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Abstract 

With the increase in personal data collection, storage, and use by a growing number of corporations 

and organisations, there has been a corresponding rise in the populatioŶ͛s concern for a right to 

privacy. Many methods have been developed in recent years to allow for said data to be shared and 

used whilst maintaining the privacy of the individual – achieved primarily by a process known as 

Privacy Preserving Data Publishing (PPDP). However, there has been relatively little study into the 

utility of this privacy-preserved data. This report attempts to examine the utility of data anonymised 

using one of the most recognised methods – k-Anonymity. In it, I detail the implementation of the 

Mondrian k-Anonymity algorithm used to anonymise the ADULT dataset. I describe the use of the 

ID3 algorithm to measure the classification accuracy of decision trees trained on anonymised, and 

non-anonymised data in multiple conceivable scenarios, and compare these results to 

measurements of relevant metrics, with an evaluation of the results. The findings show that, in 

general, a loss of information can be expected from data anonymisation. However, the extent of this 

loss can be considered minimal in most realistic situations. 
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1 - Introduction 
Since the turn of the Millennium and the advent of the Information Age, there has been an explosion 

in data capture and storage capabilities. Everything from your traditional medical records to your 

recent purchases and interests are stored on a disk in a data centre at a location likely unknown to 

yourself. Owing to the rise of smart phones, social media, wearable technology, and the needs of 

businesses for analytical models, you would be hard-pressed to find a living person that has not had 

personal data collected on them. 

Along with this rise in data collection, there has been a notable shift in public interest towards a 

more private society, likely due to a greater awareness of the sheer extent of data collection by large 

organisations and corporations. High profile cases of misuse such as the Facebook-Cambridge 

Analytica scandal [Lapowski, 2019] have boosted this public awareness of the magnitude of everyday 

data collection. 

Due to this, we have seen a push for more regulation regarding data protection and personal 

pƌiǀaĐy. The EuƌopeaŶ UŶioŶ͛s GDP‘ [European Parliament, 2016], implemented in 2018, has helped 

ensure the rights of citizens within the EU to control over their personal data, with the post-Brexit 

UK folloǁiŶg iŶ the EU͛s footsteps in this regard. This should be seen as a positive step; however, 

such regulations have further restricted the ability of legitimate researchers to access this potentially 

crucial data [Storgaard, 2019][Maldoff, 2016][Mooney, 2019]. 

The inherent value of this data is contained within its usefulness to research. Therefore, there is a 

necessity for a method of ensuring the continued distribution of data that maintains the privacy of 

the individual – a practice known as Privacy Preserving Data Publishing (PPDP)[Fung, 2007]. One of 

the primary approaches to PPDP is through the use of a process called data anonymisation. Data 

anonymisation is the practice of modifying a raw dataset containing records that could be linked to 

an individual, such that these records cannot be linked to an individual with any reliable accuracy.  

There have been many approaches to data anonymisation proposed in recent years. Such 

approaches, described as privacy models, include k-Anonymity [Samarati & Sweeney, 1998], ℓ-

Diversity [Machanavajjhala et al., 2007] and Distributional Privacy [Blum et al., 2013], among others. 

All of which are useful in different situations. This report will focus on the use of the k-Anonymity 

method using the Mondrian Multidimensional Algorithm [LeFevre et al., 2006] for implementation. 

Given that the purpose of data anonymisation is to allow the data to be shared amongst third 

parties, it is crucial that the usefulness of the data itself is maintained post-anonymisation. 

Therefore, in this report, I will also examine the utility of anonymised data in decision tree 

classification using the well-established ID3 algorithm [Qinlan, 1986]. In the ensuing pages, I consider 

four possible scenarios: 

i) Classification of non-anonymised data using decision tree trained on non-

anonymised data 

ii) Classification of anonymised data using decision tree trained on anonymised data 

iii) Classification of anonymised data using decision tree trained on non-anonymised 

data 

iv) Classification of non-anonymised data using decision tree trained on anonymised 

data 

Each scenario will be emulated in a series of experiments where the classification accuracy obtained 

using the ID3 algorithm will be measured. The results for each scenario will be presented for 
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comparison and examination, accompanied by measurements of relevant metrics that could 

conceivably be used to estimate the utility of the data. It is envisioned that by comparing the 

classification accuracy of records in a given data set in each of these scenarios, insights can be made 

into the utility of anonymised data in data mining and analysis. 

1.1 - Basic Definitions 

More detail on the following will be provided in the subsequent pages, this can simply be used for 

reference. 

- Quasi-Identifier (QID) Attribute Set – A set of attributes in a data set that, when joined with 

other data sets, could lead to information that identifies a distinct individual within the data 

set. 

- k-Anonymity – A property possessed by an anonymised data set where each record in the 

set is indistinguishable from at least k-1 other records over the QIDs. 

- Generalisation – The process or outcome of converting a set of different values within the 

domain of a given attribute in a data set to a single value that encapsulates each and every 

different value.  

- Equivalence class – A set of records in a single data set that are equivalent across the QIDs. 

1.2 - Aims 

The original aims of the project can be found in the initial report. During the project, it was 

necessary to update these aims. Here is the updated list of aims: 

1. Implement a k-Anonymity tool for relational data 

a. Develop a deep understanding of the Mondrian k-Anonymity algorithm 

b. Implement the algorithm with the Python programming language, ensuring the 

parameters can be easily modified by the user 

c. Test the tool on multiple data sets to ensure accuracy and reliability 

2. Measure the usefulness of the anonymised data provided by the tool using a machine 

learning algorithm 

a. Implement the ID3 decision tree algorithm with the Python programming language 

such that it can be used with data anonymised by the tool created in (1) 

b. Ensure accuracy and reliability of ID3 algorithm by comparing results from an 

experiment with a puďliĐly aǀailaďle iŵpleŵeŶtatioŶ͛s ƌesults 

c. Perform the following tests using the k-fold cross-validation method: 

i. Find classification accuracy for non-anonymised data using a decision tree 

trained on non-anonymised data 

ii. Find classification accuracy for anonymised data using a decision tree 

trained on anonymised data 

iii. Find classification accuracy for non-anonymised data using a decision tree 

trained on anonymised data 

iv. Find classification accuracy for anonymised data using a decision tree 

trained on non-anonymised data 

d. Repeat the above experiments for different values of k (k-Anonymity) and different 

QIDs 

3. Take measurements of various relevant metrics for use in comparison to the data obtained 

in (2) 

a. Research metrics that could be appropriate for estimating classification accuracy 
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b. Implement scripts to obtain measurements of the chosen metrics from anonymised 

data sets 

c. Collate metric results and use to provide further insight on results in (4) 

4. Collate and evaluate the results collected from (2) and provide any possible insight into the 

usefulness of anonymised data regarding analysis 

a. Collate collected data, providing relevant figures and graphs in the report 

b. Examine the data and compare the effectiveness of anonymisation relative to the 

usefulness of the data in analysis 

c. Provide a report of the evaluation and any insights found 

2 - Background 

2.1 - Motivation & Context 

Privacy Preserving Data Publishing (PPDP) has become a well-studied field over the last decade or so. 

Data can come in a variety of forms, and there are different approaches to PPDP for different forms 

of data. There has been a recent increase in uptake for novel methods of data storage such as graph 

databases, which are very useful for applications like social networks. However, the majority of data 

is still stored in relational databases. For this reason, this report will focus entirely on data in 

relational form. Many different models and algorithms to address PPDP for relational data have 

been proposed. A good overview of the most popular methods today can be found in [Majeed & 

Lee, 2020, pp. 8520-8524]. The general idea behind these methods is to produce an anonymised 

version of the raw relational data table, one that will prevent attackers from discovering the identity 

of the persons the data is describing – this process is known as data anonymisation. 

One of the most cited, extensively studied and implemented methods of data anonymisation is k-

Anonymity [Samarati & Sweeney, 1998]. Details on how this method works can be found in the next 

section [2.2]. Due to its relative simplicity in theory and implementation, k-Anonymity will be the 

method investigated in this report. 

Of course, there would be no reason to anonymise data if it were to be simply locked away in a data 

store never to be seen by anyone. Data is collected because it is useful in analysis and research. 

Necessarily, this utility must be retained post-anonymisation. While there has been some study into 

the utility of data post-anonymisation [See: Related Works section – 2.4], it tends to be performed 

simply as a means of evaluating new methods compared to established methods. There is a real gap 

in the literature for a comprehensive study into the utility of data anonymised by established 

methods. 

For the data publisher, it is generally preferable for them to require no understanding of how the 

data they are publishing will be used. Indeed, it is often the case that data publishers will simply 

make their data available publicly, allowing anyone to use it as needed. Doing so is certainly a 

benefit to publishers, however, it can be a benefit to consumers of the data if publishers simply have 

a sense of how data anonymisation is affecting the data͛s usefulŶess in common situations. 

Considering the above, and also time constraints, this report will not seek to evaluate the general 

utility of anonymised data. Instead, it will investigate a common use for personal data – data mining, 

where the goal is to extract patterns and contextualise information in order to infer knowledge from 

the data. One aspect of data mining involves machine learning, that is classification. Classification 

can be used to make predictions based on patterns established from previous data. This report will 

investigate the utility of anonymised data in building and using a Decision Tree classifier. 
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2.2 - Preliminary Information 

As mentioned, this report will focus on the process of data anonymisation through the use of k-

Anonymity. k-Anonymity is a concept first introduced by Sweeney and Samarati in a paper titled 

͞PƌoteĐtiŶg PƌiǀaĐǇ ǁheŶ DisĐlosiŶg IŶfoƌŵation: k-Anonymity and Its Enforcement through 

GeŶeƌalizatioŶ aŶd “uppƌessioŶ͟ [Samarati & Sweeney, 1998]. In the aforementioned paper, a table 

is said to provide k-Anonymity ͞if atteŵpts to liŶk eǆpliĐitlǇ ideŶtifǇiŶg iŶfoƌŵatioŶ to its ĐoŶteŶts 
ambiguouslǇ ŵap the iŶfoƌŵatioŶ to at least k eŶtities͟ [Samarati & Sweeney, 1998, pp. 1]. This can 

be achieved by ensuring that within a data set, the quasi-identifier attribute set values are modified 

such that each unique record is equal to k-1 other records. A quasi-identifier (QID) is an attribute in a 

data set that is publicly discoverable (e.g., date of birth via social media profile), which can be used 

to link a particular record in the data set to the individual the record is attributed to. 

Figure 1 shows three tables at different stages of anonymisation. Figure 1a shows the raw data. The 

QIDs are shown in yellow, sensitive data is shown in blue and an explicit identifier is shown in 

orange. A naïve approach to anonymisation is shown in 1b. However, simply removing the explicit 

identifier from the table does not sufficiently anonymise the dataset. An individual who knows the 

age and postcode of Alice, both publicly discoverable attributes, could accurately determine that 

Alice has cancer. Figure 1c shows a k-Anonymisation of the table. The QIDs of each record have been 

modified where necessary by a process called generalisation to ensure that a given record has QID 

values equal to at least k-1 other records within the table. In this case k=2; making this a 2-

Anonymisation.  

A common approach to generalisation is through the use of a taxonomy tree, where values are 

abstracted up the tree. An example of this can be seen in Figure 2; 2a shows an example taxonomy 

tree for the Occupation attribute, 2b shows how this could be applied to records in a table. 

Taxonomy-based generalisation may be more effective for privacy. However, this is only the case if 

the taxonomy is not released with the anonymised data. It is entirely possible that the taxonomy 

hierarchy will be publicly available as developing a bespoke taxonomy for each data set generates a 

great deal of overhead for the data publisher. Furthermore, a taxonomy cannot be effectively used 

for numerical attributes like Age. An alternative method, set-based generalisation, is simpler but still 

effective. To generalise a set of values, you only have to place each attribute value within the 

partition into a subset ;a ͞ǀalue-set͟Ϳ aŶd use that as the value. This is the type of generalisation 

seen in Figure 1. Overall, taxonomy-based generalisation would seem to provide no real benefit over 

the alternative and only serves as an obstacle to implementation. For this reason, the 

implementation in this report uses set-based generalisation. 

The algorithm chosen for implementing k-Anonymity in this report is Mondrian Multidimensional k-

Anonymity [LeFevre et al., 2006]. Whilst there are other popular potential options [LeFevre et al., 

2005] [Bayardo, R. J. & Agrawal, R., 2005] [Sweeney, L., 1998], Mondrian is a well-balanced 

algorithm in that it is relatively simple to implement, but still effective. It is also one of the most 

cited k-Anonymity algorithms and has been the subject of numerous evaluations [See: Related 

Works section – 2.4]. The details on this algorithm can be found in the Approach chapter [3.2]. 

