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Abstract The online simulation of fluid bodies is commonly used
within games to create visual effects and puzzle mechanics. In this
paper, we discuss and implement a method for achieving this system
within the context of the popular Unity3D game engine, with a focus
on creating a reliable and performative system capable of running
alongside a typical game environment with an acceptable impact on
frame times on consumer hardware.

1 Introduction
1.1 Motivation

Both the realistic and the stylized animation of fluids are oft sought-after components
of such artistic media as animated films and video games. A plethora of approaches
including those targeted at offline rendering and realtime simulation exist, and here we
are attacking the latter with the common particle-based method for its less
space-constricted nature and capacity for a high resolution result without unrealistic
memory requirements. We stipulate in this paper that the result be of an acceptable
performance on consumer hardware, as well as appearing believably realistic.

We also introduce a novel alternative approach to the neighbourhood generation that
underpins the simulation, one that uses bitonic sorting to achieve memory contiguity of
neighbourhoods rather than sorting algorithms in previous literature.



1.2 Background

One such method of simulating individual fluid particles is the highly cited Smoothed
Particle Hydrodynamics (SPH), originally described by Monaghan [1992] '. It offers
several advantages in its solution of conservation of energy, momentum, and mass
while using a Lagrangian representation to allow for a dynamic domain of simulation.
Such particle-based methods have numerous advantages over Eulerian approaches:

e Since each particle represents a fixed quantity of mass, conservation of mass is
simplified.

e Properties are only stored at the positions of particles, rather than at every point
on the grid.

e No computation is wasted on empty space

SPH does however leave some issues unresolved, particularly fluid surfaces exhibiting
unrealistic behaviour due to neighbour deficiencies and fluctuations in pressure in part
due to how the pressure is determined in terms of density from the stiff equation of
state. Solutions to these include enforcing incompressibility via the solution of Poisson
pressure equations and the weakly-compressible SPH (WCSPH) method wherein
pressure is calculated directly from a stiff equation of state.

The dependency of WCSPH on stiff equations of state unfortunately results in forces
of a size that limit the size of the time-step [Macklin & Miiller 2013] %, due to the
Courant—Friedrichs—Lewy condition that limits the speed of the propagation of
information through a body to the distance between the body’s elements [Courant et al.
1967] > — information in a given spatial cell must propagate only to its immediate
neighbours. This time-step limit thus increases the computational cost with decreasing
compressibility, to the point that stiff, high-resolution fluids become impractically slow
to simulate, especially for realtime applications.

A more recent approach, Predictive-corrective incompressible SPH (PCISPH),
proposed by Solenthaler & Pajarola [2009] *, propagates density estimations through
the fluid body and updates then updates the pressure values such that the
incompressibility constraint is satisfied. Notable advantages of the PCSIPH method
include computation times that are orders of magnitude smaller than WCSPH, as well
as the decoupling of the velocity and pressure field computations, all while avoiding
compression-related artefacting.

In the PCISPH algorithm, positions and velocities of particles are projected forward in
time and the future densities estimated. The deviation of this density estimate from the
reference density is then calculated and used to update the pressure values of the
particles and in turn the pressure forces. This process is applied iteratively until the
density fluctuations are below a given threshold. The new velocity and position of each
particle is then calculated for the following loop.
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Another well researched and more cross-discipline problem is the determination of
neighbourhoods within the particle simulation; to brute-force the interactions between
particles has a time complexity of O(N?), and as particle counts increase the need
quickly arises to find a means of limiting attempted interactions to only those
neighbours within the smoothing radius of each particle.

Franklin [2005] ° introduced the NEARPT3 algorithm, which utilises a uniform grid to
organise points and then performs a fast query into any cells within a rough
neighbourhood based on the total distance along each axis, then sorts those results by
Euclidean distance. This sorted list is then iterated over and stop cells are determined
by finding the last cell s, whose closest point to the origin is at least as close as the
farthest point of the current cell c. This requires only one pass and provides
information as to where any points closer than ¢ might be by stopping at s, in the
search.

Simon Green [2010] ¢ targeted particle simulation specifically with his paper on using
a parallel radix sort, implemented in CUDA. Again using a uniform grid to subdivide
the simulation space into a grid of uniform cells, explicitly setting the size of each cell
to be the same size as a particle - double the size of its radius. This “loose” grid allows
for several assumptions to be made: Firstly, a single particle will only cover 8 cells
(2x2x2 in three dimensions), and secondly that if overlap between particles is
prevented via repulsion then it can be assumed that there will be a fixed number of
particles per cell. These properties are useful in that they allow the use of relatively
small fixed-size data structures to represent the grid, a feature desired when working
with hardware acceleration. Additionally, we can devise that to search for
neighbouring particles, we will have to search only the neighbouring 27 cells (3x3x3 in
three dimensions). Using the grid indices of the particles, we can bin them into grid
cells and easily determine the neighbours of a particle by checking the surrounding 27
cells. Green also refers to an alternative method of binning whereby particles are
stored in every cell they occupy which reduces the computational cost of colliding the
particles but increases the cost of building the grid, and estimates that this result is
explicitly poorer when considering a GPU implementation. It is also stated that the
grid itself can be incrementally updated rather than built from scratch at each update,
which presents an opportunity for a performance increase, though rebuilding the grid
ensures that performance is decoupled from the movement of the particles.

Building the grid in the first place is an additional hurdle, with strategies divided into
two chief categories: with atomic operations, and via sorting. Using atomic operations,
multiple compute shader threads build up two data structures: one that tracks the
number of particles in each cell so far, and another that stores the particle indices at
each cell, the latter of which takes advantage of the assertion that there can only be so
many particles per cell and thus may use a fixed-size data structure. Particle indices are
stored using scattered global writes, and the cells’ particle counts are clamped to the
imposed maximum. This approach has some performance implications, particularly in
that the global memory writes are more or less random, and thus will not be
memory-coalescent due to the probable spread of the data across memory and the



4

increased memory block requests that this brings. Green also notes that if multiple
particles write to the same cell simultaneously, the writes will be serialized and bring
about further performance issues. It is also proposed that a variable number of particles
per cell could be supported by separating this process into two parts, using the atomic
counting stage to inform a parallel prefix sum operation to ascertain the destination
addresses for each particle, finally examining the particles and writing them to
contiguous locations in the grid data structure using the previous step’s results. While
atomic operations are possible in Unity3D with compute shaders, this is platform
dependent as Apple’s Metal API does not presently support them in this context.

