
Cardiff University School of Computer Science & Informatics

CM3203 - One Semester Individual Project

Final Project

“2D Racing Simulator with a focus on oversteer physics”

By: Bartlomiej Krol

Supervisor: Dr. Bailin Deng

Moderator: Natasha Edwards

Abstract
This paper showcases a process of developing a car simulator in the form of a simple game.
The aim of the simulation is to provide an immersive experience with physics based on real
physics. The driving simulation focuses on aspects important to drifting, or controlled
oversteer, of a car. There are some gameplay elements to enrich the game also based on real
racing systems. Along with the game, a basic game engine has been developed and the
author talks about the upsides and downsides of creating an engine from scratch.

1

Table of contents
● Introduction 3
● Background 4

○ Drifting 4
○ Similar Games 4
○ Technology used 4

● Design and Specification 6
○ Entity Component System 6
○ Architecture and importance of clean code 7
○ UI Design 9
○ Identifying the features 11
○ Controls 13
○ Assets 14
○ Testing 15

● Implementation 16
○ Points system and drifting 16
○ Particles 17
○ Tuning 21
○ Engine and architecture 23
○ Physics 25

● Results and evaluation 34
○ Tests 34
○ Physics 39
○ Engine 40
○ Other aspects 41
○ Looking back at the timeline 42

● Reflection 43
● Conclusion 44
● Future work 45
● Appendix A 46
● Appendix B 51
● Appendix C 53
● References and Biblography 54

2

Introduction
The aim of this project is to create a game that uses real car physics to program an immersive
driving simulator with a focus on drifting. It will include simple gameplay mechanics to
enhance the experience and make it a proper game instead of just a simulator. The car
should have realistic behaviour which I will verify by modelling it and then comparing it after a
real car.

The game will be made from ground up using a barebones game development library
meaning that I will also have to create the game engine. This is done more as a learning
experience as well as to allow for more freedom in implementation. The game engine should
be modular to allow for easier implementation of features however the actual functionality of
the game takes priority.

The initial scope of the game was to implement realistic driving physics, with regards to
drifting, and ability for the player to tune their car and adjust it to their driving style as well as
showcase the physics implementation. There are also some gameplay elements taken from
more arcade games to keep the player engaged as the game only has a single player mode
available. The graphical are just placeholders if I were to release the game because that is
not the focus of this project. In conclusion, it is not the point to create a fully featured project
but an enjoyable prototype due to the time constraints and the use of technology.

This project would interest anyone in the area of motion physics, game development or car
physics. The audience for the game itself is for people who already enjoy racing games due
to real physics and the high entry skill level. Prior experience with driving and/or simulator
racing would be beneficial to understand driving mechanics.

3

Background
Drifting
Drifting is a motorsport where drivers are scored on how they control oversteer over a race
course as opposed to a more traditional way of racing against a time clock or other drivers.
(Dennis Jarvis, 1995) More intricate details will be mentioned in a further discussion when I
will be analyzing the details to find features to implement.

Drifting originated in Japan and has been steadily growing since its inception in 70s and 80s
(Lear, 2021). Since then there have been multiple racing games focused on one specific
motorsport such as rallying, NASCAR or Formula 1. However up until very recently there
have been no games focused specifically on drifting. Meanwhile many racing games included
drifting as one of the race modes, they usually have arcadey driving physics.

Similar games
Simulation racing games go way back to the arcade machines. Although at that time the
physics were revolutionary and very immersive, there are casual racing games with physics
more realistic than those games. There is a good selection of simulator racing games on the
market like iRacing, Asseto Corsa or more specialized ones like F1 series or Dirt Rally series.
However with the recent surge in popularity of drifting, there has been only one game
released with drifting in focus called CarX. There is also DRIFT21 in development, it is
available in early access however the release date has been moved a few times so far.

Although drifting can work really well in general simulator games, games with focus on drifting
usually allow for deeper modification of cars in relation to drifting, this often includes
mechanical and cosmetic modifications, as well as user interface suited towards that
gameplay. I will be talking about UI later in the report.

Technology used
I wanted to use a simple game framework instead of a fully fledged game engine such as
Unity or Godot. The reason for that is that it allows for more freedom, the learning curve for
small projects is much easier and it is a better learning experience as less stuff is hidden
behind the scenes. Initially I wanted to create a 3D game as it would allow me for better
representation of the car and the physics. This would probably be possible in Unity or such
however due to my decision to go with a framework, it was way out of scope as I would have
to use Direct wrapper of some sort.