 

 

 

 



5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Name Age Postcode Illness 

rec1 Alice 28 CF24 3BW Cancer 

rec2 Bob 30 CF24 3BW Appendicitis 

rec3 Connor 29 CF23 5AB Diabetes 

rec4 Denise 29 CF23 7RZ Flu 

rec5 Ethan 30 CF23 7RZ Broken nose 

 Age Postcode Illness 

rec1 28 CF24 3BW Cancer 

rec2 30 CF24 3BW Appendicitis 

rec3 29 CF23 5AB Diabetes 

rec4 29 CF23 7RZ Flu 

rec5 30 CF23 7RZ Broken nose 

 Age Postcode Illness 

rec1 [28, 30] CF24 3BW Cancer 

rec2 [28, 30] CF24 3BW Appendicitis 

rec3 [29, 30] [CF23 5AB, CF23 7RZ] Diabetes 

rec4 [29, 30] [CF23 5AB, CF23 7RZ] Flu 

rec5 [29, 30] [CF23 5AB, CF23 7RZ] Broken nose 

Figure 1 

Figure 2 

Fig. 2a 

Fig. 2b 

Occupations 

Fig. 1a 

Fig. 1b 

Fig. 1c 

Figure 1 - Example of k-Anonymity 

Figure 2 - Example of taxonomy generalisation 
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In order to test the utility of a set of data anonymised in the fashion described above, we will use a 

well-established machine learning algorithm using decision trees for classification. This algorithm will 

be the ID3 algorithm first outlined by Quinlan in the paper titled ͞IŶduĐtioŶ of DeĐisioŶ Tƌees͟ 

[Quinlan, 1986]. This particular decision tree algorithm is today considered to be obsolete and has 

been succeeded by the improved C4.5 [Quinlan, 1993] and other algorithms. However, considering 

the primary goal of this report is essentially to evaluate the difference in usefulness between non-

anonymised and anonymised data sets, the simpler ID3 algorithm will be sufficient. The details on 

this algorithm can also be found in the Approach chapter [3.3]. 

The data set used for the experiments in this report will be the ADULT Data Set [Dua & Graff, 2019]. 

First extracted in 1994, it has become the standard for evaluation of anonymisation algorithms and a 

popular choice for evaluation of machine learning algorithms. Furthermore, it is used in many of the 

related works described in a later section [2.4], making it the prime candidate data set for the 

experiments in this report. It is primarily available from the UCI machine learning repository [Dua & 

Graff, 2019]. However, for this report, I obtained the data set from Kaggle [Kaggle, 2016]. as it was 

provided in a format that better suited my implementation of the k-Anonymity and ID3 algorithms. 

2.3 - Metrics 

The overwhelming majority of works similar to this report base their evaluation of anonymisation 

algorithms on measurements of certain metrics. There are many general and special purpose metrics 

to measure the utility of anonymised data, as well as other elements. Along with the primary 

method of measuring accuracy in decision tree classification in order to evaluate utility, it would 

seem appropriate to also evaluate the measurements of a selection of these metrics. This will not 

only allow more comparison between this report and past or future work, but it will also allow for an 

evaluation of the efficacy of the selected metrics for estimating decision tree classification utility as a 

side outcome of this report. 

One of these metrics is the so-called discernability metric (DM) [Skowron & Rauszer, 1992]. This 

metric tries to measure information loss by applying a penalty for each record in an equivalence 

class using the formula: 

ܯܦ = �∋ଶா|ܧ|∑   

Where E is an equivalence class and T is the table being evaluated. This is a widely used metric for 

evaluation of anonymisation algorithms and, on the surface, this would appear to be a good 

selection to base measurement of anonymised data utility on. However, in a later chapter [5.2], I will 

show how this particular metric may not be very reliable for estimating the utility regarding 

classification. 

Another, named ILoss [Xiao and Tao, 2006, pp. 7], is a metric that tries to consider the information 

loss of generalisation. In Fung et al., it states that ͞ILoss measures the fraction of domain values 

generalized by [a generalised value] vg͟ [Fung et al., 2010, pp. 22]. The ILoss measurement for a 

specific generalised value is given by: 

(�ݒ)ݏݏ݋ܮ� = |�ݒ|  − ͳ|ܦ஺|  

Where A is the attribute of the value vg, |vg| is the number of values within the domain of A that are 

descendants of vg, and |DA| is the total number of values in the domain of A. The total ILoss for a 
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given table can then be found by simply summing the measurement for each generalised value in 

the table. This metric appears to be a more suitable measure of anonymised data utility as it 

considers individual generalisations when calculating information loss. Indeed, I show later in this 

report how this metric could be considered a reliable estimate for utility regarding classification in 

certain scenarios. 

The ILoss metric falls short in that it does not consider the size of the entire data set. This means that 

it is not useful for comparing different data sets. It is also general-purpose, meaning that for any 

given use for anonymised data, the metric will have a limit in its reliability. A further alternative is 

the Classification Metric (CM) [Iyengar, 2002, pp. 282]. This is a specialised metric designed 

specifically for measuring utility regarding classification, it also takes into account the size of the data 

set through normalisation. The metric is defined: ܯܥ =  ∑ �∋�ሻݎሺ�ݐ݈ܽ݊݁݌ ܰ  

Where r is a row in the table T, N is the total number of rows and the penalty function is defined: 

ሻݎሺ�ݐ݈ܽ݊݁݌ =  { ͳ − ͳ݀݁ݏݏ݁ݎ݌݌ݑݏ ݏ݅ ݎ ݂݅  − ሻݎሺݏݏ݈ܽܿ ݂݅  ≠ ሻሻͲݎሺܧሺ�ݐ݅ݎ݋݆ܽ݉ − ݏ݁ݏܽܿ ݎℎ݁ݐ݋ ݈݈ܽ   

Here E(r) is the equivalence class record r belongs to. In this report, suppression, another method of 

anonymisation different to generalisation, is not used. Therefore, we can ignore the first penalty 

case. The case where the class of record r is not the majority of its equivalence class adds a penalty if 

we have an equivalence class that is not homogeneous. Iyengar states ͞Roǁs iŶ a [equivalence class] 

G with different class labels cannot be discriminated using the [QIDs]. Therefore, for accurate 

classification, it is preferable if all the rows in G have the same class label͟ [Iyengar, 2002, pp. 282]. 

This is intuitive, as if you consider an equivalence class with numerous classes represented, you 

cannot know which class a particular QID value belongs to in that instance. So, it is natural that this 

could lead to misclassification. For example, consider Figure 1c again, and records 1 and 2. The 

generalisation for age in this equivalence class is [28,30], but the illness for each record is different. 

If both records were equivalent in illness, and this was the class you were trying to determine, you 

would know with certainty that at least two persons of ages 28 and 30 had that illness, meaning 

either age chosen to finally represent the record when training the classifier will be assigned 

correctly. A side note to this; if an equivalence class is homogeneous, a so-called Homogeneity 

Attack [Aggarwal & Yu, 2008, pp. 26] could be performed on the data set. This is bad for privacy; 

however, this report͛s main aim is to evaluate the utility of anonymised data, not privacy alone. 

Overall, this would appear to be a very useful metric to use in this report. Results given later in the 

report indicate that this is indeed the case. 

2.4 - Related Work 

Tang et al. [2010] make a concentrated attempt at ensuring anonymised data is still useful. It 

suggests a novel utility-based k-Anonymisation algorithm and evaluates the utility of data 

anonymised by it in comparison to the Mondrian algorithm and one other. It shows that its 

suggested utility-based algorithm is superior to the other algorithms tested. However, it does so by 

using a combination of metrics including the aforementioned CM, and its own measure of query 

answerability. It does not actually perform classification experiments as this report proposes to do. 

Ayala-Rivera et al. [2014] perform experiments on several k-Anonymity algorithms including the 

Mondrian algorithm used in this report, using the ADULT data set also used in this report, in order to 
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measure the efficiency and utility of the different algorithms for practitioners. Its main aim appears 

to be to find the best algorithm in general, not for a specific purpose. It shows inconclusive results 

on which algorithm is the best and interestingly suggests that different algorithms may be useful for 

different purposes. Again, the experiments here are purely metric-based and there is no 

measurement of actual classification accuracy or any other type of data mining utility. 

Li et al. [2011] evaluate a modified version of the Mondrian algorithm (InfoGain Mondrian) using a 

decision tree classification accuracy model similar to my own, again on the ADULT data set. It does 

so in order to compare the new algorithm it introduces (IACk), to the more well-established 

algorithms, showing that IACk outperforms Mondrian in multiple classification tasks, including with 

decision trees. As such, it differs from this report in that it does not go into the same level of depth 

as is proposed here regarding decision tree classification. It also differs in how the experiment is set 

up, using a different decision tree algorithm, and as mentioned, a modified version of Mondrian. 

Shao & Beckford [2017] attempt to evaluate the decision tree classification accuracy of data 

anonymised using the Mondrian algorithm. It does so by performing a series of experiments using 

the ADULT data set to train and test an ID3 decision tree. It shows that whilst there is a degradation 

of classification accuracy for anonymised data sets compared to non-anonymised, the degradation is 

minimal. This is a very similar study to the one described in this report. However, it differs in that 

this report considers multiple possible scenarios for training and testing of the ID3 decision tree. It 

also differs slightly in the implementation of the ID3 algorithm; this report utilises a random, and 

statistical approach to building the decision tree in order to perform a comparison, whereas the 

mentioned paper uses a purely random approach. Furthermore, the mentioned paper only considers 

the Strict version of the Mondrian algorithm, whereas this report considers both the Strict and 

Relaxed versions of the algorithm. Nonetheless, the setup and overall objectives of the mentioned 

paper are in line with this report and, as such, this report may be considered an extension of it.  

In summary of the related work, it appears that there has not been a great deal of deep investigation 

into the utility of anonymised data, particularly regarding data mining and decision trees. The 

majority of related work investigates this using an array of general-purpose or specific-purpose 

metrics. Most other work that tries to examine the utility of anonymised data in data mining tends 

to do so only to make a surface comparison to a newly proposed algorithm. This gives a motivation 

for the work in this report which appears to be a more in-depth study of the utility of anonymised 

data regarding classification analysis. 
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3 - Approach 
In this chapter, I will detail the approach to implementing the k-Anonymity tool and ID3 decision tree 

classifier, the pre-processing required to prepare the ADULT data set for the experiments, and the 

methodology of the experiments themselves. Firstly, however, I will detail the general approach to 

solving what I believe to be the main aim of the project – evaluating the utility of anonymised data. 

3.1 - Solving the Problem 

The primary method of evaluating anonymised data utility in this report is through measuring 

decision tree classification accuracy. By measuring the classification accuracy of the decision tree 

built and tested on data in its raw, non-anonymised form, it can then be compared to the 

classification accuracy of a decision tree involving anonymised data. The evaluation will consider 

four possible scenarios: 

i) Classification of non-anonymised data using decision tree trained on non-

anonymised data – this will serve as the baseline case for decision tree classification 

accuracy in this report. Whilst data anonymisation is necessary for the distribution 

of data amongst third parties, an analysis may still be performed on non-generalised 

data collected in-house, thus this scenario is still commonplace. 

ii) Classification of anonymised data using decision tree trained on anonymised data – 

this would be considered the standard approach to data mining using decision trees 

for most third-party researchers. Due to the discussed reasons, the researcher will 

not have access to the original data and would need to build trees and perform 

classification over anonymised datasets. 

iii) Classification of anonymised data using decision tree trained on non-anonymised 

data – this would be considered a less common scenario; however, it is still possible. 

Consider the case where a government organisation is legally allowed access to non-

anonymised data collected through legislative means. However, the same 

organisation may not be allowed access to original data collected via private 

corporations, such as through social media. In this case, the organisation could train 

their classification model with the non-anonymised data, for use on the anonymised 

data from the social media company. 

iv) Classification of non-anonymised data using decision tree trained on anonymised 

data – again, this would be considered a less common scenario; but still possible. For 

example, it is possible that a group of research organisations may cooperate to 

produce a single anonymised dataset containing data collected from each 

organisation. This data could then be shared amongst all organisations involved in 

the project. Each organisation would then be able to create decision tree models 

based on a much larger dataset than before. They could then use these models to 

classify future data collected themselves. 

By considering these four possible scenarios, a more comprehensive evaluation can be performed. 

Not all k-Anonymisations are created equal. Inherently, the k-value and QID set can be changed to 

whatever the data publisher deems appropriate. Therefore, it would also be necessary for a 

comprehensive evaluation to consider a range of k-values and QIDs. In theory, this will provide data 

publishers with some insight into optimal k-values and an optimal amount of QIDs to consider using 

when anonymising their data. Note that no real-life data publisher will be publishing the ADULT data 

set, so the actual QIDs and count thereof will not be particularly relevant. However, if we consider 

the type of data each QID added represents (numerical, categorical, etc.) and the count as a 



10 

 

percentage of the total number of attributes, this may be more useful for publishing anonymised 

data in general. 

