gribachev – C1824840

84

 The chatroom meetings are presented to the lecturer as hyperlinks as could be seen on the

interface image. The lecturer has permission to approve the meeting. The code snippet represents just

that as it is not as complex. The lecturer is allowed to change the flag of the chatroom meeting and set it

to approved. After the meeting is approved, it would appear to both the student and the lecturer as a

hyperlink to the chatroom meeting.

Join a meeting (Student interface)

 As portrayed the unapproved meetings are presented as a text and the approved ones as a

hyperlink. The code snippet is very readable as the only thing it does - is to return the meetings of the

specified user and not all of them.

Andon Gribachev – C1824840

85

Chatroom meeting page (Both Lecturer and Student interface)

 The chatroom meeting itself is not as complex. Within the chatroom meeting, there is one form

that records the message of the user and stores it directly to the database. There is a validation of the

form, also. The form stores dynamically the time, the specific meeting it is sent to and the type of user

that sent the message.

Andon Gribachev – C1824840

86

The chatbot

 For the chatbot implementation, I decided on using the RASA API library in python. It works with

machine learning algorithms beneath the surface of it. In particular, the RASA API comes with in-built

actions (which could be executed at certain stories with intents), intents (which are defined by different

keyword examples for the NLU (Natural language understanding) engine), stories (which define the

sequence of executing certain actions when certain intent is detected) and domain – where everything

is defined. Unfortunately, the RASA API does not work autonomously as the admin would need to train

the bot after every change in the intents or the stories is made.

Example of intent:

Andon Gribachev – C1824840

87

Example of action:

Example of story:

Andon Gribachev – C1824840

88

Example of domain:

Andon Gribachev – C1824840

89

Domain

 The domain is where everything that works within the chatbot assistant is defined. Slots,

intents, entities, actions and responses are all stored within the domain file. To discuss later the actions,

the intents and the stories I would explain in further details the slots and the entities, so it could all

come down.

Slots

The slots aヴe the Hot’s ﾏeﾏoヴ┞. They do act as a key-value store (just as a dictionary in python)

– where information about the user (e.g. their ID on the Django platform) could be stored and data

gathered from the outside world (e.g. Query sets). The slots are defined in the domain file by specifying

a type of the slot, which can vary from text, boolean, float, etc.

Entities

 The entities are the section list that could be extracted from the NLU pipeline. Entities are

structured data inside the user message. Training data should be specified in order for the entities to

work.

Intents

 The intents are the section where with the use of entities example sentences are derived and

the sentences are used for further NLU training process. Intents could include entities as long as they are

put iﾐ Het┘eeﾐ さ{}ざ HヴaIkets. When the user interacts with the chatbot the NLU pipeline will calculate

the confidence with which specified intent is selected. When specific intent is selected, the storyline will

be executed and actions that follow in the sequence will be executed returning data to the responses

and then the responses would be delivered back to the user.

Andon Gribachev – C1824840

90

Stories

 A story is a representation of an example sequence in the conversation with the user. It could

include responses, intents, custom and inbuilt actions. The stories are also used to train the NLU pipeline

so the bot knows the sequence when calculating the confidence of every chosen intent.

Actions

 The actions of the RASA run on a separate server, where they are being executed and only a slot

set is returned to the bot, with which the bot would work. Having said that, when RASA calls upon a

custom-built action it calls the server to execute the specified action and the data returned is the

responsibility of the aItioﾐ’s server. The actions server has an inbuilt debugger, which makes debugging

the actions quite easy.

Andon Gribachev – C1824840

91

Returning the timetable of the student

Andon Gribachev – C1824840

92

Returning the module leader of a specified module

Andon Gribachev – C1824840

93

Returning terminology information

Andon Gribachev – C1824840

94

Returning module description

Andon Gribachev – C1824840

95

Enrolled modules of the student

Andon Gribachev – C1824840

96

Test cases

Function requirements test cases

Test case No: 1 Functional requirement No. 1: The system would provide the user its own

secure space, which could only be personally accessed. (Student interface) –

Type: Must have

Test description Acceptance criteria:

o User can log in with a username and a password to the system.

o Method of signing up would be provided to the users.

