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Abstract  
The in-vehicle CAN network was conceived and released to market 35 years go. In that time, 

there has never been a security patch or changes to the specification to address the security 

issues it has and as the cyber threat landscape has evolved and vehicles become more 

technological and connected, cyber-attacks against the in-vehicle network are now a growing 

threat. This work investigates the possibility of using a combination rule-based and machine 

learning based classification and detection system for attacks against the CAN bus. This is 

done by adding extra attributes to the raw CAN data, then feeding it through the processes 

sequentially. A valid ID rule and a time interval rule were used for the rule-based stage. A 

small number of machine learning models were tested for both the detection and 

classification stages of the proposed system, with the best performance being the AdaBoost 

algorithm for detection and the Gradient Boosting algorithm for classification, with the 

combination using a minimal amount of memory and being able to perform within the real 

time constraint. The performance of the other algorithms compared to these two were 

variable across all attributes.  
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1 Introduction 

1.1 Aims of this Project  

This project aims to improve on the situational awareness of the in-vehicle network, with 

the intent of being having additional or future work be able to leverage the enhancements 

provided by this project for the benefit of the network and its users. It will do this by 

being able to analyse the traffic being passed across the vehicle CAN bus(es) and using 

only this to be able to detect when the vehicle is the target of a cyber-attack, as well as 

being able to identify the type of attack that is taking place, in a time that is relevant with 

the real-time speed of the CAN network.  

1.2 Approach and Scope 

The proposed system in this project will carry out its intended aim by using a rule-based 

system to improve the situational awareness of the vehicle. This will work alongside 

machine learning techniques, with the intent that the system will be able to recognize 

attacks it is both familiar and unfamiliar with, with a high detection rate and low false 

positive rate. The same applies for the ability to classify the type of attack in the traffic. It 

will only be tested using the data from the dataset that is available, and as such will only 

consider attacks that are inside the attack model that this dataset represents. However, it is 

the intent of the project to be able to test how the system responds to attacks that it has 

not been trained on. It is also beyond the scope of this work to consider taking any actions 

from the attacks that are identified and classified, merely to stop at the identification and 

classification stages. The system will also only be designed for CAN 2.0A frames, not 

any of the further extensions or variations that can be present, or other types of network 

that may be present in the in-vehicle network.  

1.3 Intended Targets 

The system is targeted or being able to be deployed in any kind of vehicle that uses the 

CAN 2.0A specification. It could either be fitted into dedicated ECU(s) or added as an 

aftermarket product through the OBD-II port. It is intended to be deployed by those who 

have specialist technical knowledge, as it may require some tweaks between vehicles due 

to the fact that the IDs used between networks are non-standard and therefore vary from 

manufacturer to manufacturer.  

1.4 Reasons for Work  

The reason that this work is being carried out is that the CAN network is not inherently 

secure by design and that none of the existing approaches proposed in research have yet 

been adopted into practice. Traditional security techniques applied to more conventional 

networks cannot be used for reasons such as the low data rates used in the CAN network 

(often less than 1Mbps) or being too slow, so a different approach is needed. There are 

also issues in the design of the CAN network itself, being a broadcast system with no 

authentication or freshness checking for messages. As such, attackers are leveraging this 

to be able to successfully perform attacks against the CAN network to a variety of results, 

from disabling components to being able to remotely control the vehicle. Therefore, a 

system is needed to detect when attacks against the network occur, to provide it with 

some level of defence against malicious actors.  
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It is also often the case that the existing solutions proposed in research have issues that 

hamper them in one area or another. As a lot of these are neural network based, trying to 

improve the performance of the system created requires the adding of more neurons or 

layers, which lowers the speed of prediction and increases the size required for the 

network in memory. They can also be limited by the type of attacks that they can cover, 

as some methods rely on characteristics that are not present in every kind of CAN 

message or may have issues when attempting to be translated to an ECU spec 

environment, rather than a traditional computer.  
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2 Background  

2.1 Overview  

This section covers the necessary background information to sufficiently understand the 

rest of the work. It will cover the basics of the in-vehicle network, how communication is 

structured on it, the reasons for wanting to keep the security of the network intact and 

some of the challenges faced when doing so. This will be done by examining some of the 

existing work in the field and identifying the motivations behind it, as well as where there 

are problems that have not yet been addressed.  

2.2 The Controller Area Network (CAN).  

2.1.1 The Basics 

Prior to the invention of the CAN bus and its release to the public by Bosch in 1986, the 

network in vehicles was created with a lot of point-to-point wiring between the ECU 

units. This was both expensive and difficult to repair should any faults occur, a problem 

that the CAN bus does not have. Rather than have the point-to-point connections, the 

ECUs are instead all wired into a single CAN network (though this can consist of 

multiple physical buses, with gateways in-between). This both reduces the cost as it 

requires far less cabling, and improves the fault tolerance of the network, as it is highly 

unlikely for the entire bus to fail, merely single ECUs, barring extreme circumstances. 

The ECUs utilize the bus by sending packets or “frames” onto it, which have the structure 
detailed below.  

Fig 1. The structure of a CAN 2.0 frame.  

 

• SOF: Start of Frame (1-bit) – Signals the frame beginning  

• (11-bit) ID – Used for bus arbitration, with lower numbers carrying the maximum 

priority (minimum of 0)  

• RTR: Remote Transmission Request (1-bit) – This will be set to 1 whenever an 

ECU needs data from another ECU. Though all ECUs receive it, the ID will 

determine which ECU replies.  

• IDE: IDentifier Extension (1-bit) – This signals that this is a standard CAN frame, 

not one of the extended formats.  

• R0 (1-bit): Not currently in use, but reserved  

• DLC: Data Length Code (4-bits) – Tells how many bytes to expect as part of the 

actual data section of the frame 

• Data (0-64-bits) – Whatever values and other information the frame needs to 

carry, to a maximum of 8 bytes. 
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• CRC: Cyclic Redundancy Check (15-bits) – One of the error detection methods, 

used like a checksum for the rest of the frame. 

• ACK: ACKnowlegement (3-bits) – Used to signify whether the intended ECU 

received the message correctly, or to report an error in transmission.  

• EOF: End Of Frame (7-bits) – Marks the end of the frame. 

• IFS: Inter-Frame Space (3-bits) – Used to make the ECU wait while it moves a 

correctly received message into the message buffer. 

This is the original structure of the CAN frame, through it has been updated several times 

since then, most notably including CAN 2.0B, which has 29-bit identifiers (though is 

backwards compatible with 2.0A) and CAN-FD which can have up to 64 bytes of data 

and much faster transmission speeds. Other systems have also been developed as 

alternatives, including the Local Interconnect Network (LIN) which is used as a 

replacement for CAN in non-safety critical applications, due to its lower cost and 

FlexRay, which was designed to be faster and more reliable than CAN, but has seen 

limited adoption.   

2.1.2 Why the CAN network needs securing.  

The CAN bus neatly avoids the issues of complex point to point ECU connections, both 

reducing the cost to manufacturers as well as the complexity of repairs. However, the 

system was first released in 1986, where the idea of performing cyber-attacks against a 

car was remote at best. In more recent times however, as the cyber threat environment has 

evolved, and cars ever more packed with technology, the car has become more and more 

vulnerable to attacks. This included attacks from both physical vectors (the OBD-II port 

and compromised ECUs) as well as remote vectors. For example, Miller and Valasek [1] 

exploited an unmodified Jeep Cherokee and were able to remotely control the vehicles 

steering, brakes and engine. Had they had malicious intent, they would have had the 

potential to to cause an immense amount of damage to life and property before someone 

realized what they were doing and were able to develop the appropriate patch. A more 

comprehensive chart displaying the attack vectors is available in Bozdal et al. [2].  

As there has not been update regarding security to the CAN bus since its inception, the 

security of the network has only decreased as more and more ways to access the network 

are found. This is because the CAN network does not implement any forms of encryption 

or authentication, and is a broadcast system, meaning every ECU can both transmit and 

receive to every other ECU. If nothing is done to rectify this, attacks like that of Miller 

and Valasek will become more common and move from the domain of security research 

to that of the cyber-criminal. Upstream Security’s Automotive Cybersecurity Report for 
2020[3], reveals that the number of cyber-attacks against vehicles has increased by 94% 

Year-on-Year since 2016, with 57% of the attacks in 2019 being made by “black hat” 
hackers.  

2.1.3 Challenges Faced in Securing the CAN network 

While it is known that the CAN bus is not entirely secure, there exist several challenges 

to trying to make it so. The CAN bus only supports very low data rates, sometimes as low 

as 250kbps for a variant of CAN 2.0A (ISO standard 11519, though subsequent revisions 

increase this), so traditional techniques with large overheads like software based public 

key cryptography are unsuitable to be directly translated over to the CAN network.  That 
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is not to say that possible solutions do not exist, as both Siddiqui et al. [4] and Jukul and 

Čupera [5] propose encryption approaches in their respective papers. The former uses 
extra hardware inside the system to implement AES-128 symmetric key cryptography, the 

latter the Tiny Encryption Algorithm, a kind of Feistel Cipher.   Authentication protocols 

have also been proposed, such as the LeiA, the work of Radu and Garcia [6], which 

applies the concept of Message Authentication Codes to the CAN network. However, 

even if these systems were able to be commercialized and implemented, the problem does 

not stop there. Relying on a single technique to keep the bus secure would be naïve at 

best, so there is no harm done by exploring other techniques that could potentially be used 

in parallel.  

There are also challenges that arise due to the way the network is designed and is used.  

One of these is that the CAN network is by design, a broadcast system. This is unable to 

be changed, as this is a fundamental part of the CAN architecture, but it when combined 

with the fact that the network has no authentication either, its problem is compounded. It 

makes it much easier to conduct every single kind of attack against the network, as the 

attacker has a much larger surface to attack and compromises in smaller systems (such as 

the TPMS) can affect other ECUs that may be more critical to vehicle operation. Another 

issue with the fundamental design of the CAN network is that way it handles bus 

arbitration. Each CAN frame has a 11- or 29-bit identifier that immediately follows the 

SOF bit. The lower that this number is, the higher priority that frame has on the bus. This 

can be leveraged by attackers to conduct DoS attacks and since as this is a fundamental 

part of the protocol, it cannot be patched or changed. Finally, there is the need that the 

network operate on a real time basis. Even a system that could flawlessly secure 

communications or detect attacks on the network is useless if it cannot keep up with the 

speed of messages across the bus and give responses within a very short period of time. 

This is another reason why a lot of the traditional security techniques are not permissible 

in the CAN environment, as they are just too slow.  

2.2 Prior Work. 

2.2.1 Indicators of Compromise 

Like cyber-attacks against traditional networks or machines, it is extremely difficult, if 

not impossible for the activities of the attacker to be invisible. In the traditional 

environment, there may be things like files being created, accessed, or modified, or new 

and persistent processes that run even when they are not supposed to. In the CAN system, 

there is not these indicators, as the type of data accessible is much more low level. 

However, each attack still leaves traces on the network that can be used by an IDS to 

detect when and what has taken place, without any additional information.  

These indicators can take a number of different forms. The most obvious of these is of 

course, the physical effect of the attack, but this is not able to be used as part of the 

system, as this is both difficult to define computationally and somewhat redundant to 

prevent the consequences by detecting those same consequences. More useful indicators 

are left by each kind of attack, which can be used to identify and classify them as per the 

aims of this proposed system. For example, a DoS attack that uses the method of flooding 

the bus with maximum priority messages, it can be observed that a large concentration of 

the same (or very similar) high priority CAN IDs are on the bus in a short space of time. 

This is unlikely to happen during normal network operation and is almost impossible for a 
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legitimate number of messages to be generated to prevent the use of the bus. The ID can 

also be used to perform a check for new additions to the network, if an ID is observed that 

has never been seen before (though this requires the attacker to be actively broadcasting, 

or have done so at least once), as it is logically impossible to modify the network while it 

is under operation under normal circumstances (as it would be sealed inside the body of a 

moving car), and therefore can correlate to an attack.  