In addition to the above, there are two other possibilities to consider. Each involves an aspect of one 

of the two main algorithms used in this report. Firstly, the Mondrian k-Anonymity algorithm is 

implementable in two different modes: Strict or Relaxed. Both are useful in different situations, and 

therefore it is important in a comprehensive evaluation to examine both. Secondly, when building 

decision trees using the ID3 algorithm, it will not be possible to use generalised values as branches in 

the tree. These generalised values will need to be mapped back to specific values. One approach to 

this is to randomly map the generalisation back to any of the values in its value-set. A second 

approach could be to consider the effect of the publisher releasing basic statistics from the original 

data set and how we could use these statistics to map back values more accurately. More details on 

these methods can be found in the ID3 section of this chapter [3.3]. 

Another aspect of evaluation previously suggested is to analyse measurements of established 

metrics. In this report, for each anonymisation used, measurements of the Discernability Metric 

(DM), ILoss, and the Classification Metric (CM) will be taken. These measurements can then be 

compared to each other, and maybe more interestingly, compared to the actual classification 

accuracy measurements. This will hopefully provide some insight into how useful these metrics are 

in estimating the utility of anonymised data. 

This would appear in principle to amount to a relatively comprehensive investigation of the utility of 

anonymised data in classification using decision trees. Further details on all of the above will be 

provided in the following pages of this chapter. 

3.2 - Mondrian k-Anonymity 

As mentioned, in this report it was decided that the Mondrian multidimensional algorithm [LeFevre 

et al., 2006] would be most suitable for the implementation of k-Anonymity. 

An overview of the Mondrian k-Anonymity algorithm can be seen in Figure 3. Initially, the input data 

set is repeatedly cut into partitions along all viable dimensions until a minimal partition size is 

reached, with each one having at least k records. Following this, each partition is generalised, and 

the resulting generalised partitions are then merged into one final anonymised data set which can 

then be published. The algorithm is implementable in two modes: Strict or Relaxed. The pseudocode 

for the Strict algorithm can be seen in Algorithm 1, following which is a breakdown of this algorithm 

and the Relaxed algorithm. 

 

 

 

 

 

 

 

 

 

Partition Generalise Merge 

Figure 3 

Figure 3 - Mondrian k-Anonymity Overview 
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The Mondrian algorithm is a recursive algorithm, the data set D used as input is initially the entire 

data set that requires anonymisation, however, in recursive calls, it is a subset of this. It is also a 

greedy algorithm, meaning that it will try to find a solution by simply selecting the current optimal 

option in each iteration. 

The algorithm in both Strict and Relaxed modes will first determine if the data set D can be 

partitioned (line 2). LeFevre et al. on allowable multidimensional cuts state: ͞CoŶsideƌ ŵultiset P of 
points in d-dimensional space. A cut perpendicular to axis Xi at xi is allowable if and only if Count(P.Xi 

> xi) ш k and Count(P.Xi ч xi) ш k͟ [LeFevre et al., 2006, pp. 4]. Figure 4 shows a visual representation 

of a Strict partitioning for a 2-Anonymisation. Notice that cuts along each axis are only possible in 

the positions shown, a cut at any other position results in a region with fewer than k points. The 

Strict and Relaxed algorithms differ in how the partitioning is performed. A Strict partitioning does 

not allow intersecting values between the two subsets of D resulting from a cut. A Relaxed 

partitioning allows intersecting values, for example, a cut along the axis of attribute Age could result 

in two partitions with generalised values [28,29] and [29,30], although this is not possible in the 

example shown in Figure 4. In theory, the Relaxed algorithm will result in a greater number of 

possible cuts, leading to smaller equivalence classes. Note also that every partitioning possible in the 

Algorithm 1 – Strict Mondrian Multidimensional Algorithm (LeFevre et al. 2006) 

 

1.   AnonymiseStrict(data set D) 

2.   if (D cannot be partitioned): 

3.   return D 

4.   else: 

5.   Xi = chooseAttribute(D) 

6.   F = frequencySet(D, Xi) 

7.   pv = median(F) 

8.   lhs = {t ∈ D | t.Xi ≤ pv} 

9.   rhs = {t ∈ D | t.Xi > pv} 

10.  return AnonymiseStrict(lhs) ⋃ AnonymiseStrict(rhs) 

 

30 

 

 

29 

 

 

28 

 CF24 3BW   CF23 7RZ   CF23 5AB 

Figure 4 

Figure 4 - Visualisation of Mondrian Partitioning 
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Strict algorithm is also possible in the Relaxed algorithm, this is not the case in the reverse. If D 

cannot be partitioned, then it is simply returned. 

Once it has been established that data set D can be partitioned, the dimension (attribute) to attempt 

partitioning on needs to be selected (line 5). According to the literature, ͞We have some flexibility in 

choosing the dimension on which to partition. As long as we make an allowable cut when one exists, 

this choice does not affect the partition size upper-bound͟ [LeFevre et al., 2006, pp. 6]. The method 

suggested in the literature is to simply choose the dimension with the widest range of values. This is 

the method used in this report͛s implementation. 

Line 6 establishes a frequency set F of all values belonging to attribute Xi in data set D. The order of 

the values in F is alphabetical for categorical values or ascending for numerical values. It is necessary 

to establish a consistent order in this because line 7 finds the median value pv of frequency set F. 

The ŵediaŶ ǀalue, oƌ ͞piǀot͟, is theŶ used as a ďasis foƌ paƌtitioŶiŶg the data set D. The median is 

found in the standard way. 

For the Strict algorithm, the process is now straightforward: simply take all records with a value for 

attribute Xi less-than or equal to pv in its position in the frequency set F and place them in a partition 

lhs (left-hand side). All remaining records, that is, records with values for Xi greater-than pv in its 

position in F, are placed in the partition rhs (right-hand side). An example of how this works can be 

seen in Figure 5. 5a shows a frequency table of records with values of a given attribute Xi. 5b shows 

how records are partitioned in the Strict algorithm. 

In the Relaxed algorithm, partitioning is slightly more complex. Firstly, records added to lhs are those 

with values for Xi strictly less-than pv in F. In the same way, records added to rhs are those with 

strictly greater values for Xi. Values where Xi = pv are added to a temporary partition med. Values in 

med are then shared between lhs and rhs in the fashion shown in Figure 5c. This results in the two 

partitions containing intersecting values for Xi. 

With the data set D successfully partitioned into lhs and rhs, all that remains is to recursively 

partition lhs and rhs. The final result of this will be a set of partitions. Values for QIDs in each 

partition are generalised forming a set of distinct equivalence classes which can then be merged to 

construct the k-Anonymisation of the input data set. 

 

 

 

 

 

 

 

 

 

 

 



13 

 

 

 

 

# Value Frequency 

0 A 10 

1 B 20 

2 C 6 

3 D 80 

4 E 35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 - ID3 Decision Trees 

For this report, the ID3 algorithm was selected as the means of decision tree classification. It is 

described in detail in [Quinlan, 1986]. However, the implementation in this report is based on the 

version described in [Mitchell, 1997, pp. 55-60]. Algorithm 2 shows the pseudocode of the basic ID3 

implementation. 

 

 

Fig 5b. �ݏ݀ݎ݋ܿ݁� ݈ܽݐ݋ = ͳͷͳ ݊ܽ݅݀݁ܯ =  ͳͷͳ + ͳʹ = ͹͸ ݒ݌ = ݏℎ݈  ܦ = ܿ݁ݎ} ∈ ��ܿ݁ݎ | ݐ݁ݏܽݐܽ݀ ∈ ,ܣ} ,ܤ ,ܥ ݏℎݎ {{ܦ = ܿ݁ݎ} ∈ ��ܿ݁ݎ | ݐ݁ݏܽݐܽ݀ ∈ |ݏℎ݈| {{ܧ} = ͳͳ͸ |ݎℎݏ| = ͵ͷ 

 
  Fig 5c. ݈ℎݏ = ܿ݁ݎ} ∈ ��ܿ݁ݎ | ݐ݁ݏܽݐܽ݀ ∈ ,ܣ} ,ܤ ݀݁݉ {{ܥ = ܿ݁ݎ} ∈ ��ܿ݁ݎ | ݐ݁ݏܽݐܽ݀ = ݏℎݎ {ݒ݌ = ܿ݁ݎ} ∈ ��ܿ݁ݎ | ݐ݁ݏܽݐܽ݀ ∈  {{ܧ}

The records in med are distributed into lhs and rhs by the following pseudocode: 

          while |lhs| < Median : 

     NextRecord(medሻ → lhs 

        rhs  = med  ∪ rhs 

Where NextRecord moves the next record in the set to another set. This results in: |݈ℎݏ| = ͹͸ |ݎℎݏ| = ͹ͷ 

  

 

Figure 5 

Fig 5a. 

Figure 5 - Mondrian Partitioning Example 
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Anyone with a peripheral understanding of decision trees should be able to understand the general 

process of this algorithm. The only part that may require some explanation is found in line 8 – 

information gain. In addition to this, we must acknowledge the problems with using generalised 

values in building decision trees and also how to deal with numerical values. 

Entropy & Information Gain 

Entropy is a measure commonly used in information theory; it is a measure of the impurity of a 

collection of items. The items, in this case, are records in the data set. The entropy of a set of 

records D with an array of different classification values in class attribute φ is given by the formula: ݌݋ݎݐ݊ܧ�ሺܦሻ =  ∑ −�� logଶ ��� ∈ �  

Where Pi is the proportion of D with class i in class attribute φ. Note: logଶ Ͳ is defined as 0 for 

entropy calculation. 

The entropy can then be used in the following calculation of information gain: �݂݊݊݋݅ݐܽ݉ݎ݋�ܽ݅݊ሺܦ, ሻܣ = ሻܦሺ�݌݋ݎݐ݊ܧ − ∑ |ܦ||�ܦ| ሻ� ∈ ஺�ܦሺ�݌݋ݎݐ݊ܧ  

Where A is the selected attribute and Dv is the subset of records with value v for A. 

 

Algorithm 2 – ID3 Decision Tree (Mitchell, 1997) based on (Quinlan, 1986) 

 

1.   ID3(data set D, class attribute φ, defining attribute set X) 

2.   Create a Root  node for the tree 

3. if all records in D are of the same class φi :  

4.   return the single-node tree with class label φi 

5.   if X is empty: 

6.  return the single-node tree with class label of most common φi  in D 

7. else: 

8.   A = attribute in X  with highest information gain 

9.   the decision attribute for Root  = A 

10.   for value v  in A : 

11.    append new tree branch below Root, corresponding to the test A = v 

12.    Dv  = subset of D  where A = v 

13.   if Dv  is empty: 

14.    append new leaf node to branch with class label of most common φi  in D 

15.   else: 

16.    append subtree ID3(Dv , φ , X – {A})  to branch 

17.  return Root 
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Dealing with Generalised Values 

Generalised values represent an obstacle to the implementation of the ID3 decision tree algorithm. 

A generalised value essentially represents a range of equally possible values. We need to consider 

how to deal with them in calculating entropy and also how to create a branch in the tree from them. 

Regarding the calculation of entropy, Pi is the proportion of D belonging to class i. This can be 

written 
|஽�=�||஽|  where D could be the entire data set (or partition), which poses no issue where 

generalised values are concerned. However, in the information gain calculation, we need to also find 

the entropy of Dv. In an anonymised data set, for any given record, value v may be generalised, we 

need to consider how to deal with this. Shao & Beckford [2017, pp. 4] suggest simply considering the 

generalised value as its own unique value in attribute A. This would appear to be a viable solution, 

however, doing so would necessitate using a generalised value as a branch in the tree. The problem 

with this is values in classification must then be generalised in the same way, leading to potential 

complications further down the line. Another proposition by Shao & Beckford [2017, pp. 4], and the 

one used in this report, is to consider all values in a generalisation to be equally likely the true value. 

In a generalisation containing r values, we can consider each value in the generalisation to be worth ଵ� . Figure 6 shows an example of this. The table shows records for a generic attribute Attrib and 

corresponding class. Non-generalised values are simply worth a count of 1 in calculating Pi, but 

generalised values are worth 
ଵ� in this case r = 2, so each generalised value is worth 0.5 in the 

calculation. 