Test results:

The student can both sign up/register and can log in with a username and a

password

PASS

Test case No: 2 Functional requirement No. 2: The system would allow the user to watch past

recordings. (Student interface) – Type: Must have

Test description Acceptance criteria:

o After entering the past-recordings interface the user should be able

to see all past recordings from the module

o Video player should be generated for every lecture/past-recording

o Only lectures from the course in the university of the specific

user(student) should be allowed to be seen

Test result:

The student can see past recordings that are module-specific. Video player is

generated for every lecture. Only lectures from the course in the university of

the specified student are to be seen.

PASS

Test case No: 3 Functional requirement No. 3: The system would allow the user to watch a

live-streamed lecture. (Student interface) – Type: Must have

Test description Acceptance criteria:

o After entering the live-streaming interface the user should be able to

choose in between live-streamed lectures in the current moment

o Video player should allow the user to see the content

o Only Livestream lectures specific to the useヴ’s Iouヴse should He seeﾐ

Test result:

The user (student) can see and choose in between live-streaming lectures.

Only students part of the course and the module can see the live lectures.

Media player could be opened for all the live-streaming lectures.

PASS

Test case No: 4 Functional requirement No. 4: The system would allow the user to interact

with the chatbot (Student interface) – Type: Must have

Test description Acceptance Criteria:

Andon Gribachev – C1824840

97

o The chatbot, as well as the platform, is considered as a proof-of-

concept and the chatbot would be limited to five use-cases.

o The chatbot should be able to retrieve the timetable that is student-

specific

o The chatbot should be able to give more information on different

terms that are discussed during the lectures

Test result:

The chatbot is indeed limited to five use-cases and could retrieve information

for both the terminology in a specified module and the timetable of the

student

PASS

Test case No: 5 Functional requirement No. 5: The system should allow the user to book a

chatroom with the intent of meeting a specific tutor (Student interface) –

Type: Must have

Test description Acceptance Criteria:

o Booking a chatroom to meet with a specific lecturer would require a

timeframe of initialisation and date on the initialisation of the chatroom. Also,

it would require the specific lecturer that the student would like to meet. If

the meeting is approved by the qualified personnel to do so (Lecturers), a

chatroom would be created.

Test result:

The chatroom meeting could be booked exactly with the specified data and

upon approval the chatroom meeting in unaccessible

PASS

Test case No: 6 Functional requirement No. 6: The system should allow the user to

participate in discussion board discussions (Student interface) – Type: Must

have

Test description Acceptance Criteria:

o The student would be able to join in the already approved chatroom.

o The student would be able to discuss and chat with the lecturer.

o The chatroom itself should be unique and discussion between

lecturer and student should remain confidential as that might cause privacy

issues if violated.

Test result:

The chatroom meeting is unique and enables the user to discuss whatever

found suitable. Both of the users can join to a chatroom meeting if the

meeting is approved

PASS

Test case No: 7 Functional requirement No. 7: The system should allow the user to

participate in discussion board discussions (Both Lecturer and Student

interface) – Type: Must have

Test description Acceptance Criteria:

Andon Gribachev – C1824840

98

o The student would be able to discuss freely on the discussion board

that would be specific to the module.

Test result:

The user is indeed able to discuss freely on the discussion board.

PASS

Test case No: 8 Functional requirement No. 8: The system should allow the user to take a

self-assessment specific to the module taken (Student interface) – Type:

Should have

Test description Acceptance Criteria:

o The student would be able to have a module-specific self-assessment

that would generate random questions in the context of the module.

Test result:

The student is allowed to have a self-assessment that is module-specific.

PASS

Test case No: 9 Functional requirement No. 9: The system would provide the user its own

secure space, which could only be personally accessed. (Lecturer interface) –

Type: Must have

Test description Acceptance Criteria:

o User can log in with a username and a password to the system.

o Lecturers can only log in with admin-regulated credentials. They

should only be given an account to work with, instead of registering as

lecturers as that might cause potential authentication issues.

Test result:

The lecturer can log in to the system by filling in his/her credentials. Lecturers

cannot register to the system, only the administrator could give them profiles

for the platform.

PASS

Test case No: 10 Functional requirement No. 10: The system should allow the user to upload

past recordings both automatically and manually (Lecturer interface) – Type:

Must have

Test description Acceptance Criteria:

o The user/lecturer would be able to upload past recordings both

manually – where the lecturer would attach the lecture and upload it and

automatically – where the lecture would be taken straight from the folder

and uploaded into the database.

Test result:

I managed to create an algorithm, which did allow the lecturer to upload

automatically past recordings. When it comes down to manually uploading

past recording, the lecturer is allowed to do so.

