
Final Report

Building a Twitter Clone with Neo4J

CM3203 - One Semester Individual Project

Credits: 40

School of Computer Science

Cardiff University, 2021

Author: Kiril Engovski

Supervisor: Alia I Abdelmoty

Moderator: Yipeng Qin

Abstract

With the ongoing Industry revolution (Industry 4.0), more and more emerging technologies are
introduced to enhance everyday activities ranging from manufacturing, health, traffic and

education to smart houses and gaming (Themelis and Sime 2020). The combination of these
emerging technologies creates a mesh of connections (relationships) between all kinds of devices.

The easiest way to represent that inconsistent mesh of different devices and allow easy
expansions without requiring specific schema are graphs. In the same way, the communication

and data transfer between all devices requires a database management system. In alignment with
the above statements, this project is concerned with the abilities of graph databases to serve as a

store for one of the most common means of communication: social networks.
With the Machine Learning and Natural Language Processing (NLP) techniques taking centre

stage in today’s computer technology, this project explores ways to apply NLP techniques using
Graph Databases with the aim of improving the recommendation engines.

The described ideas and functionalities are delivered with the design of a graph database
integrated into a simple Twitter clone application.

i

Acknowledgements

I would like to thank my supervisor Alia Abdelmoty for her insightful guidance and continuous
support throughout the entirety of the project. Her involvement and support has been pivotal for

the progress and success of this project.
I would also like to thank my parents and my sister for their support and patience throughout

the project. Being there for me when I needed them has helped me stay motivated until the end
of this project.

Finally, I thank my friends who were with me during these difficult times of the Covid pandemic
and who supported me and kept me motivated to successfully complete the project.

ii

Contents

Abstract i

Acknowledgements ii

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Aims and Objectives . 1
1.2 Project scope . 2
1.3 Overall approach . 3
1.4 Outcome and deliverables . 3
1.5 Audience and beneficiaries . 4

2 Background 4
2.1 Graph Databases and Neo4J . 4
2.2 Main social network components . 5
2.3 The problem . 6
2.4 Existing solutions . 6

2.4.1 Max De Marzi and Rene Pickhardt . 6
2.4.2 Jesus Barrasa . 7

2.5 Other Thoery . 7
2.5.1 Jaccard Similarity Index . 7
2.5.2 TF-IDF . 8

2.6 Evaluation terms . 8
2.6.1 DB hits . 8
2.6.2 Big O notation . 8

2.7 Constraints . 9
2.8 Tools used for the solution . 9

2.8.1 Python . 9
2.8.2 Neo4j . 10
2.8.3 Applications used for designing and development of the solution 11

2.9 Research Question . 12

3 System Specification 12
3.1 Basic social network features . 12
3.2 Newsfeed and user profile retrievals . 14

3.2.1 Main Requirements . 14
3.2.2 Non Functional/ Performance Requirements of the Graph Database Model 16

3.3 User recommendations . 17
3.3.1 Basic Recommendation . 17
3.3.2 Improved Recommendation . 18

iii

4 Design 19
4.1 Deriving the graph model . 19

4.1.1 Naive star topology model . 20
4.1.2 STOU by Rene Pickhardt . 20
4.1.3 Max De Marzi’s model . 22
4.1.4 Early version of the solution model . 23
4.1.5 Solution model . 25

4.2 Justification of the solution model . 27
4.2.1 Constraints . 29

4.3 Recommendation engines design . 30
4.3.1 Populating the database . 30
4.3.2 Pre-processing of data . 31
4.3.3 Similarity score calculation . 32
4.3.4 Basic recommendation engine . 33
4.3.5 Recommendation engine with KGs . 34
4.3.6 Justification . 35

4.4 Advanced Search . 35
4.4.1 Pre-processing of data and populating the database 36
4.4.2 Solution design . 36
4.4.3 Similarity score calculation . 37
4.4.4 Justification . 37

4.5 Constraints of user recommendations and KGs . 37

5 Implementation 38
5.1 Imports . 38
5.2 Graph database setup . 39
5.3 Basic Twitter Functionalities . 39

5.3.1 Login and register . 39
5.3.2 Following and unfollowing a user . 40
5.3.3 Adding a post . 41
5.3.4 Newsfeed and profile retrievals . 45

5.4 Creating snapshots . 47
5.4.1 Adding a post . 47
5.4.2 Retrieval of user profile and newsfeed queries 48

5.5 User recommendation . 48
5.5.1 Pre-processing of data . 48
5.5.2 Naive recommendation engine . 50
5.5.3 Recommendation engine using Wordnet as a KG 52

5.6 Advanced Search . 53
5.7 Unforeseen problems during the implementation phase 56

5.7.1 Using py2neo . 56
5.7.2 Over-ambitious goals . 56

6 Evaluation 57
6.1 Verifying the graph database functionality . 57

6.1.1 Basic Twitter Functionality . 57
6.1.2 Newsfeed and profile retrieval . 62
6.1.3 Recommendation engines . 65

iv

6.1.4 Advanced search . 65
6.2 Performance evaluation of the solution model . 66

6.2.1 Overview . 66
6.2.2 Newsfeed retrieval experiment description 67
6.2.3 Profile retrieval experiment description . 67
6.2.4 Reasons . 67
6.2.5 Populating the database . 68
6.2.6 Test execution process and scripts . 68
6.2.7 Results . 70
6.2.8 Comments . 73

6.3 Precision evaluation of user recommendation engines 74
6.3.1 Overview and reasoning . 74
6.3.2 Populating the database . 74
6.3.3 Test execution process and scripts . 75
6.3.4 Results . 76
6.3.5 Comments . 77

7 Future Work 77

8 Conclusion 78

9 Reflection on learning 79

A Graph databases 82
A.0.1 Neo4j and Cypher . 82
A.0.2 Knowledge Graphs . 83
A.0.3 Graph Databases vs Relational Databases 85

B Advanced Search Model example 86

C Wordnet import script 88

D Extraction of entities using Google Cloud’s API Cypher script 90

E Recommendation engines results 91

List of Figures

1 Graph database example . 5
2 Naive star model . 20
3 STOU model . 21
4 Max De Marzi’s model . 22
5 Gregorian calendar Model . 24
6 Solution Model . 26
7 Solution model example of performance . 28
8 Max De Marzi’s model example of performance . 29
9 Pre processing of data . 31
10 Jaccard Similarity Model . 32
11 Intersection . 34
12 Wordnet Intersection . 35
13 Advanced Search . 36
14 Imports . 38
15 Graph connection . 39
16 Register . 40
17 Find . 40
18 Follow . 40
19 Unfollow . 41
20 Post node . 42
21 Searching for a "Post" node . 42
22 "If it is the first ever post" . 43
23 "If a user has posted before" . 43
24 Storing the "old" post . 43
25 Updating the linked list . 44
26 Getting tags and mentions . 44
27 Creating tags . 44
28 Creating mentions . 45
29 User profile retrieval query . 45
30 Newsfeed retrieval query . 46
31 Generating days to be explored . 46
32 Add a post function based on Max De Marzi’s model 47
33 User profile retrieval query for Max De Marzi’s model 48
34 Newsfeed retrieval query for Max De Marzi’s model 48
35 Getting rid of symbols . 49
36 Getting rid of emojis . 49
37 Getting rid of punctuation and stopwords . 49
38 Inserting keywords into the database . 50
39 Naive intersection into Cypher . 50
40 Counting the intersection items . 51
41 Creating the union set . 51
42 Return statement of the naive recommendation engine 51
43 Linking the keywords to Wordnet . 52
44 Cypher query for the Wordnet recommendation engine 52
45 Counting Wordnet intersections . 53
46 Wordnet recommendation WITH statement joining the two intersections 53

vi

47 Omitting entities that don’t have a Wikipedia URL 54
48 Linking entities to the Wiki Categories KG . 54
49 Advanced Search Cypher query . 54
50 Iterating over all entities to find similarities . 55
51 Sorting by sums of similarity scores . 55
52 Filtering down to top n users . 56
53 Registered node . 57
54 Posting: database result . 58
55 Second post: database result . 59
56 Following a user: database result . 60
57 Unfollowing a user: database result . 60
58 Blocking a user: database result . 61
59 Newsfeed nodes . 63
60 Newsfeed tabular return . 63
61 Newsfeed interface display . 64
62 Profile tabular return . 64
63 Advanced search results . 66
64 Script for populating a database with meaningless data 68
65 Query evaluation details displayed with "PROFILE" 69
66 Python Script for testing the profile retrieval queries 70
67 Final calculation from the profile retrieval test script 70
68 Visual comparison of the newsfeed retrieval experiment results 71
69 Visual comparison of the profile retrieval experiment results 73
70 Script for populating the database from the created CSV file 75
71 Lists of usernames and their categories . 75
72 Python test script for the recommendation engines 76
73 Graph database example . 82
74 WordNet as Knoweldge Graph example . 83
75 Wiki Categories as Knogledge Graph example . 84
76 Wordnet import Cypher script: part 1 . 88
77 Wordnet import Cypher script: part 2 . 89
78 Extraction of entities using Google Cloud’s API Cypher script 90

vii

List of Tables

1 Basic functionality database requirements . 13
2 Nodes properties requriements . 13
3 Relationship properties requirements . 14
4 Graph model design notation table . 19
5 Basic functional requirements evaluation . 62
6 Basic functional requirements evaluation: newsfeed and profile retrieval 65
7 Newsfeed retrieval experiment results . 71
8 User profile retrieval experiment results . 72
9 Recommendation engines test results . 76
10 GDB vs RDB . 85
11 Advanced search example: Step 1 . 86
12 Advanced search example: Step 2 . 86
13 Advanced search example: Step 3 . 87

viii

1 Introduction

With all the technology available today, the most common means of communication became via
social networks. But social networks is not all about sending messages between users. It involves
a lot of social media data (Lung and Wu 2020). Every second a lot of pictures is shared, videos
are uploaded, messages are posted. The number of users registered on Twitter in the past 10 years
has grown from around 30 millions to around 330 million users (Boyd and Ellison 2007). All those
users followed other accounts, posted, liked and shared content. A very natural way to imagine
the relationship that one user follows another user is to connect them with an arrow pointing from
the follower to the user being followed. If we keep doing this we will end up with a large directed
graph from users to users, from users to their contents stating their authorship etc.

Graphs have been around at least 300 hundred years back (Biggs and Lloyd 1986), however
graph databases only became popular in the last decade, meaning that most of the industry today
is not built with graph databases. If the easiest way to imagine the things today is as graphs,
doesn’t it make sense for it to be the best way for storing the things and the relationships between
them?

In this project, I will be evaluating whether graphs are an effective way to serve as a database
store for social media content on social networks, more specifically Twitter.

1.1 Aims and Objectives

The aim of this project is to build a Twitter clone using only graph database as a store for the
social network data and demonstrate its suitability for three main ideas:

• How the graph data model can support the representation of social network data and
relationships within the different components within it;

• How the graph database technology can handle the storage and manipulation of dynamic
data sets within a social media application;

• How adequate is the graph database technology for complex processes such as recommendation
engines involving natural language processing techniques

The goal is for this demonstration to be delivered by building a Twitter clone using Neo4j as a
graph database technology, while aiming to improve any existing similar approaches to explore and
maximise the values and features of graph database technology. Upon successful build of a Twitter
clone version, evaluation of the same against existing approaches is to be carried out to compare the
performance and comment on the three ideas mentioned above. Furthermore, the project aims in
exploring knowledge graphs as supporting tools for natural language processing and implementing
one in the context of user recommendations and evaluated against naive, existing approaches. The
project also explores other features of graph database technologies and knowledge graphs to create
advanced social media features.

The following list breaks down the aims and goals on a lower level objectives of this project:

Part 1: Design, Implementation and evaluation of graph data model

• Studying existing, similar approaches and identifying potential improvements with use of
graph database technologies

1

• Designing a graph data model for improved efficiency in storing and management of the data
in a social network application

• Implementing the new graph data model into a simple Twitter clone web application with
basic social media functionalities, to serve as a database

• Developing more complex social network functionalities such as searching and re-posting, on
top of the newly developed model

• Evaluating the behaviour of the developed model within the social network application and
its performance against similar, existing models already implemented, on the same web
application

Part 2: Development of naive and knowledge graph based recommendation algorithm

• Exploration of recommendation engines, suitable knowledge graphs and similarity calculation
formulas

• Implementing naive natural language processing algorithm for keyword extraction

• Developing naive recommendation engine for user recommendations based on the graph data
model designed in Part 1

• Development of recommendation algorithm which uses knowledge graphs to enhance the
natural language processing used for keyword extractions, based on the graph data model
designed in Part 1

• Creating a dataset based on real data produced by users of social networks and populating
the database based on the created model

• Evaluation of the recommendation engines developed and commenting on the performance
and usability of knowledge graphs in such applications

Part 3: Exploring further the power of knowledge graphs through development of
advanced search functionality

• Exploring different knowledge graphs suitable for implementation of topic specific searches

• Importing a sample knowledge graph to the database

• Developing search algorithm based on the graph model and the knowledge graph imported

• Evaluation of the search functionality based on fictional, pre-populated social network data
into the database and commenting on the use of knowledge graphs in such applications

1.2 Project scope

To avoid ambiguity and misunderstandings of the scope with which this project is concerned, in
addition to the aims and objectives I created a list of things this project is NOT concerned with:

• Any front end or user interface requirements to mimic the looks of the actual Twitter
application interface

2

• Any performance or completeness of functionalities comparison with the actual Twitter
application due to the enormous difference of processing power available to me and to the
actual Twitter and the limited time given to complete this project

• Any non-graph database solutions to pre-processing of data used in evaluation

• The completeness of the knowledge graphs and with the evaluation of the algorithm speed
because of the limited storage and processing capacity of the machine

1.3 Overall approach

The most suitable approach for this project, after analysing in depth the candidates, was to follow
the Agile methodology which means continuous iterative development and testing on smaller and
more practical pieces compared to the classic waterfall method which only works sufficiently when
the scope of the project doesn’t change during the development phase. This project however, has
had some changes in the scope throughout the development which are explained in the Approach
section together with more information on the exact Agile version that was used. The Agile
methodology made it easy to adapt to the changes. I aimed to have a new complete piece of tested
software which is ready to be merged with the rest of the software at the end of each working week.

Upon completion of each Part (Part 1, Part 2 and Part 3) of the project, the evaluation
experiments for the same were carried out and results were produced.

Weekly versions of software each week were kept to roll backwards if an error occurs or if
evaluation was to be applied only on specific versions with limited features to avoid unwanted
effects in the evaluation results.

1.4 Outcome and deliverables

Below is a list of summarized important deliverables and outcomes of this project:
Part 1:

• Graph database model design;

• Social network application that mimics the basic Twitter functionalities based on the graph
model designed;

• Results and comments of the evaluation experiments comparing the designed mode against
existing similar models.

Part 2:

• A knowledge graph implementation as part of the main database;

• Recommendation engine based on data imported into a graph database;

• Second recommendation engine that uses the knowledge graph to aim for better precession
in user recommendations;

• Graph database populated with real Twitter dataset;

• Results and comments of the precision evaluation experiment ran on both recommendation
engines.

Part 3:

3

• Another knowledge graph implementation as part of the main database with limited information;

• Advanced search algorithm that uses the knowledge graph in addition to the basic graph
data to search for best matches;

• Results of its functionality based on sample subgraph as a knowledge graph

1.5 Audience and beneficiaries

Efficient graph model that can be translated and implemented into a Neo4j database and used
as a store for social media data can contribute towards development of new ideas on how social
media data is stored, processed and manipulated. A better recommendation of users means more
interesting content on the social media and this is what everyone goes for to the social medias.

This creates an a range of audience from database engineers and students to everyday social
media users.

The technical audience, students and database engineers, could use the outcomes of this project
to explore new ways and come up with new ideas of how the data in social media is stored and
manipulated using graphs. The outcome of the experiments carried out can support their work
towards better models and in the extreme case potentially replacing the way Twitter stores and
manages its data to fully using graph database technologies.

With the adoption of successful models by Twitter or other similar social networks, the ordinary
users’ benefits can range from having a faster newsfeed and profile retrieval to having better
recommendations of who to connect with or follow on the social media. These are vital components
as they are one of the key factors for enhancing the user experience.

2 Background

2.1 Graph Databases and Neo4J

In computing, a graph database (GDB) is a database that uses graph structures for semantic
queries with nodes, edges and properties to represent and store data (Bourbakis 1998).

The graph database is a type of NoSQL database, based on graph theory, that stores the data
as nodes and edges rather than the most common way of using tables. It allows linked data to be
represented with the edges of the graph, representing the relationship that two nodes have. Each
node and edge in the graph can have properties attached to it, defining the types of data as nodes
with attributes and the types of the relationships between them.

Nodes can represent entities or instances such as people, accounts, items and other items that
can be tracked. They are equivalent of a row in a table of relational database.

Edges represent the relationships between nodes. They can also hold additional data such as
date when the relationship was created or other relevant information.

On Figure 1 below we can see a simple example of a graph database for a social media. Here,
the nodes represent the users and the edges are the different links that users in a social media can
have.