Albeit simpler to program and create/implement assets and animations, this poses problems
of indicating car's behaviour as well as translating 3D physics onto a 2D plane. That means I
will have to make sure that I convey information about cars behaviour to the player
appropriately.

There are plenty of options for simple 2D game frameworks for almost every language out
there. I have prior experience with Java, Python and C++. Personally, I do not like Java so
that leaves me with a choice of Python or C++. I worked with SDL2 in C++ and there are
similar frameworks for C++ like SFML or GLFW. However, personally, coding in C++ is quite

4

slow compared to Python, most likely due to the lack of experience and it being lower level
than Python. The huge advantage of C++ is performance however I do not think I need a lot
of performance for such a small game therefore I decided to go with Python.

There are few options in Python as well. I went with PyGame 2 as it is based on SDL2 and I
know the basics of SDL2 already. There is Pyglet and its advantage over PyGame was
performance however it is not the case anymore due to introduction of PyGame 2. There is
also Python Arcade Library which is an extension of Pyglet and has some differences
however it is closer to an engine and therefore more constrained.

PyGame 2 is a SDL2 wrapper and SDL2 is a development library. It manages graphics,
audio, inputs and all other basic necessities. It can handle 3D graphics however that requires
programming Direct3D or OpenGL APIs. It is also multi platform which is advantageous as I
will be writing the game on a Linux laptop.

On top of that I used some libraries and programs for processes that are not the focus on the
project

● NumPy and SciPy - a very common Python maths and science libraries that extends
and speeds up functionally over the built-in Python maths library

● Esper - is a Entity Component System (ECS) library. I also found Snecs which claims
to be faster but went with Esper because it is more popular and therefore has more
resources online. I will talk more about ECS further down in the report.

● Tiled - a GUI program for drawing tilemaps out of tilesets. It makes creating complex
tilemaps much quicker compared to a simple method of writing them out in a text file
and displaying each tile corresponding to a certain character in the text file.

● PyTMX - library for loading .tmx format tilemaps created in Tiled

On top of that due to the nature of the game I wanted to use a gamepad for the controls as it
allows for analogue inputs for steering, throttle and brake, just like a real car. Fortunately
PyGame includes gamepad support. If I owned a steering wheel I could try to use that as a
target input for my game. Additionally keyboard controls will be available so that everyone can
play it.

For tracking progress I used Kanban board called Trello. It allows me to move tasks between
categories such as “To do”, “In progress”, “Testing” and “Blocked”. Trello allows to break down
big tasks as a list which is helpful for big modules such as the ones responsible for physics. I
updated the progress once a week and added any new tasks I thought of instantly so I do not
forget.

I will also be using GitHub for version control in case I need to revert my project to an older
state or branch out. It will also give an opportunity for others to look up my project.

5

Design and Specification

Entity component system (ECS)
Entity Component System is a common pattern for game architecture. I used it once before
and I really enjoyed using it because of the modularity and ease of maintainability. I wanted to
write my own ECS library but considering I have never done it before it would probably take
me a few days that I would rather focus on actual game functionality.

Entity Component System can be broken down into its basics components. Entities are just
IDs assigned to each object. Each entity has components which contains no methods, just
pure data. Any entity can have any component. Then all operations on the data within
components are processed within systems. Systems usually iterate over each entity that
contains specific components and does operation on the data within it. (Adam, 2007)

It favors composition over inheritance. Any entity can have any component assigned to it.
When it comes to systems we can have one render system and iterate over each entity that
has a sprite and render it. (Adam, 2007)

ECS is also part of data-oriented programming as opposed to a popular object oriented
programming. One of the advantages of data-oriented programming is smart use of CPU
cache. If we look at it through the lens of ECS, ECS runs a system for each entity that
contains a specific component. When we load a component, we load the whole array of
components into cache therefore when system runs over few entities using the same
component it does not need to read the data from memory again. This is used to overcome
bottleneck that memory bandwidth is and to combat cache misses. Another advantage is
shying away from abstraction which can overcomplicate the code and therefore improve
maintainability. Abstraction is not inherently bad but it can become too complex in large
projects. (Adam, 2007)

6

Architecture and importance of clean code
ECS is quite flexible in a lot of areas as it does not force the overall structure all that much. It
can be intertwined with OOP or functional programming. It also means there are many ways
to do a specific thing and I will have to find architectural solutions appropriate for the scope of
this project.

I will aim to make classes and functions modular however that takes extra time and I will
probably have some dependencies and hardcoded variables. Good example of this is the link
between the user interface and the car. In my game there will only be one car and therefore I
can directly link it to display appropriate values on screen, this however would not be possible
with multiple cars all at once.