PASS

Andon Gribachev – C1824840

99

Test case No: 11 Functional requirement No. 11: The system should allow the user to upload a

live streamable lecture for specific module (Lecturer interface) – Type: Must

have

Test description Acceptance Criteria:

o The user would be able to upload live streamable lecture with fields

being required such as caption of the lecture, URL of the Livestream, starting

time and ending time

Test result:

By filling the fields, the lecturer can upload a module-specific live-streaming

lecture.

PASS

Test case No: 12 Functional requirement No. 12: The system should allow the user to approve

a chatroom meeting with a student (Lecturer interface) – Type: Must have

Test description Acceptance Criteria:

o The user would be able to approve a chatroom meeting with a

student. After approval, the meeting room will be created.

Test result:

The lecturer is permitted to approve a chatroom meeting with a student.

Upon approval, the chatroom meeting would be created.

PASS

Test case No: 13 Functional requirement No. 13: The system should allow the user to

participate in discussion board discussions (Lecturer interface) – Type: Must

have

Test description Acceptance Criteria:

o The user would be able to participate in discussion board discussions

freely.

Test result:

The user can participate in all the module-specific discussions on the

respective discussion boards.

PASS

Test case No: 14 Functional requirement No. 14: The system should allow the user to join in a

chatroom meeting (Lecturer interface) – Type: Must have

Test description Acceptance Criteria:

o The user would be able to join in a chatroom meeting with a student

and write freely messages that are chatroom specific.

Test result:

Upon approval, a chatroom meeting is initialised and the lecturer can freely

joiﾐ aﾐd iﾐteヴaIt ┘ithiﾐ its’ sIope.
PASS

Andon Gribachev – C1824840

100

Non-functional requirements test cases

Test case No: 18 Non - functional requirement No. 1: The system would store entries such as:

• Data needed to store the live streamable lecture and portray it back

to the students.

• Data needed to store the past recordings

• Data needed to store the self-assessments specific to the modules

• Data needed to store the chatroom meetings

• Data to store the discussion board specific to the module

– Type: Must have

Test description Acceptance Criteria:

o Once a new entry is submitted it should be stored instantaneous and

be portrayed back to the user.

Test result:

Data is indeed stored instantaneous onto the database, however, I could not

manage to make the lecturer create a self-assessment test for the students,

resulting in only the admin adding self-assessment tests.

PARTIAL FAIL

Test case No: 19 Non - functional requirement No. 2: The system will be intuitive and easy to

use. (Student and Lecturer interface) – Type: Must have

Test description Acceptance Criteria:

o The User interface should be appropriate and consistent to use.

Test result:

Whilst creating the MVP – I had an image of how the interfaces might look

like and I tried my best into implementing them in such a way that they allow

easy and consistent usage.

PASS

Test case No: 20 Non - functional requirement No. 3: The user will have accessibility over the

past lectures (Student interface) – Type: Must have

Test description Acceptance Criteria:

o The user will be able to see all the past recordings

Test result:

The student can see all the past recordings that are part of a module he/she is

enrolled on.

PASS

Test case No: 21 Non - functional requirement No. 4: The user will have accessibility over the

live-streamed lectures (Student interface) – Type: Must have

Test description Acceptance Criteria:

o The user should be able to see the live-streamed lectures that are

part of the modules in his/her course

Test result:

Andon Gribachev – C1824840

101

The student is allowed to see all the live-streaming lectures that are part of

the modules he/she is enrolled on.

PASS

Test case No: 22 Non - functional requirement No. 5: The user will have the given permissions

to upload past recordings and live-streamable lectures. (Lecturer interface) –

Type: Must have

Test description Acceptance Criteria:

o The user should be able to upload both past recordings and live-

streamable lectures to the platform.

Test result:

The lecturer is indeed allowed to upload both past recordings and live

streaming lectures as long as he/she is part of the module.

PASS

Comparing my solution to already existing ones

 It is quite hard and unrealistic to compare my platform to already existing ones (as learning

central). With the help of my supervisor, I was able to produce a product, however, it cannot be

properly compared to platforms developed by teams of developers over a long period, because the

pヴojeIt’s goal ┘as a pヴoof-of-concept platform.