For message injection type attacks, several things can be observed, depending on what 

kind of attack that may be underway. A spoofing type of attack, that aims to generate 

erroneous values and have this displayed to the driver (e.g. making the RPM gauge read 

higher than normal), will always use the legitimate ID of the targeted component but will 

be putting messages onto the bus much faster than normal, to have them actually received 

and processed by the target ECU. It is also possible to examine the data content of the 

CAN frame, even if this cannot actually be decoded into a coherent value. The way that 

this can be done is proposed by Müter and Asaj [7] who use the entropy (the randomness 

of the data) to be able to identify when someone has changed the data contents, as this 

results in a noticeable spike in entropy. For fuzzy attacks that generate random message 

IDs and data, this entropy-based method should be able to function as intended, although 

it cannot classify the type of attack in progress as it is an anomaly detector. If the contents 

were able to be understood, there would be the additional option of adding a check to see 

whether the value was actually feasible or not (instantaneous high acceleration, engine 

RPM higher than maximum etc), though this requires the data to be able to be understood 

and may not be universal across all vehicles. An example of such an approach that uses 

deep learning was presented by Li [8] at his talk at the DEFCON conference.  

2.2.2 Existing Solutions  

As the security issues with the CAN bus are not a new problem, a number of proposed 

solutions exist in research papers, and there are a few systems that are commercially 

available that put into practice a rule-based approach, similar to traditional ID(P)S for a 

network. These generally fall into one of four categories, based on the approach used. 

2.2.2.1 Physical Characteristics 

The first type uses physical characteristics of the system to build a profile of the particular 

CAN network, and then compares message traffic against this after it has been 

constructed.  An example of this kind of system can be found in the work of Cho and 

Shin [9], who use the clock skew of the individual ECU as a method of digital 

fingerprinting. While this method was highly accurate, and resistant to attacking itself (as 

this would need to physically heat or cool the ECUs), it does not fundamentally function 

for an ECU that does not have its traffic sent periodically, as the clock skew cannot be 

measured in this case. It would also require multiple ECUs to be installed into the vehicle 

with this system running, to prevent the attacker simply compromising the IDS ECU 

before conducting a more typical attack.   

2.2.2.2 Strictly Rule Based  

The second approach is to adopt a strictly rule based system, which is an approach used 

by some IDS systems for traditional networks. This would simply compare the CAN 

traffic against its profile of threats and then decide on whether the given frame was 

malicious or not. This has the advantage of being easy to implement and extremely fast 
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(an important factor in real-time networks like CAN), but also has a number of 

disadvantages. The most obvious of these being that if the attacker is using a zero-day 

exploit, or the system has not been configured correctly, attacks would be able to pass 

through undetected. Despite this, there is a commercial approach by Arliou, Sentinel-

CAN [10], that is already on the market.  Research approaches also exist, such as the 

work of Marchetti and Stabili [11], who analyse the sequence of IDs that pass across the 

bus, and Song et al. [12], who do the same thing but focus on the time intervals between 

messages. These are examples of simple, lightweight systems that use rules relating to a 

single attribute to function, but this comes with the limitations of not being able to detect 

certain kinds of attack at all (mainly being limited to message injection).  

2.2.2.3 Strictly Machine Learning Based  

Next, there is the approach of applying a machine learning algorithm to the problem. 

Various approaches have been tried, using a large variety of types of algorithm, but there 

are a number that see high performance or hold specific advantages that the others do not. 

These are the Generative Adversarial Network (GAN), used by Seo et al [13] with very 

promising results, despite its ability to suffer confusion with events such as ECU failure. 

Song et al [14] use a Deep Convolutional Neural Network (DCNN) instead. The DCNN 

was slightly more accurate than the GAN approach, but must be trained in a supervised 

manner, meaning it struggles to identify unknown classes of attacks. Both Loukas et al 

[15] and Qin et al [16] apply LSTM approaches. These are the traditional type of network 

employed when there is data over time to analyse. While of lesser accuracy than the GAN 

or DCNN approaches, they offer a different way of modelling the problem, which may be 

more likely to detect certain classes of attack, or more able to analyse certain elements of 

the data. Loukas’s approach also offers the advantage of offloaded computing, though 
only while the car is connected to a network, making it able to be much more 

computationally complex for the same response time.  

2.2.2.4 Hybrid Approaches 

Finally, there is the combination approach. This combines one or more of the above, in an 

effort to make the system more than the sum of its parts. Zhang et al [17] used a 

combination rule and machine learning based system to achieve near flawless accuracy 

against their chosen attack model, with very low processing times, though they did not 

consider how feasible this approach would be to implement with all the constraints of 

ECU hardware, and do not cover any spoofing type attacks in their attack model.  
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Table 1. Summary of existing IDS type systems for the vehicle network.  

Referenc

e  

Approach  Research/C

ommercial 

Results  Limitations  

Seo et al 

[13] 

Machine Learning–
GAN  

Research Average Detection 

Accuracy of 98% 

The system has the possibility to be 

confused by ECU errors, misidentifying 

them as malicious activity. 

Song et 

al [14] 

Machine Learning–
DCNN 

Research Around 99%  The system learns in a supervised 

manner, which is to say that the system 

would struggle to identify attacks that it 

has not been trained on, as it would not 

know what features to examine.  

Kang 

and 

Kang 

[18] 

Machine Learning–
DNN 

Research Overall Accuracy 

of 97.8% 

With this system as described, to try and 

improve on the reported stats would be 

difficult, as the more layers are added, the 

slower the system will become.  

Arliou 

[10] 

Rule Based.  Commercial N/A As Sentinel-CAN is a strictly rule based 

system, similar to systems like Snort for 

traditional networks, its effectiveness is 

solely dependent on the defined rules. 

Attacks of an unknown signature would 

bypass the system if they were within the 

normal “communication profile”.  
Young et 

al.  [19] 

Message Frequency 

Based  

Research  Detection 

Accuracy of 100%, 

for message 

injection only.  

This accuracy still has a false positive 

error similar (if slightly lower) than the 

machine learning based approaches and 

only detects attacks that require message 

injection.  

Zhang et 

al [17] 

Combination Rule 

Based and Machine 

Learning (DNN)  

Research  Detection Rate 

99.9% 

System does not consider attacks outside 

of its attack model and may not be 

feasible to implement within the 

constraints of ECU hardware.  

Loukas 

et al [15] 

Machine Learning – 

LSTM 

Research Accuracy 87%  The advantage of this method of being 

able to offload the computation to cloud 

servers only works in connected 

environments.  

The attacker can deliberately attack the 

vehicles connection to force the system 

into a lesser state of effectiveness.  

Song et 

al [12] 

ID Pattern Based  Research  100% for Bad 

Injection and 

Random Injection 

20-40% for Replay 

Attacks  

This approach only considers message 

injection attacks but does so in a more 

realistic way. The system also struggles 

against replay and single frame random 

injection.  

Qin et al 

[16] 

Machine Learning–
LSTM 

Research  Over 90% 

Accuracy  

System considers tampering with existing 

messages on a per-ID basis and as such, 

the scaling issues present are rather high. 
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System does not cover the possibility of 

attacks that do not need tamper with the 

payload of messages.  

Marchett

i and 

Stabili 

[11] 

Message Time 

Intervals 

Research Reported 100% System tested against extremely small 

samples that are not really representative 

of normal CAN data.  

Cho and 

Shin [9] 

Clock Skew  Research Close to 100% The system requires dedicated ECUs to 

be installed (more than one to prevent the 

attacker just compromising the IDS ECU) 

The system only works for messages 

whose traffic is periodic and cannot 

detect attacks when the ECU does not 

have periodic traffic.  

Markovit

z and 

Wool 

[20] 

Message Fields  Research “Very 
Encouraging”  

System was tested using only 10 ECUs in 

a simulated environment, so may not be 

feasible for the real system, and only 

detects anomalies, it does not classify 

them.  
 

2.2.3 Performance Assessment Methods  

2.2.3.1 Precision, Recall and F1 Score  

Precision is a measure of how accurate the system is, given by the number of true positives 

identified, divided by the sum of the true and false positives. Especially for identifying the 

malicious and benign traffic because the vast majority of the traffic is attack free, a relatively 

high precision (and perfect recall) could be obtained by just classifying everything as an 

attack. This must be avoided, as a low number of false positives is important in this particular 

environment, as there are very limited resources available, so they should not be wasted on 

chasing perfectly normal traffic.  A Precision that is extremely close to, if not 1 would be an 

ideal outcome for these experiments. Precision has been chosen as a method of assessing the 

system over accuracy because of the imbalanced nature of the dataset (and the problem at 

large). As mentioned earlier, the vast majority of packets are attack free, so very high 

accuracy could be obtained by just classifying everything as benign, which would defeat the 

whole idea of the system. It is more meaningful to consider how many of the attacks are 

identified, as well as how many false positives are being generated, as these are not desirable 

in the safety critical CAN environment.  

Formula for calculating Precision �݊݋�ݏ�ܿ݁ݎ = ݏ݁ݒ�ݐ�ݏ݋� ݁ݑݎܶݏ݁ݒ�ݐ�ݏ݋� ݁ݑݎܶ +   ݏ݁ݒ�ݐ�ݏ݋� ݁ݏ݈ܽܨ
Recall is the measure of how many true positives were identified, out of all the true positives 

and the false negatives. This should also be extremely close to, if not 1 in an ideal system, as 

every attack that manages to slip through the detection system could potentially have some 

drastic consequences for the occupants of the vehicle. Of the two, it is preferable for this case 

to have a higher recall, even if it means marginally lower precision, as the waste of system 

resources is preferable to the potential consequences of a compromise. Recall is a superior 

method to plain accuracy and is being used for much the same reason that precision is. It is a 
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more precise measure, suitable for the imbalanced dataset in use, and considers a specific 

class of error, in this case the false negative (which could be much worse than the false 

positive).  

Formula for calculating Recall ܴ݈݈݁ܿܽ = ݏ݁ݒ�ݐ�ݏ݋� ݁ݑݎܶݏ݁ݒ�ݐ�ݏ݋� ݁ݑݎܶ +  ݏ݁ݒ�ݐܽ݃݁ܰ ݁ݏ݈ܽܨ

The F1 score is the harmonic mean of the above two. This allows us to collate the two above 

statistics into a single one, that represents how good the balance between the two component 

values is. This allows us to identify (if a score of 1 cannot be achieved) the point that is the 

best trade-off between the precision and recall values (the highest F1 score). The F1 score is 

important because it combines and relates precision and recall together, allowing a single 

number to represent the overall performance of the system, which can then be very easily 

compared to existing work or taken and turned into appropriate charts to display the 

differences when using variations in the approach and how much this impacts the system as a 

whole.  

Formula for calculating F1 Score (of a two-variable system) ܨͳ ܵܿ݁ݎ݋ = ʹ ∗ ݊݋�ݏ�ܿ݁ݎ� ∗ ݊݋�ݏ�ܿ݁ݎ�݈݈ܴܽܿ݁ + ܴ݈݈݁ܿܽ 
2.2.3.2 Confusion Matrices  

Confusion Matrices are a fast, extensible, and visual way of identifying exactly which 

attributes are being misclassified. For a given (binary) classification problem, such as 

determining whether the given CAN frame is malicious or not, there are two possible correct 

values, ‘Yes’ or ‘No’. If these are aggregated for every frame tested, it can be summarized by 

a confusion matrix that would look as below. Each cell contains the number of predictions 

made for that class, as well as the percentage that the number is of the given whole, with the 

aim to maximize the values on the major diagonal. Confusion Matrices are important because 

they allow insight into which of the types of error that are happening and with more than one, 

how changing parts of the system affects these values, all with one figure. Another reason 

why they are a good tool is that they can be extended to multi class classification (i.e. 

determining the kind of attack) with ease and the same specificity of being able to see which 

classes are being misidentified as the other.  While the precision and recall statistics can 

display the former, the confusion matrix is far superior when the problem exceeds a binary 

classification, as the extra specificity it provides is invaluable.  

Table 2. An example confusion matrix for binary classification 

  Predicted 

  Malicious Benign 

Actual Malicious True Positive False Negative 

Benign False Positive True Negative 

 

Table 3. An example confusion matrix for a multiclass (specifically 5) classification  
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    Predicted   

  0 1 2 3 4 

Actual 0 TP     

1  TP    

2   TP   

3    TP  

4     TP 

 

2.2.4 Relevant Machine Learning Strategies 

2.2.4.1 One Class Support Vector Machine  

A One Class Support Vector Machine [21] (OCSVM) uses a kernel function to create a 

separating hyperplane around what then training data models as normal behaviour. New data 

is then able to be classified as normal or abnormal by whether it falls outside of this boundary 

or not. Common kernel functions can be classified into two groups, linear and non-linear, 

with the non-linear kernels used for data that has overlapping class boundaries or that is not 

easily separated by a linear kernel. In SciKit-Learn [22], the implementation is based on 

libsvm [23], even if the kernel choice is linear. OCSVMs are trained in an unsupervised 

manner, which does not require labelled data to train.   