 

 

 

Attrib Class 

A X 

B X 

B Y 

[A,B] Y 

[A,B] Y 

[A,B] X 

݅ݎݐݐܣሺ�݌݋ݎݐ݊ܧ  ஺ܾሻ =  − ͳ.ͷʹ.ͷ logଶ ͳ.ͷʹ.ͷ − ͳʹ.ͷ logଶ ͳʹ.ͷ ݌݋ݎݐ݊ܧ�ሺܾ݅ݎݐݐܣ஻ሻ =  − ͳ.ͷ͵.ͷ logଶ ͳ.ͷ͵.ͷ − ʹ͵.ͷ logଶ ʹ͵.ͷ 

 

 

Using this method means we are not railroaded into using generalised values for branches in the 

decision tree, avoiding complications there. Also, because the generalised values are equally 

distributed, the entropy of a particular attribute will be determined by the distribution of non-

generalised values only. Thus, attributes with fewer generalisations will be favoured as the next 

node in the decision tree, leading to a decision tree that is based to a greater degree on actual data. 

Figure 6 

Figure 6 - Generalisation Entropy Calculation Example 
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As stated, we ideally want to avoid using generalised values as branches in the decision tree. The 

approach taken to deal with this in this report is essentially to map-back generalisations to one of 

the values contained in its value-set. We do this in two ways, both suggested in Shao & Beckford 

[2017, pp. 5]: 

- ‘aŶdoŵ MappiŶg: We seleĐt a ǀalue fƌoŵ the geŶeƌalisatioŶ͛s ǀalue-set at random to be the 

attribute value for a given record. This value can then be used as a branch in the tree. The 

benefit of this is twofold: simplicity of implementation and prevention of biases. 

- Statistical Mapping: If we consider the case whereby a frequency distribution for all original 

QID values is released with an anonymisation, we can then use the corresponding 

distribution to assist in mapping back a generalisation to a single value for the given 

attribute. We can do this by weighting the probability of selection of a particular value by its 

frequency in the original data set. In theory, this could result in records that more closely 

represent the original data. Although, this is not guaranteed and could lead to biases 

towards a particular value in the attribute domain that is most prevalent. It could also cause 

problems with privacy if the mapped-back values are too similar to the original data, 

undermining the whole point of anonymisation. However, if privacy loss is minimal, the 

trade-off for better classification accuracy may be worthwhile. 

Both methods are tested in this report in order to provide a more comprehensive evaluation. In 

addition to this, a side-evaluation will be provided on how accurately values are mapped back to 

their original values. This should provide some insight into how problematic the mapping process 

could be in retaining the privacy gained through anonymisation. 

Numerical Attributes 

The standard ID3 algorithm is only designed to handle categorical data. However, it can be modified 

to handle numerical data. In real-life situations, a researcher will likely use numerical data in 

classification, for this reason, it was decided that the ID3 implementation in this report would be 

modified to deal with numerical data. 

The basic idea behind the modification used in this report is expressed in [Mitchell, 1997, pp.72-73]. 

Essentially, instead of appeŶdiŶg a ďƌaŶĐh to a tƌee ĐoƌƌespoŶdiŶg to the ƋuestioŶ ͞does the value 

foƌ attƌiďute A iŶ the ƌeĐoƌd eƋual ǀ?͟, we ask the question ͞is the ǀalue foƌ attƌiďute A less thaŶ oƌ 
eƋual to ǀ?͟ In order to do this, we need to determine what the value v is. 

There are numerous ways of determining the value for v. A common approach, and the one used in 

this implementation, is to find the mid-points between adjacent numerical values, then test each to 

find the threshold that produces the greatest information gain. An example of how this works can be 

seen in Figure 7. Here, for brevity, we only show the calculation of information gain for one 

midpoint. First, we find the information gain from data where the value for Age is less than or equal 

to the midpoint. Then we find it for data where the value is greater than the midpoint. Of course, we 

are more interested in the information gain where there are more records involved. As can be seen, 

InfoGain(Ageчϭ8.ϱ) has a high value, but only 1 record is involved in the calculation, which tells us less 

about the entire dataset. Therefore, we take the weighted average as representing the information 

gain for that midpoint. If we repeat this process for all midpoints, we can then use the midpoint with 

the highest information gain as the threshold for testing in the tree. 
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Age Class 

18 A 

19 B 

20 B 

21 B 

22 A 

ݏݐ݊݅݋݌݀݅ܯ  = [ͳͺ.ͷ, ͳͻ.ͷ, ʹͲ.ͷ, ʹͳ.ͷ] �݁ݐݏ −  ͳͺ.ͷ: �݂݊݋�ܽ݅݊ሺ݁݃ܣ≤ଵ8.5ሻ = ሻܦ ݐ݁ݏܽݐܽܦሺ�݌݋ݎݐ݊ܧ − |ܦ||஺��≤ଵ8.5ܦ| ଵ8.5ሻ≥݁݃ܣሺ݊݅ܽ�݋݂݊� (஺��≤ଵ8.5ܦ)�݌݋ݎݐ݊ܧ = Ͳ.ͻ͹ͳ − ͳͷ ሺͲሻ = Ͳ.ͻ͹ͳ �݂݊݋�ܽ݅݊ሺ݁݃ܣ>ଵ8.5ሻ = ሻܦ ݐ݁ݏܽݐܽܦሺ�݌݋ݎݐ݊ܧ − |ܦ||஺��>ଵ8.5ܦ| ଵ8.5ሻ<݁݃ܣሺ݊݅ܽ�݋݂݊� (஺��>ଵ8.5ܦ)�݌݋ݎݐ݊ܧ = Ͳ.ͻ͹ͳ −  Ͷͷ ሺͲ.ͺͳͳሻ = Ͳ.͵ʹʹ �݁݅݃ℎ݃ݒܣ݀݁ݐ =  ͳͷ ሺͲ.ͻ͹ͳሻ + Ͷͷ ሺͲ.͵ʹʹሻ = Ͳ.Ͷͷʹ =  .ݏݐ݊݅݋݌݀݅݉ ݈݈ܽ ݎ݋݂ ݐܽ݁݌݁� ଵ8.5ሻ݁݃ܣሺ݊݅ܽ�݋݂݊�
 

 

3.4 - ADULT Data Set 

The ADULT data set [Dua & Graff, 2019] has become the standard data set for the evaluation of 

anonymisation algorithms. Indeed, it is present in almost all of the works cited in the Related Works 

section [2.4] of this report. Essentially, it is an extract from the census with 15 attributes: age, 

workclass, fnlwgt, education, education-num, marital-status, occupation, relationship, race, gender, 

capital-gain, capital-loss, hours-per-week, native-country, income. In this report, fnlwgt and 

education-num were omitted from any experiments. fnlwgt is essentially the number of people the 

census believes the entry represents – this is not very useful for the experiments in this report. 

education-num is simply a numerical representation of the education attribute and is therefore 

unnecessary. The income attribute is the target classification attribute; therefore, we have 12 other 

attributes that can be used to classify a record in the decision tree. The data set consists of 48,843 

records in total, however, some of these have missing values. For simplicity, these records were 

removed prior to use – resulting in 45,222 remaining records.  

3.5 - Implementation Testing 

It is important for guaranteeing the reliability of results that the implementations of the various 

algorithms for this report are tested. Details on the testing of the two main algorithms follow. All 

other smaller algorithms or scripts will be tested in a similar manner, for brevity, the details of each 

will not be given here. 

 

 

Figure 7 

Figure 7 - Numerical Information Gain Calculation Example 
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Testing the k-Anonymity Tool 

In this paper, the approach to ensuring validity will be primarily through testing on small-scale 

synthetic data. This essentially means taking a mock data set of limited records, using the tool to k-

Anonymise it, then establishing if the output is correct by comparison to the expected output. A 

further method of ensuring validity can be done through simple checks, such as ensuring that each 

equivalence class is larger than k, and comparison of measurements for the running time of various 

anonymisations to ensure consistency with expectation. Performing these experiments should be 

sufficient in ensuring the validity of the tool. 

Testing the ID3 Classifier 

As previously stated, the utility of anonymised data in this report will be evaluated by measuring 

classification accuracy from an ID3 decision tree, trained and tested on anonymised data in different 

scenarios. Before this can begin, as with the k-Anonymity tool, the ID3 algorithm must be tested to 

ensure validity. Again, a simple method of checking the algorithm would be to test the algorithm on 

a small set of synthetic data, comparing the results to expected output, this can be done for both 

building of the tree and classification. A second method will involve a comparison of classification 

accuracy with an established implementation of the ID3 algorithm. For this, the popular Weka 

[University of Waikato, 2021] machine learning tool can be used. These two methods of ensuring 

validity should be sufficient. 

 

3.6 - Experimental Methodology 

Once validity has been established for both the k-Anonymity tool and the ID3 algorithm, the process 

of evaluating the utility of anonymised data can begin. 

Each experiment will use the following process: 

1. k-Anonymise ADULT data set with quasi-identifiers {QIDs} for given k-value 

2. Use 6-fold cross-validation testing to measure classification accuracy: 

a. Take [training] & [testing] data sets and split each into 6 subsets of equal size 

such that subsets in one data set contain the same records as their counterpart 

subsets in the other data set 

b. Take 5 subsets of [training] and build a decision tree using ID3 from these 

subsets 

c. Take the remaining subset not used for training from [testing] and attempt to 

classify all records within 

d. Compare test classification with actual classification for each record 

e. Store results 

f. Repeat above until each subset has been the test set 

3. Calculate the average of the 6 cross-validation results and store the average result 

The value of 6 was chosen as the number of cross-validation folds simply because 6 is the largest 

reasonable number that divides the total record count of 45,222 exactly, resulting in equal-sized 

subsets of 7537 records. 

In this report, the set of attributes used to classify a record will remain fixed as the 12 attributes 

[age, workclass, education, marital-status, occupation, relationship, race, gender, capital-gain, 

capital-loss, hours-per-week, native-country] for all experiments. 
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The above must be performed on data sets anonymised using the Strict and Relaxed versions of the 

Mondrian k-Anonymity algorithm. 

The above must also be performed with ID3 decision trees trained using the random and statistical 

mapping back of generalised values. 

{QIDs} will vary in size from 8 to 12. The QIDs used can be seen in Figure 8, with the newly added QID 

shown in bold: 

 

QID Count {QIDs} 

8 [age, workclass, education, marital-status, occupation, race, gender, native-

country] 

9 [age, workclass, education, marital-status, occupation, relationship, race, gender, 

native-country] 

10 [age, workclass, education, marital-status, occupation, relationship, race, gender, 

capital-gain, native-country] 

11 [age, workclass, education, marital-status, occupation, relationship, race, gender, 

capital-gain, capital-loss, native-country] 

12 [age, workclass, education, marital-status, occupation, relationship, race, gender, 

capital-gain, capital-loss, hours-per-week, native-country] 

 

 

For each {QIDs}, experiments will be performed on all values of k in {2, 5, 10, 25, 50, 100}. These 

values of k were chosen as these were the values used for testing in the [LeFevre et al., 2006, pp. 9] 

paper which originally described Mondrian k-Anonymity, they are a reasonable mix of realistic 

(commonly used) values for k and high values used for testing purposes. 

Figure 9 shows all combinations of training/testing data sets used in experiments for given {QIDs}, 

algorithm type and generalisation mapping type: 

 

  TESTING 

 
Data Set 

Non-

Anonymised 
k=2 k=5 k=10 k=25 k=50 k=100 

T
R

A
IN

IN
G

 

Non-

Anonymised 

Non-Anon. 

Only 

Non-

Anon/Anon 

Non-

Anon/Anon 

Non-

Anon/Anon 

Non-

Anon/Anon 

Non-

Anon/Anon 

Non-

Anon/Anon 

k=2 
Anon/Non-

Anon 

Anon. Only 

k=2 

 

 

    

k=5 
Anon/Non-

Anon 

 Anon. Only 

k=5 

    

k=10 
Anon/Non-

Anon 

  Anon. Only 

k=10 

   

k=25 
Anon/Non-

Anon 

   Anon. Only 

k=25 

  

k=50 
Anon/Non-

Anon 

    Anon. Only 

k=50 

 

k=100 
Anon/Non-

Anon 

     Anon. Only 

k=100 

 

 

Grey cells show experiments that will not be undertaken in this report. 

Figure 8 

Figure 9 

Figure 8 - Quasi-Identifiers used for Experiments 

Figure 9 - Experiments to be performed 
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Note that Non-Anon. Only will be performed just once as it is deterministic and involves no 

anonymisation to require testing of different algorithms, {QIDs} or generalisation mapping types. 

Moreover, the Non-Anon/Anon experiments will not need to be repeated for different generalisation 

mapping types, as the non-anonymised data set obviously does not contain generalisations needing 

to be mapped back. 