Figure 1

This is only a conceptual UML class diagram so it outlines just the general idea and structure
of my code. The final implementation might be different depending on what obstacles I might
encounter.

Engine is initialized and run in Main. The engine then initializes PyGame and ECS world as
well as runs the game loop. When initializing the world, all of the entities are created as well

7

as state entity and a state processor. State entity holds the state variable that is evaluated in
state processor that loads appropriate state and unloads unused states. These functions
either add or remove processors appropriate for the current state.

I will be following PEP 8 style guide for Python. I chose PEP 8 as it is very popular, possibly
the most commonly used style guide for Python. Main advantage of using a style guide is
making sure that my code is easier to read and therefore easier to understand. This is
especially important as my code will be looked at by a supervisor and moderator. I also
upload my project to GitHub and there might people interested in looking up my code for their
own games and such and I would want them to be able to comprehend it. On top of that, it
benefits me as going back to a project after a short break makes you lose the “flow” and I
expect to take a 2 week break over Easter so that will make it easier for me to get back into
work.

8

UI Design

Figure 2

If we look at CarX (CarX Technologies, LLC, 2017), we can see (Figure 2) that next to the
speedo there are bars. The vertical bars represent: clutch, break, throttle and. The horizontal
bar represent steering input and there is also has an angle indicator at the bottom. On top
there is a point counter that displayed the currently accrued points, a multiplier and a extra
points for objectives.

Figure 3

9

Another example is Absolute Drift (Funselektor Labs Inc., 2015) (Figure 3). This is a 2D game
with an arcade gameplay therefore it skips the speed indicator and such. However I really like
the layout for the points as it is in the corner so it does not obstruct the immediate view. I also
like the idea of the extra points of the objectives to pop up near the car or the objective itself.

Since we are going for simulation game, I will be be trying to achieve minimalistic UI during
gameplay to increase immersion (Figure 4). Most importantly the car’s essential information
such as RPM, speed and current gear is show in bottom left corner. I modeled the dash after
Honda S2000. Other than that there is only point counter in top left corner. It shows the total
points, bonus points for a current extra such as perfect line or collecting a token and a combo
multiplier. It needs to be there so that the player knows what he is rewarded for.

Figure 4

There is also going to be a main menu and tuning menu with some sliders but I do not think
that they need an explanation due to how generic they are going to be.

10

Identifying the features
Car physics

I do not plan to recreate a perfectly realistic simulator as that is too big of a task for a one
person on such timescale. Therefore I have to pick out the necessary components that would
add value to my game. I will provide a brief explanation now, with a more in depth one in the
implementation part of the report.

Let’s start with the ways to initiate a drift. (GTChannel et al., 2010) (Tsuchiya, n.d.) Breaking
traction with power by opening the throttle on a high powered car (requires high power),
clutch kicking which is depressing the clutch while on throttle and then releasing the clutch to
upset the rear wheels (manual gearbox with a clutch), changing gears without rev matching,
similar to clutch kick, upsets the drivetrain causing loss of traction (manual gearbox again), lift
off or breaking which causes weight transfer to the front and therefore loss of traction in the
rear (medial weight transfer), handbrake to break traction of rear wheels is common for high
power cars (handbrake) and scandinavian flick or feint where a car turns opposing direction to
the turn and quickly snaps back to initiate oversteer (lateral weight transfer).

Then we can break down car into groups of components. One way of doing it would be:
engine, drivetrain, aerodynamics and suspension.

Engine, or rather the power, changes the way a person drifts. (Tsuchiya, n.d.) (GTChannel et
al., 2010) Low horsepower cars have to use more clutch kicks to initiate or even stay in a drift
as it does not slow the car down as opposed to bigger focus on a handbrake for high
horsepower cars. However it does not affect the ability to drift in general so much. It would
however be a priority for a drag racing game. Programming an engine simulation with all its
ancillaries such as however could be a whole another project.

Then we have a drivetrain, which is everything between the engine and the wheels. There are
not many components, mainly gearbox and differential. For drifting manual gearbox is
basically essential. There is a tiny minority of people who drift cars with automatic gearbox,
however it limits the control over the car as well as takes away the ability to use the clutch
which is important for cars with low power. Different gearboxs have different gear ratios and
although not a very common modification, it should be easy to program. The cars in drifting
are all rear wheel drive therefore they will all have just one rear differential. Differential will be
just a simple torque multiplier and we will be using a welded/fully locked differential by default.
This means that both wheels spin at the same rate. Limited slip differentials have their place
in drifting although they are uncommon and open differentials are not used in motorsports at
all.