4

Figure 1: Graph database exampe

The graph database management system used for this project is Neo4j. It is an open source,
NoSQL native graph database that provides ACID (Atomicity, Consistency, Isolation, Durability)
compliance to the developers for backend databases (What is Neo4j?. 2021). It implements the
graph model down to the storage level. What this means is any graph model drawn on a whiteboard
can be implemented in the same structure into a Neo4j database.

More information on graph databases and Neo4J, their applications and the query language
used for querying such databases can be found on Appendix A. The same Appendix A contains a
summary of a study comparing the graph databases performance against the relational databases
in the use case of searching for friends of friends in a social network.

2.2 Main social network components

The main social network components and functionalities I identified, that depend on the database
for their performance, are:

• Basic social network features

• Newsfeed and user profile retrievals

• Recommendation of users

The basic social network features allow the network to grow by registering users, allowing users
to post content, follow or unfollow other users, blocking users and react to other users posts,
searching for users and viewing the followers or following list of users. Those are mainly tasks

5

which require writing to the database. An efficient write to the database stores the information
inputted to the correct place in the database to allow easy retrieval of it when required. We are
all witnesses of the mass of data that is produced every minute on the social networks, so effective
storage of it is vital for stable and quick retrieval of that information.

The newsfeed is also one of the main components in a social network. It is the place where
users of the social network can see all the content posted by the users they follow. New content
can be posted any time, so quick access and display of the newest contents is important for users
to be able to see the latest posts when they log in. Similarly, profile retrieval does the same but
only for a specific user. It displays all the posts by the user whose profile is visited, ordered by the
newest first.

The recommendation of users is an important component mainly for new users who do not
have a lot of content displayed on their newsfeeds, and who want to find something interesting
based on their preferences. The precision of the recommendation engines will reflect on the user’s
satisfaction and ability to find interesting content on a particular social network.

2.3 The problem

Now that we have identified the main components of a social network which performance depends
on the database and queries used, it brings us to the problem that this project is focused on
solving: building and evaluating improved versions of those components using Neo4j as a database
management system and Cypher for querying and updating it. The focus of the project is not on
inventing new components but improvement and evaluation on the above mentioned ones using a
graph database management system, Neo4j, which in theory and some experiments prove to be
better than the most common existing database management system solution, MySQL, used in
the biggest social networks in the world such as Twitter.

Furthermore, the project explores and evaluates the ability of graph databases in NLP (Natural
Language Processing) tasks using knowledge graphs to support the complex components of social
networks such as the recommendation engines which is vital for users engagement and ability to
find interesting content. The problem addressed here is whether knowledge graphs are efficient to
be used as part of a graph database.

2.4 Existing solutions

2.4.1 Max De Marzi and Rene Pickhardt

There have been some similar approaches in the past addressing similar problems. Some of them
are just demonstrations of building a clone of a social network using different database management
systems, but there is one project which focuses on providing solutions for some of the mentioned
components using Neo4j by Max De Marzi titled same as my project: “Building a Twitter Clone
with Neo4j”.

In his project, Max De Marzi builds a social network which clones the main components and
functionalities of Twitter but using Neo4j as a database store instead of MySQL (De Marzi 2021).
He links this project to a previous one of his, where he addresses the problem of newsfeeds and sets
a lot of the weight of the Twitter clone project on the same problem: the retrieval of newsfeeds.
This is also one of the main components and problems addressed by my project, however his version
does not include a recommendation engine based on Neo4j nor on any other DBMS. While studying
his approach to solving this problems, I identified a lot of potential improvements and reasons why
this model of his has not been adopted by any popular social networks. His demonstration was
published in March 2017 so the reason for that is partly the age of this project. Neo4j and Cypher

6

have had many changes and updates which allow more efficient application of the graph database
features in Neo4j. Furthermore, the graph model used in his project is not efficient enough to cover
all of the cases of newsfeed and profile retrievals.

The improvements ideas came to my mind after studying other relevant work for the problem
of newsfeeds and profile retrievals, in a paper which proposes a solution for “Efficient Graph
models for Retrieving Top-k News Feeds from Ego Networks” by Rene Pickhardt (Pickhardt and
Gottron 2012). The paper explains and evaluates the proposed solution graph models against
some naive graph models but not against Max De Marzi’s model which was done after those. A
detailed explanation of the studied models will follow in the section about the Design Process.
Even though the retrieval results of one of the proposed models, Graphity, were very promising, its
implementation and writing tasks to the database were too complex and in some cases too slow.

The graph model proposed by Max De Marzi which is the core of the social network database
store is the main competitor of the model I designed and is used in the evaluation process to
compare the performances of both in different cases.

2.4.2 Jesus Barrasa

Both of the works above do not include any implementation of knowledge graphs or recommendation
engines, topics which are also covered in this project. The relevant works I studied for these
terms were two articles written by Jesus Barrasa. In the first article “QuickGraph#16 The
English WordNet in Neo4j” (Barrasa 2021), he demonstrates the implementation of the English
Wordnet into Neo4j and suggests some use cases. In the second article “QuickGraph#18 Semantic
similarity metrics in taxonomies: A wikipedia example on uncrewed spacecraft” (Barrasa 2021),
he demonstrates an implementation of the Wiki Categories as a graph in Neo4j and uses them
to show how shortest path algorithms can be applied to calculate similarity scores and find best
matches between nodes in a graph.

Both of these articles are not related to social media, but are relevant in the sense that they
demonstrate the implementation of Wordnet and Wiki Categories as KGs.

2.5 Other Thoery

2.5.1 Jaccard Similarity Index

The Jaccard similarity index is used to compare elements of two finite sets to see which elements
are within both sets i.e. form an intersection and which elements are distinct or unique for each
of the sets being compared. The similarity score ranges from 0% to 100%, the higher percentage
representing more similar sets. The Jaccard coefficient as it is sometimes referred to, is defined as
the size of the intersection divided by the size of the union of the sets being compared:

J (A, B) =
|A ∩ B|

|A ∪ B|
=

|A ∩ B|

|A| + |B| − |A ∩ B|
(1)

Similarly, the Jaccard distance, which compares how different the elements in two sets is
obtained by subtracting the Jaccard index derived as above from 1:

dJ (A, B) = 1 − J (A, B) =
|A ∪ B| − |A ∩ B|

|A ∪ B|
(2)

The Jaccard index is used in this project to calculate similarity coefficients between two users
as part of the recommendation engine algorithm.

7

2.5.2 TF-IDF

TF - IDF is a statistical measure which evaluates the relevance of a word that’s found inside a
document within a collection of documents. To achieve this, two metrics are multiplied:

1. how many times a word appears in a document

2. the inverse document frequency of the word across a a set of documents

The algorithm for TF-IDF used in this project can be found in the source code.

2.6 Evaluation terms

2.6.1 DB hits

Each operator will send a request to the storage engine to do work such as retrieving or updating
data. A database hit is an abstract unit of this storage engine work [20].

2.6.2 Big O notation

The Big O notation is a mathematical notation which is widely used in computer science to analyse
cost of algorithms. Essentially it describes the complexity of the code used for an algorithm with
algebraic terms according to how their run time or space requirements grow as the input grows.

For example, if the O notation of an algorithm is O(1), then this algorithm will always execute
in the same time or spaces regardless of the size of the input data set. Similarly, if the O complexity
is O(N) then the algorithm’s performance will grow linearly in direct proportion to the size of the
data set used as an input.

Typically, O notation refers to a very large x, so the contribution of the terms that grow most
quickly will eventually make the other ones irrelevant and thrown out of the O notation. The
following rules are applied to rule out irrelevant terms when calculating the O notation:

• If we have f(x) is a sum of several terms: If there is one with largest growth rate, it can be
kept and all others ignored.

• If we have f(x) is a product of several factors: any constraints (terms in the product that
do not depend on x) can be ignored.

For example, let:
f(x) = 3x8 − 2x2 − 7 (3)

To simplify this and derive the O complexity we need to describe the growth rate of x. The
function above is a sum of three terms: 3x8, −2x2 and −7. The one with the largest growth in
this case is the one with the largest exponent or 3x8. If we apply the second rule mentioned above
for 3x8, we can see that it is a product of 3 and x8 in which the first factor does not depend on
x. If we discard this, we are left with x8. Hence, we can say that the O complexity is x8. This
expressed mathematically is written as follows:

f(x) = O(x8). (4)

The Big O notation is used in the first part of this project during the designing process of the
graph models for evaluation of their complexities when retrieving news feeds.

8

2.7 Constraints

The solution of the problem in this project is limited because of some constraints encountered
during it. Those constraints have caused some of the initial requirements from the initial plan to
change.

Firstly, the main constraint of this project and the idea of solving the problem was the time
given to complete it. Even though I have based my initial plan on the time given, some of the
objectives required more than the planned time which caused others to be removed from the scope
or changed with objectives which are less time consuming.

Some important constraints that I encountered were:

• Lack of processing power which caused limited evaluation of the designed graph models and
recommendation engines. It also stopped me from implementing fully the desired knowledge
graphs that I needed for a more complete demonstration and evaluation. Even the ones
that were fully implemented took a significant time from the project, occupying most of the
processing power and decreasing my productivity.

• Lack of disk storage space which caused limited or partial implementation of the Wiki
Categories knowledge graph used for the advanced search feature. The size of the pages
in Wikipedia available to be linked to all categories was too large for my machine to handle,
so a partial implementation is demonstrated in the project.

• Covid-19 symptoms and effects on the mental health had played a part in decreasing my
productivity in certain periods during the project.

• Lack of examples and documentation of the py2neo library. The documentation examples,
even though covered a lot of the things, lacked the appropriate examples for very important
features which either costed me a lot more time than expected or led to a more complex and
not so efficient solutions for some queries.

2.8 Tools used for the solution

2.8.1 Python

The Twitter clone used for this demonstration is built with Python version 3.7.1. The main
framework used to build the web application and the connection between the backend database
and the front end component is Flask version 1.0.2. Py2neo version 2021.0.0 was used to establish
connection between the Neo4j local graph databases and the application as well as to allow retrieval,
deletion, updating and insertion of nodes and relationships as Python objects. To complete some
of the experiments on the evaluation of the recommendation engines created, I used tweepy version
3.10.0 to extract actual tweets from Twitter accounts and create a dataset.

Flask is a Python web framework use for developing web applications. Amongst others, the two
most appropriate choices I had were Flask and Django. Even though Django offers more features
including its ORM (object-relational mapping) and uses data models, Flask is more suitable for
small size projects such as mine. In addition to that, I had a lot more previous experience with
Flask compared to Django and this saved me a lot of time for working on the project rather than
studying a new framework which probably would have done very similar job.

9

Py2neo is a central library and toolkit for working with Neo4j within Python applications. The
library contains built in objects Nodes and Relationships which allow easy creation, retrieval and
modification of the nodes and relationships in a Neo4j database. It is maintained by a volunteer
basis by Nigel, which means there is not official support for bug fixes and features that the Neo4j
company pays for. The other option that I could choose was the official python driver for Neo4j.
It is officially supported by Neo4j in contrast to py2neo. The reasons why I chose py2neo over the
official Neo4j driver are the following:

The official py2neo handbook says: “When considering whether to use py2neo or the official

Python Driver for Neo4j, there is a trade-off to be made. Py2neo offers a larger surface, with both

higher level API and an OGM, but the official driver provides mechanisms to work with clusters,

such as automatic retries.” (Small 2021). As my application is for study purposes, I don’t need
continuous support from Neo4j or clustering as the deployment of the application is not within the
scope of this project.

Furthermore, while I was researching both of these tools, I found that the configuration, setup
and structure of the tools when used with Python is more complex, which would have resulted
in longer time used in studying it. As time was one of my main constraints, and py2neo clearly
offered enough to me to fulfil the requirements of this project, I decided to go with it and use the
time for project work rather than setting up clusters officially supported by Neo4j.

Tweepy a Python library designed to access the Twitter API which allows access to real Tweets
in variety of formats. I have used it to create a dataset for the evaluation of my recommendation
engines. To access the Twitter API, a Twitter “developer account” is required. Once such account
is acquired, some authentication credentials are generated to get the access to the services it offers
and those are:

• Access Token;

• Access token secret;

• Consumer key;

• Consumer secret.

With those credentials, connection to the Twitter API can be established using Tweepy and
Tweet objects can be streamed which can include different information such as:

• “text”, containing the actual contents of the tweet;

• “user” ,which contains the Tweeter username of the author of the tweet;

• “created_at”, which holds the exact date and time the tweet was posted.

Some other options included “IFTT”, “Zapier” and “Tweet download”, but they were all
consumer-based and not as simple to use as the Tweepy library.

2.8.2 Neo4j

The version of Neo4j used for this project is 4.2.4.

10

Cypher is the language recommended by Noe4j for graph querying which allows storing and
retrieving data from graph database.

APOC, neosemantics and APOC’s nlp dependencies are used for more automated
querying of the database, in particular when importing large amounts of data or when accessing
external APIs compatible with Neo4j. All three of them are Neo4j drivers and are used as a part of
a Cypher query. APOC, which stands for Awesome Procedures On Cypher, as the name suggests,
includes over 450 standard procedures providing variety of functionalities for utilities, conversions,
graph updates and more (Neo4j APOC Library - Developer Guides. 2021). The APOC version
used in this project is 4.2.0.0. It is mostly used to create iterative updates and conversions of data
types.
Further details of the mentioned plugins and their versions can be found on Appendix F.

Neosemantics (n10s) version 4.2.0.0 is a plugin that enables the use of RDF in Neo4j. RDF
is a standard model for data interchange on the Web used for representing highly interconnected
data (RDF - Semantic Web Standards. 2021). Its features allow merging data from sources with
different schemas and later changes in the schema without forcing the data to be changed according
to the schema changes. The use of neosemantics and RDF(Resource Description Framework) in
this project is for the implementation of knowledge graphs into the database.

APOC nlp dependencies version 4.1.0.6 were used to establish connection with the Google
Cloud platform’s Natural Language API which lets users derive insights from unstructured text
using Google machine learning. To access the services and generate an API key, I activated the
90 day trial service offered by Google Cloud platform. I have used the APOC nlp dependencies
to make API calls and process texts from the tweets generated using the Twitter API during the
development of the advanced search engine. The outcome was extraction of entities recognised
in the provided tweets along with some interesting data which was linkable to the Wikipedia
categories. There are many values returned from the API about the entities identified, but the
ones that this project is concerned with are:

• “entity.metadata.wikipedia_url”, containing a URL to a Wikipedia page if the entity was
linked to one, and

• “entity.name”, which is the name of the entity identified.

2.8.3 Applications used for designing and development of the solution

The main application used for coding the Twitter clone was PyCharm version 2020.3 Community
Edition. I chose this one because it is specifically built for programming in Python language.

To create all graphs models during the designing process, I used an online graph creating tool
called Arrow tool (Arrow Tool. 2021). I chose this application because it has a feature to export
the graphs created in to Cypher code and because it is recommended by many Noe4j experts who
also use it to design their graph models.

For exploration and monitoring of the implemented graph databases I used the Neo4j browser
version 4.2.6. This browser allows to visually see the results of executing Cypher commands in
the form of subgraphs with colourful nodes and labeled relationships which helped me validate the
changes and updates I implemented.

11

2.9 Research Question

In order to develop an improved and more efficient version of a graph model suitable for a
social network that mimics the basic functionalities of Twitter, it will be necessary to explore the
current solutions and identify anomalies or performance withdrawals by studying and evaluating
the designs, creating mock-up designs and eventually finishing with a graph model with improved
efficiency in the areas identified as bad performing. To further explore the ability of graph databases
in such applications, some of its more complex features such as the use of knowledge graphs will
have to be implemented to support more complex Twitter features such as user recommendations
or searching, and evaluate the same.

3 System Specification

The basic components of a social network identified and also listed above in the Introduction
section are:

• Basic social network features

• Newsfeed and user profile retrievals

• Recommendation of users

These are just high level terms which are built of many sub-components which describe the
whole system.

3.1 Basic social network features

The basic social network features from a user perspective are:

• User registration

• User login

• Creating a post or “tweeting”

• Following and unfollowing users functionality

• Blocking and unblocking users functionality

This project implements these features on a graph model designed for the use of graph database
as the main store for the social network data. To make this possible in a graph database, an efficient
graph model design is required which will fulfil the requirements of the basic social network features.

Below are the requirements for the basic social network features, from the graph database point
of view:

12

Requirement Expected database behaviour
User registration On successful registration form validation, the graph database creates

a node labeled “User”, containing the new user details as properties
of a node.

User loign On successful login form submission, the database checks the user
credentials inputed in the form against a node retrieved from the
graph which username field matches the username field from the login
form.

Creating a post or
"tweeting"

On post submission, the database creates a new node in the graph
labeled “Post”, containing the new post details as properties of a
node. The database also creates a relationship that links the new post
to the creator or published of the post. If any hashtags are included
in the text, nodes of type "Tag" are created with a relationship linking
the tag to the post that it was extracted from.

Following & unfollowing
functionality

On follow, the database creates a directed relationship to link the
user to the user being followed. On unfollow, database separates the
link between the two users by removing the relationship.