Alternatively, the grid can be built without any atomic operations by employing
sorting; a solution with several passes, it begins by calculating a hash value from each
particle’s cell ID, or from the ID of the cell in a Z-order curve for more contiguous
memory access. These hashes are then stored in global memory as a pair of unsigned
integers consisting of the hash and the particle index. The particles are then sorted on
their hashes, using a fast radix sort to create a list of particle indices in order. This list
can be used to generate metadata regarding the start and end indices of individual cells,
by dividing the processing into a thread per particle and compares the cell index of
each particle with the previous particle in the list, determining if a boundary between
cells lies there in memory simply by observing a difference between the cell indices
and, if different, writing that cell index to another array in a scattered write operation.
In a similar manner, the ends of each block can be found or alternatively computed by
pairing the already-known starts of each block.

To improve memory efficiency in the rest of the interaction processing, the properties
of the particles can also be sorted in the same order. This sorted list is then used when
each particle checks the surrounding 27 cells for other particles to interact with. This
method is noted for its high performance due to improving memory access coherence
and reducing warp divergence as particles within the same warp have a tendency to be
close together, spatially, and thus have a similar number of neighbours. Conversely,
there are performance concerns regarding the stage where positions and velocities are
looked up, due to the randomness of the accesses; Green proposes a fix to this wherein
the arrays are bound to textures and retrieved using the tex/Dfetch function which
improves performance hugely due to the caching of texture reads.

Hoetzlein [2014] "proposes replacing the radix sort with a counting sort; each particle
is inserted into a cell and then the cell indices are counted to determine the number of
particles in each cell. A prefix sum is then performed on these counts and a typical
counting sort performed afterwards. The counting sort is of time complexity O(n+k)
where k is the maximum key value, meaning that the size of the grid cells must be
chosen with care, potentially determined by testing on the frame times when
implemented — Hoetzlein presents a graphic of the relationship between cell sizes and
particle counts, showing the balance between particles per cell and grid cell checks per
particle. In comparison to the parallel radix sort method’s 15 kernel calls each frame,
the counting sort method combined with atomic add operations for bin counts and
indices performs only four kernel calls per frame. According to Hoetzlein’s



5

benchmark, the counting sort method is 5-10 times faster than the radix sort method,
able to process 400 million points per second.

To visualise the simulated fluid, a number of existing strategies exist that can be placed
in one of two categories: those that generate traditional geometry, and those that use
screen-space image effects; both such types have their applications and produce their
own set of artefacts.

The marching cubes method, introduced by Lorensen and Cline [1987] ¥, involves
creating a polygonal mesh of an isosurface, which can be generated from a 3D scalar
field of intensities. This can be used to visualise a fluid, but lends itself to Eulerian
simulations due to its dependence on an explicitly discrete field, which is not
inherently present in position-based particle simulation. Even if an infinitely granular
Lagrangian particle system were to be discretised so as to map to the marching cubes
method, the result would still be visibly coarse as the geometry will be of a resolution
determined by the grid used to generate it.

A method that hybridises the screen-space and geometric methods is the screen space
mesh technique by Miiller [et al., 2007] °, which intends to create a 2D triangle mesh
using a technique derived from the marching cubes method, and then transform that
mesh into world-space to apply shading and lighting effects. This approach was
created for applications in games and other online-rendered media, and so has the
merit of a view-dependent level-of-detail — an attractive feature to us, as our target
application is the same and performance is a focus.



Figure 1: Triangulation of cubes in the ~ Figure 2: A screen-space mesh. Taken from [Miiller et al., 2007] °
marching cubes algorithm. Taken from
[Lorensen & Cline, 1987] ®

Other screen-space approaches include the sphere-imposter method used by Green
[2010] °, in which particle points are drawn to a buffer as sphere-imposters — a
method of drawing spheres without geometry, such that the sphere is exactly as
resolute as the buffer or texture it is being drawn to, and as such has an inherent
distance-based level of detail. This method also only considers the surface closest to
the camera, ensuring all processing is spent on visible, relevant results. Once the
sphere imposters have been determined at each particle, their depths are then written to
a buffer and, in a subsequent pass, smoothed to create a flatter, more convincing depth
map. This depth map is then used to reconstruct the surface normals and positions,
which allow for the standard Lambertian and Phong shading models, or a more modern
physically-based rendering and image-based lighting approach, to be applied.

Much literature exists on such methods, and the primary part of their solutions that
distinguishes them is their approach to smoothing the depth data. Van der Laan [et al.,
2009] " propose an alternative to the common basis of weighting a Gaussian blur:
curvature flow. This approach involves solving derivatives of depth across the map and
gradually adjusting the depth so as to evolve along its curvature toward a flatter, more
parallel surface. Other authors [Truong & Yuksel, 2018] ! suggest pursuing the
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Gaussian blur-based approach, using a narrow-depth-range filter to weight the depth
samples used in the blur to retain the edges and discontinuities in the depth map while
smoothing the lesser changes.

2 Approach
2.1 Eulerian and Lagrangian Fluids

The fluid behaviour we concern ourselves here is governed by the Navier-Stokes
equations for incompressible fluids, which describe how the properties of the fluid’s
particles or quanta must change to match the materials constraints, such as resting
density. To discretise these behaviours into something computable, we are presented
with two established approaches: the grid-based Eulerian, and the particle-based
Lagrangian. The former divides the simulation space into a grid, typically with
fixed-sized cells, and iteratively solves each cell’s state to enforce the various
conditions. Conversely, particle-based solutions represent individual fluid particles, or
more accurately clusters of molecules, each having a state that is solved in relation to
its neighbours.