Drifting is not a high speed motorsport and aerodynamics do not play a huge role therefore I
will be skipping simulating advanced aerodynamics. Only the simple stuff to limit a car's top
speed. Aerodynamics would be important for endurance racing, time attack or F1 as cars in
these types of races achieve high speeds and, in case of endurance racing, fuel consumption
also matters.

Finally we have suspension which plays a big role in a car's handling and therefore drifting.
(Dennis Jarvis, 1995) There are multitude of modifications that can be done to a car and I will
plan on identifying the most important ones. Shocks and spring rates are probably the most
common modification. They obviously alter spring rate and damping rate as well as ride

11

height which alters the centre of gravity. Sway bars alter lateral weight transfer by increasing
the total spring rate to the outer wheel. Extended knuckles/suspension arms which increase
the steering angle. Alignment which allows for altering of the wheels camber, caster and toe.
Tyres and wheels sizes and tyre pressures which alter the contact patch. These are all
advanced features and I plan on implementing these only if I have time.

In summary I will need to implement:

● At least two different torque/power curves
● Manual car gearbox with clutch
● Simple locked differential
● Simple aerodynamics, mainly limitation of top speed by drag.
● Variable steering angle
● Tyre pressure and size
● Variable brake force
● Wheel alignment
● Spring rate and damping rate
● Ride height

Gameplay

In real life judges score a drift run based on specific criteria. It is obviously slightly subjective
but I will try my best to translate into a computer game.

Normally each judge scores a run from 0-100 however I feel like that is not the best way to
implement it in game. It would be hard to implement a scoring system that changes up and
down over the course of the run and I want to give the player some immediate feedback. This
means an alternative that most video games use, which is increasing the point counter as you
drift. (The British Drift Championship, n.d.)

Race tracks have a race line that the car is meant to follow. However instead of implementing
the whole race line, it can be summarized into clipping points and clipping zones. Clipping
points are places where either the front or the back of the car has to be at, at a specific point
on track and clipping zones are whole parts of the track where, usually a rear of the car, is
meant to be during a drift. This allows for more freedom between the clipping points/zones.
The clipping points will be represented by little tokens to collect where the clipping point
should be and clipping zones will highlight parts of the race track where a car gets bonus
points. (The British Drift Championship, n.d.)

Another crucial aspects are angle and speed and they are pretty self explanatory. The higher
the speed and the higher the angle, the more points the driver gets. Trap speed is used in
some competitions to objectively measure the speed at one or more points during the run.
However a game allows me to track the speed all throughout the run. I will be multiplying a
specific “drift variable” by speed and angle and their respective constants. (The British Drift
Championship, n.d.)

Style is the hardest part to implement. There are things such as transitions, initiation, steering
input, the flashiness of the run, losing the drift or dropping of the track. This is tricky to
implement and I will see what I can get away with during implementation but right now I have
the idea of multiplying the final score based on the style during the run. (The British Drift
Championship, n.d.)

12

Controls
I designed the game with a controller in mind as it allows for analogous inputs for steering,
throttle and brake just like a real car would. This gives so much more control that is necessary
when drifting.

The controls are as follows:

Diagram numbers Actual name Keyboard Function

3 Left Thumbstick A/D Steering

6 Left Trigger S Brake

9 Right Trigger W Throttle

5 Left Bumper M Gear down

10 Right Bumper K Gear up

A A P Clutch

B B Space Handbrake

8 Start Esc Back to menu

Figure 5

13

Assets

I have used Racing Pack by Kenney (Kenney, 2019) for my graphical assets as it was the
most complete graphical asset pack I could find. They have a variety of different road angles
and turns. They also have car sprites. On top of that they provide additional decorations I
could use to either decorate the track or use as markers etc. I wanted to use one pack as it
creates a cohesive experience. It comes under CC0 1.0 Universal license meaning that it can
be used for any purpose without limitations. Due to the complexity I had to use Tiled to put the
track together as it would take way too long otherwise.

The particle system does not use any assets but just draws rectangles from built-in PyGame
function.

14

Testing
I will be relying mostly on play testing, where I will be manually playing the game and testing
for expected behaviour. The advantage over all other types of testing is that this allows to get
a feel of the game and analyze the fun factor as well as test for bugs.