From the above information, we can calculate that the total number of experiments that will be 

performed in this report will be 301 excluding repetitions. Due to the nature of cross-validation 

testing, repetitions are essentially intrinsic. However, owing to the numerous random elements in 

the ID3 algorithm, repeating the experiments will ensure more reliable results. Considering time 

constraints, a single repetition of all experiments with non-deterministic results will be performed. It 

follows that there are a grand total of 601 experiments to be performed. 
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4 - Deliverables on Approach 

 

4.1 - Mondrian k-Anonymity Tool 

Implementation 

My implementation of the Mondrian k-Anonymity tool was written in Python and can be found in 

the file [anonymise.py]. Python was chosen as the programming language for this implementation as 

it has some native data structures and established libraries that would be useful here, it is also a 

language that I have modest experience with. Here I will explain some key elements of the 

implementation, including how to use the tool. This implementation deals with data in .csv form; 

chosen simply because it is the data format most familiar to me. 

The Strict implementation generally follows the algorithm described in Algorithm 1, with some 

changes for the Relaxed algorithm. However, it was necessary to abstract the code described in 

Algorithm 1 into multiple functions. 

The main function in the code is the anonymise function. This function takes as input the list args 

used to initialise and perform an anonymisation. The following args are passed by the user in the 

command line at runtime: 

- Input Filename: The non-anonymised .csv file path 

- QID List: The list of attribute indices to be used as QIDs, separated by commas 

-  k-value: The chosen k-value for this anonymisation 

- Output Filename: The destination path for output .csv file 

- Headers: A Boolean (0/1) flag for removal of attribute headers in the input file 

- Strict: A Boolean (0/1) flag for selection of the Strict algorithm. 0 = False = Relaxed 

For example, the following command line input would create a Strict 10-anonymisation file named 

outputfile.csv of the header-less file inputfile.csv using QIDs 0, 1 and 2: 

   anonymise.py inputfile.csv 0,1,2 10 outputfile.csv 0 1 

The anonymise function executes one of two different functions depending on whether the Strict or 

Relaxed algorithm was selected: mondrianStrict and mondrianRelaxed respectively. The difference 

between these two functions is entirely to do with the partitioning of the data set. As mentioned, 

the Strict algorithm prevents intersecting values between the two partitions made from a cut on a 

particular attribute. The median value at which a cut is performed is found using a frequency set for 

the domain of a given attribute, it is, therefore, possible that the median value could be the last 

value in the ordered list of attribute values. In this case, all records will be placed in the lhs partition, 

as all recoƌd ǀalues foƌ the giǀeŶ attƌiďute ǁill ďe ч ŵediaŶ ǀalue, resulting in no partitioning at all. 

Therefore, the mondrianStrict function features a check whereby the median value medVal is 

compared to the final value in the ordered list of values in the attribute domain. If there is a match, 

then the mondrianStrict function is recursively called with the previously used attribute removed 

from the QID list, essentially retrying with the next best attribute. This is not an issue in the Relaxed 

algorithm as even if the median value is the last in the ordered list, some records with this value will 

still be placed in the rhs partition – so partitioning is still performed. 

Both of these functions will append their optimised partitions to the global list partitions – these are 

essentially the equivalence classes. Once the entire data set has been partitioned accordingly, the 

function will return to the anonymise function, which will then cycle through each partition in the list 

partitions, generalising each one with the generalise function and appending the generalised 
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partition into a new list named anon_partitions. Each record in all partitions of anon_partitions is 

placed into a single list named k_anonymisation which is then written to the output .csv file. The 

anonymisation is then ready for use. 

It will not be necessary here to expand on anything else in this implementation, as the majority of it 

simply follows Algorithm 1 with the details already explained. However, a breakdown of each 

function can be found in the comments on [anonymise.py] if further detail is needed. 

Testing 

Firstly, this tool was tested by creating some synthetic data and comparing the actual output of the 

tool to the expected output. The results of the tests can be found in the supporting materials 

[MondrianTests] file. The expected output in each test was determined by hand, as this is the only 

reliable method of doing so. Hence, the maximum size of the data set in terms of records, and the 

amount of QIDs used, must be limited due primarily to time constraints and the difficulty of 

performing multidimensional partitioning by hand. However, the tests assessed a range of different 

conditions for both the Strict and Relaxed algorithm, in theory, the output should remain correct 

when the data set is scaled up. All test cases were passed. 

The second method of testing mentioned in the Approach chapter [3.5] was to measure the size of 

equivalence classes to ensure none were smaller than k. Naturally, this should not happen if the 

algorithm is implemented correctly. However, to provide insurance, a check is added into the 

anonymise function of [anonymise.py]. The code for this check can be seen in Figure 10. When the 

generalised partitions are merged to create the k-Anonymisation, the size of each partition is 

checked to ensure it is greater than or equal to k. If a partition is found to be smaller than k, an error 

message will be printed to the terminal, and the process will stop. This error never occurred during 

the creation of any anonymisations using the tool. Therefore, it can be safely concluded that every 

equivalence class in each anonymisation is greater than or equal to k and that this test has been 

passed. 

 

 

 

 

 

 

The final set of tests for the Mondrian k-Anonymity tool involved taking measurements of the 

running time of anonymisations. The running time is simply checked against expectations; you would 

expect it to decrease as the k-value increases for both the Strict and Relaxed algorithms due to fewer 

partitions being necessary, with the Strict algorithm taking less time in each case due to a simpler 

partitioning method. It would be difficult to compare these timing results to any literature due to 

differences in hardware. 

Figure 11 shows the timing results from the anonymisations with k-values in {2, 5, 10, 25, 50, 100} 

using 8 QIDs, for both the Strict and Relaxed algorithms. We can see, as expected, that running time 

decreases with increasing k-values, and the Strict algorithm executed faster than the Relaxed 

algorithm. Therefore, we can consider this test to have been passed. 

Figure 10 

Figure 10 - Code Snippet of EC Test 
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4.2 - ID3 Decision Tree 

Implementation 

It was considered initially that the ID3 decision tree classifier could be a publicly available 

implementation. However, due to various specifics outlined in the Approach chapter [3.3] i.e., 

properly dealing with numerical values and generalised values, a bespoke implementation was 

decided on as the best option. 

For this implementation, again the Python programming language was used, simply for compatibility 

purposes with the k-Anonymity tool. Again, here I will explain some key specifics of the 

implementation, with further detail in the code comments. 

The entire implementation includes two aspects: training and testing. Training involves the building 

of the decision tree from the input data set. Testing (or classification) involves classifying records 

from another data set using a given decision tree. These two aspects were split into two separate 

files in this implementation.  

The training part of the implementation essentially follows Algorithm 2, with a few changes. It can 

be found in the [id3.py] file. The init function is the initial function for creating a decision tree, here 

the following parameters must be provided: 

- Input Data Set Path: Path to the data set used to train the ID3 decision tree 

- Target: The target attribute used for classification 

- Attributes: A list of describing attributes used for training of the tree 

- Attribute Names: A list of names corresponding to the Attributes parameter – used for 

naming of nodes in the tree 

- Training Indices: A list of record index pairs – each pair references the start and end records 

of a training set, non-inclusive (e.g. [0, 100] will build a tree using records 0-99) 

- Type: Flag determining type of generalisation mapping to use (0 = Random, 1 = Statistical) 

- Output File: The .txt file to output the decision tree to 
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Figure 11 - Timing Results of Mondrian Algorithms 
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- Output Mapping File: The .csv file to output the mapped data set to (generalised values –> 

specific values). Used to determine generalisation mapping accuracy later 

After some preamble, the id3 function will be called. This is the main ID3 algorithm in this 

implementation and is designed as a recursive function. Consequently, when this function is called, it 

could be to begin the creation of the main ID3 tree, or simply a subtree that will be appended to the 

main tree. Here, the third-party library AnyTree [c0fec0de 2020] is used to create the decision tree. 

AnyTree, as the name suggests, is a library that allows for the creation of any kind of tree data 

structure. It is flexible and allows for nodes to have any amount of user-defined attributes, it also 

features a JSON exporter/importer tool which allows for decision trees to be saved for later use. This 

would prove a very useful tool as the training of decision trees in this implementation is non-

deterministic and can take a long time; this tool allows for consistent reuse of the same tree for 

testing purposes, saving time, and helping to ensure validity. 

As with Algorithm 2, the root node must first be created. The bestAttrib function is called which finds 

the best attribute to use as the next node. The best attribute is the attribute with the greatest 

information gain, as explained in the Approach chapter [3.3]. Note that bestAttrib iterates over all 

attributes and checks first if the current attribute is numerical, if so: information gain is calculated 

using the calcInfoGainNumeric function, otherwise, the calcInfoGainCategoric function is executed. 

Both of these functions work as described in the Approach chapter [3.3]. 

Once the root node is created, the most common classification from the data set is found to be used 

as the default, whereby if the entire data set is of the same classification the root node is returned, 

with the label of the most common classification, as the finished tree (or subtree). Every value in the 

domain of the best attribute is then iterated over, and a branch off of the root is created signifying 

the yes/no question ͞Is the ǀalue foƌ the given attribute in this ƌeĐoƌd eƋual to this ǀalue?͟ With the 

records split into their respective subsets based on the answer to this question. Note: AnyTree does 

not use a separate data type for branches, thus branches are simply nodes in this implementation.  

Each subset (if not empty, whereby the default classification is used), is then used as the input data 

set in a recursive call of id3 which creates a subtree appended at the end of the branch. The id3 

function finally returns the entire tree as a pointer to the root and is then exported as a JSON in .txt 

format into the Output File. 

The testing part of the implementation can then import the JSON formatted decision tree to classify 

all records in a given data set. The file [id3classify.py] contains the code for this part. The classify 

function within is the main function. This function is fairly straightforward and, as mentioned, details 

can be found in the comments of the code. It essentially iterates over every record in the data set 

and traverses the input decision tree, classifying the record using the standard approach. The one 

difference is, if the value being checked in a given record is generalised, a match is found if the 

attribute value in the tree being compared is in the generalisation value-set of the record, as 

opposed to non-generalised values where a match is found if the two values are equal. Note: the 

classification of every record is not stored, as this is unnecessary for this implementation. Instead, it 

is simply compared to the true classification value as and when it is classified, and the correct or 

incorrect counters are incremented. The accuracy of the classification can then be determined by 

simply finding the percentage of correct values out of the total. Results are written to the output .txt 

file.  
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Testing 

Similar to the k-Anonymity tool, the main method of testing the ID3 implementation is through the 

use of small-scale synthetic data, whereby an expected output is calculated by hand and compared 

to the output from the algorithm. It is difficult to perform many of these tests as calculating 

information gain and the associated entropies can be an arduous task by hand, so a limited number 

of tests were performed which cover a range of potential scenarios. The results can be found in the 

supporting material [ID3Tests]. The first half of test cases tested the training part of the 

implementation, the second half tested the classification part of the implementation using selected 

trees trained from the first half tests. All test cases were passed. 

As discussed in the Approach chapter [3.5], the next test involved a comparison of classification 

accuracies for a consistent data set between the ID3 implementation discussed in this report, and an 

established implementation [Frank et al., 2012] using the Weka tool. For this, the Non-Anonymised 

ADULT data set was used, as the Weka implementation of ID3 cannot deal with generalised values. 

6-fold cross-validation testing was used as standard, with the following attributes selected to classify 

the Income attribute: [workclass, education, marital-status, occupation, relationship, race, gender, 

native-country]. Note: no numerical attributes were used for this test, as the Weka implementation 

cannot deal with numerical values. 

The full results can be found in the supporting materials. With the results from the Weka 

implementation in [wekaresults.txt] and the results from the implementation discussed in this 

report in the [id3testresults.txt] file. Essentially, the Weka results showed a ~78.8% accuracy in 

classification, with my implementation resulting in a ~81.3% accuracy. This difference can be 

explained by the fact that the Weka implementation does not use the default class value of an 

attribute when attempting to classify an unseen value. This is illustrated in the [wekaresults.txt] file 

by the 1852 unclassified instances. In my implementation, these instances would have been 

classified as some default class. If we were to assume that all of these unclassified instances would 

have been classified correctly by using a default as with my implementation, we can calculate a 

classification accuracy of ~82.9%. Obviously, it is unlikely all of these instances would be classified 

correctly by using a default, hence the 1.6% difference between my iŵpleŵeŶtatioŶ͛s ĐlassifiĐatioŶ 
accuracy, and the 82.9% calculated Weka accuracy. It is impossible to know which records would be 

classified correctly and incorrectly, so we cannot determine if the two implementations match 

exactly. However, the difference is very small, thus, it would be reasonable to say that the 

implementation in this report sufficiently matches the established implementation. 