Blocking & unblocking
functionality

On block, the database creates a relationship to link the user to
the user being blocked. The database also removes any other
relationships between the two users such as following relationship.
On unblock, the relationship for blocking the user is removed.

Table 1: Basic functionality database requirements

The created relationships and nodes must contain properties which will be used for identification
or sorting purposes such as username or date of post creation. As this project aim is on evaluating
the abilities of graph databases, the list of properties required to that is short as I tried to keep
the details to minimum in order to stay within the scope of the project.

Below are tables with the essential properties requirements for the nodes and relationships that
are necessary for the experiments to be carried out:

Node Label Properties and their types
User username (string),

password (hash string)
Post id (uuid string),

text (string),
timestamp (integer),
date (datetime)

Tag name (string)

Table 2: Nodes properties requriements

13

Relationship Type Porperties
FOLLOWS timestamp (when the follow relationship was created)
TAGGED
BLOCKS timestamp (when the block was created)
POSTED

Table 3: Relationship properties requirements

3.2 Newsfeed and user profile retrievals

The newsfeed and user profile retrieval is one of the most important components of a social network
which is fully relying on the database model and its ability to retrieve organised information quickly.
The profile retrieval refers to “Profile Page” where logged in users can visit other user’s profiles
and see their tweets. To align with the users’ performance and content expectations, a newsfeed
must:

• Display only recent posts, sorted by time, the top one being the most recent

• Display only relevant posts (posted by users who the logged in user follows or only posts by
the user whose profile is being visited)

• Display the content within reasonable waiting time

For a graph database to serve as as the main store for the social network data, it must be able to
support the functions listed above. To achieve this, there are some requirements and preconditions
the database must fulfil.

3.2.1 Main Requirements

Below is a specification list of what the database must be able to do on user request, preconditions
/ what the database must have had or has done prior to the user request, how they could be
achieved in a Graph Database and justification of each requirement:

Requirement 1:

• Retrieve “Post” nodes with relationships linking them to users who created them

How is it achieved: By searching for a directed pattern from a "User" node to a "Post" node

Preconditions:

– Created nodes for each registered user of type "User"

– Stored the tweets published by users in nodes of type “Post” linked to their authors via
relationship “POSTED”

– Updated itself with the most recent contents that are created by the users of the system

Justification: This is essential for the retrieval of the news feeds because all of the information that
is to be displayed to the users is stored within the nodes in the graph. Retrieval of its
relationship to the authors is also important because the display of a tweet includes the
information about who posted it.

14

Requirement 2:

• Filter out the relevant users

How is it achieved: By exploring the "FOLLOWS" relationships in outgoing direction from the logged in
user to the users being followed for the newsfeed case and by selecting a node matching
the username of the profile being visited in the profile retrieval case.

Preconditions:

– Kept records of who follows who by creating directed relationships between the corresponding
“User” nodes

– Updated itself with the most recent contents that are created by the users of the system

Justification: This is important in order to retrieve only posts who are posted by users that the logged
in user follows. This fulfils the users expectations by selecting only relevant posts.

Requirement 3:

• Filter out relevant posts

How is it achieved: By exploring the “POSTED” relationships in outgoing direction within the graph from
the relevant users or user in the case of profile viewing

Preconditions:

– Stored the tweets published by users in nodes of type “Post” linked to their authors via
relationship “POSTED”

– Updated itself with the most recent contents that are created by the users of the system

Justification: This is important because there could be different relationships linking a user to a post.
For example, a user could be linked with a relationship "LIKES" which would represent
the user liking a specific post which could be a post with a different author. In this case
we wouldn’t want the database to retrieve those posts, but only the ones whose author
is the user we are interested in.

Requirement 4:

• Sort the retrieved posts in a descending order according to the time they were posted

How is it achieved: By using a sorting algorithm or function. The property that will be used for comparing
the posts retrieved is timestamp. The timestamp is a value which becomes greater every
moment, meaning that if we use a descending function, the post with the highest value
of its timestamp will be the first and that will always be the most recent one.

Preconditions:

– Stored the correct date and timestamp properties for each "Post" node

– Updated itself with the most recent contents that are created by the users of the system

Justification: This is the important functionality that the database must be able to do in order to
display the posts in the desired order. A newsfeed wouldn’t be newsfeed if it doesn’t
post new posts, would it?

Requirement 5:

• Group the relevant information from the retrieved nodes and relationships

15

How is it achieved: Select the properties required from the nodes and the relationships and put them into
arrays. For example, the text of the post, the date when it was posted, its author’s
username and the tags identified.

Preconditions:

– Extracted the tags identified in the tweets’ texts into “Tag” nodes and linked them to
their posts via “TAGGED” relationships

– Stored the correct properties details for each "Post", "User" and "Tag" node.

– Created relationships of type "MENTIONS" when a user is mentioned in a tweet

– Updated itself with the most recent contents that are created by the users of the system

Justification: This is essential for the data to be understood by the other components of the system
who do not speak the nodes and relationship language. Jinja and HTLML for example
do not understand what a node or relationship is, but they understand what a string
in a list is.

Requirement 6:

• Allow access to the frameworks to transfer the data retrieved to the front end

How is it achieved: By establishing a connection between the front end and the back end graph database.

Preconditions:

– The database server is running / is active

– There is internet connection

Justification: This is important to create a pipeline for extracting the retrieved and processed information
from the database to the front end of the system. The transfer to the front end
is essential because this is the place where it is constructed into human readable
information and displayed to the users.

3.2.2 Non Functional/ Performance Requirements of the Graph Database Model

The database will also be expected to complete the user requests within a reasonable time and
without excessive storage needs. Graph databases have been proven to be quick in such applications
for some tasks such as the retrieval of friends of friends to different levels. This project, in terms
of the runtime performance, will demonstrate the design and implementation of a graph model
which aims to:

• Complete the database requests/ calls within a quicker time than the already existing models
explained in the Background section

• Complete the database requests/ calls with the least possible data hits and less than the
already proposed solutions

• Store the data on the social network and occupy the least possible space without affecting the
runtime and database hits, and within a reasonable margin compared to the other approaches
with a preference and aim for even less space requirements

• Update the database with new data without too expensive write functions

16

These are important requirements and they align with the aims of this project. A graph model
that fulfils those requirements is going to be a model with possibly the best performance in its
category of graph databases for such applications. This could lead to its acceptance and further
work application to be implemented into real social networks.

3.3 User recommendations

3.3.1 Basic Recommendation

The problem concerned with how graph databases can be used in social network applications to
enhance the user recommendation can be solved by designing and implementing a recommendation
engine which must be able to:

Requirement 1:

• Extract appropriate “keywords” from the tweets of each user

Preconditions:

– The database is active

– The database must be populated with reasonable number of real tweets (Real tweets
refers to tweets which contain real content i.e. extracted from real Twitter accounts)

Justification: Keywords are the main terms which will decide how two users are similar. Based on
the keywords (which ideally would represent topics that users talk about) we can find
out who else talks about the same topics using a recommendation engine.

Requirement 2:

• Explore all users who are not followed already by the user logged in

Preconditions:

– The database is active

– The database has stored relationships of who follows who

Justification: It is important to recommend something new, users who are not yet followed, but have
similar content.

Requirement 3:

• Search for common keywords between users

Preconditions:

– The database is active

– The keywords from all tweets are extracted

– The database created relationships to link keywords to all tweets they are relevant to

Justification: The common keywords are important to determine who users to recommend. Generally,
the more common two users have, the more likely is for them to be recommended to
each other.

Requirement 4:

17

• Compare the number of common words between all users

Preconditions:

– The database is active

– The keywords from all tweets are extracted

– The database created relationships to link keywords to all tweets they are relevant to

Justification: Same as the above.

Requirement 5:

• Return top n users

Preconditions:

– The database is active

– The recommendation query has successfully returned the results with similarity scores
in descending order

Justification: Returning only the top n number of users is essential to avoid over informing the user
with irrelevant users in the bottom of the list.

The solution would ideally return and display to the users a list of top n users. Top n users
refers to a specified number n of users who have the highest similarity rating. The similarity rating,
as mentioned, can be calculated in different ways and using different similarity algorithms. The
similarity algorithm is part of the Cypher query which is used to make a call to the database.
On call, the graph database must complete the above stated requirements in order to achieve a
basic form of recommendation. The proposed query types, extraction of keywords techniques,
common keyword searching techniques and similarity algorithms choices are be detailed in the
Design section.

3.3.2 Improved Recommendation

Even though some tweets contain only text, they are written by humans and humans are emotionally
smart and intelligent people who all use different types of words to express themselves. This
contradicts the naive use of recommendation engines - looking at keywords simply as text. So the
exploration of the ability of graph databases to efficiently recommend users is extended into use of
Knowledge Graphs. The problem they are concerned with is learning more about the “keywords”
extracted form tweets. Rather than just looking into the spelling of the keywords, good and
efficient recommendation engines look deeper. By learning more about the keywords, the system
will eventually recommend users more accurately based on different perspectives.

To solve this problem, a deeper examination of the keywords is required such as finding their
lexical and semantic meaning, the category they fall under, the type of word as part of a Language
they and many more. Those problems are usually solved using NLP techniques. There are many
types of semantic and lexical meaning, many types of category lists which can be used to connect
things and many NLP techniques. This project focuses on applying NLP techniques with Graph
Databases, using Knowledge Graphs. The details of the solution will follow in the Design and
Implementation sections.

The solution of this problem should:

1. Implement a NLP technique using graph databases into the recommendation engine

18

2. Gain deeper knowledge of the extracted keywords

3. Construct new relationships in the main graph to represent the knowledge gained

4. Use the new relationships to enhance the recommendation engine with higher precision

4 Design

The design of the solution describes how the requirements and specifications in the above section
are achieved, on a high level. It does not include any programming code, but rather models of how
components are going to be connected and how they are going to interact in order to achieve the
desired outputs.

The first section contains the design process of the graph database model used to store, manage
and update the social network data. The reasons and justifications of choices for specific parts of
the design are also highlighted in this section. The derived final design is the proposed solution
for the identified problems regarding the basic social network features, newsfeeds and user profile
retrievals and recommendation of users. It shows how the components of one graph database, the
nodes and relationships as well as their types should be connected to each other in a graph to fulfil
the requirements specified.

4.1 Deriving the graph model

The main metric used during the design process to predict the performance of the different solutions
is the Big O notation explained in the Background section. Furthermore, I created a table to refer
to different terminologies while discussing the design of the solutions:

Term Notation
Nodes A ∪ P

User nodes A

Labels L = {FOLLOWS, POSTED}
Edges E ⊂ V × L × V

Post nodes P

Size of the network n = |V + E|
Node degree d

News feed length k

Average of Post nodes per user u

Table 4: Graph model design notation table

Using this table, the problem of retrieving the top-k newest posts for a user a can be formalised
as:

Newsk(a) which is defined by Newsk(a) = Topk(Sort({p ∈ P}) where {a ∈ A}; p has
relationship l where l = "FOLLOWS" and {l ∈ L}; Sort is a generic sorting function used to
sort the posts by their timestamps and Topk returns the most recent posts or the first k elements
returned by the Sort function.

19

With the aim of better and more efficient graph model, I began drawing and studying the
existing models to identify areas of improvements. As discussed in the Background section, the
main competitors with the graph models were Max De Marzi and Rene Pickhardt. My final solution
ended up as a hybrid of the best features of both of these models. In particular, I combined the
dated relationships from Max De Marzi’s model and the linked lists from Rene Pickhardt together
into a hybrid model which take advantage of both of these features. To explain what each of
these functionalities mean within the graph design model problem, I re-drew their models using
the Arrow tool.

4.1.1 Naive star topology model

Firstly, I will describe a basic naive start model which also satisfies most of the basic requirements.
Below is the drawing of it:

Figure 2: Naive star model

This model uses the star topology. It simply creates a relationship directly from and to the
involved nodes. In other words, for every new post, a “POSTED” relationship is created from a
“User” to a “Post” node. This is very easy to implement in a database and requires only a single
write operation, however the retrieval of the newsfeed is inefficient.

Even though this model satisfies the functionality requirements it is not very efficient. The
main reason is that it involves breadth first search of depth 2 to reach out to the “Post” nodes. It
has to explore all "Post" nodes in order to be able to sort the same by the time they are posted.
Doing this for all users and all their posts would produce an algorithm with O complexity of
O((d × u)log(d × u)) (Pickhardt and Gottron 2012).

4.1.2 STOU by Rene Pickhardt

Moving on, STOU is an improved version of the naive model above which uses the star topology. It
was designed by Rene Pickhardt and aims to solve the newsfeed problem using graphs. To achieve

20

its better performance it uses linked lists. Below is a drawn representation of this model created
with the Arrow tool:

Figure 3: STOU model

The main idea behind this model is that every time a user posts, a new post node is added
to the head of the linked list, representing the most recent post that a particular user has posted.
Starting from the head then we can just follow the “NEXT” relationship to get the second, third
etc. most recent posts of a user. Having this ability to know exactly where the next post of a user
is positioned, we do not need to go over all posts of a particular user to retrieve the n most recent
posts, therefore the sorting time is decreased as well as the exploration of all nodes. This model
can be used in a graph database to satisfy the 6 basic requirements, it just uses “NEXT” instead
of “POSTED” relationship to connect the users to their posts.

However, this model still requires us to sort at the end, after we retrieve the n most recent posts
from all users because we can only display k posts to the newsfeed and a user could be following
a lot of other users that post often. In addition to that, the drawback of having to explore every
other user that the user follows is still present because we still don’t know who of all the users
posted most recently until we sort them. This gives us the O complexity for retrieving news feed
of O(d × log(d)) (Pickhardt and Gottron 2012).

21

4.1.3 Max De Marzi’s model

The most efficient models of those, judged by their design is Max De Marzi’s model (De Marzi 2021),
so it is the biggest competitor that I will evaluate mine against. Most of it is generic and similar to
the star model except the unique feature of his project which is use of dated relationships. Instead
of using “POSTED” or “NEXT”, Max De Marzi’s solution uses dated relationship to represent the
link between a “Post” node and its author “User” node in the format “POSTED_ON_{DATE}”
replacing the contents of “{DATE}” with the date that the post is created on. For example,
“POSTED_ON_2021_04_17” would be a relationship between a user and a post posted on 17th
of April. Below is an image of Max De Marzi’s graph model drawn with the Arrow tool:

Figure 4: Max De Marzi’s model

This technique of using dated relationship effectively eliminates the traversal of all posts that
each user has posted which in some cases drastically increases the performance; in particular when
retrieving newsfeed of a user who follows profiles that post every day. The elimination process
can be altered, but Max De Marzi in his documentation eliminated every post that does not have
a relationship dated either today or yesterday. We can imagine how much the graph traversal is
decreased for users who post every day. Essentially, we will always visit only nodes in the graph
which have a dated relationship today or yesterday. For example, if a user posts 10 posts per day
for 1 year, that will be approximately 3650 posts. Using this model, instead of traversing the graph
for 3650 “Post” nodes, we only visit 20 “Post” nodes.

This is not a perfect model and there are of course a lot of limitations to this model when

22

compared against others or when analysed in different scenarios. One scenario in which this model
would perform bad is when you need to retrieve a User’s profile i.e., visiting other user’s profile.
Since all posted relationships are dated, an iteration over many days has to be done in order to
retrieve the k number of posts for a particular user. Another bad case scenario is for retrieval of
newsfeed of a user who follows users who post a lot per day because this model has to get all posts
from those m most recent days in order to retrieve the Topk. The O complexity for this model is
O(d × u × |L|) where |L| is the number of items in the set containing all relationships (the number
of the dated relationships explored).

4.1.4 Early version of the solution model

The process of deriving the design of my graph database model included studying new features
of graph databases, detecting issues in the other existing models which are explained but also
taking notes of their good features, drawing sketches and briefly evaluating them using the Big O
notation.

The first version I created was based on the linked lists feature used in STOU and the use of a
Knowledge Graph representing the Gregorian calendar. It used to connect each “Post” node to a
“Day” node of the Gregorian calendar graph. That way, I was able to filter out which days I want
the posts about, simply by following the graph relationships from “Post” nodes that end up into
particular set of nodes, for example, day 1 and day 2 of month 4. Below is an image of the early
version of my model:

23

Figure 5: Gregorian calendar Model

Even though this was a promising model that fulfilled all basic requirements, it would have
had problems with performance. Yes, it successfully filters the posts by date and leaves us only
with relevant posts from the days we tell it to because of its relationships to particular days, but
it does it with the cost of exploring the knowledge graph of the Gregorian calendar in further
depths which increase the processing power and time it takes to filter those posts. We can see this
drawback by looking at Figure 5 above.

For example, to find out the date a particular post was posted on and decide whether to include
it in the newsfeed of a user, we need to hop the day node that it is attached to by following the
“ON” relationship, then validate the month and then the year. This process increases the depth
of exploration of the graph by 3 levels and we know that the deeper we go, the more nodes and

24

relationships are being traversed and visited respectively which causes worse performance.