Due to the scope of the game I will not be using unit or automated testing. There are not that
many systems that I can unit test. On the other hand there is car tuning which would change
lots of variables and unit testing would be beneficial to cut down on manually testing all of
these configurations. This would be certainly beneficial if the development time of the game
was longer than 12 weeks however right now I feel like the time put into developing the tests
would take longer than it is worth. By automated testing I mean setting up input macros to
carry out the same inputs each time and either comparing some variables such as position
and points with expected values or comparing screenshots of the test and expected
screenshot. Automated testing is not gonna be useful with how quick I incorporate changes to
the game either. I will be going through many iterations of inputs, variables and outputs that
the automated tests would be very quickly outdated.

Most of the test coverage will aim at the physics as that is the essential part of the program
and there will be some for UI or menus.

The car will be modelled after Toyota GT86/Subaru BRZ. This allows me to check some
aspects of the simulation against the real performance numbers of the car. This will include
things like acceleration times, top speed and g forces.

I will also let the game run for a few hours and check for memory leaks. It is unlikely to
happen with Python due to its garbage collector but still worth a try.

All of the tests can be seen in Appendix A.

15

Implementation
Points system and drifting
I tried to resemble a real scoring system for competitive drifting in my game. (The British Drift
Championship, n.d.) I took speed and car’s angle into consideration for the main calculation.
The drift starts when the slip angle of the rear tires is higher than 0.5. At first I thought of using
side slip angle, and it worked quite well too, however I found slip angle of rear tires to be more
realistic in implementation as it is only the rear tires losing traction that cause oversteer. The
equation is:ഉ ՂՕ�ՙ԰՗ՐՕՎՁՎՊ՛| | − ɗ. ɛഊ · ՅՎՕ՘Ռ�՝բ · ɘɗ
I take away 0.4 from the slip angle of rear tires to create a bigger difference between low
angle and high angle. Then I multiply it by velocity and a constant of 10 so that the player gets
thousands of points instead of hundreds.

Before the points for a single drift are appended to the total drift point counter, they are
multiplied by a multiplier. That multiplier is incremented by 1 for each clipping point (cone),
user has hit during the drift. They multiplier is reset back to 0 after each drift. The code does
not have any other collidable objects therefore there is no check if it is the right type of object.
This could be however quickly fixed by having an if loop that asks ‘if object == “clipping point”’
and each entity could have an object variable with its own type.

Figure 6

Figure 7

16

Particles
The game needed to indicate to the player when drift occurs in a clear manner. I felt that
sound would be not enough, especially considering that sound is optional in a way that it is
not needed to actually play a game. This made me turn to smoke coming from the tires and I
thought that particle system would look more realistic than a prerendered asset.

The implementation of particles is split between two systems. One is responsible for adding
the particles to a list (Figure 9) and the other one for displaying and removing them (Figure
13).

Particles are added to the list only when the slip angle ratio of rear wheels is above 0.5, which
I decided to when the drift starts.

Each particle has 4 variables, position in the form of x and y coordinates, randomly selected
color integer, transparency which is set at 200 and a car’s angle/orientation at the time the
particle is added to the list. There is only one color integer as I use it for each of RGB
channels to create a grey color however I want to a little variation in greyness therefore I
generate it in the range of 110 to 150 with Python’s built-in function.

Starting off with position. sprite.get_rect().center[0 or 1] allows me to get the distance
between the corner of the car sprite and the centre on x and y axis. I use these values to
calculate the distance between the corner and the centre by using the Pythagorean theorem.
However I decrease the radius by 15 pixels because I want the particles to originate roughly
where the wheel is and not on the very corner of the car.

Then I need to calculate cartesian coordinates from polar coordinates (Newton, 1736) which I
get from the radius I just calculated. For the angle I use car’s angle, offset it by π so that it is
in the opposite direction of the where the car is heading and also offset it by another variable,
in my case 0.4 rad or -0.4 rad depending the left or right wheel, so that the particles originate
roughly where the wheels are.

Figure 8

17

These values are just in relation to the car so for them to display correctly I need to offset
them by car’s and camera position so they display in the middle of the screen.

Figure 9

Now I want to move the particle every time I display it so that as the car drifts, a huge cloud of
smoke forms behind the car.

I programmed the particles so that the next position is randomly selected by moving the
particle between 3 and -1 pixels away from the car and 4 and -4 pixels sideways in a relation
to the car based on the car’s angle when the particle was created.