Both approaches have their merits and within the context of game development, but we
will use a particle-based method here for several reasons: firstly, we are less interested
in the mechanics and details of the volume of the fluid and more concerned with the
surface and its asthetics — we need the spatial granularity and resolution that a
freeform particle approach provides, which a grid-based system would struggle with
given its fixed cell positions. To achieve a similarly resolute result with a grid fluid
would require extremely dense cells, perhaps exceeding the memory limits of the
consumer GPU.

Additionally, the visualisation of the simulated fluid varies between the two
approaches, as one offers discrete positions while the other simply describes the
properties at each cell. Grid-based solutions can also easily map to a visualisation
using marching cubes, since both are describing properties at fixed-space intervals,
whereas particles lend themselves to less rigid methods such as screen-space effects,
which we will use here for their ability to transform the output of the simulation into
something @sthetically independent with a configurable and granular amount of
smoothing, meaning the apparent quality of the surface is not reduced with a closer
point of observation as a mesh-based approach would.

2.2 Particle Property Constraints

To begin the discretisation of the continuous field that is a fluid, we represent each
particle as a collection of properties: a position 7, velocity v, pressure p, and density p.
For a fluid with a homogenous temperature, we can model the conservation of mass
using the following identity:
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Since we are representing the fluid as a finite number of particles rather than a grid,
however, this conservation is guaranteed and need not be actively enforced.

We also model the conservation of momentum, this time using a form of the
Navier-Stokes equation simplified for weakly compressible fluids:

v
p(E—HwAv) = —Vp+pf +puVi
Where f'is external forces (e.g. gravity) and u a constant representing the viscosity of
the fluid. This can be simplified, again due to the use of particles as representation of
the fluid; we may omit the convective term v - Vv and replace the partial derivative
with the Lagrangian derivative of the velocity with respect to time:

Do 9
p(ﬁ) =—=Vp+pf+pV

The right-hand side of this equation models the sum of the force density fields,

consisting of —VP the pressure, external forces P/, and the viscosity pV3, By
applying Newton’s second law, the acceleration of a particle & is therefore modelled as:

_du, [
ap = — = =

dt  px

Here we assume some fixed properties for the particles, including a uniform size,
smoothing radius, and resting density. For considering multiple phases or materials of
fluid, this would have to be per-particle. These properties are operated on by
performing a weighted sum of influences from all particles; the weighting we use is
determined by inputting the distance between any two particles into a smoothing
kernel. The properties at each position in space are determined thus;

S(r) = Zm%W(r —r;, H)

Where r is the position of the subject, j covers the range of indices of all other
particles, p; the density and r; the position of the other particle and S, represents a
property at j’s position. The mass, m; is constant throughout all particles in the
simulation in our case.

As the density will vary with each simulation step, we enforce incompressibility by
substituting density in as the quantity S;


https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B%5Cpartial%20%5Crho%7D%7B%5Cpartial%20t%7D%20%2B%20%5CDelta%20%5Ccdot%20(%5Crho%20v)%20%3D%200#0
https://www.codecogs.com/eqnedit.php?latex=%5Crho%20%5Cleft%20(%20%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20t%7D%20%2B%20v%20%5Ccdot%20%5CDelta%20v%20%5Cright%20)%20%3D%20-%5Cnabla%20p%20%2B%20%5Crho%20f%20%2B%20%5Cmu%20%5Cnabla%20%5E2v#0
https://www.codecogs.com/eqnedit.php?latex=v%5Ccdot%20%5Cnabla%20v#0
https://www.codecogs.com/eqnedit.php?latex=%5Crho%20%5Cleft%20(%20%5Cfrac%7BDv%7D%7BD%20t%7D%20%5Cright%20)%20%3D%20-%5Cnabla%20p%20%2B%20%5Crho%20f%20%2B%20%5Cmu%20%5Cnabla%20%5E2v#0
https://www.codecogs.com/eqnedit.php?latex=-%5Cnabla%20p#0
https://www.codecogs.com/eqnedit.php?latex=%5Crho%20f#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu%20%5Cnabla%20%5E2%20v#0
https://www.codecogs.com/eqnedit.php?latex=a_k%20%3D%20%5Cfrac%7Bdv_k%7D%7Bdt%7D%20%3D%20%5Cfrac%7Bf_k%7D%7B%5Crho_k%7D#0
https://www.codecogs.com/eqnedit.php?latex=S(r)%20%3D%20%5Csum_%7Bj%7D%5E%7B%7D%20m%20%5Cfrac%7BS_j%7D%7B%5Crho_j%7DW(r-r_j%2CH)#0

Sy(r) = Z m%W(r —r;, H)
j J

S,(r) = ZmW(r —r;, H)

2.3 Interpolation

A smoothing kernel is used to attenuate the interaction between particles, which can be
defined on a per-particle basis or as a uniform property of the system, depending on
the implementation. We represent this smoothing radius as h and the weighting
function for the kernel as W, and thus determine the quantity of a particle by summing
their neighbours properties.

We will use the Poly6 and Spiky kernels [Matthias Miiller et al., 2003] '* for density
estimation and gradient calculation respectively, which are defined as follows:

Where r is the covector ZTP; , and H is the smoothing length.

315
PolyS(r H) = g e

Poly6Kernel(r, H) = Poly6(r, H) x (H* — ||r||)? for 0 < ||r|| < H, 0 otherwise.