4.1.5 Solution model

After many attempts, I was able to filter out the “bad” and “good” features of the models I studied.
The best features that seemed to increase the performance and decrease the Big O complexity of
the models are:

• The linked lists in the STOU model and

• The dated relationships in Max De Marzi’s model

At this point, I knew that I want to include these features in my project, so I decided to
combine both of them in one graph. During the merging process I encountered some constraints
which affected other parts of the system, but eventually I was able to derive the hybrid design
which aims to outperform the current solutions and serve efficiently as a graph database for a
social network application. The final model can be seen on Figure 6 on the next page:

25

Figure 6: Solution Model

26

We can see from the Figure above that this model creates only one direct relationship from a
“User” node to a “Post” node. That “Post” node which is directly connected to the “User” is the
head of the linked list of “Post” nodes that are chained by the same type of dated relationships
to the head and the to each other. I have also included a “BY” relationship which links each post
to its creator “User” node. The reasons for that can be found in the justification of the model. If
we examine the functionality of this model, we can confirm that it fulfils the basic requirements
stated as it is. The next section justifies my design choices and why I believe the performance of
this graph can satisfy the non-functional requirements of a graph database if used in one.

4.2 Justification of the solution model

The benefits of the linked lists are explained underneath the STOU model section, which is where
this type of relationships is introduced. The same reasons apply behind the design of my model
too.

If we look at the first version of the model, with the Gregorian calendar, we can see that it uses
the linked lists in a different way. Instead of using “NEXT” relationships, which do not provide
any other meaning than telling us where the next most recent post is, it uses dated relationships
as the main link in the linked list. This is where the merge of the two brilliant features happened.
We have linked list, which was the main idea behind STOU and the dated relationships which
enhanced the performance of Max De Marzi’s model. The whole knowledge graph containing the
Gregorian calendar was replaced by the dated relationships. Not only it made the graph simpler
to implement, it decreased the traversal depth level by 3 which in theory would perform better
than the model with the Gregorian calendar.

Compared to STOU, this model does similar job in trying to cut down the nodes to be explored,
but does it even more effectively because of the dated relationships. Whereas by setting a limit
of 5 hops through “NEXT” relationships in STOU we can eliminate a lot of “Post” nodes being
visited, we might still include posts who are irrelevant. An example case is when a user rarely
posts, but have been a user of the social media for a long time. If we assume that they tweet
once every week, in 2 years they will have approximately 104 tweets. The limit of 5 with “NEXT”
relationships in this case will filter out most of the posts, but will contain 4 posts which are old
and should not be part of a newsfeed. Using dated relationships, with limit of 5, my model can be
adjusted to traverse only relationships which contain particular set of dates. That way, my model
would only retrieve 1 of those 104 posts if it was posted in the range of days we are searching for
(most of the time 1 or 2 days starting from today’s date).

Finally, if we compare it to the biggest “competitor”, Max De Marzi’s model, the difference
comes from the use of linked lists. Rather than eliminating only by days, with my model we can
also set a limit of hops in the linked list which enables the database to retrieve only certain amount
of tweets posted by a user on a particular date. A scenario where this performance difference can
be seen is if we have a user who posts many posts per day. That could be for example a News
account on the social network, who tweets 50 times per day. Max De Marzi’s model eliminates
only by date, which in this case will mean filtering down to 100 posts per such user in a given
range of 2 days. In addition to that, sorting those 100 posts in the desired order can be a complex
and significantly time consuming considering the importance of the speed of newsfeed and profile
retrieval. To avoid this, my model can be adjusted to go only up to 4 hops per user, traversing
relationships which contain the dates of today and the day before today. In this way, only 4 posts
of those 50 will be retrieved per user. Not only that, but they will already be sorted as the graph
stores them as linked lists, deepest hop level being the oldest post in the chain. We can imagine
how big of advantage is this in such scenarios. To visualise the explained scenario I created 2

27

simplified graphs highlighting the nodes that will be retrieved for my model on Figure 7, and the
nodes that are NOT retrieved in Max De Marzi’s model on Figure 8:

Figure 7: Solution model example of performance

The green “Post” nodes are the only ones that would be visited and retrieved if I set the limit
to 4 because I am sure that those are the most recent posts because of their position in the linked
list.

28

Figure 8: Max De Marzi’s model example of performance

With Max De Marzi’s model, all Post nodes have to be retrieved except those who are not
posted on the provided range of dates used in the dated relationships (circled in red) because they
need to be sorted and reduced to fit a newsfeed page.

This is just a simplified graph. There could be users who post from 50 to 100 tweets per day
so we can see the efficiency of the linked lists here.

4.2.1 Constraints

There were some constraints which required some additional updates to the graph model because
it was affecting the overall functionality of the system. One issue I had was after getting rid
of the simple, not dated, “NEXT” or “POSTED” relationships and replacing them with dated

29

relationships in the linked list. This caused the retrieval of all posts to be a difficult task as I had
to iterate over so many types of relationships as there could be many dated relationships. This is
a very common task which is involved in many operations such as recommendations, displaying
total number of posts and others, so to counter this issue and simplify the task of getting all user
posts efficiently I added the “BY” relationship to my design linking every post to its author “User”
node.

For the purpose of evaluation, the graph models I designed is only concerned with the basic
Twitter functionality and does not represent a model for the complete features of the actual Twitter.
The reason for this is that it becomes too complex and the time given is too short to consider all
Twitter features.

Some of the node designs include limited number of features compared to the actual Twitter
or other social medias and this is because they are not needed for the purpose of this project.

Both the early version and the final solution models show limited number of relationships for
the purpose of demonstration. The constraint stopping me from adding all used relationships
is the tidiness of the model for the purpose of demonstration and understanding. Some other
relationships include:

• “RETWEETED_ON_{DATE}”: this relationship connects “User” to “Post” directly or
“Post” to “Post” in the linked list solution model

• “MENTIONS”: connects a “Post” to a “User” whenever a particular username corresponding
to “User” node is included in the text of a “Post” node

• “BLOCKS”: connects two “User” nodes if a block command is issued

4.3 Recommendation engines design

Based on the specifications, two different design solutions are proposed for the the recommendation
engine. One which is using only the general social network data (users, posts, tags and their
properties) to find common words and another which uses Knowledge Graphs to find common
words. In addition to that, a similarity algorithm is discussed to be used for calculating similarity
scores between users. Both recommendation engines require pre-processing of the data and a
possible solution is discussed in the design process.

4.3.1 Populating the database

To enable recommendation engines to do their job, the database must be populated. This is also
one of the preconditions in the specifications section. The population of the database could be
done by exporting tweets using the Twitter API and having a Twitter developer account. With
those two, a specific number of most recent tweets from a specified account can be extracted in the
form of a dictionary containing the username and properties of the tweet. The main property we
are concerned with is the text of the tweet. This is all we need to do the recommendation based
on keywords or topics. The pairs of username and text can can be extracted in a CSV file which is
then used for populating the Neo4j database. To populate the database, a simple function which
creates nodes of type “User” and nodes of type “Post” can be developed for each pair of username
and tweet text. The Wordnet also must be imported as a graph to serve as KG in the database.

30

4.3.2 Pre-processing of data

The suggested method for pre-processing the tweets in order to extract keywords is with the use
of TF-IDF algorithm. Brief explanation is included in the Background section. The details of this
algorithm are not within the scope of the project as it is not related to graph databases.

In addition to that, all tweets extracted from the actual Twitter must be filtered from:

• Spelling mistakes

• Emojis

• RT sign suggesting it is a Retweet

• Punctuation

A python function with some supporting libraries which takes care of those can be programmed
to solve this issue, which also doesn’t fall within the scope of the project as this is not done with
graphs, so further details are not included in this report, however the code used will be available
in the source.

After filtering the tweets and applying the TF-IDF algorithm to all tweets in the graph database,
the “topics” which users talk about are extracted as keywords. Those keywords need to be
represented in the graph to allow use of patterns to detect common keywords. This is the part of
the pre-processing which this project is concerned about.

The proposed design solution for representing the keywords in a graph is described in the form
of a subgraph which can be seen in on Figure 9 below:

Figure 9: Pre-processing of data

The basic idea is that the graph database would create “Keyword” nodes for every unique
keyword identified. Those keywords will be linked to the “Post” nodes they are extracted from
with a “HAS_KEYWORD” relationship. If the same keyword is extracted for a second time from

31

different post, new “Keyword” node is not created, but instead just a relationship linking it to all
posts it is found in.

This creates a way to traverse the graph and connect “User” end nodes through the “HAS_KEYWORD”
relationship which holds a link between different posts which are potentially posted by different
users. Example of such connection is on Figure 9 above, the middle “Keyword” node which
connects the two users through their posts. The idea is that those paths which connect two users
will contribute to the similarity score between them. More on that is discussed with the similarity
algorithm description.

4.3.3 Similarity score calculation

To calculate the similarity score between users there are many algorithms available. During the
design process, I decided that the Jaccard Index of similarity would be most appropriate for this
type of similarity. The formal definition of Jaccard Index is explained in the Background section.
This section describes how is it applied in this project as part of the recommendation engine.
Essentially, the Jaccard index is the cardinality of the intersection set divided by the cardinality
of the union set of two sets. In this case, the two sets would contain all the keywords extracted for
two users A and B respectively. An example subgraph with highlighted sets can be seen on Figure
10:

Figure 10: Jaccard Similarity Model

As we can see here, the set A, highlighted in blue, contains the following keywords: bitcoin,

32

dogecoin, blockchain and technology. The set B, highlighted in red, contains the following keywords:
blockchain, technology, medicine, records. To formalise this, we have:

setA = {bitcoin, dogecoin, blockchain, technology} (5)

setB = {blockchain, technology, medicine, records} (6)

From this, we derive the intersection and union of the sets:

A ∪ B = {bitcoin, dogecoin, blockchain, technology, medicine, records} (7)

A ∩ B = {blockchain, technology} (8)

Giving us the following cardinalities:
|A ∪ B| = 6 (9)

|A ∩ B| = 2 (10)

The similarity score between user A and user B can then be calculated as:

|A ∩ B|

|A ∪ B|
=

2

6
= 0.33 (11)

4.3.4 Basic recommendation engine

The first recommendation engine, as mentioned, uses only general social network data. This
includes users, posts, tags and their properties. The process of recommending users, as required
in the specifications, first extracts keywords from the texts of “Post” nodes and then uses them to
decide which users are best matches.

The solution for this recommendation engine could be a Cypher query which looks for the
common keywords including a part which implements the Jaccard Index similarity algorithm as
part of it. The query simply needs to create a pattern which reaches from user A to user B which
are connected with a “Keyword” node, as described during the pre-processing of data design. Every
successful reach from user A to user B through a keyword node would increment the cardinality of
the intersection set. This is because for two users A and B to be connected via a “Keyword” node,
they must be both individually connected to the same “Keyword” node. An example subgraph
showing an increment of 1 to the intersection set cardinality between two users can be seen on
Figure 11:

33

Figure 11: Intersection

From the other design explanation we know that “Keyword” nodes have unique name properties,
hence the two users have the same keyword. The query should also count the total number of
“Keyword” nodes each of the users is connected to individually to calculate the cardinality of the
union set. Finally, the division should be applied and the Jaccard Index for these users will be
derived.

If we do this for all users, starting from a specified “User” node, we will find the Jaccard
similarity score between each user in the database and the specified start “User” node. This then
allows us to sort them by the score and find out which users have the highest similarity score and
recommend those.

4.3.5 Recommendation engine with KGs

The second recommendation is based on the same idea as the first one but in addition to that
uses Knowledge Graphs with the aim to improve the recommendation of users by increasing the
precision score. The similarity algorithm stays the Jaccard Index, but the modification comes in
how the cardinality of the intersection is calculated.

In addition to the usual “exact match” of keyword between two users incrementation, the
Wordnet is implemented as a KG to also find words which have the same meaning but different
spelling. The Wordnet provides us with such information as it holds links from each word to a
definition (meaning). The basic idea is to explore the Wordnet KG for each keyword that does not
connect the two users, looking for a “Definition” node that connects the two users through their
keywords. On successful pattern match, we add 1 to the cardinality of the intersection. What this
will do is learn more about the keywords than just their spelling. The pattern which adds 1 more
to the cardinality is shown bellow on Figure 12:

34

Figure 12: Wordnet Intersection

4.3.6 Justification

Firstly, I decided to use the Jaccard Index to measure the similarity because it deals with set
cardinalities. This is exactly what I need as I based my recommendation engines on counting the
common keywords extracted from tweets. An alternative option is the popular Cosine Similarity
method which is also widely used for recommendation engines. The reason why I chose Jaccard
over Cosine Similarity was because I was dealing with binary numbers. The binary numbers are
generated as 1 if a pattern exists and 0 if a pattern does not exist. Because of this, the most
natural way to interpret those binary values was as sets and the easiest and most natural way to
calculate similarity of sets is by using the Jaccard Index.

Secondly, to justify the use of Wordnet KG, I can say that the algorithm becomes smarter and
looks for and learns the the meaning of the keywords rather than just the spelling. As mentioned,
social networks are used by people, creatures who are smart and express themselves in different
ways which could eventually have the same meaning. It makes sense for this to be taken into
account when recommending users. I used the “Definition” node in Wordnet because it creates a
pattern which can easily be replicated in Cypher for the purpose of creating the query.

4.4 Advanced Search

I designed a a new feature which I called “Advanced Search” to further explore the efficiency of KGs
for user recommendation. This search functionality is not replicating any Twitter functionality.
The idea of the advanced search is to allow users to enter keywords in a search bar and then the
system to return a list of “best matches” users who talk about the topic or keyword entered.

35

4.4.1 Pre-processing of data and populating the database

The pre-processing of the data and the population of the database is the same as the one explained
for the Recommendation of users above, but in the pre-processing of data, the entity detection is
done in a different way. Instead of using TF-IDF algorithm, I decided to use Google Cloud’s API
for Natural Language Processing. The reasons for this are in the justification section below.

4.4.2 Solution design

To achieve the stated goal, I designed a use of KG which contains the Wiki Categories, explained in
the Background section. The way this KG is going to be used is by identifying the Wiki Categories
to which the keywords belong by comparing their Wikipedia URLs and create relationships to
them. I imagine the described graph as it is on Figure 13 below:

Figure 13: Advanced Search

If we follow the arrows from the “User” on the left to the one on the right, we can see that the
first central node which connects them is “Query languages”. This would be a “Category” node in
the Wiki Categories knowledge graph. Detecting the first node which connects two users means
the node that connects the two users in the shortest path.

Thanks to the graph features who also apply to graph databases, a shortest path algorithm

36

can be applied to find that node and the path length between the users. The path length can
then be used as a metric of how closely related the two users are. For example, in Figure 12
they are not connected directly to the same category in the KG, but to a node reached through
1 “SUBCATEGORY_OF” relationship. There could be many subcategories as explained in the
Background section and the more of those relationships are hopped to reach the other user, the
more distant the two users are. In this example they both talk about “Query languages” but
that’s not as specific as if they both talked about “SQL” which would have made them more
similar (closer) than they are now based on this design.

4.4.3 Similarity score calculation

To calculate the similarity score based on the described method, I found a suitable path similarity
formula (Barrasa 2021) which is:

sim(a, b) =
1

1 + dist(a, b)
(12)

It simply boosts the similarity scores for users which are less distant. The dist(a, b) is the
number of hops required to reach from one user to the other user. Some users might have more
than 1 keyword which falls under the same category which creates the link between the two users,
so a sum of the similarity scores is collected in such cases. This is to emphasise that they are more
similar by boosting the total similarity score with creating a sum as at the end, a comparison of all
sums of similarity scores between user pairs is done to select top n users with the highest similarity
score and recommend the same.

An example scenario of how the advanced search can be used can be found on Appendix B.

4.4.4 Justification

I changed the way I extract keywords/entities from the tweets for this feature because the links to
the Wiki Categories KG are based on Wikipedia urls. The Google Cloud API can be configured
to detect only entities which have Wikipedia pages and return the Wikipedia URLs together with
the entities. This in a way guarantees me that it will be a “topic” or “category” entity which is
meaningful and also connectable to the “Page” nodes in the KG using its property URL. TF-IDF
provides no information about the Wikipedia pages of the extracted keywords as it only returns
the names of the entities or keywords and therefore cannot be used to connect with the Wiki
Categories KG by looking for matching Wikipedia page URLs.

The path similarity formula is just a simple one that can easily be implemented into Cypher
and it does the job as I need. It boosts the similarity when users are closer to each other in terms
of hops in the graph.

The use of Wiki Categories as a KG allows me to use one of the best features of graphs which is
finding shortest paths. I want to evaluate whether its efficiency also applies to graph databases and
how it can be used in such applications. Furthermore, it is quite a simple KG which only consists
of “SUBCATEGORY_OF” and “ABOUT” relationships and therefore less time consuming. As
this is an extra feature, I didn’t plan a lot of time for it so went for something more simplistic.

4.5 Constraints of user recommendations and KGs

The main constraint I encountered during the design of the recommendations of users techniques
using KGs are:

37

• Limited use of the KGs - This constraint was caused by the complexity of the data including
nodes and relationships that Wordnet and Wiki Categories contain. I had to be selective in
choosing which relationships to use to learn more about the data. The wordnet contains many
more relationships other than “HYPERNYM_OF” or “LEXICALIZED_FORM_OF”, but
studying all of them is not possible within the given time frame of the project, so I based my
design only on those.