Table 4. Possible Kernel choices with mathematical formulation and linearity 

Kernel Mathematical Formulation Kernel Type 

Linear ݇(ݔ௜, (௝ݔ = �௜ݔ . ௝ݔ  Linear  

Polynomial ݇(ݔ௜ , (௝ݔ = ௜ݔ)  . ௝ݔ + ͳ)�
 Non-Linear 

Radial Basis Function 

(RBF) 
௜ݔ)݇ , (௝ݔ =  exp (−� ௜ݔ|| −  (௝||2ݔ

Non-Linear 

Sigmoid    ݇ሺݔ, ሻݕ =  tanh ሺ�ݕ�ݔ + ܿሻ Non-Linear 

 

The Linear kernel is the simplest available kernel that results in a simple linear decision 

boundary when the separating hyperplane is plotted graphically. The Polynomial kernel is 

similar to the Linear kernel, but instead will have a curve of degree ݀ as the decision 

boundary, allowing for a greater resolution and better separation of data that is overlapping or 

not easily separated linearly. The RBF kernel results in curved, circle like ‘blobs’ that 
surround regions of points, which allows for the expression of complex decision boundaries, 

at a higher risk of overfitting to training data. The Sigmoid kernel is used as a rough 

approximation for a Multi-Layer Perceptron neural network, with two layers.  

2.2.4.2 Linear Support Vector Classifier  

A Linear Support Vector Classifier [24] (LSVC) (as defined by SciKit-Learn) is a special 

case of the generic SVC. Whereas the SVC takes the same common kernels as the OCSVM, 

the LSVC is restricted to linear kernels, as it is based on a different library than the SVC, 

being liblinear [25] rather than libsvm. This does make a difference in practical terms, as it 

allows extra loss functions and penalties to be explored and has better scaling with large 

numbers of samples than the using the SVC with a linear kernel. The LSVC is a supervised 

method, meaning it requires accessed to labelled data for training.  
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The LSVC also allows for inherent multiclass classification with the use of the 

“crammer_singer” multiclass strategy, based on the work of Crammer and Singer [26]. This 

approach removes the need for having ݊ one-vs-rest classifiers, as it optimizes a joint 

objective function across all of the classes, at the cost of more expensive computation (it must 

solve the dual problem formulation). 

2.2.4.3 Isolation Forest  

An Isolation Forest [27] is an ensemble classifier, that uses many so called “Isolation Trees” 
as its way of classifying whether the given point is normal or abnormal. The reason for using 

a forest rather than a single tree is that this increases the diversity and reduces biases that may 

be inherent to a tree trained only on one part of the feature space. The Isolation Trees 

correspond to splitting up the data geometrically, until the partition has only a single value, or 

all the same values. Points that are different to the rest of the data are easier to separate using 

this method, as they lie further away from the main cluster(s) of normal points. Once the 

forest has been grown, new data is passed through the forest, with points that are abnormal 

taking much shorter paths through the trees than the normal observations. An Isolation Forest 

is an unsupervised learning method.   

2.2.4.4 K-Nearest Neighbours   

K-Nearest Neighbours [28] is a method that relies on similar points being of the same class. 

If the point is plotted in N-Dimensional space (where N is the number of features that 

describe a single point), it will likely be close to other points. Of these, K are chosen (with K 

being fixed) and determined what class of point they are, with the new point being classified 

as whatever the majority is of its K neighbours. K-Nearest Neighbours is a supervised 

learning method, as it is required to know what classes the points are when the system is 

being trained for the algorithm to function.   

2.2.4.5 Local Outlier Factor  

Local Outlier Factor [29] (LOF) works in a very similar manner to K-Nearest Neighbours, 

with new points being given a “Anomaly Score”, which represents how different it is with 
respect to the neighbourhood of points that it lies in. This score is then compared to that of its 

neighbours, with anomalous points receiving lower scores, as they do not tend to cluster 

together as much as the normal points, with anything below a certain threshold classed as an 

outlier. LOF is an unsupervised training method.  

2.2.4.6 AdaBoost  

AdaBoost [30] is a meta-strategy, where it does not actually represent a particular learning 

algorithm of its own. Rather, it is a method of improving the performance of other, weaker, 

classifiers by training them in succession, where the output of each one is used to adjust the 

performance of the next. The stack of classifiers improves in performance the deeper it goes, 

as each successive one is trained to do better at what the previous was weak on.  In this case, 

the default weak classifier of the decision tree will be used.  

2.2.4.7 Random Forest  

A Random Forest [31] is another ensemble-based classifier like the Isolation Forest, though 

this time the algorithm is building Decision Trees rather than Isolation Trees. To help control 

overfitting and improve diversity, each tree is made from only on a sample of the dataset, 

rather than the whole on each and every time. Once the forest of trees has been constructed, 

the forest then classifies new samples by running it through each tree, and whichever class 
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gets the vote from most trees will be the one assigned. This is superior to using a single large 

tree, as it allows more of the features to influence the decision more and reduces biases as 

each tree is constructed randomly from a sample of the data. Random Forests have inherent 

support for multiclass classification.  

2.2.4.8 Logistic Regression 

Logistic Regression [32] seeks to form a decision function based on optimizing the cross-

entropy loss across the classes as it trains. This is comprised of a coefficient for each feature 

and each class present in the dataset, along with an independent bias term. How well new 

data fits the learned function determines the probability that it belongs to that corresponding 

class, with the best fit being the choice of the classifier. Logistic Regression has inherent 

multiclass classification abilities.  

2.2.4.9 Gradient Boosting 

Gradient Boosting [33] is much like the AdaBoost meta-strategy. It begins from a single 

weak learner (in this case, a Decision Tree Regressor) and then over each iteration, it trains 

more of these trees and continues to optimize the performance using a differentiable loss 

function (deviance is used, to make it a form of optimized Logistic Regression). The overall 

number of iterations will affect how well the model can classify the data. Gradient Boosting 

used in this manner is an inherently multiclass classification strategy.  

2.2.5 Summary 

In short, there are a number of known possible attacks that can be performed against the in-

vehicle network that have been shown to be effective on the target vehicles. The difficulties 

in the resource constrained, real-time environment make traditional security techniques such 

as encryption or authentication mostly non-viable, though there has been some work towards 

implementing these. The majority of the existing systems instead utilize a form of intrusion 

detection system, which can be based on a number of different techniques, with the most 

common being rule-based and machine learning based approaches. The algorithms used are 

often neural networks, which are able to achieve high detection rates with varying amounts of 

false positives, though often rather low. These methods are not without their drawbacks, such 

as larger amounts of resources needed, being limited to specific attacks or techniques, or 

requiring certain characteristics such as cyclical messages to function.  However, there exists 

the option of applying other machine learning methods, both for the detection and for the 

classification of the detected attacks, the latter of which no other work has done so far.  
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3. Research Methods   

3.1 Overview  

This section will detail the research methods that are relevant to this work and why that is the 

case for each method used, considering the relevant factors in each case. It will also cover 

why these methods are important in the context of this particular work, rather than in a 

general sense.  

3.2 Qualitative Methods  

The sole qualitative method employed is detailed below, as the nature of this work makes it 

such that most of the qualitative methods (such as conducting studies with users, focus 

groups and such) do not apply in this case. This is because the performance of this system is 

better analysed by using quantitative methods, as it is very heavily focused on numerical 

aspects and problems. It would be possible, after implementing a system to conduct these 

kinds of activities (with relevant ethical considerations and approval obtained by the 

appropriate parties), but this would not actually tell us about how the system was performing. 

It would instead be more about how users perceive and interact with the system, and in this 

case such interaction will be extremely limited, so it would be better to focus more heavily on 

quantitative methods. The most applicable method that has not been used would be 

phenomenological research, where a group of participants used the system as it was intended 

for an extended period of time and then gave their feedback, though this becomes of more 

value when the system is more than proof of concept.  

3.2.1 Reading Existing Literature  

This is an extremely important method for this particular project, as there is already a variety 

of existing work that covers systems for increasing awareness of the in-vehicle network. If 

these systems already have been proposed and could exist, it would be redundant to cover the 

same ground again, so it is necessary to have a thorough understanding of these systems as to 

avoid doing this. The same understanding is also used to be able to actually design the system 

subject to the specific requirements of the environment it is intended to be deployed in. This 

is also important to provide information about the kinds of attacks that need to be detected 

and classified and the methods by which others in the field are doing so (for detection at 

least). The more attacks that can be known about along with their corresponding indicators of 

compromise, the more effective and comprehensive the proposed system can be, both in the 

detection and classification of the attacks.  

3.3 Quantitative Methods  

Quantitative methods are much more applicable to the kind of work that aims to be covered. 

This is simply because the best way to assess the system that is created against its peers to 

determine whether any improvement has actually been generated is by comparing against the 

statistics that they have reported in their own work. The metrics detailed in the following 

section should provide a more than comprehensive form of coverage for both the final results 

obtained, as well as for tuning and optimizing the chosen implementation(s) during 

development.  
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3.3.1 Correlational  

The aim of this work is to be able to establish a link between the CAN data and being able to 

identify the trends and patterns that correspond to the various kinds of cyber-attacks that may 

be performed against the in-vehicle network. As such, this piece of work is correlative, as the 

work is exploring the correlation between the various items of data inside of the CAN frames 

along with other attributes about the traffic to be able to use for our purposes. Any work that 

is done without having to manipulate the dataset at all would then fall under studying the 

variables as they would occur in the real environment (as the datasets have been collected 

from the operation of a real vehicle). The relationships and distribution of the variables are 

then studied, without actually changing the items of data to see the effect it has on the system. 

It is also not an aim to prove why a particular ID or data payload, or another variable causes 

the effect that it does, as the work is focused on being able to identify that it is X type of 

attack. Considering the context as well, it would be of limited use to be able to link specific 

CAN ID and payload combinations to always being attacks, as these mappings will most 

likely be specific only to the vehicle that they were collected from, as the CAN standard 

defines nothing about the content of the frames. Considering spoofing attacks in particular as 

well, the combination may be an attack in one case, but a perfectly valid frame in another. 

3.3.2 Causal-Comparative 

This work may also be considered as a piece of causal comparative research, as it is possible 

to identify specific variables and how they link to the dependent one (whether the frame is an 

attack or not). This is different to the methods that are correlational in nature, as it is not so 

much examining the system as a whole, but rather specific parts of it. In the case where 

specific rule-based components are used, this is very much a causal comparative approach, as 

the rule pertains to a single variable (though it is not directly manipulated) and the change in 

detection performance observed. The analysis of the system that is built when compared to 

the hypothesis will also be of this kind of research.  It is the intent of the work to draw 

conclusions and offer discussion around both the data that is produced, and that of other 

similar papers. This will be done considering the variables identified, as well as offering 

discussion on the ones that may not have been that may still be relevant to the outcome of this 

kind of system. As such, by offering this kind of analysis, there is an attempt to be able to 

link the variables with their outcome, the causation, rather than just sticking to strict 

correlation.  

3.4 Summary 

This section covered the three kinds of relevant research methods, reading existing literature, 

correlational and causal comparative research. For the first, this was used because there is no 

reason to repeat content that other work already has covered, as well as using this work to 

guide the direction of this work to attempt to achieve the best possible results. Correlational 

and Causal Comparative methods are used because the easiest way to analyse and compare 

between this work and the existing work is through methods of this type, namely metrics such 

as were covered in section 2.  
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4. Implementation 

4.1 Overview  

This section covers the implementation details. This includes the three-step model of the 

system overall; the high-level choices made such as language and framework as well as the 

justifications for using the machine learning algorithms that were covered during section 

2.2.4. It will also cover the datasets and the attack model that they represent, to provide the 

appropriate context for the system, in addition to providing explanations of how the rule-

based components operate.   

4.2 System Model 

For the system that was chosen to be implemented, it was clear that it would need to be at 

least a two-stage process, consisting of identification of attacks and classification at the very 

minimum. However, the method that showed to have the best performance from the literature 

was already a combination system, of rule based and then a ML component (a DNN). As 

such, a three-step model was chosen which is outlined below in the diagram. Additional 

details for each stage are available under the appropriate subheading inside of this section.  

 

Fig 2. Outline of the proposed system with the flow between stages shown.  