—45
T« HS

SpikyGradient(r, H) = r % (H — ||r||)* *


https://www.codecogs.com/eqnedit.php?latex=S_%5Crho(r)%20%3D%20%5Csum_%7Bj%7D%5E%7B%7D%20m%20%5Cfrac%7B%5Crho_j%7D%7B%5Crho_j%7DW(r-r_j%2CH)#0
https://www.codecogs.com/eqnedit.php?latex=S_%5Crho(r)%20%3D%20%5Csum_%7Bj%7D%5E%7B%7D%20mW(r-r_j%2CH)#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctextup%7BWhere%20%5Ctextit%7Br%7D%20is%20the%20covector%20%7D%20%5Coverrightarrow%7Bp_i%20p_j%7D%5Ctextup%7B%2C%20and%20%5Ctextit%7BH%7D%20is%20the%20smoothing%20length.%7D%20%5Cnewline%20Poly6(r%20%2C%20H)%20%3D%20%5Cfrac%7B315%7D%7B64%20*%20%5Cpi%20*%20H%5E9%7D%20%5Cnewline%5Cnewline%5Cmathit%7BPoly6Kernel(r%2C%20H)%20%3D%20Poly6(r%2C%20H)%20*%20(H%5E2%20-%20%5Cleft%20%5C%7C%20r%20%5Cright%20%5C%7C)%5E3%7D%20%5Ctextup%7B%20for%20%7D%200%20%3C%20%20%5Cleft%20%5C%7C%20r%20%5Cright%20%5C%7C%20%5Cleq%20H%5Ctextup%7B%2C%20%7D%200%20%5Ctextup%7B%20otherwise.%7D#0
https://www.codecogs.com/eqnedit.php?latex=SpikyGradient(r%2C%20H)%20%3D%20r*(H-%5Cleft%20%5C%7C%20r%20%5Cright%20%5C%7C)%5E2%20*%20%5Cfrac%7B-45%7D%7B%5Cpi*H%5E6%7D#0
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Figure 3: 4 graph of the Poly6 kernel,where  Figure 4: A graph of the Spiky kernel, where the horizontal axis is
the horizontal axis is r on a given axis and r on a given axis and the vertical axis is the scalar value that
the vertical axis is the output of the function.  would be applied to the vector r

2.4 Resolving Pressure

Substituting the pressure term into the SPH equation gives the following equation, that
describes the quantity of the term —VP, here as fr

fr==> " mEW(r, —r;, H)

P Pj

As noted in most literature, there is an inherent issue with the symmetry of this
pressure calculation, as the smoothing function W yields zero when provided a
distance of zero, meaning that a particle will only use the pressures of other particles
when determining this term. If any two adjacent particles have a different pressure,
then the forces applied to either particle will also be different.

Miiller [et al. 2003] '* proposes a simple solution that retains speed while ensuring
stability in the simulation, the arithmetic mean of the two particles’ pressures:

p_ . Dit+ D o
7= Zym—Q*pj VW (r; —ry, H)


https://www.codecogs.com/eqnedit.php?latex=-%5Cnabla%20p#0
https://www.codecogs.com/eqnedit.php?latex=f%5Ep_i#0
https://www.codecogs.com/eqnedit.php?latex=f%5Ep_i%20%3D%20-%5Csum_%7Bj%7D%5E%7B%7Dm%5Cfrac%7Bp_j%7D%7B%5Crho_j%7D%5Cnabla%20W(r_i%20-%20r_j%2C%20H)%20#0
https://www.codecogs.com/eqnedit.php?latex=f%5Ep_i%20%3D%20-%5Csum%7Bj%7D%5E%7B%7Dm%5Cfrac%7Bp_i%20%2B%20p_j%7D%7B2*%5Crho_j%7D%5Cnabla%20W(r_i-r_j%2C%20H)#0
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When this pressure calculation is applied directly to a simulation, however, an
undesirable expansion of the fluid is created. This has been previously solved in
astrophysical applications with the application of a gravity force, maintaining
something of an equilibrium within the fluid. As noted by Desbrun and Gascuel
[1996]", a material with a constant resting density would exhibit properties of the
Lennard-Jones substance, i.e. a cohesive force, and thus they suggest substituting the

usual P = kp ideal gas state equation with P = k(p — PO), where 0 refers to the
resting density, which serves to not only naturally evenly distribute the particles within
a body, but attempt to maintain the volume of the system after deforming forces are
applied.

2.5 Viscosity

To ensure coherent motion and somewhat alleviate nonphysical oscillations in the
simulation, we apply XSPH viscosity as defined by Schechter and Bridson [2012] '*:

vinew = v + CZ(UZ» — Uj) . W(pz _pij)

J

Where ¢ 1s some small value — 0.01 in our case. This simply modifies the velocity
before the next step by adding an aggregate of all surrounding particles’ velocities.
This new velocity must be treated as a separate variable until this step has completed
for all particles, to ensure all velocities sampled are from the same time slice.

2.6 Visualisation

To visualise our position-based fluid, we use an extension of the screen-space method
proposed by NVidia’s Simon Green in his Game Developer Conference Talk [2010] ¢,
due to how it lends itself to parallelisation and the application of video games.

We begin by using geometry shaders to create billboarded (camera-facing) quads at the
positions of the particles, on which we impose sphere impostors that are output to the
game engine’s depth buffer for sorting and to a separate depth map that we manually
maintain. To this same buffer on a separate channel, we draw the sphere impostors
again using additive transparency to accumulate a screen-space thickness of the fluid,
for use later in shading. The depth map is then iteratively smoothed using the curvature
flow method and the world-space normals at each pixel in the map computed; with this
smoothed normal data, we translate the current scene’s lighting and shadows into the
same space as the map and shade the surface using Lambertian diffuse and phong
shading in a full-screen image effect shader, and combine this result with
thickness-based scattering and colour extinction to achieve the appearance of non-clear
water or other coloured fluids.


https://www.codecogs.com/eqnedit.php?latex=p%20%3D%20k%5Crho#0
https://www.codecogs.com/eqnedit.php?latex=p%20%3D%20k(%5Crho%20-%20%5Crho_0)#0
https://www.codecogs.com/eqnedit.php?latex=%5Crho_0#0
https://www.codecogs.com/eqnedit.php?latex=v%5E%7Bnew%7D_i%20%3D%20v_i%20%2B%20c%20%5Csum_%7Bj%7D%5E%7B%7D(v_i%20-%20v_j)%5Ccdot%20W(p_i%20-%20p_j%2C%20H)#0
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3 Implementation
3.1 Initial Prototyping