• Lack of resources available - Not many data sets which can be used for NLP are available in
a form transferable to Neo4j to be used as knowledge graphs. One example which could have
contained a lot of useful information about the keywords and their meaning is the ConceptNet
which is a freely-available semantic network, designed to help computers understand the
meanings of words that people use [19], however all of its forms transferable to Graphs are
very outdated. The process of creating it into a suitable format for Neo4j is too complex and
time consuming to be undertaken as part of this project.

5 Implementation

This section demonstrates the implementation of the derived designs from the Design section, by
focusing on the most important features created to match the design criteria while highlighting
how well it does it.

5.1 Imports

Before going into details of the implementation, below are is a list of all imports in Python I used:

Figure 14: Imports

The most important ones are the packages from py2neo:

• Graph - creates an instance object of a Neo4j graph

• Node - creates an instance object of a Node in a format which can be inserted into a Noe4j
database as a node

38

• Relationship - creates an instance object of a Relationship in a format which can be inserted
into a Neo4j database as a relationship between two nodes.

• NodeMatcher - allows the graph object to search for nodes in the Neo4j graph and return
them as Node objects of py2neo

• RelationshipMatcher - allows the graph object to search for nodes in the Neo4j graph and
return them as Relationship objects of py2neo

5.2 Graph database setup

As this whole idea is based on graph databases, the first step I took was the creation and setup
of Noe4J graph database. The creation of the database is simple: once I created a Neo4j project I
just clicked on “Add Database” and gave it a name and password.

The connection to that database is done through a line of Python code:

Figure 15: Graph connection

This line creates an instance of the Neo4j graph database into the variable graph. This variable
can later be used to access some of py2neo’s features that allow access, management and update
of the Neo4j database such as:

• graph.create() - for updating the database

• NodeMatcher - allowing access and retrieval to the nodes in a graph

• Relationship() - which constructs a relationship that can be imported to a graph

• graph.run / graph.evaluate - which both allow running Cypher queries on the graph
database

• graph.separate() - removes relationship from the graph

5.3 Basic Twitter Functionalities

5.3.1 Login and register

After setting up the database connection, we can now use py2neo to alter it by updating and
deleting nodes or relationships from it.

The first functionality I developed was the registration and login. Firstly, I created the main
class, “User” as the main actor of the system. This Python class will be used to add functions to
it which a user can do to the system.

Then I created an HTML form which takes user input for two fields: username and password.
When the user submits the HTML form, an instance of the “User” class is created which takes the
“username” field for initialising and then calls the function “register”. Register is a function inside
the “User” class and it first tries to

Register, as usual, first checks whether such a node that we are trying to create in the database
already exists, and if not creates it:

39

Figure 16: Register

The “find” function called on the “User” instance itself simply looks for a “User” node in the
graph database with a “username” given as an argument. This is the function in Python:

Figure 17: Find

We can see here the use of py2neo’s NodeMatcher. The NodeMatcher is called on the graph
database instance created earlier, and we are trying to match a “User” node, with the username of
the User instance that we just created. If such a node doesn’t exist, it is created using “Node”, a
class from py2neo. To update the database with the newly created node, we just use graph.create()
with the variable holding the node as an argument.

The login functionality is just retrieving a node in the same way as we are trying to retrieve
in the “find” function and checks whether the password entered in the HTML form matches the
password stored as a property in the retrieved “User” node.

5.3.2 Following and unfollowing a user

To follow users is also one of the essential features of the social network Twitter. In the design
section we stated that this can be achieved by creating a directed relationship from the follower
to the user being followed. To do this, I created the following Python function:

Figure 18: Follow

As we can see, firstly I store the logged in user node (follower) to a variable I called “user1” by
calling the function “find”. Then, I store the node of the user to be followed in another variable

40

I called “user2” using the NodeMatcher which allows me to search for nodes in the Neo4j graph
database by specified parameters as arguments. After I have stored both the follower and the
user to be followed nodes, I create a “FOLLOWS” relationship using the “Relationship” object
of py2neo. Now that I have all of the components needed to construct the relationship between
the two users I merge it into the graph by using graph.merge() which is a function of the graph
instance that updates the graph database by merging rather than creating. The difference is that
it will not create duplicate relationships. The reason for this is to avoid multiple “FOLLOWS”
relationship from one user to another. The relationship and both user nodes are given as arguments
and also the type of nodes and their main property.

The unfollow functionality is supposed to remove that relationship which was created as
explained above. To do this I created the following “unfollow_user” function:

Figure 19: Unfollow

I store both of the user nodes in the same way as earlier and then I search in the graph
whether such a relationship of type “FOLLOWS” exist. To search the graph, I first write a Cypher
query as a string and store it in a variable which is later used as an argument for the retrieval
functionality called graph.evaluate(). This function will either return something or not. As
we can see from the Cypher query, on successful return, it will return the relationship r which
is the “FOLLOWS” relationship we need between the users as a py2neo object. The returned
relationship object is stored in a variable. Having the exact relationship from the graph stored, I
just use graph.separate() which takes a relationship object as an argument to delete it.

Likes, Blocks and Unblocks are relationships created and deleted in the same way as the
“FOLLOWS” relationship.

5.3.3 Adding a post

This is the most important one of the basic functionalities which implementation represents the
solution graph model I designed earlier. As mentioned earlier, the newsfeed and profile retrieval
depend mostly on the way the “Post” nodes are connected to the users. The following section
explains how I implemented and transferred the drawn model into code which produced the same
graph in Neo4j.

Firstly, as in the previous cases, a “Post” node object is created using the py2neo Node objects.
The properties of that node are retrieved from the HTML form on user request. The HTML form
is simply a text box in which a logged in user can input text and submit it. Upon submission, the

41

text from the HTML form is used to be assigned as a “text” property of the “Post” node. Below
is the code which creates the “Post” node:

Figure 20: Post node

We can see that the properties are assigned as to a Node object. Firstly there is the unique id
which identifies posts, then there is the text or the tweet words that were written by the author
and finally the timestamp and the date are also stored as properties of the node.

Now that I have the “Post” node stored in a variable as a py2neo object, I need to update the
graph database to insert it. However, if we follow my solution model, to do this I need to break
the chain of linked “Post” nodes unless the user has never posted before.

The first step, before breaking the linked list and create space for the new node on the head of
the list, a check must be done to see whether the user has posted before. If they have, then I need
to store some information about the current linked list before I break it to be able to re-attach it
after adding a new node to it.

To achieve this, I used an additional property which is only assigned to the direct relationship
from the “User” node to the most recent “Post” node currently, which I called “status” and set its
value to “True”. This was effective because it allowed me to identify and store the exact relationship
which had to be broken. Below is the Cypher query used to achieve this:

Figure 21: Searching for a "Post" node

As we can see, if such a relationship exists i.e. if the user has posted before, upon executing the
graph.run() command, that relationship as an object and its type are returned. The type would

42

be a string which contains the dated relationship in the format “PUBLISHED_ON_{DATE}”.
Moving on next is the update of the Neo4j database. Before that however we need to check

whether the result returned something or not. If not, this means the user has never posted before
and we can simply create a new relationship object with today’s date used in its type. We also
specify which nodes to be linked with that relationship when creating a Relationship object. In
our case, we already have stored the “Post” node into a Node object and the same with the user,
so we can just use the variables which hold those nodes. After creating it, the Neo4j database is
updated using graph.create(). In addition to that, the “BY” relationship is also created from
the “Post” pointing to the author “User” node. The code for the explained functionality can be
seen below:

Figure 22: "If it is the first ever post"

The other scenario is if the user has posted previously. To maintain the linked list as designed,
we need to detach the “status” relationship from the “User” node and the currently most recent
“Post” node. This relationship will later need to be re-attached to the newly added “Post” node
and to the “Post” node which was most recent before adding a new one, so we store it and its type
in variables as shown bellow:

Figure 23: "If a user has posted before"

We also need to store an object instance of the currently most recent “Post” node which later
becomes the second most recent so I named it “old_post”. We do that by accessing the end node
of the status relationship:

Figure 24: Storing the "old" post

At this point, everything is saved and we can safely remove the “status” relationship. After
removing it, all that is left is to:

• create the new dated relationship attaching the “User” to the new most recent “Post” node

43

• create the “BY” relationship

• re-attach the old status relationship this time between the “old_post” and the new post

Figure 25: Updating the linked list

The explained method allows the database to maintain in the linked list with the dated
relationship exactly as designed. This finishes the addition of the “Post” node into the graph,
but the whole “Adding a Post” process is still not finished. Posts can also have hashtags and
user mentions in them. To implement this Twitter functionality, I extracted those keywords which
represent either a hashtag or a mention of user upon user submission of a Tweet with the following
code:

Figure 26: Getting tags and mentions

It simply detects words which start with either a “#” or a “@“. I used “set” rather than “list”
to avoid any duplicates. Those sets are then passed as an argument to the “add_post” function
and for each of them the following is done:

• For the tags, a new “Tag” node is created as an object and then inserted into the database
with the relationship “TAGGED”.

Figure 27: Creating tags

• For the mentions, a “User” node is identified using the NodeMatcher and stored as an object in
a variable called “user2”. This variable is then used to create the relationship “MENTIONS”
and the mentioned “User” node.

44

Figure 28: Creating mentions

5.3.4 Newsfeed and profile retrievals

The implementation of the newsfeed and profile retrieval functionality is mainly consisted of Cypher
queries. I already have demonstrated how the desired graph model can be achieved and maintained,
so after populating the database with “User” and “Post” nodes, what I had to do was create a
Cypher query which will retrieve effectively the correct posts in two scenarios:

1. When a user visits another user’s profile, their profile feed is retrieve

2. When a user lands on the home page, a newsfeed is retrieved

Following the graph model I designed, I build the following query for the user profile retrieval:

Figure 29: User profile retrieval query

The first part of the query (line 1 to line 5) tells the graph to look “Post” node created by a
“User” whose username is the same as the one passed in as argument and the direct relationship
between that user and the “Post” node starts with “PUBLISHED_ON”. This effectively avoids
traversal of other relationships between a “User” and a “Post” node such as “BY” or “LIKES”.
Furthermore, on line 4, this query does another search which is between “Post” up to 6 levels of
depth. Now if we go back to the graph model, we know that the posts are chained as a linked list.
This statement limits the search depth to 6 and with that eliminates any older posts that were
posted by that user after the sixth most recent post. Essentially this will cut down the number
of visited “Post” nodes to 6. In addition to that, there is further cut down which is done on line
5. Here, the Cypher query restricts the graph traversal to hop only through relationships of type
“PUBLISHED_ON”. This creates the search to explore only “Post” nodes which are part of the
same linked list and prevents jumping into wrong nodes.

With this, we would have the 6 most recent posts or less if the user didn’t post more than
that in total. The second part of the query is just refinement to produce results which are easy

45

to display and some further optional searches (matches, using the “MATCH” keyword) get the
relevant tags and users mentioned within the retrieved posts. Thanks to the previously created
“TAGGED” and “MENTIONS” relationship this can easily be turned into Cypher pattern as we
can see on lines 9 and 10. Lastly, we are returning the retrieved posts along with their mentions as
a list of usernames, tags as a list of tag names, author and number of likes as an integer. The “size”
keyword used in the return statement displays the number of incoming (in this case) relationships
to a particular “Post” node which is already counted and stored by Neo4J.

The newsfeed retrieval query can be seen below:

Figure 30: Newsfeed retrieval query

These two are very similar queries. The main differences are:

• On the first line - instead of matching from a “User” directly to a “Post” node, the pattern
is changed to look for posts posted by users who the logged in user follows.

• On the third line - the type of the relationship is not restricted only to begin with “PUBLISHED_ON”
but to match a whole string inside a list of strings. That list of strings represents the dated
relationships we want to explore. Most likely that would be the date today and the date
yesterday. To generate that list I wrote the following Python code:

Figure 31: Generating days to be explored

“Timedelta” is an import from the “datetime” Python package allows me to travel back
in time by a specified amount of days. Using this I was able to create strings of two
dated relationship which would be attached to posts posted either today or yesterday and
automatically regenerate everyday rather than having to change the strings manually everyday.

The reason for this changes is because for a post to be part of someone’s newsfeed, it needs to
satisfy one more condition other than it being a most recent post of a “User”: it must be relatively
new. This is achieved by restricting the search to only look for dated relationships on the specified

46

days and with that avoid any posts which are not “new”. Furthermore, the hops in the linked list
are reduced to 3 (this number can be adjusted as needed depending on the social network and
maybe preferences) per user as we are most likely exploring more users compared to only one in
the other case. This reduces the number of posts that need to be sorted later.

In the profile retrieval case sorting was not required because we know how recent posts are by
their position within the linked list. However here we are collecting posts from different linked lists
related to different users so sorting them by timestamp at the end is required to display them in
the correct order, which is an expensive operation that requires time and reducing the number of
items to be sorted reduces the time taken.

What we can see from both of these queries is that they have “LIMIT $n” at the end. This
just limits the returned results from the query execution to a given number n.

The return statement of this query is the same as the one for the profile retrieval.

5.4 Creating snapshots

After completing this milestone of implementing the basic Twitter functionalities and the newsfeed
and profile retrieval queries based on my solution model, I created the same for Max De Marzi’s
model.

The reason for this was to later compare the performance of both models as part of my
evaluation of my solution model. Even though Max De Marzi provided the source code for his
project and his proposed solution, his idea was implemented using different tools such as Java
instead of Python which couldn’t be used to compare the performance of my model itself against
his. To make it suitable for comparison, I created it with the same tools following the same
approach. The biggest differences were in the way new “Post” nodes were created in the database
and the queries for newsfeed and profile retrieval of course.

Here are some main snapshots of the code I created to implement Max De Marzi’s model:

5.4.1 Adding a post

Figure 32: Add a post function based on Max De Marzi’s model

As we can see, the “Post” node contains the same properties but the creation of it is simpler.
There is no chain breaking or any other modifications done to the graph in order to insert a “Post”
node.

47

5.4.2 Retrieval of user profile and newsfeed queries

Figure 33: User profile retrieval query for Max De Marzi’s model

Figure 34: Newsfeed retrieval query for Max De Marzi’s model

The user profile and newsfeed retrieval queries are simpler than the one for my solution as they
don’t need to explore other paths than the direct connection from “User” to “Post” which is written
on the first lines of both queries.

His model also requires checking over specified number of dated relationships when retrieving
the posts. For the newsfeed it could be the same like mine (within 2 days) which is not a big issue,
but when retrieving a profile, it becomes problematic because we do not know how many days to
search for in order to retrieve the n most recent posts. The reason for this is that there could be
some users who haven’t posted in a long time so a lot of iterations need to be done to reach the
day that they posted on. This was completed by the end of Week 4 and because I was planning
on adding more functionalities to my system, at that point I created snapshot of my version using
my solution model and the queries explained earlier and saved it together with Max De Marzi’s to
be later used in the evaluation.

5.5 User recommendation

5.5.1 Pre-processing of data

To extract the keywords of the tweets for the purpose of using them in the recommendation engines
I applied the TF-IDF algorithm which is explained in the Background section.

Before I applied the TF-IDF algorithm I have done some “cleaning” on the texts within the
tweets. The cleaning process included:

• Getting rid of Twitter symbols which are retrieved together with the text using the Twitter
API with regular expressions:

48

Figure 35: Getting rid of symbols

• Getting rid of emojis used in the tweets:

Figure 36: Getting rid of emojis

• Getting rid of punctuation and stopwords as well as correcting spelling mistakes using the
lemmatizer Python package:

Figure 37: Getting rid of punctuation and stopwords

The list stopwords contains all the stopwords in the English language that are downloaded
using the Python nltk library.

The code for the TF-IDF algorithm can be found on is within the "models.py" file in the source
code. After applying the TF-IDF algorithm to all tweets, the result produced is a dictionary which
consists of keys representing post ids (the property which identifies each post in the database) and
values which are also dictionaries consisted of key-value pairs representing the name of the keywords
found in that post and their TF-IDF score respectively. To formalise it, below is the structure of

49

that dictionary:

{“POST ID”: {“KEYWORD”: “TF-IDF score”, “KEYWORD”: “TF-IDF score”}, “POST ID”:
{“KEYWORD”: “TF-IDF score”, “KEYWORD”: “TF-IDF score”}, . . . }

To insert the keywords into the graph database and create relationships to the relevant posts they
are part of, the following code is used:

Figure 38: Inserting keywords into the database

Firstly, it iterates over the dictionary described above which would contain all keywords with
the relevant post id as their key. We can see on the second line that the NodeMatcher is used to
store the post node for which they keywords are to be inserted. Then, iteration over the dictionary
of keywords and TF-IDF scores is done to firstly insert any new “Keyword” nodes which are not
yet in the database and finally create a relationship from a “Keyword” to its relevant “Post” node
which is stored in the variable on the second line in the above code.

After executing this code, every “Post” will have incoming relationships from its “Keyword”
nodes and this is everything required for the naive recommendation engine to run.