18

Figure 10 Figure 11

When the car is facing down, that means the particle moves between 3 and -1 pixels in y
direction and 4 and -4 in x direction (Figure 10 & 11) but when the car is facing right, the
particle would move between 4 and -4 in y direction and 3 and -1 in y direction. Therefore as
the car spins around, I need to calculate new ranges of values.

Figure 12

avdict holds the angle and a corresponding range in each particular direction based on polar
coordinates for when the car is facing down. Then I run a for loop for each of the values and
keys in the dictionary to find component vectors (Figure 12) of each of the initial vectors and
add all positive/negative x/y values together to create new ranges from which the random
position will be selected. I need to use theory behind quadrants in cartesian geometry to
calculate the appropriate direction vectors. (Descartes, 1637)

19

After that I decrease the transparency of each particle by 2 and delete the particle from the list
of particles if it is transparency is 0. So given 200 initial transparency, it takes 100 frames for a
particle to disappear. Otherwise I create a surface and render it.

Figure 13

20

Tuning

Figure 14

I created my own sliders for car tuning. Now the actual implementation of the slider (Figure
16) is pretty straight forward however it required some clever problem solving to make it work
and look good.

First problem I encountered was that the slider was going beyond the bar’s length by 30
pixels which is the slider’s width. To fix it I had to shorten the bar for calculations by the
slider’s width, but display it normally.

Then I had to work out the correct range and interval so that it would start at a set lower value
instead of 0 and work out the slider position from the variable value or vice versa. I achieved it
by offsetting the pixel position by the point where the bar starts, then I divided the how far
forward in pixels was the slider and divided it by the interval, then added the minimum value
to get the final value corresponding to the sliders position.

Finally, when creating a slider entity I pass the component variable that I want the slider to
modify. Due to the way Python works with passing integer or float variable, I could not make
the function modular. Therefore I had to use a list of 1 length that contains an integer or a
float. This way I would pass the variable reference instead of the variable itself which allowed
me to modify it. This likely slows down the performance and it might not be “the right way” to
do it but it works great.

Figure 15

21

Figure 16

22

Engine and architecture
There are some aspects of the engine and the general architecture I would like to talk about.

The way that the pygame and screen initialization as well as game loop are handled is very
generic. More interesting is managing the states. There is not one way to manage game
loops or states when it comes to game development, even if ECS is used. Only
implementations I could find were either super simplistic nested while loops, they do not allow
for easy movement between two specific scenes. They are also hard to manage and not
modular. I have turned to GitHub for some ideas for game state implementation in ECS
however they turned out to be all too complex for what I was doing.

I decided to dedicate one system, it being the only system loaded on world initialization, to
manage the state of the game (Figure 17). Then I use a separate class to store load and
unload functions for each state as seen in (an example of each of those shown in Figure 18).
They add and remove appropriate processes so that they are not executed anymore which
saves performance.To make it modular I could put each and everyone function in a dictionary
with the state attached to them. If the state is selected then I would go over a dictionary of
unload functions and execute all of them but the one with the selected state. Same goes for
loading state but I would select only the state that is currently selected.

One thing I have not foreseen was the fact that some states share systems. This caused for
example, buttons from the main menu to display in the tuning menu. I managed to quickly fix
it by adding an extra variable to the button entity with a state variable and button system
checks if the button belongs to a certain state. This is not a long term solution but I did not
have time to refactor it further. I would fix it by creating and removing entities however that
would require me to store variables for creation somewhere and on top of that I would have to
find a way to use the functions from within MyWorld class.

Figure 17

23

Figure 18

I managed to achieve the design architecture I have shown in my planning section (Figure 1)
with a few alterations. The biggest difference is that I put code responsible for loading states
in a different class (Figure 19).

Figure 19

Additionally, the file structure can be seen in Appendix C.

24

Physics
Appendix B shows names of all the variables I have used in this passage. All of the
paragraphs are followed by a screenshot of the code which implements them.

I divided the implementation of car physics into smaller, more digestible systems. From what I
noticed when implementing them, the order in which they are run does not matter that much,
however it can technically introduce 1 frame of lag so I will try to avoid it.

All of the calculations are done in SI units. Another important thing is delta time. Delta time is
a time since the last frame and it is needed for some physics calculations in case that the
frames in game are not consistent. It basically serves as time variable in calculations such as՟ՎՕ՘Ռ�՝բ = ՊՌՌՎՕՎ՛Պ՝�՘՗ · ՝�ՖՎ
One very important thing to note before starting is that because the car will have a locked
differential, meaning both tires spin at the same rate, there is no need to split physics
between two tires and we can simulate everything as just a force going forward.