The proposed model differs from that of existing methods in that it is the first work to attempt 

to classify the attacks that it detects into the various types that are known to be present in the 

dataset. It also is not using a neural network-based approach, which differs from the majority 

of the existing work that is present, but instead seeks to apply more simple machine learning 

algorithms in the aim to achieve similar or better performance in the areas of detection and 

false positive rates, while having a lower memory usage and prediction time per message 

than the existing approaches and offering the ability to be altered and scaled to suit all kinds 

of in-vehicle networks.  

4.4.1 Preprocessing 

At the preprocessing stage, three main things occur. Were the system were deployed in the 

real environment, the messages would be assembled into the pandas [34,35] dataframe format 

that the system is expecting. For the development however, this is loaded from a CSV file on 

the disk instead, that has only a limited set of the fields of the CAN frames. Of these fields 

(Timestamp, ID, DLC and data bytes 0-8), the DLC and the data bytes are immediately 
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discarded, as the system does not use these as part of the process. This is for two reasons, 

which are related to one another. The first is to avoid clouding the feature space and the 

second is that for the vast majority of frames (at least in the datasets that were used), these 

showed little to no variance, which means they would contribute little or nothing to a 

classification problem other than add extra dimensions. The final step after the data is 

dropped is to add the extra attributes that are derived from the timestamp and the IDs, being 

the time difference between the ID and the previous occurrence of the same ID, the number 

of occurrences of the ID within the past 1000 messages (roughly corresponding to the 

maximal number of messages per 1/10th of a second) and the relative entropy of the ID with 

reference to an established probability distribution (as per Müter and Asaj). This reference 

distribution is generated from a capture of normal behaviour on the bus and to be used to 

maximal effectiveness, there should be a reference for every possible valid ID defined for the 

bus. Mathematically, the relative entropy (also called Kullback-Liebler Divergence) is 

defined as below: ܴܧሺ௉|ொሻሺݔሻ = ሻݔሺ݌  log ቆ݌ሺݔሻݍሺݔሻቇ 

In the above formula, P and Q are the probability distributions of IDs on the bus that were 

observed in this period, and the reference distribution generated from normal bus traffic, 

respectively. ݔ is the particular ID that is currently being computed for, with ݌ሺݔሻ and ݍሺݔሻ 

meaning the probability of ݔ in that given distribution. As entropy is a measure of the 

randomness of the system, increases in the relative entropy mean that there is has been a 

decrease in the randomness of the system which indicates abnormal behaviour. This 

correlates to attackers injecting messages onto the bus, as this is not a random event and so 

stands out very obviously using this metric (at least for spoofing attempts). Once these values 

have been computed for all of the frames in the dataframe, it is passed to the first of the 

detection components.  

4.4.2 Rule-Based Components  

The system uses two rule-based components, though there are the potential to use more as 

long as they have a low execution time, as to not compromise the real-time performance of 

the system. The two rules chosen are a valid ID rule and a time interval rule. The first of 

these is defined below.   

Algorithm 1: ID Based Detection  

Require: Preprocessed_Dataframe  

Load Reference List  

IDs_in_frame ← Get all unique IDs in Preprocessed_Dataframe  

new_IDs ← new List  

For ID in IDs_in_frame do 

 If ID not in Reference_List then  

  new_IDs.append(ID) 

 end if  
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end for  

detected_attacks ← new List  

for frame in Preprocessed_Dataframe do 

 if frame.id in new_IDs then  

  detected_attacks.append(frame) 

 end if 

end for  

return detected_attacks 

After this ID detection is applied, the frames that have been flagged are removed from the 

dataframe and the leftovers passed to the second rule. This requires the use of a capture of 

normal traffic data to compute the average time it takes for a message for the same ID to 

occur twice (as a large amount of CAN messages are sent with regular intervals, their average 

times should be very close to this time, plus or minus a very small deviance) and store this as 

a file. Then, when detection is being performed, compute the time delta between the 

messages of the same ID and if this delta is less than the average multiplied by a certain 

modifier, mark it as an attack. While this modifier is adjustable, it was set at 0.5, so any 

messages injected at double speed or higher should be detected. This was chosen because this 

was the minimal injection rate reported by Young et al. to have a successful attack, contrary 

to Miller and Valasek, who reported messages would need to be injected 20-100 times faster. 

This is detailed by the algorithm below.  

Algorithm 2: Time Interval Based Detection 

Require: Post_ID_Rule_Dataframe  

Require: Timing_Lookup_Dataframe 

Require: Injection_Rate_Modifier  

Load Timing_Lookup_Dataframe 

For ID in Timing_Lookup_Dataframe do 

Post_ID_Rule_Dataframe[average_time] ← 
Timing_Lookup_Dataframe[ID] 

End for 

For frame in Post_ID_Rule_Dataframe do 

If frame.time_difference > 0 and frame.time_difference < 

frame.average_time * Injection_Rate_Modifier then 

  frame.is_attack ← true 

 end if 

end for 
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return Post_ID_Rule_Dataframe[is_attack] = true 

 

Once this is complete, the detected attacks are then removed once again, the leftover frames 

being passed to the second stage of attack detection, which is machine learning based.  

4.4.3 Second Stage Detection 

This stage of the process uses machine learning algorithms to try and identify attacks that the 

rule-based approach would not be able to catch.  It is important to go beyond a simple rule-

based system as while these are lightweight and much faster than more complex approaches, 

they also have the inherent limitation that their detection ability is only as good as the rules 

that are defined. As such, it is important to be able to identify attacks that fall outside of the 

rule profile, as there are no guarantees that attackers will use an attack that known about and 

has a well-defined signature. The aim of the systems at this stage is to be able to identify 

whether a frame is malicious or not, regardless of what kind of attack this frame corresponds 

to, making this either a novelty detection or binary classification problem.   

4.4.3.1 One Class Support Vector Machine 

The OCSVM was chosen as a method to test as it is an unsupervised detection method, 

meaning it can be deployed without having access to any instances of attacks. Considering 

that any system being deployed in a real context would need to be adjusted for the specific 

IDs in use on the vehicle, this gives it an advantage as it can be trained by just capturing a 

sample of normal bus traffic (for which there exist commercial products to do so). OCSVMs 

are also a relatively lightweight system when compared to neural networks and are easier to 

train. Dependent on kernel choice, the OCSVM should also be fast enough to perform in a 

real time context with the appropriate number of samples for a single vehicle.  

4.4.3.2 Linear Support Vector Classifier  

The Linear SVC was chosen for two reasons. One, if a lightweight linear model can achieve 

comparable performance, there would be no need to use more expensive or slower methods. 

Two, it scales much better to larger amounts of training data than a comparable linear SVM 

based on libsvm, so can be tuned, and trained more effectively as more combinations of 

parameters can be tried for the same time frame.  

4.4.3.3 Isolation Forest 

The Isolation Forest method was chosen because it should be able to achieve a very high 

performance while managing to still be very fast as working with new data. Using a relatively 

large ensemble of trees also helps to average out the variance between them, much like in the 

random forest. However, bias in the Isolation Forest is bad, though not able to be avoided, 

due to the algorithm (though there is “Extended Isolation Forest” that can help alleviate this 
problem, it is not available inside of Scikit-Learn). The implementation inside of Scikit-Learn 

also has an additional parameter, contamination, that expresses the amount of expected 

abnormal points inside of the data. This allows fine control over the classifier performance, 

though fixing it may prove problematic.   

4.4.3.4 K-Nearest Neighbours   

K-Nearest Neighbours was included as part of the experiment for several reasons. The first is 

that (depending on the value of k), it is a relatively fast algorithm to compute, which would 

be needed for a real time context. It also does not really require much tuning or adjustment, 
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as long as the data going in is representative of what the classifier will see in the future, it can 

achieve very good performance. Finally, in the right set of circumstances, it can also be a 

relatively lightweight system, though this is dependent on the number of features and 

neighbours used.  

4.4.3.5 Local Outlier Factor 

LOF was included as part of the algorithms for testing, as it was another unsupervised 

training method and similar in nature to the K-Nearest Neighbours algorithm, at least 

theoretically. Therefore, it was included to determine whether it could be used in a similar 

manner, without first requiring labelled training data, as this needs to be produced vehicle 

specifically.  

4.4.3.6 AdaBoost  

The AdaBoost algorithm was included because far as can be told, no one has yet used this 

particular technique for this specific application. It is also a meta-strategy, which none of the 

other techniques are, so it will provide a useful reference point when comparing to the other 

supervised learning methods.   

4.4.4 Classification   

At this stage, all of the frames that were detected by the rule-based and second stage are 

passed to a classification algorithm to be able to determine what class of attack was taking 

place. This can be significant in that it would allow a system to go beyond just knowing 

attacks are taking place, to (with future work) being able to use active countermeasures 

against the attacker to try and stop whatever attacks are taking place. It also allows 

knowledge of which areas are being targeted and need to receive additional security updates 

or measures to harden them against the actions of attackers such that future attacks of the 

same kind are ineffective or more easily mitigated. Classification of attacks in this manner is 

a multiclass classification problem and as such, it is better to use algorithms that inherently 

support multiclass classification, rather than ones that need to use one vs rest or one-vs-one 

approaches, as there are potential scaling issues in terms of memory and compute time when 

there are large numbers of classes. 

4.4.4.1 Linear Support Vector Classification 

The Linear SVC is a desirable choice of algorithm as it both very lightweight and fast to 

make predictions. Through the use of the crammer_singer multiclass strategy, it can also be 

used as an inherently multiclass classifier, which avoid the need to train large numbers of 

classifiers to model binary problems when there are larger numbers of classes involved in the 

system.  

4.4.4.2 Random Forest  

The Random Forest is a desirable choice of algorithm here as it is extensible (should more 

features than the ones used here wanted to be added), and yet even with a high dimension 

problem, the classifier should not see a degradation in performance. As each of the trees is 

constructed from a small subset of both the feature space and the dataset, there is a low 

amount of bias present in each tree. This comes as the cost of a higher variance, some 

(though not all) of which is averaged away by using a forest of trees, rather than a single one. 

Once trained, the classifier is also extremely quick to work with new examples, which is a 

critical factor when it comes to a real time system.  
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4.4.4.3 K-Nearest Neighbours   

K-Nearest Neighbours functions no differently when used as the classifier here as it would 

for just detecting attacks at the second stage. As such, details will not be repeated here, 

though it is suited well for classifying the different classes of attacks because a lot of the 

similar, normal points will cluster together and then the attack classes will either form their 

own clusters (for spoofing and DoS) or be much more spread out (in the case of Fuzzy 

attacks) in the chosen feature space.  

4.4.4.4 Logistic Regression 

Logistic Regression was chosen to be included because it is a very simple technique to apply 

than can achieve good results on some data. If it proves to be effective, there would be no 

need to apply more complex techniques instead that consume more resources. As the 

classifier is a simple learned function, it is also extremely lightweight and very fast, with the 

capability to be extended well to large numbers of classes without severe scaling issues.  

4.4.4.5 Gradient Boosting  

Gradient Boosting was included to both have a present meta-strategy, to see if it performed 

noticeably better than other techniques and because of its ability to scale well to large 

numbers of classes and training data, while remaining performant at prediction time.  

4.3 Implementation Choices 

4.3.1 Choice of Language  

Python was the chosen language for this for a number of reasons. The first is that the author 

has the most amount of experience using Python. Next, there are a large choice of 

frameworks that have a Python API, with more than one being able to be used at the same 

time thanks to being able to import specific parts of a chosen package with the Python import 

system. This avoids the issue of needing a specific feature that a framework did not support 

and having to code it from scratch, as that would be a waste of the rather limited time that is 

available. The only disadvantage of using Python is that the language is interpreted and not 

compiled, which means that is much slower than using Java or C++. However, this partially 

mitigated when it comes to using the available machine learning frameworks, as these are 

actually often Python wrappers over underlying C/C++ code that is much, much faster than 

pure Python.  

4.3.2 Choice of Framework  

SciKit-Learn was chosen for this work for several reasons. As Python was the language that 

was desired, this ruled out using Weka, which while it has a GUI and is (allegedly) very easy 

to be able to pick up and use, only has an API for Java. While this is the other language that 

was considered, the corresponding Java code is a whole lot more verbose and requires more 

effort to accomplish the same level of functionality. Weka also offers a whole range of 

possible options, but short of applying them all, it would be difficult to determine which of 

them were actually useful. SciKit-Learn provides a large choice of algorithms, while also 

giving access to a variety of preprocessing methods and reporting metrics, so almost all the 

functionality that was required could come from a single library. This both helps to keep the 

code lower weight as well as making development simpler.  