5.5.2 Naive recommendation engine

The main part of the naive recommendation engine, as designed, is the detection of intersection
or common keywords between two users which is the only factor that increments the numerator
of the similarity score formula’s fraction. To translate this into Cypher from Figure 11, I wrote
the following Cypher code which is the first part of the whole query for the naive recommendation
engine:

Figure 39: Naive intersection into Cypher

If we look again on Figure 11, we can see that the pattern used in Cypher is very similar
to the actual graph. The only difference is that I used the “BY” relationship instead of the

50

dated relationship for simplicity because there would be many types of dated relationships in the
database. The second and the third line are just stating that we are looking for users who are
different than the logged in user and are someone who they do not already follow, aligning with
the whole point of recommending users.

To count the items of the intersection set I just need to count the number of keywords that were
part of such unique paths which connect two users through the stated relationships and nodes:

Figure 40: Counting the intersection items

This brings us to the second part of the query which collects information about the cardinality
of the union set to be used as pat of the denominator in the Jaccard Index calculation:

Figure 41: Creating the union set

As we can see, I am collecting the keywords of both users that are being compared in two
different sets (s1 and s2). Those sets are then used to create the union of unique common keywords
between the two users being compared.

At this point, I derived everything I need to calculate the Jaccard Index between pairs of two
users and I translated the formula into Cypher with the following RETURN statement:

Figure 42: Return statement of the naive recommendation engine

The resulting format of the above RETURN statement is a table containing the following
columns:

• Column 1: user1: the username of the user who is looking for recommendations

• Column 2: user2: the username of another user in the database who is not followed by nor
has the same username as user 1

• Column 3: s1: list of the keywords extracted from the posts of the first user

• Column 4: s2: list of the keywords extracted from the posts of the second user

51

• Column 5: i: list of the keywords that are common for both users (intersection)

• Column 6: jaccard: the Jaccard Index calculated between the pair of users

Finally, they are ordered by the Jaccard Index in descending order, which would put the rows
with highest Jaccard Index on the top and limit those to 5 which would contain the usernames of
the 5 users to be recommended in Column 2: user2.

5.5.3 Recommendation engine using Wordnet as a KG

With the aim to improve the naive recommendation engine, I implemented a Knowledge Graph into
the database containing the data of the English Wordnet. The full Cypher script of implementing
the Wordnet into the database as a KG can be seen on Appendix C.

After importing the Wordnet, some pre-processing was required to link the keywords extracted
earlier to the KG. The following function implements pre-processes the data:

Figure 43: Linking the keywords to Wordnet

Nothing new is introduced in this function. It is a simple identification of pairs of “Keyword”
nodes and “Resource” nodes which are part of the Wordnet KG and then creation of a relationship
of type “REFERS_TO” between them. Before that, the query shown retrieves all keywords into
a list of strings which are then passed on as arguments when matching nodes in the graph using
the NodeMatcher. [0.1in] The query for this improved version of a recommendation engine adds
the following code to the above described Cypher query for the naive one:

Figure 44: Cypher query for the Wordnet recommendation engine

52

This code is inserted beneath the first “MATCH” from the original query. What it does is it
translates the new intersection path designed on Figure 12 to Cypher, again using “BY” instead
of dated relationships for simplicity.

To implement this new type of smarter intersection that looks into the meaning of the words
by connecting two users through a “Definition” node I had to create a path which can be seen
in continuation of the “OPTIONAL MATCH” Cypher keyword. The meet point is the empty
brackets node (circled in red on Figure 44) where two arrows are directed into it, one coming all
the way from User 1 and the other from User 2. There was no need for me to state that this would
be a “Definition” node because it is the only node which can connect nodes via the relationship
“LEXICALIZED_FORM_OF” of the design section or “ontolex__isLexicalizedSenseOf” in the
actual implemented Wordnet as a KG.

To count these patterns i.e. every successful “OPTIONAL MATCH” of the pattern specified
above, I just had to add the following to the “WITH” statement which simply saves data into
variables:

Figure 45: Counting Wordnet intersections

where “distinct k2” are the “Definition” nodes where the two users meet in the knowledge
graph.

Finally, as expected and described previously, add this to the usual naive intersection detection
cardinality creating the following “WITH” statement as intersection1 + intersection2:

Figure 46: Wordnet recommendation WITH statement joining the two intersections

5.6 Advanced Search

The implementation of the advanced search begins with the implementation and import of the
Wiki Categories knowledge graph. The process of implementing one piece of a Root Category
into a Neo4J database is described by Jesus Barrasa in his article "QuickGraph#6 Building the
Wikipedia Knowledge Graph in Neo4j (QG#2 revisited)" [20].

For the purpose of demonstrating the ability of graphs to serve as database and the main
engine of this advanced search features I am only implemented a small fraction of the whole Wiki
Categories. More specifically, I implemented the root category “Databases” as a “RootCategory”
node and subcategories of itself up to a depth level of 9 through a relationship “SUBCAT_OF”.

Then I used a function which extracts entities from the tweets using the Google Cloud API from
an official Neo4J tutorial called "Build a Knowledge Graph using NLP and Ontologies" (Barrasa
and Needham 2021). The whole function can be found on Appendix D. It simply iterates over all
posts and calls apoc.nlp.gcp.entities.stream which makes connection to Google Cloud’s nlp
component through an API key I generated from Google Cloud by its free 90 days trial. After it
returns the entities extracted with their metadata, I do the following:

53

Figure 47: Omitting entities that don’t have a Wikipedia URL

For each entity, where the field which contains the Wikipedia URL is not empty, I create a
node of type “Entity” and assign it two properties: the name of the entity and the Wikipedia url.

Once I extracted the keywords and imported this KG, I linked the extracted entities of the
tweets using the following function:

Figure 48: Linking entities to the Wiki Categories KG

We can see here the reason for the Wikipedia URL and why I omitted every other entity which
doesn’t have one. I created relationships to the KG by using the Wikipedia URLs to find the
matching “Page” nodes of the KG for each “Entity” node in the usual graph.

At this point the graph could be queried with the advanced search Cypher query I created in
order to recommend users:

Figure 49: Advanced Search Cypher query

54

This query begins to search for a pattern where the entity the user is searching for provided as
an argument for the parameter “$search” connects to the KG via the “Page” node (lines 1,2 and
3). If we go back to Figure 14 and follow the path from the “User” node to the “XML” or “SQL”
categories, we can see that both patterns, the Cypher in the query above and the graph model
on Figure 14, match because I implemented the KG and connected the entities in the same way
following the design scheme.

The second part of the query finds the path from every other entity in the graph which is
extracted from different user’s posts to their “Category” nodes in the KG (“$e” is replaced with an
entity name for each entity in a for loop). This is later used in the third part of the query where
the shortest path function by Neo4j is applied to find if and how quickly the pairs of “Category”
nodes meet somewhere in the KG specified by the following “MATCH” pattern (line 9). The
shortestPath function returns a list of paths which connect the provided end nodes “c1” and “c2”
through any depth following the “SUBCAT_OF” relationship.

Lastly, in the return statement, the path length is calculated using the formula stated in the
Design by translating it into Cypher. The “LIMIT 1” is used to select only the shortest path from
all paths returned.

To find the shortest paths between all pairs of the entity searched for and the rest of the entities
in the graph, the above described query is ran once for each extracted entity from the graph with
the following for loop:

Figure 50: Iterating over all entities to find similarities

where the parameter e takes an entity from the list of all entities, and the search is parsed
through the submission of HTML form.

The results from the executions of the queries are kept in a list I named “similarity_scores”. These
results are then converted into dictionary containing the usernames of “secondary users” as keys
and the sum of their similarity scores as values, same as described in the example in the Design
section.

After achieving the final state of the results, I sort them using the following function:

Figure 51: Sorting by sums of similarity scores

The sorting function is applied in reversed (descending) order using the “-“ in front of “item[1]”.
The reason for that is to get the top scores at the beginning of the list.

Finally I can select the best n users to be recommended in the following way using “slicing” of
a list in Python:

55

Figure 52: Filtering down to top n users

The [0:3] at the end gets the first three items from a list, and I know that they are the the ones
with the highest sums of similarity scores because I sorted them earlier. This list now contains
the three users that are going to be recommended to the logged in user based on the keyword he
entered in an “Advanced Search” input box and they represent users who are closest to the logged
in user based on that search keyword within the Wiki Categories KG.

5.7 Unforeseen problems during the implementation phase

During the implementation phase of the project, I came across some constraints and problems
which stopped me from doing so as designed and planned. Some of the main problems which I did
not predict include:

5.7.1 Using py2neo

The main toolkit I used for the implementation was py2neo. The justification of why I chose
it before implementing my solution can be found in the Design section. Even though I had
good reasons to choose it, the library turned out to be quite limited in what it could do in
terms of more complex graph operations such as the newsfeed retrieval or user recommendations
engines. The packages Graph, NodeMatcher and RelationshipMatcher which were imported did not
have that many functions defined and available for me to modify, access or update the database.
Because of this, I had to improvise and make use of the graph.run() and graph.evaluate()

functionality even where I wouldn’t expect. We can see in a couple of example code given in the
implementation that I had to write pure Cypher code as a string and then pass it to graph.run()

or graph.evaluate() to access some information about the data in the graph database. The use
of a good toolkit, should have usually replaced a lot of those queries I wrote manually in Cypher
with some keywords which have pre-stored functions to be applied to a graph database. This
might have affected the performance of the operations I am trying to achieve but it is a working
and efficient improvised solution which covered the lack of those keywords that represent different
operations.

5.7.2 Over-ambitious goals

One of my aims was to explore the NLP abilities of graph databases. I set this aim at the
beginning, with lack of research. This topic then turned out to be very wide. There are so many
ways to do NLP with graph databases so I had to choose one of those because of the time given
for this project and the rest of the aims that I already worked on. The topic I decided was use of
Knowledge Graphs. Because I only studied and explored in depth the use of KG as a NLP tool
in graph databases, I decided to cover it in depth and improvised with an additional functionality
development, the advanced search, which is mainly based on the Wiki Categories KG. The purpose
of it was to demonstrate a different use of KG for NLP and with that examine the ability of KG
to be useful in such applications.

56

6 Evaluation

In this section I am going to describe what the results of my implementation are and the results
of the tests I carried out to evaluate the system I developed. As with everything else, the focus of
the evaluation is on the graph database usability and its performance properties.

6.1 Verifying the graph database functionality

Firstly, I am going to validate the database functionality. This includes using the system via the
user interface to run some operations such as account creation, posting a tweet, following a user
etc. and running simple queries to the graph database using the Neo4J browser to visually confirm
the results. In addition to that, I will run the developed queries for newsfeed and profile retrieval
as well as user recommendations for a particular user in a pre-populated database and observe the
results in the tabular form produced by the Neo4J browser and also within the user interface.

6.1.1 Basic Twitter Functionality

To evaluate the basic Twitter functionalities I am going to use the simple user interface I created
to do the following operations:

1. User registration

Firstly, I registered a user by filling in and submitting the HTML form I created for the
register page. The graph structure after this can be seen on Figure 53 bellow:

Figure 53: Registered node

From this we can validate the creation of “User” node as well as the properties of the node
as described in the specification.

57

2. User login

After entering the correct credentials I was able to login to the account with the username
“kiril”.

3. Creating a post

After creating a post, I took a screenshot of the graph that contains the data in my graph
database. The same can be seen on Figure 54 bellow:

Figure 54: Posting: database result

With this we can validate the creation of the “Post” node along with the attributes described
in the requirements as well as the creation of the dated relationship and the “BY” relationship
same as designed on Figure 5. To validate the creation of linked lists attached with dated
relationships, I created a second post in the same way, but before that I registered another
user who I wanted to mention in the post to validate the creation of “MENTIONS” relationships
as well as create one tag to validate the creation of a “TAG” node and a “TAGGED”
relationship. The results of it in the graph database can be seen on Figure 55 bellow:

58

Figure 55: Second post: database result

We can see that the graph database reacted on the same way as designed. There is only one
direct relationship from the user “kiril” to a “Post” node and the rest are chained on it via
dated relationships, exactly like my design model solution suggested.

4. Following and unfollowing a user

When visited the profile “tomi” and logged in as user “kiril”, I was able to follow “tomi”
by clicking on a “follow” button via the user interface. This button simply calls the follow
Python function I described in the Design section and produces the following relationship in
the graph:

59

Figure 56: Following a user: database result

On unfollow, the relationship is detached as in Figure 57:

Figure 57: Unfollowing a user: database result

60

5. Blocking and unblocking a user

Finally, if I go to profile “tomi” again, I can block him by clicking on the “block” button,
which executes a block Python function. Before I blocked “tomi”, I followed him again to
confirm the removal of the “FOLLOW” relationship with blocking a user. The result in the
graph database can be seen on Figure 58 bellow:

Figure 58: Blocking a user: database result

After executing the operations stated and observing the behaviour of the graph database, bellow
are the results of the extent to which my implementation satisfies the basic functional requirements
from the database point of view:

61

Requirement Expected database behaviour Satisfied? (YES
/ NO

Proof

User
registration

See Table 1 YES Figure 53

User login See Table 1 YES Point 2 above
Creating post
or “tweeting”

See Table 1 YES Figure 54 and
Figure 55

Following and
unfollowing
functionality

See Table 1 YES Figure 56 and
Figure 57

Blocking and
unblocking
functionality

See Table 1 YES Figure 58

Table 5: Basic functional requirements evaluation

6.1.2 Newsfeed and profile retrieval

For the newsfeed and profile retrieval, I am going to use a simple example for now to just confirm
the behaviour of the database. Its performance evaluation is in the next section.

This simple example is created in the following steps:

1. Registering three users: “kiril”, “tomi” and “ana”

2. Create a follow relationship from “kiril” to “tomi”

3. Create 3 random posts from the account “tomi” and from the account “ana”

4. Run the newsfeed retrieval query in Neo4J browser with username “kiril” as an argument
and set limit to 5

5. Run the profile retrieval query in Neo4J browser with username “ana” as an argument and
set limit to 5

The expected output would be a list of posts created by “tomi” with their author’s username,
tags and likes in a tabular format, each row representing one post. After completing steps 1-3, the
graph database contents can be seen on Figure 59 bellow:

62

Figure 59: Newsfeed nodes

After executing the query, step 4, the following results were produced by the Neo4J browser:

Figure 60: Newsfeed tabular return

This confirms that the query works and retrieves the data required to be displayed on the
interface. As expected, only the posts from user “tomi” were returned. The reason for this is
because “tomi” is the only user who is followed by “kiril”. Even though it is not within the focus
of the evaluation, bellow is a screenshot of the interface of the newsfeed for user “kiril”:

63

Figure 61: Newsfeed interface display

The second query I developed for this was the profile retrieval which can be see on Figure .
Using the same database, I ran the query with the username “ana” as an argument and set the
limit to 5 in the Neo4j browser. The following results were produced:

Figure 62: Profile tabular return

The resulting table shows that only posts by “ana” have been retrieved even though there are
other posts in the database. This proves the functionality of the database and the query for profile
retrieval.

To evaluate the implemented functionality of newsfeed and profile retrieval, bellow is a table
where each of the main functional requirements from a database point of view is commented on
based on the results:

64

Requirement Satisfied?
(YES /
NO

Proof

Retrieve “Post” nodes with
relationships linking them to
users who created them

YES In both cases I was able to retrieve
information about posts.

Filter out the relevant users YES In both cases only the relevant user posts
were returned (Figure 60 and Figure 62).

Filter out relevant posts YES Same as above.
Sort the retrieved posts in
descending order according to
the time they were posted.

YES If we look on Figure 60, we can see that
the first row has the highest value for the
field timestamp and they decrease as we
go down in the table.

Group the relevant information from
the retrieved nodes and relationships

YES Extra information is displayed as part of
each post’s row in the table such as tags
and author.

Allow access to the frameworks to
transfer the data retrieved to the
front end

YES Final product on frontend shown on
Figure 61.

Table 6: Basic functional requirements evaluation: newsfeed and profile retrieval

Table 10 confirms that I have successfully implemented graph database functionality for retrieving
newsfeeds and profiles of users. However, this covers only the functionality which can be answered
with a yes or a no. The following section evaluates the performance of the graph model I
implemented.

6.1.3 Recommendation engines

To validate the functionality of the recommendation engines, I ran the queries derived for both
recommendation engines with “BillGates” as an argument, on a pre-populated database (explained
in detail in the upcoming recommendation engines evaluation experiment) to see whether the
expected intersections between users are detected.

The resulting intersections of both recommendations can be found on Appendix E. The results
on Appendix E Confirm that both recommendations work and in addition to that we can see
that with the Wordnet recommendation, the resulting list contains more common keywords which
confirms the functionality of it. How precise they are however is unknown at this moment. This
report contains the evaluation of their precision in the following sections.

6.1.4 Advanced search

To test whether the advanced search Cypher query works, I populated a database with the
Wiki Categories using only one Root Category “Databases”, and inserted 7 levels of depth with
subcategories. Then I populated the database with some meaningless posts that have a category in
common, extracted the keywords as explained in the Implementation section using Google Cloud’s
API and finally ran only one iteration of the query using “Bitnation” as the search keyword.

The resulting graph and the query I ran can be seen on Figure 63.