 

4.3 - Metric Tests 

Separate scripts were used for calculating the three metrics used in this report. The files 

[discernabilityMetric.py], [iLossMetric.py] and [classificationMetric.py] calculate their respectively 

named metrics for a given dataset. Discussing the implementations in detail is not necessary here, as 

they are basic implementations of simple formulae. However, each of these scripts was tested to 

ensure validity. The results can be found in [MetricTests], whereby each script was tested on two 

different small-scale synthetic data sets, comparing the output to an expected output calculated by 

hand. All tests were passed successfully. 
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4.4 - Other 

All other scripts are essentially auxiliary to the above. Most are concerned with simply running one 

of the above scripts for a range of parameters to gather experimental results. Details on each one 

can be found in the code comments. 
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5 - Results 

5.1 - Classification Accuracy 

As established, the primary method of measuring the utility of anonymisations in this report is to 

measure the classification accuracy in ID3 decision tree classification. This chapter will begin by 

detailing the results from the classification experiments outlined in the Approach chapter [3.6]. 

Non-Anonymised Only Results 

To get a baseline measurement to use as a comparison with other scenarios, it is necessary to find 

the classification accuracy of the ID3 classifier for non-anonymised data using a tree trained on data 

that has also not been anonymised. It is expected that these classification accuracy results will be 

the highest measured, simply because original data is used, meaning that maximal information is 

available to the classifier. 

Figure 12 shows the results from the 6-fold cross-validation testing done on non-anonymised data. 

The average result is the value to be used as the baseline classification accuracy – 81.617%. For the 

sake of brevity, this will be the only set of results where each individual cross-validation test will be 

shown – it is shown here simply to highlight the methodology. All subsequent cross-validation 

testing results will only show the average of the 6 tests 

 

 

 

 

 

 

 

 

 

Anonymised Only Results 

The results in this part of the section are those collected from measuring the classification accuracy 

of the ID3 classifier for anonymised data using a tree trained on anonymised data. Figure 13 shows 

the results from each experiment split into four figures. Each figure shows results from a different 

combination of Mondrian algorithm type and generalisation mapping type. Each column in a given 

figure represents a classification accuracy measurement for an anonymisation with the 

corresponding k-value, with different colours representing different QID counts used, as per the 

legend.  

 

 

 

 

Cross-Validation Test # Classification Accuracy % 

1 81.597 

2 81.345 

3 81.730 

4 81.292 

5 82.685 

6 81.053 

AVG. 81.617 

Figure 12 

Figure 12 - Classification Results for Non-Anonymised Data 
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The main thing that can be seen from these results is that there is a general downward trend in 

classification accuracy for increasing k-values in all cases. This is to be expected as increasing the k-

value in a k-Anonymisation will result in equivalence classes of a larger average size, which would 

make discernability between records in an equivalence class more difficult. It would also increase 

the average size of generalisations in equivalence classes, resulting in a tree built and tested with 

reduced information. In this sense, these results would agree with the literature. Shao & Beckford 

[2017, pp. 6] show classification accuracy results from a similar study previously mentioned, there is 

a clear downward trend in these results for increasing k-values, although the exact results differ due 

to differences in methodology.  

In addition to the above, in these results, there appears to be a moderate amount of variability 

between consecutive QID counts for different values of k. There is no clear pattern or trend. This 

would appear counter-intuitive at first thought. It would be expected that increasing the number of 

QIDs in an anonymisation would result in reduced classification accuracy, as you are increasing the 

number of attributes in the data that could be generalised – resulting in greater information loss. 

This is in fact what is shown in Shao & Beckford [2017, pp. 6], where the k-value was fixed and an 

increasing number of QIDs showed a downward trend in classification accuracy. However, we must 

consider the nature of the QID being added in each iteration. It can be seen in the results from Shao 

& Beckford that the change in classification accuracy between consecutive numbers of QIDs is not 

constant, which would suggest that different attributes carry different amounts of information for 

classification purposes – which is intuitive as you would assume an attribute such as Occupation to 

have a greater weight in classifying the income of a person than, for example, Marital Status.  
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Figure 13 

Figure 13 - Classification Results for Anonymised Data 
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In LeFevre et al. (2006 pp. 9), we can see a similar study, the value of k was again fixed and the 

number of QIDs was increased from 2 through 8, with the discernability penalty (DM) measured. Of 

course, this is not the same as measuring the classification accuracy. Indeed, I will later show how 

DM may not be a reliable estimation for classification accuracy, but there is a slight correlation 

between the two in that a lower discernability penalty suggests a higher classification accuracy and 

vice versa. The results show a clear downward trend in discernability penalty, which would suggest 

an increasing classification accuracy. LeFevre et al. state concerning these results ͞this deĐƌease is 
due to the sparsity of the original data, which contains fewer duplicate tuples as the number of 

attƌiďutes iŶĐƌeases͟ [LeFevre et al., 2006, pp. 9], which would seem intuitive. It is important to note 

that these results were collected from tests on synthetic data, not the ADULT data set. However, 

they could suggest that an increase in classification accuracy is possible with an increase in the 

number of QIDs. 

Moreover, we must consider the random elements present in the ID3 algorithm when building the 

tree and classifying using the tree. These elements have been established previously in the report. 

To reiterate, they are the mapping-back of generalised values in the building of the tree, and the 

selection of a single value in a generalisation to represent a record when attempting to classify it. As 

established, increasing the number of QIDs can reduce the size of equivalence classes, shown by the 

decrease of DM measured in LeFevre et al. [2006, pp. 9]. However, it could also increase the number 

and size of generalisations within those equivalence classes, as new QIDs may contain values 

needing generalisation. An increase in the number of generalisations and the size thereof decreases 

the chance of the true value in a generalisation being selected, this is the case in the mapping-back 

process when building the tree and when classifying a record. This could conceivably create 

variability in classification accuracy in different run-throughs of the experiment. 

A combination of all of the above could provide logical reasoning for the variability we are seeing 

between consecutive QIDs in the results in Figure 13. It should be noted that with sufficient repeat 

experiments, the random elements could be eliminated from the data, and a clearer pattern could 

emerge. Due to time constraints, the experiments in their entirety were only repeated once for this 

report. It would be naïve to make further suggestions on how the number of QIDs in an 

anonymisation affects the classification accuracy at this stage. Further experiments would need to 

be performed to make any solid observations. 

Figure 14 shows comparisons between the two types of generalisation mapping used. 14a shows the 

comparison for the Strict Mondrian algorithm, 14b shows the comparison for the Relaxed Mondrian 

algorithm, and 14c shows the average of each mapping type over both algorithms. Each data point in 

the figures is an average of the classification accuracy over all QIDs for the corresponding k-value, 

including the repeat experiment results. The Non-Anonymised Only result is also shown on each 

figure for comparison. 

These results show more clearly the overall decline in classification accuracy for increasing values of 

k. Along with the results from various literature previously mentioned [Shao & Beckford, 2017, pp. 6] 

[LeFevre et al., 2006, pp. 9], we can state with some certainty that there is a clear negative 

correlation between the k-value used for anonymisation and the classification accuracy measured – 

something that is perfectly intuitive. 

 

 

 



30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 

14a. – Strict Algorithm – Generalisation Mapping Type Comparison 

14b. – Relaxed Algorithm – Generalisation Mapping Type 
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Figure 14 - Mapping Type Comparison for Anonymised Data 
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It appears from the results that there is very little change in classification accuracy between the two 

types of generalisation mapping. There is a slight improvement when using the Statistical approach, 

although the magnitude thereof is minimal, with an improvement of ~1.4% in the best case. This 

increase is intuitive, as you would expect that attempting to maintain the frequency distribution of 

the domain of an attribute would result in more accurate mapping-back selections than simply 

selecting at random. Figure 15 shows the accuracy of the values mapped back using both 

approaches, with each data point corresponding to the data points shown in Figure 14c. This was 

measured by simply comparing the mapped-back value selected from a generalisation to the true 

value in the original data. As we can see, the Statistical approach produced much more accurate 

mappings of generalisations compared to the Random approach. It is a point of contention as to 

whether the accuracy shown is sufficiently low enough to ensure the privacy of an individual in a 

data set is sustained, this is something that would require further investigation and therefore will be 

avoided in this report. However, the gain in classification accuracy from the Statistical approach is so 

minimal that even if privacy could be said to be maintained using this approach, the extra work 

required from the data publisher to release such statistics would be unwarranted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Regarding the Mondrian k-Anonymity algorithm type, Figure 16 shows a comparison of classification 

accuracy between the two types of the algorithm: Strict and Relaxed. These results are compiled 

from average classification accuracy over all QID counts for a given k-value, disregarding the 

generalisation mapping method. From the results, we can see that there is very little difference 

between the Strict and Relaxed algorithms. It is necessary to mention now that the Relaxed 

algorithm tends to result in an anonymisation with smaller equivalence classes on average than the 

Strict algorithm, this will be shown in a later section [5.2] discussing the DM results. However, the 

Relaxed algorithm also has a slightly higher ILoss measure, suggesting a greater number and/or size 

of generalisations within the equivalence classes. This could be the reason for the minimal difference 
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Figure 15 - Comparison of Average Mapping Accuracy for Generalisation Mapping Type 
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between the classification accuracies measured, as the generalisation count and size are countering 

the equivalence class size. 
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17a. – Measured Information Loss Range for Any Algorithm/Mapping type 

17b. – Average Information Loss for Any Algorithm/Mapping type 

Figure 16 – Comparison of Average Classification Accuracy for k-Anonymity Algorithm Type 

Figure 17 - Information Loss for Anonymised Data 
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Figure 17 shows the measured information loss for any algorithm type and generalisation mapping 

type, over all QID counts for given k-values. Here, information loss is a measure of the loss of 

classification accuracy using the measurement of 81.617% found from the Non-Anonymised Only 

experiment as a baseline, expressed as a percentage drop. 17a is a visualisation of the range of 

measured information loss, that is, based on the results from experiments in this report, we can 

expect the actual information loss for a given k-value to fall within the coloured area. 17b is the 

average of the measured information loss for the corresponding k-value. These figures can 

essentially be considered an estimate of the utility of anonymised data in comparison to non-

anonymised data for decision tree classification, regardless of algorithm, mapping type or QID count. 

Based on Figure 17, we can expect a loss of between ~5.5% and ~21.8% in classification accuracy 

when classifying anonymised records using a tree trained on anonymised data. The range in 

information loss here could be considered minimal (~5%) to significant (~20%). However, we must 

consider the loss for k-values that are more commonly used. El Emam & Dankar [2008, pp. 631] state 

that ͞It is uŶĐoŵŵoŶ foƌ data ĐustodiaŶs to use ǀalues of k above 5, and quite rare that values of k 

gƌeateƌ thaŶ ϭϱ aƌe used iŶ pƌaĐtiĐe.͟ For values in this range, the information loss is more 

reasonable. For the most recommended k-value, that is k=5,  we can expect a loss of ~9.4% in 

classification accuracy, with actual measured classification accuracy at around 74%. Considering the 

benefits provided by anonymisation regarding individual privacy, this value would probably be 

acceptable to researchers. 

In comparison to the Non-Anonymised Only result, it would appear that information loss is inevitable 

when attempting to classify anonymised data using a classifier trained on anonymised data. 

However, the extent of information loss can be mitigated to a reasonable level by selecting smaller 

k-values when generating k-Anonymisations. 

Non-Anonymised / Anonymised Results 

This part of the section will discuss results found from the classification of Anonymised data using a 

decision tree trained on Non-Anonymised data. Figure 18 shows results for classification accuracy of 

both algorithm types. Note that generalisation mapping does not occur in this scenario, as the tree is 

built from Non-Anonymised data. Figure 18a shows results from the classification on data 

anonymised using the Relaxed algorithm, 18b shows results from the Strict algorithm, 18c is an 

average of results for each algorithm over the full range of QID counts. 