We begin with a simplified simulation, in two dimensions and on the CPU, allowing us
to prove the concepts of SPH while keeping the output relatively easy to debug and
analyse. The first of the behaviours to implement is the neighbourhood generation and
grid building, which we will achieve in the simplified model using the previously
described counting sort method.

class Particle {
public Vector2 position, newPosition, velocity, deltaPos, forces;

public float lambda;

public Particle(Vector2 position) {

this.position = position;

newPosition = new Vector2(position.x, position.y);
velocity = Vector2.zero;

lambda = 0;

deltaPos = Vector2.zero;

forces = Vector2.zero;

Our particles are represented as a Particle object, with members representing the field
quantities of the simulation. Once we’ve created the particles and given them initial
positions at offsets from one another as well as defined the constants that govern the
simulation, we can begin to use Unity’s FixedUpdate function to step the simulation at
a fixed interval. To step the simulation, we first need to construct the neighbourhoods
of the particles, which we will do by a much simpler and less efficient method than the
counting or radix sort methods that simply involves checking neighbouring grid cells
manually rather than relying on sorting.

We take several parameters that allow for the changing of the dimensions as well as the
sizes of the cells, and we store the indices of the particles in lists representing each cell
which in turn are held in another list representing the grid itself. This nested list
approach is neither performant nor translatable to compute shaders, and will be
replaced with a fixed data structure.

The function GerCell will allow us to query the 1-dimensional list of cells with two
parameters describing the x and y indices of the cell we wish to retrieve. This
technique of flattening a 2D data structure into 1D is applicable to our compute shader
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solution later that will allow us to take full advantage of the performance of a simpler
data structure. The GetNeighbours function serves to retrieve the particle IDs for a
given position, by rounding said position to the nearest cell and calling GetCell to
query the surrounding eight cells for their contents, which are appended to a list and
then returned from the function.

After each step, we clear the grid and reinsert the particles with their new positions.

The other essential component before the actual simulation is the smoothing kernel
logic, which we wrap in a class for ease of use; we define two values based on the
particle smoothing radius, POLY6 and SPIKY, which represent the constant values
needed for applying the Poly6 kernel and the Spiky Gradient kernel, calculated as
previously described:

(315.0f / (64.0f * Mathf.PI * Mathf.Pow(H, 9)));

(-45.0f / (Mathf.PI * Mathf.Pow(H, 6)));

The Poly6Kernel function applies the kernel based on two input vectors representing
the positions of the two particles that are interacting, and returns a weight as a floating
point:

public float Poly6Kernel(Vector2 pi, Vector2 pj) {
Vector2 r = pi - pj;
float len2 = r.sqrMagnitude;
if (len2 > Hsgr || len2 <= @) {
return of;
} else {
return (POLY6 * Mathf.Pow(Hsqr - r.magnitude, 3f));

The SpikyGradient function similarly applies the spiky kernel:

public Vector2 SpikyGradient(Vector2 pi, Vector2 pj) {
Vector2 r = pi - pj;
float len2 = r.sqrMagnitude;

if (len2 > Hsgr || len2 <= @) {

return Vector2.zero;
} else {




float len = r.magnitude;

r.Normalize();
float term = (H - len) * (H - len) * SPIKY;

return r * term;

We then define the function that acts as our simulation step, performing the logic
described here:
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For each particle p:
p = gravity
v, = Vv, + F, ¥ At
rp=r, + v, ¥ At
Enforce boundary condition

-
1]

Generate neighbourhoods

For n solver iterations:
For each particle p:
pp=9
For each neighbour n:
pp = p, + mass * Poly6kernel(r,, r,)
equationOfState = (p, / restingDensity) - 1
vectorSum = @, magnitudeSum = ©
For each neighbour n:
gradient = spikyGradient(r,, r,)
vectorSum = vectorSum + gradient
magnitudeSum = magnitudeSum + ||gradient||?
magnitudeSum = magnitudeSum + ||vectorSum||?
A, = equationOfState / (magnitudeSum + g) * -1
For each particle p:
Ap = 0
For each neighbour n:
Scorrection = K * Poly6Kernel(r,, r,)"
Ap = Ap + SpikyGradient(r,, r,) * (A, + A, + Scorrection)
Ar, = Ap / restingDensity
For each particle p:
rp = r, + Ar,
Enforce boundary condition
For each particle p:
v, = (r, - x,) / At
Apply XSPH Viscosity & Vorticity Confinement
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The positions x can then be translated to world-space coordinates and used to relocate
the ghost objects that are then rendered as circular sprites.

Figure 5: The prototype 2D simulation, with white dots representing each
particle and the red line showing the direction of gravity.

With 256 particles and a gravity force that slowly rotates over time to create waves, the
simulation operates at an average of around 11 FPS (~90 ms/frame). The result is a
coherent body of fluid that exhibits surface tension, convection, and an even
distribution of particles, except for near the borders where particles seem to form
clusters possibly due to neighbourhood deficiencies when attempting to retain density.

3.2 Final 3D Implementation

With the concepts and governing formulae now proven in two dimensions, we moved
to 3D and to a much more sophisticated form of neighbourhood generation. Before
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generating the neighbourhoods, we optimise the neighbourhood grid for faster memory
access by binning particles into cells and sorting the particles by their cell, and their
position within each cell. This ensures that when neighbours are looked up from the
particle properties array during the simulation logic, the memory accesses are
contiguous rather than scattered. To do this on the GPU, we use compute shaders,
which interface with C# Unity scripts to manage the execution of kernels in parallel.
Each time a kernel is executed in parallel, it is given an ID that serves to identify the
thread and, in our case, the particle on which we are operating. The kernels that
optimise the grid are called in this order each update:

BuildGridCS Reads the particle position from ParticlesBufferRead and
calculates the 3D grid cell coordinate that this
particle occupies and writes the coordinate-ID pair to
GridBufferWrite.

<Bitonic Sort> In a separate compute shader and script, the particles
and their grid coordinates are sorted by grid cell, and
written back into the buffer for the next kernel in the
grid-optimiser compute shader.