Drivetrain

Firstly, we need to get torque. To get torque at any RPM for our car, we need to calculate the
torque the engine produces. This is something beyond the scope of this project.

I decided to just create a torque curve from actual torque values from dyno sheets of Subaru
BRZ (Kavanagh, 2012), (DD Performance Research LLC., 2013). Using a dyno sheet of
wheel horsepower and torque numbers also saves me from estimating the drivetrain
efficiency that reduces the power to the wheels. I put in torque in values from idle RPM of
700, all the way to 7500 RPM at 500 RPM intervals aside of the first 300 RPM. Then I used
NumPy to interpolate the values in between and returned it as a list to be used for later
calculations.

Figure 20

Although unnecessary in the current state, I decided to leave the code for managing engine
RPM, RPMe, in neutral or when clutch is disengaged.

Before calculating the RPM I perform a check whether it is below idle RPM and if it is, I set it
to idle RPM. This is done to keep the immersion because if RPM falls too low in a real car, the
engine would shut off.

I assume that the only resistance is the friction between the piston and the piston walls and
that it is linear. I calculate a friction τf opposing the engine torque τe that the engine creates so
that RPM falls when not on throttle. The friction force equals to 1/60th of the current engine

25

RPM as I found that to work quite realistic. It does not directly follow physics but it works and
creates better immersion. (eran0004, 2015-2019)τՏ = ഉՁ��Վ − Ձ��� + ɘഊ ÷ ɝɗ
Then I retrieve the torque from the torque curve created earlier and the current RPM. We use
torque at the engine and a throttle position to get the torque that the engine is outputting.
(Monster, 2003)

I also convert from the engine RPM to SI units of Rad/s for ease of calculations.

We also need an inertia of the engine I so that we can follow Newton’s second law for
rotational motion to calculate angular acceleration of the flywheel α. Assuming that the
flywheel is a perfect cylinder and that the mass of every aspect of the rotating assembly is
negligible compared to the flywheel, we can calculate the inertia from flywheels mass m and
its radius r. (eran0004, 2015-2019)Ը = ɗ. ɜ · Ֆ · ՛ə
α = ഉτՎ · ՝ − τՏ ഊ ÷ Ը
This is also the first time where dt comes into use to calculate the angular velocity from
angular acceleration.ω = α · Ս՝
After that it is just a matter of converting the angular velocity back to RPM and then I perform
another check to see if the RPM is within its operating range and limit it if it is not.

Figure 22 shows code of unfinished feature of flywheel and clutch mating. I have not found a
way to send the impulse to the wheels before the deadline.

26

Figure 21

Figure 22

Now having torque values for each specific engine RPM we can calculate actual torque at any
given time. We also need to know combined gear ratios of differential and gearbox. Both of
these values are set for each car, we just need to retrieve them and multiply them to get total
gear ratio GR. Then to get acceleration of the wheel, we divide the car's longitudinal velocity
vcx with the radius of the wheel rw. At the end we need to convert it from SI radians/s to RPM
with a constant of . (Monster, 2003) This gives as an equation:ɝɗ ÷ əƫՁ��Վ = ՟Ռա ÷ ՛ՠ · ԶՁ · ഉՁՊՍ/՜ ՝՘ Ձ��ഊ
I was confused at first as to how I get engine RPM from the velocity of the car if I need the
engine RPM to actually move the car. On top of that I tried implementing a clutch at the same
time which furthered the confusion and I spent a week with no progress.

After calculating the RPM I perform a check whether it is below idle RPM and if it is, I set it to
idle RPM.

Then if the RPM is within the engine's operating range and the handbrake is not applied, a
torque value from the torque curve is assigned to a variable.

Then I perform another check to see if the RPM is within its operating range and limit it if it is
not.

27

Figure 23

The torque at the wheels τw differs from the torque at the engine so we need to account for
that. If clutch is pressed in or neutral is selected, the torque at the wheels is obviously equal
to zero. We use torque at the wheels τe and a throttle position t to get the torque that the
engine is outputting but to get the torque at the wheels, we need to multiply it by total gear
ratio. (Monster, 2003)τՠ = τՎ · ՝ · ԶՁ
In real world throttle position does not linearly affect the torque but the approximation is
intuitive to the user and works quite well to what is experienced in a real car.