The starkest observation from these results is that classification accuracy varies very little across the 

board, regardless of k-value, number of QIDs, and algorithm type. This would suggest that 

anonymisation has a much-reduced effect on the utility of data when it comes to actual classification 

using a decision tree – the majority of the information lost from anonymisation shown in the 

previous part of this section extends from the building of the decision tree. Figure 18c shows in fact 

that the Strict algorithm performs slightly better in this scenario than the Relaxed algorithm for the 

more commonly used k-values. The reason for this is likely similar to what was previously 

mentioned: whilst the Relaxed algorithm results in smaller equivalence classes, the number and size 

of generalisations within these equivalence classes are generally greater on average. When an 

anonymised record is classified, the random element is selecting the value from a generalisation 

value-set that will represent this record for classification. The algorithm has a better chance of 

selecting the true value from a generalisation with fewer values in its value-set, in theory leading to 

better classification accuracy. 
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Figure 18  

18a. – Relaxed Algorithm Classification Accuracy 

18b. – Strict Algorithm Classification Accuracy 
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Figure 18 - Classification Accuracy Results for Non-Anon/Anon. Data 
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Similar to the Anonymised Only part of this section, Figure 19 shows the measured information loss 

for a given k-value. We can see that the drop in classification accuracy in comparison to the Non-

Anonymised Only baseline is minimal for all k-values, much reduced from the Anonymised Only 

results, which is completely as you would expect because anonymised data is used half as much as in 

the Anonymised Only section. It should be mentioned that the levelling off and slight improvement 

in information retention seen for the higher k-values is most likely due to the fact that there is a 

maximum limit on generalisation size for a given attribute. Once this threshold has been reached, in 

this case, it would seem to be around k=25, the chance of randomly selecting the true value from a 

generalisation value-set for a given record when classifying remains stable for all subsequent k-

values. With sufficient repetitions, we would likely see the gradient of the line move closer to 0 for k 

ш 25. 
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19a. – Measured Information Loss Range for Any Algorithm type 

19b. – Average Information Loss for Any Algorithm type 

Figure 19 - Information Loss for Non-Anon/Anon. Data 
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Again, information loss in this scenario appears to be inevitable. However, the amount of 

information lost from anonymisation, regardless of parameters used, is minimal and is much 

reduced from the previous scenario. 

Anonymised / Non-Anonymised Results 

This part of the section will examine the results from the classification of Non-Anonymised data 

using a decision tree trained on Anonymised data. Once more, Figure 20 shows the results for both 

algorithm and generalisation mapping types over all QID sets and k-values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Again, we can see a clear decline in classification accuracy for increasing values of k, further 

substantiating claims from the previous scenario that anonymisation has more of an effect on 

classification when building a decision tree than when classifying using it. We can also see more of a 

pattern emerging in successive QID counts, whereby the classification accuracy decreases as the 

number of QIDs increases. Anomalies are still present, but this could potentially show that the 

random elements in the ID3 algorithm may be to blame for the variance seen in the results for the 

Anonymised Only scenario. Again, this is just a suggestion, and more tests would need to be done to 

confirm this. 

Figure 21 shows a comparison between the two types of generalisation mapping in the same 

manner as was shown in the Anonymised Only scenario. Here, the statistical approach appears to 

show a much more noticeable improvement over the random approach than before. The reasons for 
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Figure 20  

20a. – Relaxed Algorithm with Random Generalisation Mapping 20b. – Strict Algorithm with Random Generalisation Mapping 

20d. – Strict Algorithm with Statistical Generalisation Mapping 20c. – Relaxed Algorithm with Statistical Generalisation Mapping 

Figure 20 - Classification Results for Anon/Non-Anon. Data 
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this are not clear, again it could be simply because the random element involved in the classification 

part of the ID3 algorithm is eliminated in this scenario, whereas it was present in the experiments 

performed in the Anonymised Only scenario, by chance pulling the two sets of results closer 

together. The results do still align with the expectations in that you would expect the statistical 

approach to perform better than the random approach. Moreover, the difference is still relatively 

small, with a maximum difference of ~4.3%, and this being for the k=100 case, which would seldom 

be seen in real situations.  
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Figure 21 

21a. – Strict Algorithm – Generalisation Mapping Type Comparison 

60

65

70

75

80

85

2 5 10 25 50 100

C
la

ss
if

ic
a

ti
o

n
 A

cc
u

ra
cy

 %

K

Relaxed (Random)

Relaxed (Statistical)

Non-generalised

60

65

70

75

80

85

2 5 10 25 50 100

C
la

ss
if

ic
a

ti
o

n
 A

cc
u

ra
cy

 %

K

Random

Statistical

Non-generalised

21b. – Relaxed Algorithm – Generalisation Mapping Type 

21c. –Average Generalisation Mapping Type Comparison (Avg. of 21a & 21b) 

Figure 21 - Generalisation Mapping Comparison for Anon/Non-Anon. Data 
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We can also see from Figure 22 that the Strict algorithm appears to perform better than the Relaxed 

algorithm in this scenario. This may suggest, as implied before, that the number and size of 

generalisations within an equivalence class has a greater impact on the classification accuracy than 

the size of the equivalence class itself within an anonymisation.  
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23a. – Measured Information Loss Range for Any Algorithm/Mapping type for Anon. / Non-Anon. Scenario 

23b. – Average Information Loss for Any Algorithm/Mapping type for Anon. / Non-Anon. Scenario 

Figure 22 – Comparison of Average Classification Accuracy for k-Anonymity Algorithm Type for Anon/Non-Anon. Data 

Figure 23 - Information Loss for Anon/Non-Anon. Data 
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From Figure 23, we can see again the information loss compared to the baseline from the Non-

Anonymised Only scenario. It would appear that this scenario is a slight improvement in terms of 

classification accuracy on the Anonymised Only scenario for all values of k, which is intuitive as 

anonymisation and the associated random element has been eliminated from the classification part 

of the algorithm. 

It is most interesting to note that in Figure 23a the coloured area of the graph slightly crosses into 

the negative information loss area. This is of course due to the fact that in two cases in the 

experiments for this scenario, the classification accuracy actually improved over the baseline of 

81.617%. This may seem completely counter-intuitive with the baseline being derived from the case 

whereby there was maximum information for training the classifier. However, this can be explained 

if you consider that training the decision tree classifier on Non-Anonymised data may actually be 

producing a slightly overfitted tree, where outliers in the data set are pulling the predicted class in 

the ͞ǁƌoŶg͟ diƌeĐtioŶ. If ǁe ĐoŶsideƌ the situation shown in Figure 24. Both tables show the same 

record from a Non-Anonymised data set (24a) and an Anonymised data set (24b) The record would 

appear to be an outlier in the data, as you would expect someone of that age, education, and 

occupation to be earning >50k. Indeed, most of the records in the ADULT data set similar to this do 

have income >50k. Therefore, when calculating the classification accuracy for the baseline in the 

Non-Anonymised Only scenario, this record would pull the classification of similar records in the 

͞ǁƌoŶg͟ diƌeĐtioŶ. 

However, when the same record has attribute values that have been generalised, through random 

chance during mapping back, a more expected value for those attributes could be selected. 

Essentially eliminating the outlying record. Figure 24b shows how this could be possible, where the 

ID3 algorithm could select High-School and Craft-Repair to represent the Education and Occupation 

attributes in this instance, the record would now seem to align better with similar records in the 

data. 

This raises the question about how much we can trust classification models. We must remember 

that they are only models, extrapolating estimates from the data provided to them. This also shows 

the importance of having a large amount of reliable data to build classifiers from. It could be the 

case in reality that the record shown in Figure 24 is not an outlier whatsoever and is in fact part of 

the majority when the whole population is considered, even if it is an outlier in the data collected. 

͚Estimates’ are just that, and should not be relied upon as if they were completely reliable data. 

 

Age Education Occupation Income (Class) 

53 Doctorate Exec-Managerial ч 50k 

 

Age Education Occupation Income (Class) 

53 [Doctorate, High 

School] 

[Exec-Managerial, 

Craft-Repair] 

ч 50k 

 

 

It is important to reiterate that the information gain seen in this scenario only occurred in two cases: 

Relaxed algorithm with Statistical generalisation mapping for k=2 with 8 QIDs, and Strict algorithm 

Figure 24 

24a. 

24b. 

Figure 24 - Example of Improvement to Expected Classification 
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with Statistical generalisation mapping for k=2 with 11 QIDs. It is also important to note that the 

increase was minimal, with the highest of the two being just a 0.35% increase on the baseline. 

Therefore, this should not be looked at as straying far from the fundamental expectations of the 

experiments, generally, information for classification is lost by anonymisation in almost all cases. 

5.2 - Metric Comparisons 

This section will outline the results from measurements of the three well-established metrics 

traditionally used in the literature to measure the effectiveness and utility of anonymisations. The 

three metrics measured were Discernability Metric, ILoss, and Classification Metric. Each metric was 

explained in detail in the Background chapter [2.3] of this report. 

Discernability Metric 

Figure 25 shows the results from measurement of the Discernability Metric (DM) on each 

anonymisation created using the k-Anonymity tool. 25a shows the average discernability over all QID 

counts for Strict and Relaxed anonymisations of each k-value. Figures 25b and 25c show the Relaxed 

and Strict results, respectively. 

We can see from the results that the discernability penalty is far lower in all cases with the Relaxed 

algorithm than the Strict algorithm. As mentioned in the previous section [5.1], this shows that the 

Relaxed algorithm results in smaller average equivalence classes. DM is purely a measure of the size 

of equivalence classes in an anonymisation, it does not consider individual records.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anonymisation Avg. Discernability 

Relaxed k=2 129440.4 

Relaxed k=5 252117.6 

Relaxed k=10 499579.2 

Relaxed k=25 1997238 

Relaxed k=50 3994310 

Relaxed k=100 7988454 

Strict k=2 1226025 

Strict k=5 1589356 

Strict k=10 2330011 

Strict k=25 6190686 

Strict k=50 11765210 

Strict k=100 23331286 
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Figure 25 

Figure 25a – Average 

Discernability over all QID counts 

for each anonymisation 

Figure 25b – Relaxed Discernability Figure 25c – Strict Discernability 

Figure 25 - Discernability Metric Results 
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Figure 26 

26a. – Correlation between Discernability Penalty and Classification Accuracy for Anon. Only Scenario 

26b. – Correlation between Discernability Penalty and Classification Accuracy for Non-Anon/Anon Scenario 

26c. – Correlation between Discernability Penalty and Classification Accuracy for Anon/Non-Anon Scenario 

Figure 26 - Discernability Metric / Classification Accuracy Correlation 
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Figure 26 shows scatter graphs for each of the three experimental scenarios where anonymisation 

was involved. The graphs show a comparison between the classification accuracy and the DM 

penalty where the R2 value is the absolute correlation measure between the two, and each point on 

the graph is representative of an anonymisation k-value. We can see from these results that the 

correlation between DM and classification accuracy is generally weak in all cases. As mentioned in 

the previous section [5.1], the correlation is clearly negative, indicating that an increase in DM 

suggests a decrease in classification accuracy, and vice versa. However, the correlation is weak 

because the actual value of  classification accuracy cannot be predicted with any accuracy by 

examining the DM penalty. This gives substance to my previously mentioned suggestion that DM is 

not a reliable estimate for classification accuracy. However, while DM may not be a reliable 

estimate, it can still be considered a useful measure for comparing the classification utility of 

anonymisations from multiple different algorithms, simply by measuring if there is an increase or 

decrease in DM between them. It is also often used to better understand the privacy created from 

anonymisation. Nevertheless, I suggest to data publishers who know their data will be used for 

classification to consider other metrics when measuring the utility of their anonymisations for the 

purposes of selecting anonymisation parameters. 

ILoss 

Figure 27 shows the ILoss measurements from all anonymisations. Again, 27a shows the average 

over all QID counts, 27b shows the measurements for the Relaxed algorithm and 27c shows the 

measurements for the Strict algorithm. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Anonymisation Avg. ILoss 

Relaxed k=2 32168.8 

Relaxed k=5 56009.04 

Relaxed k=10 82511.95 

Relaxed k=25 142352.3 

Relaxed k=50 172780 

Relaxed k=100 200520.9 

Strict k=2 36593.44 

Strict k=5 53136.39 

Strict k=10 70367.98 

Strict k=25 99306.13 

Strict k=50 126395.4 

Strict k=100 157944.9 

Figure 27 

Figure 27a – Average ILoss over 

all QID counts for each 

anonymisation 
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Figure 27 - ILoss Results 
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It can be seen from these results that the measured ILoss in almost all cases is higher in the Relaxed 

algorithm. ILoss considers the size of generalisations within its calculation, as such these results 

confirm that generalisations are generally larger with anonymisation from the Relaxed algorithm. 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 28 

28a. – Correlation between ILoss and Classification Accuracy for Anon. Only Scenario 

28b. – Correlation between ILoss and Classification Accuracy for Non-Anon/Anon Scenario 

28c. – Correlation between ILoss and Classification Accuracy for Anon/Non-Anon Scenario 
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Figure 28 - ILoss / Classification Accuracy Correlation 
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Similar to the DM section, Figure 28 shows scatter graphs for the three experimental scenarios 

involving anonymised data, this time showing the correlation between ILoss and classification 

accuracy. In comparison to DM, we can see a much stronger correlation between this metric and the 

classification accuracy measured. Considering this correlation and Figure 27 again, it is notable that 

generally, ILoss tends to increase with QID count, suggesting that we should expect classification 

accuracy to decrease with it. This once again raises the question of why we did not see a clear trend 

in the results for classification accuracy over consecutive QID counts. 