ClearGridIndicesCS Clears the elements of the GridIndicesBufferiWrite buffer.

BuildGridIndicesCS Establishes a range of particle IDs for each cell,
encoding their start and end indices in
GridIndicesBufferWrite

RearrangeParticlesCS Sorts the particle array’s IDs by copying the previous
sort.
CopyBuffer Applies the previous sort to the rest of the particle

properties using the newly updated particle IDs.

With the particles allocated to cells and sorted, the main simulation shader’s
GenerateNeighbours function is called, which builds the neighbourhoods themselves
into an array that allows subsequent steps to quickly get neighbouring particles’ IDs to
query their properties:
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For a given particle p:
neighbourCount, = 0
Determine the cell this particle occupies: gridXYZ = GridCalculateCell(r,)
For each axis A of XYZ:
Determine the Lower and upper bounds
For Z = lower Z bound to upper
For Y = lower Y bound to upper
For X = lower X bound to upper
Calculate the cell ID at X Y Z -> G,
Get start & end IDs for the cell: G...teng =
GridIndicesBufferRead[G..;]
For other = G.re tO Geng
covector = rp, - Pogper
if (||covector||? < Radius?)
neighbours[neighbourCount,++] = other

Where previous literature has explored the use of such sorts as the parallel radix sort
and the counting sort, we introduce the bitonic sort [Batcher 68] '°. The bitonic sorting
algorithm is appealing to us in this instance because we wish to take full advantage of
the GPU’s parallel processing and this particular sort’s sequence of comparisons is

fixed and independent of the input data. The bitonic sort is of O (log*(n)) parallel time
complexity (best-case, worst-case, and average), and thus scales well for tens of
thousands of particles in a heavily parallelised sort.



https://www.codecogs.com/eqnedit.php?latex=%5Cmathit%7BO(%7D%5Cmathrm%7Blog%5E2(%5Cmathit%7Bn%7D))%7D#0

Figure 6: A 2D demonstration of the neighbourhood generation,
showing coloured cells, the particles they contain, and the relationship
lines between particles determined to be within the same 3x3
neighbourhood.

To prevent overflow, neighbourCount, contains the actual number of neighbours that a
particle has, which allows us to use a fixed-size 2D array to store the neighbourhood
information, leaving the unused elements in any neighbourhood as they were
previously and simply stopping any loop over neighbours before reaching them, much
like how if a particle ID is greater than the particle count it is ignored.

With the neighbourhoods constructed, the kernels that constitute our simulation can be
called; essentially, each for-loop in the prototype’s pseudo code is replaced with a
kernel call to the main compute shader, before which we bind the relevant data. This
binding of particle and neighbourhood data only involves a CPU-to-GPU transfer
initially, as the full particle data is then kept on the GPU for the remainder of the
simulation, including at the rendering stage where particle positions are passed to the
shaders that draw them. Replacing the serial for-loop with parallel kernel calls offers
one of the two largest performance boosts overall, the other being the absence of any
data transfer between processors beyond the initialising frame.

We also take advantage of D3D11’s constant buffer feature, which allows the definition
of semi-constant values to be done efficiently: uniform parameters for the simulation
such as particle mass or gravity are passed using these CBUFFERs, which are
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optimised for the occasional transfer of mostly-unchanging data, should we need to
update any parameters, but not for the repeated sending of data to the GPU every
frame.

3.3 Visualisation

To keep all relevant data on the GPU, we must be able to access the simulation data
from the shaders and programs that govern the rendering of the fluid. Luckily, Unity
provides us with a structured way to do this using the Scriptable Render Pipeline
(SRP); it allows for structured use of explicit rendering commands, beyond what
would be possible with a more traditional render pipeline, and allows us to implement
our visualisation as a render feature, decentralised from any scene object and
configurable on a global scale. The pipeline importantly lets us inject the drawing of
the fluid at the correct stage during rendering, ensuring features like post processing
and transparent objects interact with our fluid correctly.

To draw anything with multiple passes often requires the use of multiple render targets,
which can be thought of as temporary textures or images that allow for the rendering
of image data to buffers rather than directly to the screen. We take advantage of this to
apply multiple stages of effects to the particle data to achieve a smoother, more
realistic appearance. In the interest of performance, we use an RGBA render target
with 8-bits per channel for all our colour render targets in this process, and use a
packing technique to make use of three channels to encode depth in order to achieve
higher precision.
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Figure 7: 4 flow diagram of the rendering process, showing the
shaders used and the data provided to them.

We begin by taking the particle positions calculated by the simulation and passing
them from a short vertex shader to a geometry shader, in which we construct simple
quads pointed toward the camera. UV coordinates for the vertices are also generated,
to enable us to generate the illusion of complex geometry in the next step.

In the fragment shader, we employ spherical impostors by constructing the image of a
sphere using the UV coordinates generated previously to discard the pixel if it lies
outside the radius of our circle, centred in the quad. Using the distance from the centre
of the circle, we can generate the depth at each pixel as if it were the surface of a
sphere, which is then added to the depth of the vertices. Two depths are required, one
for the sorting of the particle quads and the other for the computation of normals later
in the rendering process; these two depths are of different scales and are represented
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with different encoding (logarithmic vs. linear), and while the former is output as a
parameter from the fragment shader and managed by Unity automatically, we use the
latter in the coming shaders to determine the normal direction at each point on each
particle.

In order to achieve a high precision depth encoding, we devised a method of encoding
a 24-bit depth value across three colour channels, achieved by simply splitting the
less-significant 24-bit portion of a 32-bit floating point depth value into three 8-bit
values of increasing significance and storing each in the R, G, and B channels of the
render target. The result can later be decoded into a floating point value by using
bit-level shifting.

We also construct the particle quads again in another, similar shader in order to
estimate the “thickness” at each point — essentially, the amount of fluid between a
pixel on the screen and the background. We store this in the alpha channel of the same
buffer that the depth is written to, to save on the number of render targets we use
overall. This later allows us to refract with variable strength (refractive index), as well
as perform colour extinction accurately.