65

Figure 63: Advanced search results

From here we can see that the graph database successfully identified the common “Category”
node between two users, same as in the model on Figure 13 except there is one more type of nodes,
the “Filtered Post” which as the name suggests contains the text of the tweet after the “cleaning”
processes explained are applied.

This is a proof that using this method suggested in the Design section and further explained on
Appendix B can be used indeed to detect common categories between users in a graph database.

6.2 Performance evaluation of the solution model

6.2.1 Overview

This section includes some tests and evaluation of the performance of my solution model as a graph
database which stores, updates and retrieves social network data. The tests are carried out on two
versions of the system:

• Version A: Snapshot of my system in week 3, based on my solution model (Kiril’s model)

• Version B: Snapshot of my system in week 3, based on Max De Marzi’s model

As explained in the Implementation section, I already have the versions created for the purpose
of this evaluation. I took the snapshot at week 3 because that’s when I finished with implementing
the most basic Twitter functionalities that impact the performance of the graph models. The rest
was going to change a lot for both models and it could have been difficult to adjust the fairness.
Up to week 3, everything is the same except the process of creating posts and the newsfeed and
profile retrieval queries.

The tests are focused on the performance of both models and how well they serve the social
network when implemented in a graph database. Those include comparisons of how quick they
retrieve newsfeeds and user profiles in different scenarios.

66

6.2.2 Newsfeed retrieval experiment description

For the newsfeed retrieval experiment, I created one Neo4J database instance and populated it
with an average Twitter user in terms of number of users they are following. This is a type of
user that follows 350 users (Zanten 2021). Using this database, I modified the queries to create 5
different testing scenarios for each of the versions. The modifications were within the number of
days that I am exploring in order to retrieve the most recent posts. As the number of days increase,
the number of dated relationships to be traversed also increases which affects the performance of
the database. To examine it in depth, I used the following scenarios, for each of the versions A
and B:

1. Traversing only 1 dated relationship

2. Traversing 2 dated relationships

3. Traversing 3 dated relationships

4. Traversing 4 dated relationships

5. Traversing 5 dated relationships

For each of the scenarios I compared the number of DB hits required for both Version A and
Version B in order to retrieve the n most recent posts that form the newsfeed of the average Twitter
user. This was achieved by the function “PROFILE” which provides detailed analysis of a Cypher
query when ran in the Neo4J browser.

6.2.3 Profile retrieval experiment description

For the profile retrieval experiment, I created multiple databases each used for different scenario.
The goal of this experiment was to measure and compare the average number of user profile feeds
that can be retrieved in a given time period for both versions of the system A and B, in different
scenarios. Each scenario covers different type of Twitter users:

1. Users who post 5 posts per day

2. Users who post 25 posts per day

3. Users who post 50 posts per day

4. Users who post 100 posts per day

For each scenario above, I created a database and populated it with “User” and “Post” nodes
respectively. Then, I created a Python script which executes the experiment described and ran
the profile retrieval queries for both versions.

6.2.4 Reasons

The reasons for including different scenarios when testing the graph models is to observe how
their performance is affected by the growth of data and processing required. This can be used
to comment and predict how suitable they can be to serve as a graph database model on a real
application with millions of users and lots of social media being posted every second.

67

6.2.5 Populating the database

To populate the databases mentioned above, I used simple Python scripts and py2neo functions.
All of the posts and users were not real. Bellow is an example of the script I used to populate one
of the databases for the profile retrieval experiment:

Figure 64: Script for populating a database with meaningless data

We can see that I am creating first a username “ana” as a string and then to create multiple
accounts I just add “a” to the end of the username to differentiate it. Then I am creating posts
by calling the function manual_post_add() and giving them meaningless text as an argument. I
modify the number of iterations as required for each scenario.

6.2.6 Test execution process and scripts

Newsfeed retrieval:

There was no test script for the newsfeed retrieval post except adding the Cypher keyword
“PROFILE” at the beginning of the newsfeed queries for both versions. When added, this keyword
produces information about the time it took for the query to complete, the memory used, the DB
hits and other useful information for evaluating a query. For each scenario I was just changing
the parameters for the dater relationships and adding one more each time until I reached 5 dated
relationships. While doing that, I observed the number for DB hits returned in each scenario for
both versions and wrote down this numbers. Later, I used them as part of a Python script to
produce a graph which visualises the results. An example of how the Neo4J browser screen looked
like when executing one of the scenarios can be seen bellow on Figure 65:

68

Figure 65: Query evaluation details displayed with "PROFILE"

We can see the query I ran as well as the total DB hits at the bottom of the screen which are
exactly the numbers I was recording. This particular screenshots is from Scenario 2, Version A.

Profile retrieval:

To execute the experiment of the profile retrieval, I created a Python script. The main component
of that script is the following for loop:

69

Figure 66: Python Script for testing the profile retrieval queries

From here we can also see the metrics I used. The time period I gave each query to return
its maximum number of user profile feeds was 0.2 seconds, and I run the same experiment 1000
times to make sure I get a solid average number and eliminate any anomalies that occur during the
execution. The script is simple, it records the current time before running a query and then records
the current time after the query has returned the user profile feed. For each of the 1000 iterations I
record the number of profiles it retrieved given by the number held in the counter variable. Finally,
I compute the average number of profiles retrieved in 0.2 seconds for each scenario:

Figure 67: Final calculation from the profile retrieval test script

I repeated the same for each scenario, for both versions A and B and wrote down the averages.
The resulting tables were used to create a visual graph which compares both models and can be
found in results along with the table.

6.2.7 Results

Newsfeed retrieval:

The resulting table from the newsfeed retrieval experiment contains the total numbers of DB hits
required in each scenario for both versions:

70

Scenario Version DB hits required
1 A 34315
2 A 34315
3 A 34315
4 A 34315
5 A 34315
1 B 18174
2 B 31017
3 B 43326
4 B 55620
5 B 67934

Table 7: Newsfeed retrieval experiment results

To visually represent these results, I created the following graph on Figure 68:

1 2 3 4 5

Number of days processed

0

10000

20000

30000

40000

50000

60000

70000

D
B

H
it

s

Comparison of number of DB Hits the newsfeed retrieval query
requires to display an average Twitter user newsfeed

Kiri’s model

Max De Marzi’s model

Figure 68: Visual comparison of the newsfeed retrieval experiment results

71

Profile retrieval:

The resulting table from the profile retrieval experiment contains the average numbers of user
profiles retrieved in each scenario for both versions:

Scenario Version Average number of user
profiles retrieved in 2 seconds

1 A 91.029
2 A 88.817
3 A 87.202
4 A 88.099
1 B 92.725
2 B 76.904
3 B 58.902
4 B 43.731

Table 8: User profile retrieval experiment results

The table is visually represented as graph on Figure 69 bellow:

72

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Average number of user profiles retrieved

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

N
u
m

b
er

of
p

o
st

s
p

er
d
ay

p
er

u
se

r
Comparison of the average number of profiles retrieved within 0.2

seconds based on 10000 repetitions

Kiril’s model

Max de Marzi’s model

Figure 69: Visual comparison of the profile retrieval experiment results

6.2.8 Comments

By looking at the results from the experiments above, the most obvious thing we can observe is
how constant my solution model is as the parameters change compared to Max De Marzi’s model
which is affected by the parameters changes as we can see on the graphs on Figure 68 and Figure
69.

This comparison is of big importance for the performance of the graphs as it shows how they
perform in different scenarios. Even though they are limited, they cover some possible types of
Twitter user such as the average user who follows 350 users and posts 5 tweets per day or a news
Twitter accounts which can post up to 50 or 100 times per day. Those are all types of profiles
which can be visited and their profile must be retrieved efficiently if the graph model was to be
used in a database.

Taking this into consideration and looking at the results, I still cannot statistically guarantee
that my model has better performance than Max De Marzi’s overall even though it wins in most
scenarios. The reason is the subjectivity of this matter. Good performance for some can mean
only when it performs good for average users and we can see that in the scenario where a users
posts only 5 times per day Max De Marzi’s model was able to retrieve more such profiles in the
given time frame. I can say the same about the newsfeed retrieval experiment: Max De Marzi’s

73

model is better in retrieving posts by traversing only one day worth of dated relationships but
equal with two and gets worse than mine as the days grows. Furthermore, the difference of how
better my model is in terms of DB hits required for the newsfeed retrieval constantly increases in
the favour of mine as the days grow. With this, I can certainly say that my solution model has
better scalability property because it stays constant regardless of the types of profiles visited or
the number of dated relationships being explored.

Now this performance advantage as the days traversed increase might not be needed in a lot
of cases because the newsfeed usually contains tweets posted within 2-3 days maximum, but the
difference in the time it takes for profile retrieval can be very important if a user follows accounts
which post many tweets per day.

6.3 Precision evaluation of user recommendation engines

6.3.1 Overview and reasoning

The evaluation of the developed recommendation engines using a graph database is focused on
how well can graph database be used to recommend users. The metric used to define how well
each recommendation engine performs is precision. In addition to that, I am also evaluating how
well can a KG such as Wordnet be used as NLP tool to learn more about the data used for
recommendations and improve the precision of the recommendation engine.

To do that, I created a Neo4J database which contains a sample set of real Twitter accounts as
“User” nodes and their real tweets as “Post” nodes. To create a useful sample set for the purpose
of this experiment, I selected Twitter accounts and grouped them by the categories they tweet
about. For example, I selected 4 accounts that tweet about “Cryptocurrencies”, 4 about “Health”
and others. The search was for accounts didn’t follow a scientific approach. I just “Googled” some
accounts by entering for example: “Most popular cryptocurrency Twitter accounts” or “Most
popular Twitter accounts about Christianity”.

The method of calculating the precision is simple: If a recommended user is in the same
category as the user getting the recommendations, the precision value increases, If it is in a
different category it decreases. To represent those increases and decreases I used true positive
and false positive integer variables which increment by 1 respectively. Then at the end I calculate
the precision using the following formula:

Precision =
TP

TP + FP
(13)

where TP is the value of true positives and FP the value of false positives.

6.3.2 Populating the database

As mentioned in the overview, I am selected some Twitter accounts and grouped them by topics.
Then, using tweepy and the Twitter API through my Twitter developer account I extracted 50
posts of each of the users I selected. I stored them in a CSV file, each row containing an author
username and tweet text, and then used the following code to import them into the Neo4J database:

74

Figure 70: Script for populating the database from the created CSV file

where data_read is a list of rows (also lists with author and text elements). On top of this
I have some random popular Twitter accounts from which I extracted posts just to make the
database more diverse.

6.3.3 Test execution process and scripts

After populating the database, I first created the lists with the usernames and their categories as
the names of the lists:

Figure 71: Lists of usernames and their categories

Then I stored the recommendation Cypher queries in string variables and wrote the following
scripts which takes a query as an argument:

75

Figure 72: Python test script for the recommendation engines

This Python function of Figure 72 iterates over every single user in the categories mentioned
above and runs the recommendation queries which are stored as Cypher code in Python string
variables. Firstly, the function is called for the naive recommendation engine based only on the
TF-IDF algorithm and the second time is called with the query written for the recommendation
engine using the Wordnet as a KG. In both cases, the recommendation queries are ran for each of
the 36 users with limit of 3 (best 3 users to be recommended). Each user’s recommendations are
scored as explained above and the precision value is returned.

6.3.4 Results

The results of running the following test script can be seen in the table bellow:

Recommendation
engine

True positives False positives Precision

Naive 34 74 0.312
Using Wordnet as a
KG

29 79 0.269

Table 9: Recommendation engines test results

From the results we can see that the naive recommendation engine successfully identified
recommendations for a user i.e. recommended a user which is in the same category as the user
looking for recommendations, more times than the one using Wordnet as a KG. This is derived by
looking at the value for True positives and it also affects the precision value. [

76

6.3.5 Comments

Firstly, from the results I can certainly say that both of the queries work as expected in terms of
functionality. They must have found the intersection paths I designed and implemented to produce
the results above. Therefore, the recommendation engines have successfully been implemented and
meet the basic functional requirements.

About the performance, we can say that in this case, the naive recommendation engine has a
higher precision rate than the one using the Wordnet as a KG. However, this test is very limited as
it uses a very small number of users and categories. One of the main reasons for the small sample
set is the limited number of tweets I was allowed to pull from Twitter because of the restriction on
my basic developer account. Because of this, I cannot comment for certainty on the performance
of each of these recommendation engines in general. Information on how this can be improved can
be found in the section about Future work.

7 Future Work

While I was researching ways to do NLP using graph databases and knowledge graphs, I came
across a lot of possible Knowledge graphs of which I had to be selective taking the time I had into
consideration. The reasons of why I chose the ones I did are given in the sections above. However,
there was one knowledge graph which I studied in depth and really wanted to implement in this
project: the ConceptNet.

The ConceptNet (ConceptNet. 2021) is similar to the Wordnet but it is not a dictionary. It
rather contains nodes and relationships which represent words and links to different meanings.
Words in the ConceptNet are also connected to each other through relationship which represent
connections between them. For example, if we had the word “sushi” as a node in a ConceptNet,
it could have relationship “MADE_OF” to “raw fish” or “IS_A” to “Japanese food”. Those types
of relationships can be very meaningful in exploring and learning more about the keywords that
users tweet about. I believe that it can better identify categories by combining the meanings of
different keywords that are common for particular users and then the recommendation can become
category based rather than synonyms or any other dictionary type of relationships. Yes, Wordnet
does make the graph smarter and can be used as NLP tool but the type of “smart” ConceptNet
can provide is very similar to the human brain’s knowledge as it doesn’t follow any lexical rules to
link words.

Furthermore, the evaluation of my solution model’s performance for retrieving newsfeeds and
user profiles as well as the evaluation of the recommendation engines are both very limited. I could
not derive any statistical conclusion about both because of either lack of processing power, time
or resources available. To fully evaluate the newsfeed and profile retrieval some other factors such
as the storage space and the time it takes to retrieve the feeds in seconds can be used as metrics.
I decided not to measure the time because it takes relatively small time to retrieve a newsfeed or
a profile for both queries and some background processes on my machine were stopping me from
producing any valuable results. If the appropriate environment and machine is available, such an
experiment could confirm whether the DB hits are statistically significantly different.

The precision of the recommendation engines and the effects of Wordnet on the precision when
used as a KG are still not persuading enough to draw any statistical conclusions. The main reason
for this was the small sample size. If an access is granted to more Twitter accounts and large
number of tweets, I believe those can be evaluated using the same script I developed in an effective
way which will draw a conclusion on how effective the Wordnet is as a KG for this application. I
could only use some features of the wordnet from everything it offers because of the time I had

77

to complete this project and the complexity of the Wordnet itself. I see a light at the end of the
tunnel if the Wordnet is dug enough. Potentially useful relationships for the purpose of improving
the recommendation of users with graph databases could be revealed.

Another interesting idea for future work is the Advanced Search for which I only demonstrated
a simple functionality example based on only a small fraction of the whole Wiki Categories data.
The whole Wiki Categories graph with all the pages can provide a very promising KG which can
categorise all keywords which have a link to Wikipedia page. This omits some keywords which don’t
have Wikipedia pages but in my opinion any keyword with a Wikipedia page could be considered an
important and meaningful keyword which is not a stopword or an adjective. A full implementation
would provide meaningful information for the categories that people tweet about and can also be
used in a combination with Wordnet to improve the precision of the recommendation engines even
more.

8 Conclusion

This project demonstrates how graph databases can be used as a store for social network data while
aiming for a graph model efficient enough to be considered as an option for one of the popular
social networks. Overall, the designs and specifications have been implemented successfully as I
achieved a system which works similar to Twitter but is completely based on a graphs for the
update, modification and retrieval of data within it.

From the evaluation I can first confirm that the basic functionality of Twitter has been implemented
and the graph database has been successfully integrated into the system. I proved that the database
behaves as expected on user inputs and it does so efficiently by maintaining a previously designed
graph model structure. What’s interesting about the graph models was its easy implementation
after drawing the sketches. The designed model was very easy transferred into the graph database.

As with any other types of database models, there are always more efficient and less efficient
ones. After studying the advantages and disadvantages of some existing solutions similar to my
project, I derived a graph design which combines their best advantages into a hybrid model which
in theory promises better performance when performing some of the key operations on the database
of a social network such as the retrieval of newsfeeds and user profiles. After implementing my
solution model into the system as one version and creating another one based on the most efficient
existing model from my analysis, I was able to test their performances in different scenarios.
The results from the test showed that my model is more consistent as the amount of nodes and
relationships to be processed grows, but was less efficient in some cases which contained less data
in the process of retrieving the newsfeeds or user profiles.

After successfully implementing the basic functionalities, I started exploring the abilities of
graph databases to recommend users. The outcome was that graph databases can indeed be
used to find similarities between users as I successfully designed and implemented two types of
recommendation engines. The first one used only the ordinary Twitter data to detect commonalities
of users by extracting keywords from the posts of users and then looking for intersection paths in
the graph, and the other one used an addition knowledge resource as a graph, a knowledge graph.
From what I observed during the tests done on the recommendation engines, the naive one had
a higher precision but as stated in the Evaluation section, the sample set was very small and no
statistical conclusion can be done on that.