 On the contrary, I implemented interesting features to my platform that I am unsure if many

other platforms have. From an automatic uploader of past recordings to the chatbot, I tried to vision a

student portal/platform and make it as usable as possible for the end-users (both lecturers and

students). Having said that, there certainly are features that I find quite interactive on the platform I

created.

 On the other hand, my platform is nowhere near as user-friendly as learning central is. I could

safel┞ assuﾏe that fヴoﾏ the de┗elopeヴs’ poiﾐt of ┗ie┘ it is a ﾏuIh ﾏoヴe Ioﾏple┝ s┞steﾏ. I aﾏ uﾐsuヴe
what technologies are used in the process of development of learning central, in particular, but I could

say it has features such as the assessments for the modules, which I do envision implementing at some

point on my platform.

 I do believe that my platform is not even close to the level of learning central, but there are

features on my platform that I find very interactive and innovative for such a student portal/platform.

Andon Gribachev – C1824840

102

Conclusion and Future work

 The project intended for the creation of a proof-of-concept web platform – student portal. The

usage of the web platform is mainly for students and lecturers. The project aimed to create such a web

platform that would prove the concept and that the solution could be implemented by many

universities that would like better student satisfaction. The project aimed to provide the following

features:

• Having two separate user interfaces (UI) for lecturers and students

• The lecturers should be able to live-stream lectures

• The module-specific live-streamed lectures should be visible to, only the enrolled to the course

the module is in, students

• The lecturer should be able to both automatically and manually upload past recordings

• The past recordings should be available to the students that are enrolled to a course that the

module is in

• There should be discussion board specific to every module

• There should be chatrooms that could be booked by students to meet with the specific lecturer

if needed. These chatrooms should only be accessible by the student if the specific lecturer has

approved of such meeting. If approved, unique chatroom should be initiated

• There should be chatbot that would interactively answer questions of the students (limited to 5

use-cases)

• There should be dynamically generated module-specific self-assessments for the students

All the main functionalities of the web platform were set out to be developed and implemented during

the course of the project. When it comes down to the personas and their potential goals, they were

achieved as well.

 However, there were some limitations. Co-vid 19 disrupted the project quite a lot since I was

not able to get as many resources and usability testing of the platform. Furthermore, I could not manage

to implement more than five use-cases for the chatbot. Even though I was planning for the same five

use cases, I was thinking I could implement further use cases. Also, there were features that I visioned to

be implemented on the platform, however with the time restrictions I did not physically have the time

to start and finish developing.

 Overall, I am satisfied with the outcome of the project since all the initial requirements were

met. However, many things could be changed for a better platform in terms of both usability and

functionality. There is potential in the project and I might keep on developing the platform, even after

the project finishes. I was a bit stressed that the time might not be enough for me to finish the platform,

which resulted in small cosmetic (front-eﾐdぶ issues, that I Iould’┗e a┗oided foヴ Hetteヴ usaHilit┞.

I have several future work assignments on the project, which are the following:

▪ Create a lecturer registration page, that could only register the lecturer if the admin has

approved the profile

▪ Broaden the range of functionalities the chatbot has

▪ Having the platform be an easier to navigate

Andon Gribachev – C1824840

103

▪ To make a database that would be able to fit large portions of data and be better for the

production process – Oracle

▪ Allow the lecturer to watch their recorded past recordings and live lectures

▪ Better security measures

▪ Allow students to upload different assignments on the platform

▪ Allow the lecturers to assess the assignments uploaded by the student

All these future work assignments would have shaped the platform into a better product. One of the

things I could not manage to develop, which could have been crucial for the platform, is that

lecturers should be able to watch their recorded and uploaded lectures as well as their live lectures

(not just on the YouTube tab opened on the browser).

Innovation

The project itself required me to be innovative. I come up with the idea of the lecturer

uploading past recordings automatically. I designed the algorithm and implemented it as a solution. The

algorithm as a solution was not specifically hard, but it came down as one of the most innovative

features of the platform. Furthermore, I decided on implementing a chatbot based on a machine

leaヴﾐiﾐg algoヴithﾏ, ┘hiIh is oﾐe of the さhottestざ topiIs iﾐ the teIhﾐolog┞ ┘oヴld being used in self-driving

cars, google translate, fraud detection, etc. [12]

Also, I decided on implementing a self-assessment feature, where the students are allowed to

self examine their skills acquired at a specific module. The questions are being stored in the database

with their respective answers. When the user enters the self-assessment page, the questions are getting

randomised to protect against fraud.