4.4 Datasets and Attack Model 

There are two datasets that will be used during this work. The first of these is the “Car 
Hacking Dataset” [36] and the second the “Survival Analysis Dataset for Automobile IDS” 
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[37], both of which are from the HCRL. The Car Hacking Dataset merely specifies “collected 
from a real vehicle by logging CAN traffic via the OBD-II port” but the Survival Analysis 
dataset gives details about which vehicles were used to collect the data, being a Hyundai YF 

Sonata, KIA Soul and Chevrolet Spark. This confirms that all data is collected from real in-

vehicle networks and as such, should be representative of a realistic environment. Of the two, 

the Car Hacking Dataset is the one with more data and attack types, so this is the one that is 

used as part of the development of the system. From this dataset, the attack model is defined 

as below: 

• DoS Attack – Messages with the ID 0x0000 are injected with an injection rate of 1 

message per 0.3 milliseconds.  

• Fuzzy Attack – Injection of messages with random ID and Data payloads, every 0.5 

milliseconds  

• RPM Spoofing – An injection attack targeted specifically at the RPM gauge with the 

aim of spoofing a false value, injections are every 1 millisecond  

• Gear Spoofing – An injection attack targeting the gear information, with the aim of 

spoofing a false value, injections are every 1 millisecond.  

From the Survival Analysis Dataset, define the following attack types: 

• Flooding Attack – Inject a large quantity of messages of ID 0x0000. Near identical to 

the DoS attack from the Car Hacking Dataset. 

• Fuzzy Attack – Identical to the one in the Car Hacking dataset, but with an injection 

rate of every 0.3 milliseconds. 

• Malfunction Attack – Target a specific CAN ID and simultaneously manipulate the 

data payload and inject messages of random CAN IDs.  

This leaves five overall types of attack across both datasets. Of these, the four in the Car 

Hacking dataset will be used during the development and training of the system, with the 

Malfunction Attack deliberately left out and only seen during testing to see how any 

implementation responds to attacks of an unknown nature.   

4.5 Summary  

In this section, the proposed system model was put forward, the preprocessing and rule-based 

components explained through what each feature would be and through use of the algorithms 

behind them, respectively. Also covered were the choices for using each of the algorithms 

laid out in section 2 and why they might be useful to test as part of this work. Furthermore, 

the major choices in implementation of language and machine learning framework were 

stated and justified with comparisons to the other options given. The datasets used were also 

explained, defining the DoS, Gear, RPM, Fuzzy and Malfunction type attacks with an 

explanation of each provided, while also explain why the Malfunction type attack will not be 

used as part of the training data.  
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5. Results 

5.1 Overview  

This section contains all of the results obtained from the practical components of this work. 

That consists of the optimization carried out to try and determine the best parameters for each 

of the algorithms used at both the detection and classification steps, the Precision, Recall and 

F1 scores of each detection algorithm, the confusion matrices for the classification algorithms 

and the overall memory usage and speed of each algorithm or combination of algorithms. 

Brief explanations or discussion will be offered for each of these, but the majority of the 

discussion, possible reasons for the observed results and comparison to other existing work is 

instead in the next chapter.  

5.2 Algorithm Optimization  

For each algorithm that was implemented, possible parameter values were tested to find the 

variants that gave the best performance. This was done using the either the ParameterGrid 

and a for loop, which created, trained a classifier, and then evaluated against a test set, or 

using GridSearchCV, which does a similar task, but uses k-fold cross validation instead of a 

test set (in this case, k was left at the default value of 5).  

5.2.1 Second Stage Algorithms  

5.2.1.1 OCSVM 

For the OCSVM, there are three main parameters that affected the performance of the 

algorithm.  

• Kernel – Determines which mathematical function the SVM uses  

• Nu – What fraction of the training data can be classified incorrectly, as well as the 

minimum number of support vectors for determining separating hyperplane 

• Gamma – Coefficient term 
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Fig 3. Graph showing the effects of varying the Nu and Gamma parameters across OCSVM 

kernels 

The graph shows the results of the tuning of each of these parameters. When Gamma is 

scaled, the sigmoid kernel proves the best, with its performance in an inverse linear 

relationship with Nu. The RBF kernel has the same relationship, but at consistently lower F1 

scores. The Polynomial and Linear kernels show an initial sharp drop at nu=0.001, but then 

slowly increase in performance as Nu increases again, though do not reach the same F1 score 

as the sigmoid kernel.  

When Gamma is determined automatically, the sigmoid kernel has a similar trend to when 

Gamma is scaled, while remaining the kernel that achieves the best F1 score. The RBF kernel 

performs almost identically, with the same consistent downward trend as Nu increases. The 

Polynomial kernel also has the same initial drop, then slow increase in performance as Nu 

increases again.  

From this, the chosen parameters were: 

• Kernel – Sigmoid  

• Nu – 0.0001 

• Gamma - Auto 



29 

 

5.2.1.2 Linear SVC 

For the Linear SVC, there are two parameters that were changed from their default values. 

• Dual – Determines whether the dual or primal optimization problem is used when the 

algorithm is solved. As the dual problem requires finding a number of parameters 

equal to the amount of training data and the primal problem only a number equal to 

the dimensionality of the input vectors, the dual problem massively increases runtime 

for the large amount of training samples used and should be avoided. 

• Class Weight – This applies a coefficient to the class, biasing the position of the 

learned hyperplane to better classify classes with higher bias.  

Fig 4. Graph showing the effect of varying the bias towards the attack class on the F1 score 

achieved.  

The values determined here are able to achieve a performance that suggests the data is 

linearly separable to some extent, as it achieves a performance exceeding that of a naïve 

model on the development data. However, it fails to achieve a score near to that of the other 

classification methods, suggesting that to properly determine the class of a new message, the 

decision is more complex than a linear boundary can define.  

From this, chosen parameters were: 

• Dual – False 

• Class weight – {0: 1, 1: 7} (seven times bias toward attacks) 



30 

 

5.2.1.3 LOF 

Local Outlier Factor required the setting of three parameters, though only one of these was 

varied experimentally, n_neighbors. 

• N_neighbors – The number of points to examine when determining the outlier score 

of the point 

• Contamination – This is a measure of how many of the training points are outliers 

themselves. As LOF is an unsupervised method, it was trained using only normal 

data, but the value for contamination must be strictly greater than zero. As a result, a 

tiny fraction of the training data would have been considered an outlier, as the 

contamination was set at 0.00000000001.  

• Novelty – This determines whether the LOF instance is being used for novelty 

detection, or outlier detection. As the algorithm is trained and then applied to new 

data, this must be set to true.  

 

Fig 5. Graph showing the effect of varying the number of neighbours used in LOF on the F1 

score.  

As can be seen in the graph above, the number of neighbours used actually should be set low, 

as this gives the best performance when very few points are considered. The performance 

does start to rise again, but overall the algorithm performed very poorly when compared to 

any of the supervised techniques. 

From this, chosen parameters were: 
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• N_neighbours – 4 

• Novelty – True 

• Contamination – 0.00000000001 

5.2.1.4 IF 

When tuning the Isolation Forest, only a single parameter was varied: 

• n_estimators – how many Isolation Trees are created in the forest 

 

Fig 6. Graph showing the effect of varying the number of trees in an Isolation Forest on the 

F1 score.  

The above graph shows the results of varying the number of trees that make up the Isolation 

Forest. From it, there does not seem to be any correlation between the size of the forest and 

the F1 score, which would suggest that the differences are stemming from the random 

samples drawn from the dataset to construct the forest, and not from a lack of trees in it.  

From this, parameters chosen were: 

• n_estimators – 70  

5.2.1.5 K-Nearest Neighbours 

For the K-Nearest Neighbours algorithm, the two parameters that were varied were: 

• N_neighbors – This determines how many points are examined to classify each new 

point. 
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• Weights – The two options are to weight every point equally, or to allow the weight 

of each point to vary as an inverse of the distance to the point needing classification 

(close points are weighted strongly, far ones less). 

 

Fig 7. Graphs showing the effect of varying the number of neighbours and weighting strategy 

on the F1 score.  

The graph above shows the effect of varying these two parameters, with the uniform 

weighting in blue and the distance-based weighting in orange. As can be seen, the uniform 

weighting system has superior performance to the distance-based equivalent for the same 

number of neighbours, though the difference is not that large. For larger amounts of 

neighbours, the uniform weighting option decreased in F1 score (which is expected), as this 

would allow points that are not as close in the neighbourhood to influence the outcomes just 

as much as points that are extremely close, so the whole system becomes less specific. The 

distance-based weight option sees the opposite, as the effect from the uniform system does 

not apply, instead allowing more closer points to correctly influence decisions and further 

points to have a much lesser effect. 

From this, chosen parameters were: 

• N_neighbours – 5 

• Weights - uniform 

5.2.1.6 AdaBoost  

For the AdaBoost meta strategy, there is a single parameter that was used to tune the 

performance: 
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• N_estimators – how many rounds of weak classifier that the algorithm trains 

 

Fig 8. Graph showing the effect of varying the number of estimators used in the AdaBoost 

algorithm on the F1 score.  

As can be seen in the above graph, the performance takes a sharp spike at around 30 

estimators, then as the number of estimators increases from there on out, there is very little 

improvement to the performance, even when there are more than 5 times as many estimators.  

From this, chosen parameters were: 

• N_estimators – 30  

5.2.2 Classifier Algorithms  

5.2.1.1 Linear SVC 

The changes made to the parameters for the Linear SVC was that of using the 

“crammer_singer” multiclass strategy, to change the system to an inherently multiclass 
classification method, as well as using the maximum value of max_iter that liblinear 

supports. (even though the solution was not converged after this number was reached).  

Chosen parameters: 

• Multi_class – crammer_singer  

• Max_iter – 100000  

5.2.2.2 Gradient Boosting  

For Gradient Boosting, a single parameter was varied: 



34 

 

• n_estimators – Number of gradient boosting iterations to conduct 

 

 

Fig 9. Graph showing the effect of number of Gradient Boosting Iterations on the F1 score 

for classification. 

The graph above shows the effect of adding more iterations to the gradient boosting 

algorithm. There are consistent performance increases as the number of iterations increases, 

though the gains do start to become less as the number of iterations increases.   

From this, chosen parameters were: 

• n_estimators – 50  
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5.2.2.3 K-Nearest Neighbours 

The K-Nearest Neighbours algorithm at this stage is identical to that for the one used in the 

previous step, so shares the same tuneable parameters, even though the algorithm is now 

being used for attack classification. As such, refer to section 5.2.1.5 if needed. 

Fig 10. Graph showing the effect of varying number of neighbours and weighting strategy on 

the F1 score.  

The above graphs show the effect of varying the same two parameters as were varied in 

section 5.2.1.5. The blue graph is for the uniform distance option, and the orange is for the 

weighted option. Examining the two graphs, they both show almost exactly the same trend, 

only minor variations between the two, save for the fact that the uniform distance option 

(nearly) plateaus at a higher overall F1 score.  

From this, chosen parameters were: 

• n_neighbors – 10  

• weights – uniform  

5.2.2.4 Random Forest  

For the random forest algorithm, a single parameter was tuned: 

• n_estimators – how many trees make up the forest  
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Fig 11. Graph showing the effect of the number of trees in the Random Forest on the F1 

score. 

As can be seen in the above graph, even with a small number of trees (the line starts at only 

10), the algorithm achieves a very high performance on the optimization data. As the number 

of trees in the forest increases, the performance improves, though only very slightly, with no 

clear correlation between increasing the number of trees and the performance improvement. 

This variation may be due to the randomly sampled points from the data used to construct 

each of the trees inside the Random Forest.  

From this, chosen parameters were: 

• n_estimators – 250  

5.2.2.5 Logistic Regression  

For the Logistic Regression algorithm, four parameters were specified: 

• penalty – l2 or l1 type regularization 

• solver – which solving algorithm to use  

• multi_class – determines the multiclass strategy to use. As multiclass regression is 

needed, this will be ‘multinomial’ 
• max_iter – how many iterations to run before stopping 

From a few experiments, it was determined that the following parameters were the ones that 

have the best performance on test data: 
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• penalty – l2 

• solver – saga 

• multi_class – multinomial 

• max_iter - 100000 

5.3 Identification Performance  

5.3.1 Stage Two Components  

Below is a table containing the Precision, Recall and F1 score for each individual dataset, 

rounded off to the nearest 3 decimal places. These scores are not for using the algorithm 

alone, they are the result of applying the algorithm after the rule-based components in each 

case. For the Sonata, Soul and Spark sets, the attacks have been combined into a single set, 

rather than being tested individually.  