In an iterative process we then smooth the depth, generated prior, along a derivative of
the change in depth across pixels according to curvature flow. This curvature flow
process is parameterised and can be done in a variable number of iterations, depending
on the balance between smoothness and performance desired. From this
now-smoothed depth, we generate view-space surface normals from a weighted sum of
the surrounding depth values at a given pixel, which we then use in conjunction with
the existing camera framebuffer to layer the fluid on top of the scene, drawing the final
surface lit using the lighting present in the scene. The fluid itself is parameterised such
that the colour, refractive index, opacity, colour extinction, scatter colour, and
scattering factor are able to be tuned to achieve the appearance desired.
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Figure 8: From lefi-to-right, top-to-bottom: Fluid depth encoded into the
RGB channels, thickness encoded into the alpha channel, surface normals
estimated from smoothed depth, the framebuffer, and the final composite.

The quality of the fluid surface depends on several factors independent of the
resolution of the simulation, the chief ingredient being the smoothness and contiguity
of the surfaces that should be created between particles or in other words the flatness
of a fluid body at rest. To achieve this smoothness and create the illusion of a realistic
fluid volume, most methods attempt to smooth the depth written to the framebuffer in
some way or another. The original method we tried involved a naive Gaussian blur of
the depth data which, while fast, resulted in the blending of foreground and
background objects, which looked completely unrealistic. The next attempt involved
weighting the Gaussian blur’s samples based on the difference in depth, so as to
weaken blurring across borders. This also produced artefacts, as pixels toward the
edges of particles would reject depth samples from outside the particle’s silhouette
while always accepting samples belonging to the same particle, meaning these
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edgemost pixels would have a tendency to become unusually white in the smoothed
depth, resulting in inverted puck shapes with a bevelling effect.

Figure 9: Bevel artefacting on the edges of particle silhouettes caused

by sample weights biased toward pixels closer to the centre of the
particle.

Additionally, even if this weighting issue were to be solved, the Gaussian blur
technique would still result in the bubbly, gelatinous appearance seen in figure 7. An
alternative would be to use a bilateral Gaussian blur, which preserves edges while

blending low-frequency details; such filters are, however, inseparable, leading to
poorer performance:

Image (M x N), filter kernel (k X k):
Unseparated convolution: O(MNKkk)
Separated convolution: O(2 x MNKk)


https://www.codecogs.com/eqnedit.php?latex=%5Ctextup%7BImage%20(%7D%20%5Cmathit%7BM%20%5Ctimes%20N%7D%20%5Ctextup%7B)%2C%20filter%20kernel%20(%7D%5Cmathit%7Bk%20%5Ctimes%20k%7D%20%5Ctextup%7B)%3A%7D%5Cnewline%5Ctextup%7BUnseparated%20convolution%3A%20%7D%20%5Cmathbf%7BO(MNkk)%7D%5Cnewline%5Ctextup%7BSeparated%20convolution%3A%20%7D%20%5Cmathbf%7BO(2*MNk)%7D%5Cnewline#0

Figure 10: Left: Lena, Right: Lena with an example bilateral filter
applied, showing reduced high frequency detail but retention of edges.

We could also employ a narrow-range filter as described by Truong and Yuksel
[2018]" which samples only those values within a given depth range, while treating
depth values outside the range in a different manner to achieve the ideal flattening
effect on colinear groups of particles while also avoiding the artefacts that surround
discontinuities in depth. Whilst their solution corrects the issues found with naive
blurring methods, it introduces unwanted smoothness in the topographically more
complex areas of the fluid body such as near splashes and fine mists of small clumps
of particles, wherein particles that should appear unchanged by the blurring, as
spheres, instead become flattened into circular discs facing the viewer.

An arguably more sophisticated method proposed by van der Laan [et al. 2009] '°,
curvature flow, involves iterative correction of derivatives of differences in depth to
minimise curvature across the depth map.While this method is notably more complex
and computationally intensive, it produces results that are not only smooth and without
the artefacting present in the alternative methods, but that are configurable to achieve a
specific level of smoothness and performance. In this instance, we use a combination
of this curvature flow method for depth smoothing with a separate weighted-sum
method for constructing the normal vectors; we employ a method similar to the first
steps of the narrow-range filter to discriminate depth samples when reconstructing
normals from derivatives across the depth map, which helps to effect a gentle blurring
on the normals to prevent avoid edges and high frequency details from causing jarring
flickers in the end result.

4 Results & Evaluation
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Figure 11: Clockwise: The first few frames into a dam break scenario; small waves propagating through the
now at-rest pool of water; another view of the pool, with even less motion than previously showing the
smoothness of the fluid surface.

Our method produces a smooth and visually stable end result, with a visibly smooth
fluid surface that exhibits no flickering or obvious artefacting. The individual particles
and their distribution is somewhat visible in the appearance of the fluid, although this
looks relatively natural and believable compared to the raw, unsmoothed appearance.
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Figure 12: The unsmoothed version of the pool scenario. Note the obvious silhouettes of
each particle in the highlights on the surface.

The fluid colour can be chosen as well as the opacity, which in turn affects the
refractive index of the fluid, resulting in more distorted appearances of objects behind
the fluid volume.

Figure 13: From left to right, 0% fluid opacity to 100%, showing the effect on refraction
and transparency.

Additionally, both colour extinction levels and the scattering coefticient can be
adjusted to achieve the desired colouration throughout the fluid, with the former
controlling the rate at which certain wavelengths of colour are dissipated by increasing
depth - a phenomenon commonly noted for giving oceans their blue-green appearance.
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The latter coefficient controls the degree of scattering per unit of depth, shown in
figure 11, that serves to mimic the absorption and scattering of incoming light.

Figure 14: From left to right, the effects of scattering coefficients: 0.0, 1.0, 2.0, and 3.0

The parameters of the simulation itself can also be configured to achieve a variety of
results; viscosity can be tuned to give greater or lesser cohesion between particles, the
relaxation parameters can be set to achieve the desired balance of stability and
realisticity, and naturally particle counts, radii, and mass are all completely
parameterised. Particles can be created and destroyed or, more efficiently, pooled to
create the illusion of creation and destruction; for example, a scene with a drain and a
particle-emitting pipe could be created such that particles seem to constantly enter and
leave the system.