Besides that, I decided to implement chatroom meetings between lecturers and students as a

feature. I find that very interactive as many students might find themselves in hard times, where they

would have priority over the privacy of the information they are sharing. Every chatroom is unique and

every message is stored on the database.

Reflection on the learning process

 The entire project was both an exciting and tremendous part of my experience. It has improved

significantly my organisational and time-management skills, which are crucial for my development in the

future. Furthermore, I am glad that I had the motivation to work on the same project for nearly a third

of a year. The dedication shown by me during the development process is crucial to me continuing the

project.

Andon Gribachev – C1824840

104

 I significantly improved and enhanced my existing Python coding skills. The project allowed me

to use techniques and skills learnt over the years studied. Creating a web platform was something new

for me and I personally loved it. I started the project with little to no previous web development

experience. The project not only motivated me to implement solutions that I had to research upon but

helped me build a reasonable skill set when it comes down to web development with Django.

 I faced many issues along the way of implementing from personal ones to project-based. I had

to learn server-side connections to connect the chatbot to the Django platform. One of the toughest

challenges I had, was to work part-time and yet deliver a product. As I said early, the project was a major

challenge for me, which I am relieved and happy to finish.

 Regarding the organisation of the project, I had to change my initial plans completely. In the

early stage of the development process, I was thinking that the main priority would be security, but as a

proof-of-IoﾐIept platfoヴﾏ, Djaﾐgos’ eﾐIヴ┞ptioﾐ poliIies ┘eヴe eﾐough to pヴo┗e the IoﾐIept. Other than

that, I believe I kept the standard high by meeting regularly with my supervisor – Dr Daniela Tsaneva and

showcasing the platform and the improvements I had made every week.

 However, if it comes down to me taking the module again, I would have carried out more

research. I would have spoken to potential users and make a questionnaire to get appropriate feedback

from potential end-users. Besides, in the beginning, I started quite strong by developing the main

functionality of the platform quite early. Instead of motivating me, that demotivated me and there were

weeks where I did not perform at my best for certain. Specifically, there were weeks when things went

wrong, and the positive thing was that I was constantly using version control on git. That proved to me

once again how important version control is and that is an irreplaceable part of any project.

 Overall, I am grateful to be given the opportunity to develop the platform. I was a bit anxious at

the beginning as I was working on a self-proposed project. That meant that I had to build something

unique and useful at the same time, which was quite fulfilling in the end. Last, but not least I am proud

of what the project turned out to be. Those challenges, all helped me to progress as a person and

proved to me that I can find a solution to all the problems - questions if I am determined enough to seek

the appropriate answer.

Andon Gribachev – C1824840

105

References

1. OBS web platform - https://obsproject.com/

2. G2 Crowd - https://www.g2.com/categories/live-stream

3. Rasa API framework documentation - https://rasa.com/docs/rasa/

4. Django REST - https://www.django-rest-framework.org/

5. Django REST - https://www.djangoproject.com/

6. Django 1.10 Tutorial - https://overiq.com/django-1-10/mvc-pattern-and-django/

7. MVC Tutorial for Beginners: What is, Architecture & Example -

https://www.guru99.com/mvc-tutorial.html

8. Katie McLaughlin - 24 Nov 2017 - An introduction to the Django ORM -

https://opensource.com/article/17/11/django-orm

9. Jakob Nielsen- Apr. 24, 1994; Updated Nov. 15, 2020 - 10 Usability Heuristics for User

Interface Design -https://www.nngroup.com/articles/ten-usability-heuristics/

10. Alexander Stepanov - Best practices working with Django models in Python -

https://steelkiwi.com/blog/best-practices-working-django-models-python/

11. Rasa documentation - https://rasa.com/docs/

12. Innovative Applications of Automated Machine Learning - Mar 16, 2020 - AIT Staff Writer-

https://aithority.com/ait-featured-posts/5-innovative-applications-of-automated-machine-

learning/

https://obsproject.com/
https://www.g2.com/categories/live-stream
https://rasa.com/docs/rasa/
https://www.django-rest-framework.org/
https://www.djangoproject.com/
https://overiq.com/django-1-10/
https://overiq.com/django-1-10/mvc-pattern-and-django/
https://opensource.com/article/17/11/django-orm
https://steelkiwi.com/blog/best-practices-working-django-models-python/
https://rasa.com/docs/