Table 5. Precision, Recall and F1 score of all stage 2 algorithms across attack type, then 

combined Sonata, Soul and Spark sets. The cells in bold indicate that the performance was 

the best achieved in terms of F1 score for that dataset.  

Algorithm DoS Gear RPM Fuzzy Sonata Soul Spark 

One Class 

Support 

Vector 

Machine 

P:0.162 

R:1 

F1:0.279 

P:0.134 

R:0.987 

F1:0.236 

P:0.140 

R:0.982 

F1:0.246 

P:0.129 

R:0.995 

F1:0.228 

P:0.177 

R:1 

F1:0.301 

P:0.156 

R:1 

F1:0.270 

P:0.337 

R:0.848 

F1:0.482 

Linear Support 

Vector 

Classifier 

P:0.988 

R:1 

F1:0.994 

P:0.742 

R:1 

F1:0.852 

P:0.751 

R:1 

F1:0.858 

P:0.989 

R:0.988 

F1:0.988 

P:0.460 

R:0.998 

F1:0.630 

P:0.242 

R:0.998 

F1:0.389 

P:0.997 

R:0.773 

F1:0.871 

Isolation 

Forest  

P:0.233 

R:1 

F1:0.377 

P:0.197 

R:0.977 

F1:0.328 

P:0.208 

R:0.984 

F1:0.344 

P:0.230 

R:0.986 

F1:0.373 

P:0.271 

R:0.998 

F1:0.426 

P:0.174 

R:0.997 

F1:0.297 

P:0.280 

R:0.989 

F1:0.437 

K-Nearest 

Neighbours   

P:0.988 

R:1 

F1:0.994 

P:0.878 

R:0.974 

F1:0.924 

P:0.871 

R:0.983 

F1:0.924 

P:0.986 

R:0.991 

F1:0.989 

P:0.516 

R:0.997 

F1:0.680 

P:0.158 

R:0.999 

F1:0.273 

P:0.997 

R:0.773 

F1:0.871 

Local Outlier 

Factor 

P:0.210 

R:1 

F1:0.347 

P:0.167 

R:1 

F1:0.286 

P:0.175 

R:1 

F1:0.298 

P:0.146 

R:1 

F1:0.255 

P:0.941 

R:0.995 

F1:0.967 

P:0.141 

R:1 

F1:0.247 

P:0.229 

R:1 

F1:0.372 

AdaBoost P:0.993 

R:1 

F1:0.997 

P:0.895 

R:0.973 

F1:0.932 

P:0.893 

R:0.983 

F1:0.936 

P:0.988  

R:0.991  

F1:0.989 

P:0.937 

R:0.997 

F1:0.966 

P:0.242 

R:0.998 

F1:0.389 

P:0.996 

R:0.775 

F1:0.872 

 

From the performances in the above table, some conclusions can be drawn. All of the 

supervised algorithms have superior performance to that of the unsupervised algorithms. As 

they both convert the data to an identical form and have the same preceding steps, the 

difference can only be from the algorithm itself.  

With regard to detection rates (determined by the Recall statistic), all algorithms perform 

quite well. Of the supervised algorithms, the Linear Support Vector Classifier shows 

comparable performance on the DoS and Fuzzy datasets to the other two classifiers but has 

remarkably lower precision for the RPM and Gear spoofing. Of the K-Nearest Neighbours 

and AdaBoost methods, they show very similar results, though the AdaBoost is marginally 

better at every class of attack, though the difference is very small. The unsupervised 
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algorithms all perform very similarly, achieving Recall values often above 98% or above, at 

the cost their Precision. All classifiers are able to achieve perfect recall on the DoS dataset, as 

all the attack instances are actually removed by the rule-based component and not the second 

stage algorithm. This is possible because the ID of 0x0000 is not in use normally in this 

dataset, so is filtered out by the new ID rule.  

In terms of Precision, the supervised algorithms all see very high values on the Fuzzy and 

DoS type attacks, with a value approximately equal to 98-99% averaged over the two attack 

types. On the detection of the two spoofing type attacks, the Linear Support Vector Classifier 

sees a drop in Precision of around 25%, K-Nearest Neighbours 12% and AdaBoost 11%. 

Unsupervised algorithms have a much lower Precision, meaning that they are generating far 

more false positives and false negatives than the supervised algorithms, by around 4 times.   

5.3.2 Classifiers  

This section contains the confusion matrices for when each classifier is run against the results 

of the first two stages (using the AdaBoost algorithm as the second detection component) for 

a combination of all individual attacks per dataset. As such, there will be 4 matrices, one for 

the Car Hacking Dataset and then one each per Sonata, Soul and Spark.  

5.3.2.1 LSVC 

Fig 12. Normalized Confusion Matrices per dataset for the Linear SVC classification method.  

In the above Confusion Matrices, the Linear SVC has very good performance on the RPM 

and DoS attacks in Car Hacking, good for Fuzzy in Car Hacking and is relatively poor at 
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classifying the remaining two classes. Performance on the Sonata, Soul and Spark sets is 

good for benign data, poor for Fuzzy attacks, mostly wrong for DoS attacks and completely 

wrong for Malfunction attacks.  

5.3.2.2 Random Forest  

 

Fig 13. Normalized Confusion Matrices per dataset for the Random Forest classification 

method. 

In the above Confusion Matrices, the Random Forest has very good performance on all attack 

types for the Car Hacking set, only struggling with the benign data. Performance on the 

Sonata, Soul and Spark sets is very good for DoS and Fuzzy attacks, while being completely 

incorrect for Attack Free and Malfunction attacks.  
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5.3.2.3 K-Nearest Neighbours 

Fig 14. Normalized Confusion Matrices per dataset for the K-Nearest Neighbours 

classification method. 

In the above Confusion Matrices, K-Nearest Neighbours has very good performance on all 

attack types for the Car Hacking set, only struggling with the benign data. Performance on 

the Sonata, Soul and Spark sets is very good for Fuzzy attacks only, while being nearly 

completely incorrect for Attack Free, Malfunction and DoS attacks.  
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5.3.2.4 Gradient Boosting 

  

Fig 15. Normalized Confusion Matrices per dataset for the Gradient Boosting Classification 

method.  

In the above Confusion Matrices, it can be seen that Gradient Boosting has very good 

performance on all attacks for the Car Hacking set, only struggling with the benign data. 

Performance on the Sonata, Soul and Spark sets is generally good, with near perfect scores 

occurring for each category save malfunction in 2 of the 3 cases. In every case, performance 

with Malfunction attacks is extremely poor.   
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5.3.2.5 Logistic Regression  

Fig 16. Normalized Confusion Matrices per dataset for the Logistic Regression classification 

method 

In the above Confusion Matrices, Logistic Regression has very good performance on RPM 

and DoS attacks for the Car Hacking set, good for Fuzzy attacks, struggling with the benign 

data and Gear spoofing. Performance on the Sonata, Soul and Spark sets is almost universally 

incorrect, with everything targeted towards Gear spoofing (which is not present).  

5.4 System Footprint 

When considering how suitable any system is for the in-vehicle network, it is important to 

consider the potential limitation that is available on computing resources. As such, potential 

solutions should aim to have the lowest footprint possible, so that they are more easily 

translated to being implemented in the resource constrained environment. Below is a table 

that details the memory required to store each of the trained classifiers.  
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Table 6. Memory usage by classifier for second stage detections  

Classifier  Memory Usage (MiB) 

K-Nearest-Neighbours  319.660 

AdaBoost 39.258 

Isolation Forest 40.137 

Linear SVC 35.305 

LOF 48.996 

OCSVM 35.633 

 

As can be seen from the above table, in terms of resource usage, any of the techniques that 

are not K-Nearest Neighbours show very little difference in the amount of memory 

consumed. As such, this becomes a negligible factor when choosing between them and other 

factors are better suited for determining which is the better choice.  

The same applies for the classification techniques as it does for the detection of attacks, that 

the least number of resources used is desirable. Below is a table detailing the memory usage 

of the different classification strategies.  

Table 7. Memory usage by algorithm for the classification stage.  

Classification Algorithm Memory Usage (MiB) 

Linear SVC  35.566 

K-Nearest-Neighbours 319.163 

Random Forest  1218.246 

Gradient Boosting 41.008 

Logistic Regression 34.848 

 

As can be seen from the above table, Random Forest uses a very large amount of memory 

when compared even to K-Nearest Neighbours for the same training data, and K-Nearest 

Neighbours roughly 8-10 times more than all the other methods. While this is not a positive 

trait, it could be permissible if those methods show marked improvement over the others in 

the other areas.  

5.5 Speed 

The table below details the time taken by each possible combination of second stage and 

classification components, starting from a raw dataframe of 10000 CAN frames and ending 

after attack classification. The test dataframe is known to contain attack instances, so all 

stages of the system are needed.  
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Table 8. Time taken for each combination of second stage and classification step.  

Second Stage Detector  Classifier  Time Taken (seconds) 

Linear SVC Linear SVC 0.547 

Linear SVC Random Forest 1.568 

Linear SVC K-Nearest Neighbours   0.924 

Linear SVC Logistic Regression 0.544 

Linear SVC Gradient Boosting 0.570 

Isolation Forest Linear SVC 0.702 

Isolation Forest Random Forest 1.713 

Isolation Forest K-Nearest Neighbours   1.384 

Isolation Forest Logistic Regression 0.644 

Isolation Forest Gradient Boosting 0.678 

Local Outlier Factor Linear SVC 0.684 

Local Outlier Factor Random Forest 1.912 

Local Outlier Factor K-Nearest Neighbours   1.864 

Local Outlier Factor Logistic Regression 0.717 

Local Outlier Factor Gradient Boosting 0.778 

K-Nearest Neighbours  Linear SVC 1.849 

K-Nearest Neighbours  Random Forest 2.800 

K-Nearest Neighbours  K-Nearest Neighbours   3.168 

K-Nearest Neighbours  Logistic Regression 1.822 

K-Nearest Neighbours  Gradient Boosting 1.835 

AdaBoost Linear SVC 0.610 

AdaBoost Random Forest 1.644 

AdaBoost K-Nearest Neighbours   1.073 

AdaBoost Logistic Regression 0.596 

AdaBoost Gradient Boosting 0.594 

One-Class SVM Linear SVC 0.540 

One-Class SVM Random Forest 3.886 

One-Class SVM K-Nearest Neighbours   2.636 

One-Class SVM Logistic Regression 0.546 

One-Class SVM Gradient Boosting 0.650 

 

From the table, it can be seen that most algorithms have a very low running time, but 

Random Forest and K-Nearest Neighbours are consistently slower than all other options. 

When used together, or with K-Nearest Neighbours twice, this starts to become slow in real-

time terms, taking more than the time between the maximum time between message groups 

of this size to process. All other options would be viable choices and their suitability should 

be determined by other factors.  
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6. Evaluation of Results  

6.1 Overview  

This section will cover the interpretations and possible causes and implications of the results 

from the previous chapter, as well comparing the results obtained in this work to some of the 

work covered in section 2 to better understand the meaning of the work in context. This will 

also cover some of the reasons behind the choice of the parameters for the algorithms used.  

6.2 Optimization 

6.2.1 Second Stage 

From the tuning that was carried out for each of the six algorithms, there are a few trends 

between them that emerged. Firstly, all of the unsupervised methods did not tend to see a 

performance improvement when scaled in the same way that the supervised methods did. 

This would suggest that the issue with their performance is not related to a lack of 

trees/neighbours/support vectors, but rather by another factor, which is possibly the dataset 

used for training. The chosen parameters for each of the algorithms were the best set of those 

that were tested, as seeming to vary them did not yield much difference in the results 

obtained on the data.  The unsupervised algorithms are all trained from the attack free data, 

which would suggest that the provided data either does not represent the problem of attack 

detection, there is a lack of data for the chosen methods, or the methods chosen are not fit for 

use in this particular context. Of these, the last option is the most likely, as other works such 

as the GAN based system developed by Seo et al. used exactly the same dataset to train their 

system (which was able to achieve a detection rate of 98%), so it is unlikely to be the fault of 

the data.  