Finally, I used the KGs and their NLP compatibility to create a new social media feature which
I called the Advanced search. Even though it was very limited, it demonstrates a promising way to
recommend users based on keywords searches using the Wiki Categories as the knowledge resources

78

to learn more about what everyone is actually tweeting about.

9 Reflection on learning

Writing the report while working on the project is one of the most important things I learned
throughout this project. At the beginning, I didn’t take it as anything different from the rest of
the work I’ve done during my University course, but it was different in many ways. First of all it
was a very long and a large project. In my initial planning I put down the last three weeks for
writing the report. The issue I encountered was that a lot of the things I produced early in the
second semester, I had to spent time on to remind myself how I’ve done them and what I was
trying to achieve. This was especially time consuming when I had to look through some complex
code. Even though I put comments on some places, at the end I felt like it was not enough and
I struggled to understand some of my own code in some places. One lesson I learned from this
experience was to always write the report along with the work or at least keep a detailed project
diary which can later help me remind myself quicker. Another lesson I learned was regarding my
programming. I believe that If I put enough comments in the right places, I was going to save
myself a lot of time when trying to understand pieces of code I developed 3-4 months ago.

While working on the project, I was exposed to a lot of new terminologies and technologies
that I wanted to use to achieve my goals. Most of them were related to graph databases and Neo4j
in particular but I also practiced and developed further my Python skills by learning in depth new
libraries such as py2neo and Flask. Before this project, I had never worked on any NLP tasks.
This was a good introduction to me on how NLP can be used and also advanced my knowledge
and skills in one of the possible ways to use NLP: with the help and use of Knowledge Graphs.

Apart from the technical knowledge and skills, I also had to put in practice and test my
organisation and time management skills. This made me realise some mistakes I was doing with
my organisation and time management and forced me to learn new, more efficient ways to do so
in order to achieve my goals. The only other large projects I worked on in the past were group
projects. This was my first large individual project and I had to organise it all by myself and
keep myself motivated to achieve the milestones I set. Successfully reaching milestones and the
experience overall have made me now a more confident person willing to take responsibility and
participation in large projects.

79

References

Themelis, C. and Sime, J. 2020. From video-conferencing to holoportation and haptics: How
emerging technologies can enhance presence in online education?. Springer., pp. 261-267.

Lung, C. and Wu, F. 2020. Emerging technologies for the prevention and management of diabetic
foot ulcers. Journal of tissue viability , pp. 61-68.

Rogers, W. and Mayhorn, C. 2004. Technology in everyday, Gerotechnology: Research and practice
in technology and aging., p. 1.

Boyd, D. and Ellison, N. 2007. Social network sites: Definition, history, and scholarship. Journal
of computer-mediated Communication 13(1), pp. 210-230.

Biggs, N. and Lloyd, K. 1986. Graph Theory, 1736-1936. Oxford: Oxford University Press.

Bourbakis, N. 1998. Artificial intelligence and automation. Singapore: World Scientific., p. 381.

What is Neo4j?. 2021. Available at: https://dev.to/sukhbirsekhon/what-is-neo4j-8jc [Accessed: 5
April 2021].

Cypher Query Language - Developer Guides. 2021. Available at: https://neo4j.com/developer/cypher/
[Accessed: 28 February 2021].

How much faster is a graph database, really? - Neo4j Graph Database Platform. 2021. Available at:
https://neo4j.com/news/how-much-faster-is-a-graph-database-really/ [Accessed: 20 March 2021].

Vukotic, A. and Watt, N. 2021. Neo4j in Action.
Available at: https://www.manning.com/books/neo4j-in-action [Accessed: 23 January 2021].

Pickhardt, R. 2018. Efficient Graph Models for Retrieving Top-k News Feeds from Ego Networks.
Available at: https://www.rene-pickhardt.de [Accessed: 28 January 2021].

Knowledge graphs. 2021.
Available at: https://www.turing.ac.uk/research/interest-groups/knowledge-graphs [Accessed: 28
May 2021].

WordNet | A Lexical Database for English. 2021. Available at: https://wordnet.princeton.edu
[Accessed: 28 April 2021].

Small, N. 2021. The Py2neo Handbook — py2neo 2020.0.
Available at: https://py2neo.org/2020.0/releases-versioning [Accessed: 16 January 2021].

Neo4j APOC Library - Developer Guides. 2021. Available at: https://neo4j.com/developer/neo4j-apoc/
[Accessed: 28 May 2021].

RDF - Semantic Web Standards. 2021. Available at: https://www.w3.org/RDF/ [Accessed: 17
February 2021].

Arrow Tool. 2021. Available at: http://www.apcjones.com/arrows/ [Accessed: 3 January 2021].

Zanten, B. 2021. Twitter Statistics: 82% of Twitter users have less than 350 followers. Available at:
https://thenextweb.com/news/twitter-statistics-82-of-twitter-users-have-less-than-350-followers [Accessed:
18 April 2021].

80

ConceptNet. 2021. Available at: http://conceptnet5.media.mit.edu [Accessed: 28 February 2021].

Database hits (DbHits) - Neo4j Cypher Manual. 2021.
Available at: https://neo4j.com/docs/cypher-manual/current/execution-plans/db-hits/ [Accessed:
28 May 2021].

Barrasa, J. and Needham, M. 2021. Tutorial: Build a Knowledge Graph using NLP and Ontologies
- Developer Guides.
Available at: https://neo4j.com/developer/graph-data-science/build-knowledge-graph-nlp-ontologies/
[Accessed: 2 March 2021].

De Marzi, M. 2021. Building a Twitter Clone with Neo4j – Part One.
Available at: https://maxdemarzi.com/2017/03/30/building-a-twitter-clone-with-neo4j-part-one/
[Accessed: 7 January 2021].

Barrasa, J. 2021. QuickGraph16 The English WordNet in Neo4j (part 1).
Available at:
https://jbarrasa.com/2021/01/29/quickgraph16-the-english-wordnet-in-neo4j-part-1/ [Accessed: 10
March 2021].

Barrasa, J. 2021. QuickGraph18 Semantic similarity metrics in taxonomies: A wikipedia example
on uncrewed spacecraft.
Available at:
https://jbarrasa.com/2021/02/27/
quickgraph18-semantic-similarity-metrics-in-taxonomies-a-wikipedia-example-on-uncrewed-spacecraft/
[Accessed: 16 March 2021].

81

A Graph databases

A.0.1 Neo4j and Cypher

Neo4j databases can be queried using Cypher, a declarative query language similar to SQL, but
optimised for graphs. Cypher’s syntax provides a visual and logical way to match patterns of
nodes and relationships in the graph (Cypher Query Language - Developer Guides. 2021). It can
be used for both queuing and updating a graph. Below is an example of a Cypher query used on
Neo4j graph database:

MATCH (u:User)-[:LIKES]->(u2:User)-[:FOLLOWS]->(u3:User)

WHERE u2.id = "001"

Listing 1: Example Cypher query

Figure 73: Graph database exampe

Based on the graph example above if we apply this query, it will retrieve all users that like
Alice and all the users that Alice follows. As mentioned, Cypher provides a visual way of matching
patterns in a graph. We can see this pattern with the arrows connecting the ending instances of a
"User" node through a relationship called "FOLLOWS" and a relationship "LIKES". The direction
of the arrows in the query is the direction the graph search will follow. It’s easy to understand by
looking at the arrows in the query and follow them up in the graph that Marko will be the user
retrieved as an instance of user "u1" and Mario as an instance of user "u2".

82

A.0.2 Knowledge Graphs

Knowledge graphs are simply representations of data in the form of nodes and relationships, same
as graph databases. They can in fact be parts of graph databases. As the name suggests, they
usually hold information or knowledge that can be explored to find out more about the data
that is stored in the main database. Today, KGs (Knowledge Graphs) are used extensively in
anything from search engines and chatbots to product recommenders and autonomous systems
(Knowledge graphs. 2021). Such KGs are used in the project with NLP (Natural Language
Processing) technique to enhance the precision of a recommendation engine and as a main engine
for an advanced search feature. Examples of such graphs are the WordNet and the Wiki Categories
which are the KGs used in this project.

WordNet® is a large lexical database of English. Nouns, verbs, adjectives and adverbs are
grouped into sets of cognitive synonyms, each expressing a distinct concept. Synonyms are
interlinked by means of conceptual-semantic and lexical relations (WordNet | A Lexical Database
for English. 2021). Apart from synonyms it consist of many other relations including hyponyms
and meronyms. The dataset contains 155,327 words which form a total of 207,016 word-sense pairs.
Those include the lexical categories nouns, verbs, adjectives and adverbs. The resulting network
of meaningfully related words and concepts forms a graph which can easily be exported to Neo4j
because of its ability to build graphs as they are modelled or designed. Below is an example of a
small subgraph of the WordNet:

Figure 74: WordNet as Knoweldge Graph example

The small nodes in this example represent the words from the English language in their simplest
form, and the bigger nodes represent definitions of their meaning. Having this data in a database as
a knowledge graph can be used to explore meanings of the actual words used in the main database
and find similar, opposite and many other links.

Wiki Categories are used in Wikipedia to link articles under a common topic, forming a graph
of root categories linked with different levels of sub-categories each linked to Wikipedia pages that

83

fall under a particular category. Those links create a network or a graph which is also exportable
to Neo4j and can be used to search pages which are under the same categories at different levels
thus allowing me to use them in the project as a KG to find out users who talk about keywords
which fall under the same categories according to Wikipedia. Below is an example of a fraction of
the Wiki Categories as a graph:

Figure 75: Wiki Categories as Knogledge Graph example

This example shows only 2 levels down from the root category Databases. The whole Wiki
Categories graph has got a very large number of subcategories to a lot of root categories as we can
imagine knowing how much information is on Wikipedia, but we can understand the structure by
looking at this subgraph. Every category node will have pages linked to it that correspond to their
Wikipedia pages such as the one linked to the category Query languages in this example. Using
this knowledge graph, we can find out whether Database security and SQL categories fall under
the same category. This can be beneficial when searching for users who talk about same categories
in recommendation engines for example.

The application of these into Neo4j with their use into this project and the meanings of the
relationships used will be explained in the Approach section.

84

A.0.3 Graph Databases vs Relational Databases

In a book by Jonas Partner and Aleksa Vukotic (Vukotic and Watt 2021), they performed an
experiment comparing the performance of graph database and relational database in a social
network application. Specifically, they evaluated the task of finding all the friend’s of a user’s
friends and then the friends of friends of friends. As we all know, most of the social networks can
display a list of friends of your friends if they allow in their privacy settings, so it is based on real
use case. The MySQL and Neo4j queries were both ran on a database with 1,000,000 users. The
results of their experiment are in the table below:

Depth Execution Time - MySQL in
seconds

Execution Time - Neo4j in
seconds

2 0.016 0.010
3 30.267 0.168
4 1,543.505 1.359
5 Not Finished in 1 Hour 2.2132

Table 10: GDB vs RDB

The results of their experiment shwoed that Neo4j is 60% faster than MySQL in the simple
case of retrieving friends of friends (depth 2). For friends of friends of friends (depth 3), Neo4j is
180 times faster, for depth 4 Noe4j is 1,135 times faster and then MySQL stalled on depth 5.

Even though a lot of theory and experiments point on Neo4j’s ability to search social network
graphs better than relational databases such as MySQL, still most of the biggest social networks
today use relational databases as their main backend storage and management system. There are
some big companies who use Neo4j as their main database such as eBay, Walmart, Airbus, Toyota,
but Twitter, which is the social network used in this project, uses MySQL and Manhattan as the
primary data stores (Neo4j in Action. 2021).

There are no official reasons for that, but it could be that those social medias existed before
graph database technologies became popular and trusted, so the transfer to a totally new database
can be costly and risky.

Another possible reason is the lack of models and queries for the main social network tasks
which prove they are worth the effort of moving to Graph databases.

85

B Advanced Search Model example

Let’s assume User A is the left most “User” node on Figure 12. If this user logs in and searches for
“XML”, then the graph database would start a shortest path search through a common “Category”
node of the Wiki Categories KG to all users which the User A doesn’t already follow and apply
the path similarity formula replacing the result of the shortest path search with the dist(a, b) and
finally add that to the User x similarity score sum. If it occurs that User x also talks about other
query languages, the similarity scores through the other query languages’ subcategories that also
are connected with user A through the common “Query languages” node are added to the sum. At
the end, all users’s similarity scores sums are compared and the top n are recommended to User
A as the closest or most similar users in the searched category.

To visualise this, I designed some tables of what the results look like. Firstly, paths which
contain common nodes from the Wiki Categories KG are detected from the selected user to the
rest:

Main user Secondary
user

Searched
keyword

Matched
Keyword

First common
node in the KG

Path
length

User A User B SQL XML Query languages 2
User A User C SQL Neo4j Databases 5
User A User D SQL Cypher Query languages 2
User A User B SQL Oracle Databases 5
User A User E SQL Relational

databases
Databases 3

User A User F SQL SQL SQL 1

Table 11: Advanced search example: Step 1

Then the similarity scores are calculated using the formula stated above for each row producing
the following table:

Main user Secondary
user

Searched
keyword

Matched
Keyword

Path length Similarity
score

User A User B SQL XML 2 0.33
User A User C SQL Neo4j 5 0.16
User A User D SQL Cypher 2 0.33
User A User B SQL Oracle 5 0.16
User A User E SQL Relational

databases
3 0.25

User A User F SQL SQL 1 0.50

Table 12: Advanced search example: Step 2

Finally, the sums are created per user, creating the following final table:

86

Main user Secondary user Sum of similarity scores
User A User B 0.50
User A User C 0.16
User A User D 0.33
User A User E 0.25
User A User F 0.50

Table 13: Advanced search example: Step 3

After sorting, the following users with highest sum of similarity scores are recommended, setting
the limit to 3:

1. User B

2. User F

3. User D

87

C Wordnet import script

This whole script was written by Jesus Barrasa in his article "QuickGraph#6 Building the Wikipedia
Knowledge Graph in Neo4j (QG#2 revisited)" (Neo4j Cypher Manual. 2021). If it is done step by
step beginning from part 1 and then part 2, it will import the the same Wordnet instance I used
for my recommendation engine, around 1 million nodes and 2 million relationships.

Figure 76: Wordnet import Cypher scrip: part 1

88

Figure 77: Wordnet import Cypher script: part 2

89

D Extraction of entities using Google Cloud’s API Cypher

script

Figure 78 contains the whole Cypher script I used to extract entities and filter only the ones with
Wikipedia URLs in their metadata.

Figure 78: Extraction of entities using Google Cloud’s API Cypher script

90

E Recommendation engines results

List of common keywords between "BillGates" and one other secondary user using the naive
recommendation engine:

["valuable", "poverty", "choice", "read", "summer", "volunteer", "for", "value", "heres", "meaningful",
"obligation", "why", "importance", "tip", "student", "accomplished", "happy", "inspire", "measure",
"passion", "even", "again", "visit", "vote", "mail", "counted", "surging", "biggest", "hopeful", "im",
"got", "book", "innovation", "afford", "great", "thanks", "glad", "better", "health", "mlkday", "promise",
"president", "accord", "pandemic", "how", "hope", "youll", "every", "plan", "whether", "influence",
"change", "talking", "act", "always", "sat", "sharing", "achieve", "week", "promising", "four", "need",
"thrilled"]

List of common keywords between "BillGates" and one other secondary user using the recommendation
engine with Wordnet as a KG:

["valuable", "poverty", "choice", "read", "summer", "volunteer", "for", "value", "heres", "meaningful",
"obligation", "why", "importance", "tip", "student", "accomplished", "happy", "inspire", "measure",
"passion", "even", "again", "visit", "vote", "mail", "counted", "surging", "biggest", "hopeful", "im",
"got", "book", "innovation", "afford", "great", "thanks", "glad", "better", "health", "mlkday", "promise",
"president", "accord", "pandemic", "how", "hope", "youll", "every", "plan", "whether", "influence",
"change", "talking", "act", "always", "sat", "sharing", "achieve", "week", "promising", "four", "need",
"thrilled", "see", "read", "promising", "net", "solve", "foundation", "afford", "have", "feed", "commit",
"hopeful", "engagement", "advance", "ensure", "subscribe", "vote", "data", "deepen", "hope", "act",
"life", "grow", "screening", "also", "aid", "glad", "release", "breakthrough", "position", "continue",
"plastic", "lead", "move", "most", "almost", "happy", "expect", "depend", "belief", "thing", "passion",
"clip", "always", "clean", "found", "case", "affected", "address", "thrive", "model", "choice", "revolutionize",
"predict"]

The difference between the two sets:

["see", "read", "promising", "net", "solve", "foundation", "afford", "have", "feed", "commit", "hopeful",
"engagement", "advance", "ensure", "subscribe", "vote", "data", "deepen", "hope", "act", "life", "grow",
"screening", "also", "aid", "glad", "release", "breakthrough", "position", "continue", "plastic", "lead",
"move", "most", "almost", "happy", "expect", "depend", "belief", "thing", "passion", "clip", "always",
"clean", "found", "case", "affected", "address", "thrive", "model", "choice", "revolutionize", "predict"]

91