Figure 15: A graph of the frame times in milliseconds

Performance-wise, a fluid consisting of 32,768 particles in a lightly decorated scene
with high quality shadows, the demo scenario runs at a consistent average of 150 FPS
or a 7.5 millisecond frame time, on an NVIDIA GeForce RTX 2080 GPU and an AMD
Ryzen 5 1600 six-core CPU, with 16GB of RAM. This performance is steady across
time and experiences no dips or spikes at any particular point in the simulation or
camera angle.
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Figure 16: The fluid body demonstrating cohesion and viscosity as it impacts the side of
the pool.
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Figure 17: Ditto.

5 Future work

While a smooth appearance to the fluid-air boundary is desirable, many instances of
real world fluids that may be replicated using fluid simulation have minute details that
are not present in our method; this could be resolved by increasing the particle count
and reducing the radius for a more resolute simulation, but this is impractically
expensive. Instead, one could add a projected repeating noise texture, or even 3D
Perlin noise-based textures as an additive normal map, to add faux detail to the surface
of the fluid at minimal cost. Small clusters of particles could also be rendered as spray,
perhaps by changing their geometry to be more elongated, and even substituting
high-velocity particles’ sphere impostors for animated splash sprites.
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Our method does not support the addition of arbitrary colliding objects, nor the
buoyancy involved in such an interaction. A number of ways exist to implement this,
ranging from treating objects as fixed collections of less-dense particles and using the
simulation results to inform the objects transform, to computing intersections between
particles and a collision hull to generate buoyancy and other interactive forces on the
objects and the fluid.

Given the implementation’s reliance on a uniform grid for neighbourhood generation,
increasing the bounds of a simulation hugely relative to the particle radius would be
unreasonably expensive; instead, a smart system of divided bodies of fluid that use
separate grids for representing collections of particles that are distant from one another
could optimise the expansion of the simulation bounds by dividing up the total
bounding area of the simulation into sub-grids that are independently simulated,
dividing and unifying these sub-grids as necessary to maintain the impression of a
single fluid.

While our simulation treats the entire fluid as a single material, the introduction of
material properties on a per-particle level would allow for multiple phases of fluids,
including the simulation of bodies of air that would surround a liquid, applying
drag-related motion and convection of the fluid to add additional degrees of realism to
the result. Such mixed-media fluid simulation is a field on the cutting edge of
computer graphics research, including those simulation methods that aim to simulate
solid debris and sediment with correct two-way coupling [Gao et al. 2018] ', as well
as integration of coarse, soluble material and soft-body objects [Yan et al. 2016] 7.
These recent advancements have been made mostly in offline simulation and
rendering, however, and thus are probably some time away from being developed for
interactive applications.

5 Conclusions

We prescribed previously that the result of our method be fast enough for interactive
media and realistic in appearance, and to that end we have succeeded by devising a
solution for the Unity3D engine that is capable of running tens of thousands of
particles at a more than acceptable frame rate that has an appearance not too far from
the @sthetics of published games with realistic art styles of the past decade or so,
complete with image-based lighting and industry-standard shading techniques. There
is, however, a great deal of room for immediate improvement, both in terms of
performance and rendering; established techniques exist for optimising SPH through
the use of such methods as adaptable particle radii that increase or decrease resolution
depending on vorticity and velocity, as well as recent hybrid-grid-particle techniques
able to simulate ten times the number of particles shown in this paper at similar frame
times. A great deal of performance could also be saved by switching from the
expensive curvature flow method to the less convoluted narrow-range filter Gaussian
based techniques in conjunction with additional faux surface detail via Perlin noise and
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the addition of cheap splash effect sprites to cover the spherical nature of particles
involved in spray. To implement a means of mixing various fluid materials and phases
in a real-time simulation is realistically beyond the scope of a paper such as this,
however, and we will not consider its absence a failure in this instance, although it
would have been possible to involve solid, buoyant objects using existing, thoroughly
documented knowledge.

We show a reasonable level of artistic control for the final appearance of the fluid,
allowing for it to be applied successfully to the typical needs of end-user projects, such
as vast, oceanic bodies of aquamarine saltwater, foliage-dense brown silt-laden rivers,
crystal-clear shallows, and even unusually large pools of blood, should the need arise.

6 Project Reflections

In my initial plan I had set a scope certainly too wide for both the time frame and my
ability; I set out to create something lightweight with little impact on performance,
such that it could be dropped into virtually any game or interactive project with little
impact on the frame-time budget - a goal that failed to consider the resolution
necessary to produce @sthetically pleasing, high quality results. While the end result
does look as I had hoped and expected, the performance is still far from what I had
envisioned; a standalone demo running at only 150 frames per second on a high-end
GPU is not indicative of a solution that can be universally applied to any project.

As per Hofstadter’s law, achieving a convincing and efficient fluid simulation alone
took much longer than I had planned, even taking into account Hofstadter’s law; this
meant that [ was unable to allocate time for the features I thought basic, such as
interaction with arbitrary rigidbodies or a dynamically bounded simulation.

Despite not achieving all the results I had hoped, I am still cautiously impressed with
this project at its climax; while it lacks a lot of planned features, those that I did
implement were surprisingly complex and thus I find myself fulfilled with the
unexpected challenges I did face. Though I have previously read scientific papers on
computer graphics research, I have never before implemented anything from them, let
alone an aggregate of multiple papers covering multiple approaches to the same
problem, so it is safe to say that my ability to visualise such daunting mathematics and
pseudocode and build a mental map of their operation has been fortified. In addition to
now being confident in the construction and application of compute shaders, I feel
much more equipped to tackle problems concerning parallel computation that I had
previously had the opportunity to solve.

The experience of this project has certainly been of great value, and has provided me
the opportunity to push myself in ways I hitherto knew not how.
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