The Linear SVC showed very small performance variation between 5-10 times bias towards 

attack instances, and then after 10 times bias, showed a rapid drop in performance on the test 

set as it began to overfit. This is why the bias was fixed at 7 times, as this was the rough 

middle ground between 5 and 10, with the primal problem being preferred for computational 

efficiency. When using the AdaBoost algorithm and K-Nearest Neighbours in the distance-

based option, the performance increased as more iterations or neighbours were added, though 

this exhibited diminishing returns once certain thresholds were reached. It is for this reason 

that the chosen parameters for these algorithms are fixed where they are, as past these points 

is where the returns decrease and an undesirable characteristic increases. In the case of K-

Nearest Neighbours, this is execution time and in the case of AdaBoost, the memory usage.  

6.2.2 Classification 

For the classification algorithms, the trend was the same across all of those who had a 

parameter to vary. As the number of estimators or iterations increased, the performance of the 

algorithm also did. However, much like with the second stage components, this comes at a 

trade off with another factor. For the Random Forest and K-Nearest Neighbours algorithms, 

this is memory usage, as more memorized training data or trees in the forest were needed to 

improve the performance. K-Nearest Neighbours also slows down the more neighbours that 

are used for each query, which would reduce the effectiveness of the classifier, so a balance 

between the two was picked with the number of 10. For Gradient Boosting, Logistic 

Regression and the Linear SVC, the way to improve their performance would be to use more 
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training data or allow for more iterations. In each case, this will increase the size of the 

resulting classifier, which may not prove to be worth the trade-offs in performance, as the 

gains achieved tended towards diminishing returns after a certain point. Logistic Regression 

did not see much variation in performance between the changed parameters. From the API 

page, the SAGA solver offered fast convergence for scaled data, which is why it was chosen. 

The values for max_iter were determined to be necessary to avoid a warning for not using 

enough iterations. The l2 penalty was chosen as it showed better performance on tests than 

the l1 penalty.  

6.3 Identification Performance  

6.3.1 Second Stage 

 

Fig 17. Bar Graph showing the Precision of each algorithm by dataset 

The above bar graph is constructed from the Precision data in Table 5. From it, the following 

conclusions can be drawn. Near universally, the unsupervised algorithms show very low 

Precision when compared to their supervised counterparts, with the sole exception being in 

the performance of LOF on the Sonata dataset (the reason for this is not known). Generally, 

the Isolation Forest performs the best of the unsupervised techniques, but still has a false 

positive rate of approximately 80%. This makes it and the other worse performing 

unsupervised algorithms unfit for the task they have been designed to perform. As mentioned 

previously, this could be because of the datasets used to train them, but it is more likely to be 

the fault of the algorithm/feature combination used, as others can achieve good results with a 

neural network trained using the same data.  

Of the supervised algorithms, the AdaBoost algorithm consistently achieves the best, or near 

to it across all of the involved datasets, with K-Nearest Neighbours often very similar, though 

slightly worse performing. The LSVC performs well on the DoS and Fuzzy sets (and by 

extension the Soul and Spark sets) but has trouble with the RPM and Gear spoofing detection, 
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seeing a sharp increase in false positives (though other algorithms see the same, it is not as 

severe). This would suggest that these instances are hard to separate using a linear model and 

require a more complex detection or more features to be able to improve performance.  

All algorithms performed poorly on the Soul dataset, with some variation. This is likely 

because of one of two things. Either the training data used does not properly model the 

problem, or it is the rule-based component (the timing component especially) causing such a 

difference in the false positive rate, with the variance being down to the algorithms 

themselves. Of these two options, the latter is more likely as the work of Zhang et al. used the 

same datasets with their combination rule based/DNN system and were able to achieve much, 

much lower false positive rates, being less than 0.01%.  

 

Fig 18. Bar Graph showing the Recall of each algorithm by dataset 

The above bar graph is constructed from the Recall data in Table 5. From it, the following 

conclusions can be drawn. All algorithms achieve perfect Recall on the DoS dataset, which 

means that the algorithm used has no effect on it. This can be confirmed to be the case if the 

ID rule is followed through logically. The Dos attacks all have ID 0x0000, which is not a 

recognized ID, so is immediately filtered out. For all other datasets, very high Recall scores 

(refer to Table 5 for exact values) are achieved by all algorithms, often with the unsupervised 

algorithms slightly edging out the supervised ones, though this comes at the cost of a lot of 

Precision. The detection performance is similar to many of the methods employed in the 

existing work in the field, with only some methods slightly beating out the ones used here by 

1-2%.  A notable point is that for the Spark dataset, the unsupervised algorithms caught some 

or all of the Malfunction attack, whereas the supervised algorithms did not (which is why 

they all show much lower Recall). This is likely because they were not similar enough to the 

known attack classes to be marked as attacks, and so passed undetected.  
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Fig 19. Bar Graph showing the F1 score of each algorithm by dataset 

The above bar graph is constructed from the Recall data in Table 5. From it, the following 

conclusions can be drawn. With F1 scores consistently in the 0.2-0.4 range, all of the 

unsupervised algorithms are not fit for purpose. While they are able to achieve very high rates 

of detection, this comes at an unacceptable false positive rate with the implementation as is. It 

must either be refined with additional features or other improvements, or different 

unsupervised learning techniques used, such as that of the GAN by Seo et al. For the 

supervised learning methods, K-Nearest Neighbours and AdaBoost are often very similar, 

with AdaBoost beating out K-Nearest Neighbours by small amounts in most cases. As the 

detections from the rule-based components are constant, the difference in performance must 

come from the algorithm used, which allows the conclusion that AdaBoost is a better 

algorithm to use. The LSVC is able to achieve similar detection performance but is held back 

by the higher false positive rates, making it less suitable than either K-Nearest Neighbours or 

AdaBoost. It is not known why LOF achieves very high performance on the Sonata set when 

it is normally poor otherwise.  

6.3.2 Classification 

Referring to the Confusion Matrices in the Results section (5.4.2.x, Figs 12-16), it can be 

seen that the classifiers often struggle to determine the false positives generated by the 

previous steps, with more often than not them getting misclassified as a type of attack. On the 

Car Hacking dataset, discounting the misidentification of normal instances (most often as a 

type of spoofing, likely because they share the same CAN ID and Relative Entropy values), 

all of the algorithms used achieve a high performances in classifying attacks correctly. DoS 

attacks are almost universally identified correctly, with several classifiers achieving perfect 

scores and the maximum error being 0.05% using Logistic Regression. This is likely because 

they all share a single defining, unique characteristic that is not present anywhere else, a 

CAN ID of 0x0000, which is easy to differentiate. Fuzzy attacks are generally identified well, 

though the Linear SVC and Logistic Regression methods are noticeably worse, with an 
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accuracy of only 82.99%, rather than the 98.69-99.7% range achieved by the other 

algorithms, with the difference being in them being misclassified as benign. For RPM 

spoofing, all algorithms perform well, ranging from 97.7% to 99.7% correct identifications. 

For Gear spoofing, the Linear SVC and Logistic Regression methods are very poor, barely 

reaching over 50% accuracy, but the remaining algorithms are much better, scoring between 

97.37% and 98.99%.  For both spoofing methods, it is believed that the reason why the 

simpler models perform much more poorly is that they simply do not have the required depth 

and resolution to properly differentiate the spoofing instances from the normal instances of 

the same CAN ID that have made it to the classifier.  

On the Sonata dataset, the only attack that is consistently classified correctly is the Fuzzy 

attack, with the Linear SVC seeing the worst performance in this case, though other 

algorithms had very good scores. DoS attacks were consistently misclassified as either 

normal or Fuzzy instances, depending on the classifier used, with only Random Forest 

actually performing as desired. It is not known why this behaviour occurs, as the DoS attacks 

from the Car Hacking set (used in training) should be similar enough to still achieve a good 

classification result, though this may not be the case from the observed results. Malfunctions 

were universally classified incorrectly, but this was somewhat expected behaviour, as they 

were deliberately left out of training to see how the system would react to unknown attacks, it 

is not surprising that the classifier tries to fit them into one of the known classes instead.  

On the Soul dataset, Fuzzy attacks are again classified very well, with only the Linear SVC 

seeing poor performance at around 50%, and Logistic Regression completely misclassifying 

them as Gear spoofing. DoS attacks were identified correctly by Gradient Boosting, Random 

Forest, and Linear SVC, with accuracy levels similar to that of the Car Hacking dataset. This 

is noteworthy as the same classifiers (as they are not retrained) failed to identify them 

correctly with the Sonata set, so there must be a difference in one of the features that causes 

the change. As the CAN ID and Time Intervals should be very similar, it is either the way 

they cluster together in the data (affecting the count in last 1000 messages), or the overall 

change in entropy that is causing the difference. Logistic Regression and K-Nearest 

Neighbours misclassified them entirely as normal behaviour. Malfunctions were again 

classified incorrectly, with most classifiers opting to label them as Fuzzy attacks, though 

some were labelled as normal instances or Gear spoofing. As mentioned, when discussing the 

Sonata set, this is expected behaviour from the system.  

On the Spark dataset, Fuzzy attacks are also classified well by the same classifiers that have 

performed well on the other sets, with the Linear SVC and Logistic Regression being the 

ones that are misclassifying them. DoS attacks were classified correctly by Gradient Boosting 

and Random Forest, with other classifiers labelling them as normal data or Malfunction 

instances. The actual Malfunction instances were labelled as normal, Fuzzy or Gear spoofing, 

which is to be expected as has been previously mentioned.  

Overall, it can be said that while training a more general- purpose classifier using a variety of 

attacks is possible, this can lead to unintended behaviour when applied to a different vehicles’ 
environment. Some classifiers are more sensitive to this than others, with the Linear SVC, K-

Nearest Neighbours and Logistic Regression more sensitive to the changes than the Random 

Forest or Gradient Boosting methods. For K-Nearest Neighbours, this is expected, as the data 

that it is seeing does not match what the classifier has trained on and memorized, which 
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makes the algorithm a poor choice for portability between systems. For the Linear SVC and 

Logistic Regression, it is probably because the learned function is fitted well to the particular 

training data, but because of the lack of standards between CAN networks, it is not greatly 

portable. Random Forest and Gradient Boosting on the other hand, do not see the same 

issues, as they were able to correctly classify all or almost all of the attacks in the other 

datasets without being retrained. The difference between the two is that Gradient Boosting 

was more able to recognize the normal instances (i.e. false positives from the second stage), 

whereas the Random Forest labelled these all as Fuzzy attacks. This is likely because the 

CAN IDs do not match up to the ones that form the decision trees of the forest, so get labelled 

as Fuzzy attacks. It should be noted however, that this performance will only hold true for 

datasets that do not also have other types of spoofing present. As the ability to recognize 

spoofing attacks is dependent on the CAN ID used for the component and these IDs are all 

non-standard, it becomes impossible to develop a portable classifier that includes spoofing-

type attacks as it relies on the specifics of the particular network it would be used on. 

Therefore, it will be more practical to retrain the classifiers across different networks, rather 

than use a general purpose one, unless there are some form of standards adopted for the use 

of CAN ID values.  

6.4 System Footprint  

As can be seen from Table 6, most of the chosen classifiers have little difference when it 

comes to memory usage, save for K-Nearest Neighbours, which must memorize its training 

data.  However, if how usage may change with different parameters is considered, some scale 

better than others. The Linear SVC needs only store a mathematical function, regardless how 

of many points it is trained with, the memory usage will not increase much, if at all, unless 

more features are added (as this adds coefficients in the primal problem). Isolation Forest and 

LOF both scale logarithmically with training size, as they both rely on tree structures to store 

their data internally, so can handle large volumes of train data if necessary. AdaBoost will 

scale logarithmically with more complex training data (as the base classifier is a decision tree 

in this case), or linearly if the number of estimators is increased, as this adds more trees. 

OCSVMs scale well in terms of space, as they are learning a decision boundary, though their 

size is determined by the number of required support vectors. As such, any of the methods 

that are not K-Nearest Neighbours have excellent or good space usage and scaling so other 

factors should be more important when choosing the algorithm to use.  

Table 7 shows a similar trend for the classifier choices. While Random Forest the most 

effective classification method, it comes with the drawback of very large amounts of memory 

usage, even with a relatively small forest. Considering that in real network, there may be tens 

or maybe even hundreds of unique ECUs that all need to have spoofing attempts detected, it 

is very possible that a Random Forest for this situation would be prohibitively large, as it is 

likely that the amount and/or depth of the trees would need to increase to describe the data 

correctly. The usage for the K-Nearest Neighbours algorithm is also relatively high and 

would suffer from the same issue as the Random Forest, if not even worse. The K-Nearest 

Neighbours system would need to memorize a set of points for each of the classes to be able 

to use, so if the number of classes gets larger, so does the required amount of memory, which 

limits its usefulness in large networks.  