If we note that the results in Figure 28 are an average over all QID counts, and algorithm and 

generalisation mapping types, then we take a closer look at one anonymisation in particular: Figure 

29 shows the correlation between ILoss and classification accuracy for the anonymisation created 

using the Relaxed algorithm, with statistical generalisation mapping and 11 QIDs used in the 

Anonymised Only scenario (29a). It also shows again the measured classification results for the 

Relaxed algorithm with statistical mapping of generalisation in the Anonymised Only scenario (29b). 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

We can see here that the correlation, in this case, is much weaker. All other correlations from the 

same scenario, algorithm, and generalisation mapping type had R2 ǀalues ш 0.9. LookiŶg at the 
respective classification accuracy in 29b (11 QIDs), it would appear that this is an anomaly, almost all 
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Figure 29 

29a. – Correlation between ILoss and Classification Accuracy for Anon. Only Scenario with Relaxed 

Algorithm, Statistical Generalisation Mapping and 11 QIDs 

29b. – Classification Accuracy for Relaxed Algorithm with Statistical Generalisation Mapping in Anon. Only 

Figure 29 – Correlation between ILoss and Classification Accuracy Highlighting Anomalous Result 
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other consecutive QID counts show a general decline in classification accuracy for all k-values. This 

further supports the idea proposed in the previous section [5.1] that the variability shown in 

classification accuracy for consecutive QID counts is likely primarily due to random elements. As 

suggested, these could be eliminated with sufficient repetitions, whereby, based on these ILoss 

measurements and the literature [Shao & Beckford, pp.6], we would expect then to see a decline in 

classification accuracy with an increase in QID count, at least in this scenario. 

Classification Metric 

This part of the section examines measurements of the Classification Metric (CM) on 

anonymisations. Once again, Figure 30 shows the measurements with 30a showing the average over 

all QID counts, and 30b and 30c showing measurements from the Relaxed and Strict algorithms, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Similar to ILoss, this metric considers individual records, however in this case the class attribute is 

considered rather than generalisation size and count. This would seem to be the most specialised 

metric of the three tested, specifically focusing on classification with anonymisations. We can see 

there are generally similar results between the two algorithms, although there is a very slight 

increase in the Relaxed algorithm for most cases. This slight increase is likely simply because the two 

Anonymisation Avg. CM 

Relaxed k=2 0.138733 

Relaxed k=5 0.175242 

Relaxed k=10 0.19529 

Relaxed k=25 0.217456 

Relaxed k=50 0.222662 

Relaxed k=100 0.225355 

Strict k=2 0.146415 

Strict k=5 0.162585 

Strict k=10 0.173884 

Strict k=25 0.185994 

Strict k=50 0.196957 

Strict k=100 0.20804 

Figure 30 

Figure 30a – Average CM over all 

QID counts for each 

anonymisation 

Figure 30b – Relaxed CM Figure 30c – Strict CM 
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Figure 30 - Classification Metric Results 
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algorithms result in different equivalence classes in their anonymisations, this metric compares 

individual records to their equivalence classes, assigning a penalty if the individual record is the 

minority in its equivalence class. Hence, you would expect different equivalence classes to result in 

changes to penalties for individual records. 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 31 

31a. – Correlation between CM and Classification Accuracy for Anon. Only Scenario 

31b. – Correlation between CM and Classification Accuracy for Non-Anon/Anon Scenario 

31c. – Correlation between CM and Classification Accuracy for Anon/Non-Anon Scenario 
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Figure 31 - Classification Metric / Classification Accuracy Correlation 
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Finally, Figure 31 shows the correlations between CM and classification accuracy in each of the three 

scenarios previously mentioned. As with ILoss, we can again see a strong correlation between this 

metric and the measured classification accuracy. Due to the nature of this metric and its original 

purpose of being a metric to better estimate the utility of anonymisations regarding classification, 

these results are to be expected. 

It is interesting to note that for each of the three metrics tested, the scenario where Anonymised 

records were classified using a decision tree trained on Non-Anonymised data shows the weakest 

correlation of all scenarios [Figs. 26b, 28b & 31b]. The reason for this is likely one that has been 

previously stated: the final classification accuracy using the ID3 algorithm is affected more by 

anonymisation during the training of the decision tree than during the classification of records. In 

the Non-Anonymised / Anonymised case, anonymisation in the training part of the algorithm is 

eliminated, and the classification results became more stable whilst the metric measures showed a 

disproportionate change. Therefore, these results would appear to support this statement. 

The benefit of evaluating these metrics regarding the main aim of this report is now hopefully clear 

to the reader. If a particular metric can be proven to be reliable in estimating the utility of 

anonymisations for specific tasks, then this metric could be used by data publishers to quickly 

evaluate their anonymisations regarding the said task. With enough of these, the publisher would be 

able to select the best anonymisation for all potential uses. They would not need to perform 

arduous experiments similar to those found in this report. It is clear that naturally, the latter two 

metrics tested are more suitable for estimating the utility of anonymised data regarding 

classification of the ID3 algorithm specifically – further tests would be required to confirm how 

useful these metrics are for other classification tasks. It should be said that the Discernability Metric 

still has its uses and should not be disregarded. I believe that these results show that it is important 

when performing tasks such as evaluating anonymisation algorithms or deciding on parameters used 

to anonymise data for publishing, a range of metrics should be used to create a clearer overall 

picture. 

5.3 - Conclusions 

Overall, what we can see from these results is that you can expect the anonymisation of data to 

harm the utility regarding decision tree classification. Obviously, these results only relate to the ID3 

decision tree algorithm specifically – more research is necessary to draw general conclusions. That 

said, it would not be unreasonable to suggest that anonymisation would have a negative effect on 

ML classification in general. Logically, you would expect this to be the case. 

Clearly, there are factors that affect the loss of utility from anonymisation. Primarily, the scenario in 

which the data is used. We saw from the results in this report that generally the scenario whereby 

anonymised data was classified using a decision tree trained on non-anonymised data obtained the 

most accurate classification. In addition, for the lower values of k – more commonly used in practice, 

the Anonymised / Non-Anonymised scenario performed just as well, if not better. Both scenarios 

resulted in more accurate classification than the Anonymised Only scenario. The seemingly obvious 

recommendation to data publishers would be to try to find ways of utilising their data such that the 

need for anonymisation is minimised. Of course, this is not always possible, and due to legal 

regulations, it is harder than ever.  

That said, from these results, in the commonly used range of k-values, classification resulting from 

anonymised data alone still had relatively good measurements for classification accuracy. Clearly 

then, the parameters used in anonymisation are also important. For k-Anonymisation with the 

Mondrian algorithm, lower values of k are certainly recommended; they will generally provide plenty 
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of privacy whilst maintaining maximal utility. There is no conclusive evidence to support either of the 

two types of Mondrian algorithm: with both the Strict and Relaxed versions generally performing 

similarly. Finally, from the results, it would appear that integrating statistical information does not 

induce noticeably better decision tree classification results. Certainly not enough to merit the extra 

effort required to release such statistics. It is also inconclusive as to whether these statistics could 

result in compromised privacy, something that must be avoided at all costs. 

Unfortunately, perhaps due to limited repetition of the experiments, the original plan of making 

observations about the classification accuracy regarding the number of QIDs used in anonymisation 

could not be performed. The results showed too much variability in this regard to draw any real 

conclusions. 

Considering the metrics also evaluated, we saw that some metrics performed better than others 

when the estimation of classification accuracy was considered. As mentioned, it is my 

recommendation that when evaluating anonymisation utility, where experiments such as those in 

this report are not performed, it is important to use a range of metrics to get a good overview of 

utility in different situations. Doing so will enable maximisation of utility and privacy when 

anonymising the data. For classification using decision trees, the ILoss and CM measures would be 

the recommendations of this report. 

In conclusion, whilst it would seem that loss of utility in decision tree classification appears to be 

inevitable in almost all situations where anonymisation is involved, the amount of lost utility is key. 

For all commonly used k-values in all situations, the loss of classification accuracy was relatively 

small. Data publishers often do not have a choice in whether or not to anonymise their data, but 

based on the results from this report, they should not be concerned about rendering their data 

useless by performing such anonymisation. For researchers using the data, some results in this 

report have proven that we should not place our complete trust in mathematical models. Some 

nuance is necessary when deriving conclusions purely based on any model. 
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6 - Future Work 
Essentially, the main aim of this report was to provide insight into the utility of anonymised data 

regarding classification. There is great scope for expanding this. One of the motivations for this 

report was due to there being relatively few examinations of the utility of anonymised data, which 

seems like an oversight on the side of research because the entire justification for collecting 

personal data is to use it for research purposes, commercial or otherwise. Therefore, future work 

could include a more comprehensive evaluation of anonymisation utility for other classification 

methods such as SVM or Naïve Bayes, or other statistical models such as linear regression. 

Further to this, it would make sense to more closely examine other PPDP methods or algorithms in 

the above regard. This report only examined one method (Mondrian k-Anonymity), while it is a 

popular method, there are many others that have uses in different situations. It is important that an 

array of methods are tested in order to provide proper insight. 

In addition, as shown, metrics can be a reliable method of estimating the utility of anonymised data. 

It would not be inconceivable to create a tool that could be used by data publishers to quickly 

evaluate their anonymised data. Perhaps the tool could aggregate measurements of an array of 

metrics and provide a score to the data publisher that would allow them to quickly determine the 

utility of their data for a range of tasks. Further, taking k-Anonymity as an example, this tool could 

even be configured to automatically find the best parameters for a k-Anonymisation based on the 

aggregate scoring from the metrics. If the purpose of the anonymised data is known, metrics could 

be selected manually by the user to get a quick, specialised evaluation. Such a tool would be 

relatively simple to implement, however, further research may be required to find the optimal 

specialised metrics for specific tasks. 

7 - Self-Reflection 
My initial reasoning for expressing interest in this project was due to my personal interest in the 

iŶdiǀidual͛s ƌight to pƌiǀaĐy, soŵethiŶg ǁhiĐh I see ďeiŶg iŶǀaded to a gƌeateƌ degƌee ŵoƌe ofteŶ 
than ever before. I had initially intended to take on a project that would be primarily practical, 

simply because this is something that I felt I would be more comfortable with. However, having 

spoken with Dr Shao about the project, the research aspect of it appealed to me and I decided that it 

would be a good idea to step out of my usual boundaries. 

I believe that I have learned a great deal from this project overall. Primarily in regard to the 

knowledge gained in the field of data management, an area that was very unfamiliar to me before 

the beginning of this project. I had to essentially start from the ground up on this project, with no 

notions on the concept of PPDP and k-Anonymity, and only a very limited knowledge of machine 

learning and decision tree classification. Furthermore, I do not come from a statistics background, 

having only basic knowledge and no formal education in it specifically. This aspect was particularly 

challenging for me, especially when collating and representing the data in such a way as to infer 

information and meaning, whilst also making that clear to the reader. I believe the work done in this 

regard should stand me in good stead for any similar future projects. 

Along with the improved knowledge on the subject matter, I believe I have certainly improved in the 

soft skills associated with project management. Having to attend regular weekly meetings made it 

imperative for me to have new content to discuss every week, to ensure this I would make a to-do 

list and schedule of work for the week leading up to the next meeting. I also think that the project 

has allowed me to think more critically about any given subject when reading the associated 

material. Having to read a great deal of scientific literature, analysing specifics, and trying to find 
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connections is something that I had very little experience with until now. In addition, the writing of 

this report required me to think scientifically, considering every angle, and being comprehensive in 

my processes. All of these things are non-specific skills that have been practised by undertaking this 

project and will be useful in many other situations. 

For the practical side of the project, I do not think I gained any new skills in this regard. I already had 

a good amount of experience with Python from previous projects in my undergraduate degree 

course. If I were to be critical of myself, I would say that this was the part of the project that I could 

have done better, purely due to the planning aspect. I believe I am a competent coder, but I tend to 

jump into coding before planning everything down to the minutiae, my experience with Python may 

have added to my hubris in this case. This works for me on most occasions with smaller projects, but 

for larger projects, it is likely to result in errors. As was the case in this project when I had to 

essentially restructure the entire Mondrian k-Anonymity implementation due to its inefficiency and 

lack of clarity in code. In future projects I think I should make more of an effort to plan my code, 

perhaps utilising UML, or a more comprehensive design document such that a structure is settled 

before coding begins. 

Overall, I believe I have done a good job on this project. I have been thorough in my investigation of 

the subject material, ensuring I had a good understanding of all concepts when necessary. Despite 

the lack of proper planning in the early stages, I think that the finished k-Anonymity tool and ID3 

implementation are of good quality. I also think that I have done a good job in establishing a detailed 

methodology and providing clear results. Finally, I think that I have been somewhat successful in 

providing an aspect of originality in my project. 
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