The Gradient Boosting and Logistic Regression methods both show minimal memory usage, 

though this is for different reasons. The Gradient Boosting system is low because there were 
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few iterations needed to show a very high performance and the number of overall attack 

classes was low. This reduced the number of weak classifiers the system used. In a more 

realistic network with tens or hundreds of classes, the usage would increase (but rather 

slowly) as more classifiers must be fitted per boosting iteration. Logistic Regression scales 

the best of the classifiers used, as it needs only learn a single mathematical function, which 

will always have a very low memory footprint. Unfortunately, the performance is the worst of 

the tested classifiers, with the savings in memory not worth the trade-off in classification 

ability.   

6.5 Speed  

When considering the speed required of the system, the context is important. For the 

implementations here, the target specification was CAN 2.0A with a bus speed of 1Mbit/s 

(maximum). This means that potentially, there can be 21276 frames per second (the 

calculation of why is below). This calculation makes two assumptions, namely the bus is 

under maximum utilization and that there are no bits added by bit stuffing (though this would 

never be the case in a real system, meaning less messages per second are needed). However, 

most CAN frames (at least in the datasets used here) were of maximum size, so 9009 frames 

per second was a much more realistic estimate, though 10000 was used to allow for some 

smaller frames.  ͳݐ�ܾܯ = ͳ,ͲͲͲ,ͲͲͲ ܾ�݁݉ܽݎܨ ݁ݖ�ܵ ݈ܽ݉�݊�ܯ  ݏݐ = ͳ + ͳͳ + ͳ + ͳ + ͳ + Ͷ + Ͳ + ͳͷ + ͵ + ͹ + ͵ = Ͷ͹ܾ�݁݉ܽݎܨ ݁ݖ�ܵ ݉ݑ݉�ݔܽܯ  ݏݐ = ͳ + ͳͳ + ͳ + ͳ + ͳ + Ͷ + ͸Ͷ + ͳͷ + ͵ + ͹ + ͵ = ͳͳͳܾ�݀݊݋ܿ݁ܵ ݎ݁� ݏ݁݉ܽݎܨ ݁ݖ�ܵ ݈ܽ݉�݊�ܯ ݉ݑ݉�ݔܽܯ ݏݐ = ͳͲͲͲͲͲͲͶ͹ = ʹͳʹ͹͸ ݂ݏ݁݉ܽݎ  
݀݊݋ܿ݁ܵ ݎ݁� ݏ݁݉ܽܨ ݁ݖ�ܵ ݉ݑ݉�ݔܽܯ ݉ݑ݉�ݔܽܯ = ͳͲͲͲͲͲͲͳͳͳ = 9ͲͲ9 ݂ݏ݁݉ܽݎ 

Referring to Table 8 in section 5.5, it can be seen that any approach utilizing K-Nearest 

Neighbours (with the exception of the Linear SVC/K-Nearest Neighbours combination) or 

Random Forest takes greater than one second to perform its task and as such, is too slow for 

use in the proposed scenario. While these algorithms could be increased in speed, the trade-

off is in performance, as this would require reducing the number of queried neighbours or the 

number of trees in the forest, respectively. For the combinations that take less than one 

second, there are the options of using the Linear SVC, Isolation Forest, Local Outlier Factor 

or AdaBoost for the detection stage and either Logistic Regression or Gradient Boosting for 

the classifier.  

6.6 Summary  

To sum up, while all of the tested detection algorithms were able to achieve very high rates of 

Recall (i.e. detection rate), the One Class SVM, Isolation Forest and Local Outlier Factor did 

this as the cost of a very substantial amount of Precision, which limits their overall usefulness 

due to the amount of false positives generated. The K-Nearest Neighbours, Linear SVC and 

AdaBoost algorithms did not see the same issue with Precision, and therefore were able to 

achieve very high F1 scores. Of these, the AdaBoost algorithm was the algorithm that 

consistently performed the best, only not being so on one of the seven tested datasets.  
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In terms of classification algorithms, Logistic Regression and Linear SVC performed 

consistently poorer than K-Nearest Neighbours, Random Forest, or Gradient Boosting. All 

tested classifiers performed more poorly on the datasets where they had not been trained on 

any data from it, due to the difference in the IDs present. The attack that was not part of the 

training was consistently mislabelled, though this was fully expected to be the case. Overall, 

the Random Forest and Gradient Boosting were the two algorithms that showed the best 

performance. It would also be better to train the classifiers with samples from the networks 

that they would defend, as the differences between IDs caused some issues that would 

hamper attempts to use a general-purpose classifier, especially in the context of spoofing type 

attacks.  

With regards to the speed and resource usage of the algorithms at both stages, K-Nearest 

Neighbours and Random Forest were the two algorithms that were not fast enough for using 

in a real-time context and also showed much higher memory usage than the other algorithms, 

leading them to be less desirable or fully impermissible choices. Considering all of the above 

factors, the best performing algorithms were the AdaBoost for detection and the Gradient 

Boosting for classification.   
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7. Conclusion 
In conclusion, this work shows that it is possible to create a system for increasing the 

awareness of and detecting attacks in the in-vehicle network, while also classifying those 

attacks by type. The data is first pre-processed, with some of the bus data removed and 

additional features added, before it is passed through a two-stage detection system, with the 

first stage being rule-based and the second a machine learning algorithm. The best approach 

tested was the AdaBoost meta-strategy, using a decision tree as the base learner, able to 

achieve an average detection rate of 95.95% across 5 attack types, including one that it was 

not trained on. For the frames that are detected as attacks, the classification component is able 

to sort these by attack type or false positive with a high degree of accuracy, the best 

performing algorithm was the Random Forest, with an average classification for recognized 

attacks of 99.40% across all tested datasets. However, this comes at the cost of a run-time and 

memory consumption far higher than other algorithms. A Gradient Boosting approach (using 

a regression tree as the fitted model) was able to achieve 89.42% across all datasets, with a 

runtime suitable for real time use and using 30 times less memory than the Random Forest. 

These statistics include the classifiers being applied to datasets they were not trained on (with 

the difference coming from the Gradient Boosting misclassifying the DoS attacks in one set, 

without this the accuracy would be 99.5%). However, it is not recommended to take this 

approach when using the system to classify spoofing, as the classifier must learn the IDs 

specific to that network, the classifier should be trained using the system it would protect. 

The combination of AdaBoost detection and Gradient Boosting classification together only 

take 0.594 seconds to process a frame of 10000 messages, a per message time of 59.4 

microseconds, which is sufficient for use in a real-time context on a CAN 2.0A bus with a 

bus speed of 1Mbit per second. 
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8. Possible Future Work  
From this work, there are multiple possible extensions that could be made. Firstly, there is the 

option to add more rules to the rule-based component, or to implement improvements to the 

existing rules. A possible example of this could be a refinement to the timing rule that is able 

to adjust the recorded interval if there is a suspected attack between two frames that are sent 

regularly. There is the option of using different algorithms for the two latter stages, such as 

the neural networks used by other authors in their own work to achieve very high accuracy at 

the detection of attacks, though (to the author’s knowledge) there is not any other existing 

system for also classifying the attacks.  

It is also possible to consider applying the system as is to an attack model that is more 

representative of real-world vehicle threat environment, where there are more variations on 

the spoofing and DoS type attacks, as well as classes of attack that the system may not have 

seen before. This would also help to determine the feasibility of capturing traffic and 

performing the attacks against the network required to train the algorithms that learn in a 

supervised manner. In conjunction with this, it would be beneficial to attempt to implement 

the system in terms of ECU and/or microcontroller hardware.  

Another possible direction for future work is extending the system to be able to work with the 

different kinds of in vehicle networks. This not only includes different variants of the CAN 

bus itself, but also a version for a LIN bus or FlexRay, in order to protect every aspect of the 

network from intrusion. While LIN systems are not safety critical, attackers can still cause a 

nuisance or prove an irritant by compromising these systems  

It could be possible to extend the classification element of this work into a prevention system, 

where the system detects and then takes active countermeasures against the detected attacks, 

such as by disabling the communication of a believed compromised ECU so it can no longer 

inject messages into the network. As the attacks are classified by type, there is the potential to 

take different measures against different kinds of attacks if that is the desired policy.  

Finally, it could also be possible to use the system as a way of collecting big data to provide 

insights about the kinds of threat the system faces, and which parts of the networks should 

receive closer examination, patches, or additional hardening measures. This would require the 

system to be deployed across a number of vehicles in a real context and have the ability to 

record and communicate information to a central server, so is most outside of the scope of the 

work carried out but is still technically feasible. 
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9. Reflection on Learning  
Over the course of conducting this project, I have learned a number of things, ranging from 

knowledge of the specific domain to more general knowledge about the field of neural 

networks and machine learning in general. Prior to starting the research and the practical 

components of it, the only prior experience I had with the area came from a YouTube 

channel, CodeBullet, who uses neural networks to play games or to learn a specific task 

(though he often uses reinforcement learning methods, such as Deep Q learning) and from 

my coursework for Large Scale Databases, in which I used the SpaCy and Flair modules for 

Python as part of the Spatial component of the coursework assignment. I now know that the 

model I created (these modules rely on PyTorch to train bidirectional LSTM networks) as 

part of this assignment were almost certainly overfitted to the training data that I provided to 

it (as I performed a naïve method of oversampling, as only 12 sentences were provided). 

Even though I did not end up using a neural network as part of the final implementation, they 

were still explored as an option and as part of the background reading undertaken. 

Before I could conduct the research portion of this work, I first had to learn the underlying 

theory behind the in-vehicle network, as I had not even considered how this operated until 

taking on this project. Moreover, though not relevant here, I learned that there are multiple 

alternatives to the use of the CAN bus in more modern vehicles (LIN, FlexRay and 

Automotive Ethernet) that offer advantages when compared to using the CAN bus alone.  As 

part of the knowledge required to understand how the existing work in the field operated, in 

addition to understanding how the CAN bus operated, I also has to have at least a high-level 

understanding of the various techniques that were being used to provide IDS functionality to 

the bus. Therefore, I now know conceptually how multiple kinds of neural networks operate, 

with some of the associated advantages and disadvantages of each, as well of some of how to 

implement them (though neither implementation was successful). Furthermore, I can say how 

these are applied to the specific domain of the in-vehicle network. As well as the neural 

networks, I have also learned about the other forms of machine learning algorithms, that I 

actually then came to use in my own work. This includes the knowledge of how they work 

conceptually, how to tune and optimize the various parameters that are unique to each 

algorithm, with some of the potential consequences of fixing these too high or low and when 

they might be better suited to other use cases.  

As well as having learned about the algorithms themselves, I have also learned about the 

various ways that the performance of them can be quantified or illustrated. From the work in 

Large Scale Databases, I was familiar with the concepts of Precision, Recall and F1 scores, 

but confusion matrices and other measures were all new to me. I have also learned the 

importance of either using cross-validation or a test/validation/test split in the dataset when it 

comes to assessing how well your algorithms are performing, as without this you can see very 

good results because the algorithm is able to memorize the training data.  

The time requirement of the in-vehicle network made me focus on the performance of my 

code, which is not something that I have ever had to do to such an extent before. Normally, a 

solution in finite time would be good enough for my purposes, as long as it delivers on the 

desired result (and does not cause high amounts of framerate drops in the case of code with 

graphics components). However, this project required a fair amount of optimization in certain 



56 

 

areas to achieve a runtime that would be usable in the intended context, which helped me 

develop two important skills. The first of these is profiling my code using an appropriate 

module and the second is that certain ways of doing something are just inherently better than 

others (this mainly refers to using numpy and vectorized functions rather than a pandas apply 

where possible). 

This has also been the biggest experience that I have had to date with producing a large 

formal piece of work. It has been beneficial in the realms of time management, work-life 

balance and the ability to write in the particular style that is required for something like this. 

Furthermore, it has reinforced the importance of making sure that I step back and consider the 

potential reasons and justifications (though I feel that some of the ones used here could 

definitely be improved) for using one method over another, rather than just iteratively trying 

things out until I find the method that works the best. Finally, it has helped me be able to 

impose a higher level of self-discipline when undertaking something as large as this with less 

support than I have been used to in the past such as at A-level, which was the last time I did a 

large piece of programming work that also needed a formal style report to go alongside it.  
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