It is also important to touch upon gear ratios here. Higher gears in a car have lower gear
ratios. Therefore from this information and the equation, we can infer that as we go up the
gears, we get lower torque at the wheels. This is because for each engine revolution, there
are more revolutions of the wheels but they are weaker as there are less engine revolutions
behind them. This in turn allows for higher top speed as the wheels turn faster. (Monster,
2003)

Before we can calculate the total forward force, we also need to calculate the total brake force
Ftb. I achieve it by applying brake force linearly by just multiplying the input by the maximum
brake force Ffb. However because hand brake, hb, and foot brake, fb, can be applied
simultaneously, I want to limit the brake power so that it does not add up beyond the
maximum brake force that the stronger brake, in this case a foot brake, can exert. This results
in such equation:Ե՝Ջ = Ֆ�՗ഉ ՏՋ · ԵՏՋ + ℎՋ · ԵℎՋ, ԵՏՋഊ
Then I perform a check so that when the driving very slow, brake cannot be applied.
Otherwise it caused the car to be jerked back. (Monster, 2003)

Finally we can calculate total forward force Fw from torque at the wheels with:Եՠ = τՠ ÷ ՛ՠ − Ե՝Ջ

28

Although the physics work great on paper. While programmed braking caused my car to
accelerate backwards. I fixed it by multiplying the total brake force by the sign of the car’s
velocity so that it opposes the acceleration force.

Figure 24

Having found a way to apply force to the car directly, we need to find resistance as it is a real
life simulation and resistance is a big part of a car's performance, especially when it comes to
top speed. Each car has a different coefficient of drag Cd and frontal area A f which dictates air
resistance AR. There is also density of air coming into play but I will default it to average
density of air at sea level. For rolling resistance RR I used a constant that I found through
some experimentation. Rolling resistance has a linear relation with car’s speed and air
resistance grows exponentially. That means that at low speeds rolling resistance matters
more that air resistance, however their impact on the performance reverse at higher speed.
We also have to apply it in the reverse direction just like the brakes by multiplying the drag by
the sign of the forward velocity. (Monster, 2003) Having both of these we can calculate the
total force on the car Ft:԰Ձ = ɗ. ɜ * ԲՍ * ԰Տ * ƬՊԵՍ = ՁՁ * ՅՌ + ԰Ձ * ՅՌ ə
Ե՝ = τՠ · ՛ՠ − ԵՍ
Rest of the calculations are pretty straightforward. We use Newton’s second law to calculate
the car’s acceleration ac from total force and mass m. (Monster, 2003)ՊՌ = Ե՝ ÷ Ֆ
We need to however aim the acceleration in the right direction, converting from acceleration
in terms of car’s direction ac to acceleration in terms of world coordinates aw. To achieve that
we multiply the longitudinal and lateral acceleration in x and y direction by trigonometric
functions based on the car’s angle of orientation θc. (Monster, 2003)Պՠա = Ռ՘՜ഉθՌഊ · ՊՌբ + ՜�՗ഉθՌഊ · ՊՌաՊՠբ = Ռ՘՜ഉθՌഊ · ՊՌա − ՜�՗ഉθՌഊ · ՊՌբ

29

Figure 25

The sketch above showcases the coordinate system of the world in black and car’s direction
in red.

Figure 26

From there we can calculate velocity in terms of world’s coordinates vw by multiplying car’s
acceleration in terms of world’s coordinates aw with delta time. Same goes for position pw
calculation but this time we multiply velocity by delta time. (Monster, 2003)՟ՠ = Պՠ · Ս՝ՙՠ = ՟ՠ · Ս՝
Figure 27

30

Figure 28

Steering

Implementation of the steering proved to be less problematic than implementation of the
drivetrain. One big problem I encountered was calculating delta time at a wrong place causing
my car to spin at extraordinarily high rate. While not strictly related to steering, I did not notice
it before because the only place I used it before was for velocity and position. I did not have a
point of reference to dictate whether the car was driving too fast or too slow. Due to the fact
that driving forward and backwards looked okay, it took me quite some time to find the source
of the problem to be delta time, as I did not suspect it to be the cause.

Firstly I calculate the sin and cos of the car’s angle for use in the acceleration calculation as
mentioned earlier and velocity calculator now.

I follow the same principles as converting the acceleration in relation to the car, to
acceleration in relation to the world. This time I convert from velocity in relation to the world vw
to velocity in relation to the car vc. (Monster, 2003)՟Ռա = Ռ՘՜ഉθՌഊ · ՟ՠբ + ՜�՗ഉθՌഊ · ՟ ՠա՟Ռբ = Ռ՘՜ഉθՌഊ · ՟ ՠա − ՜�՗ഉθՌഊ · ՟ՠբ
To calculate weight on each while moving, I assumed that the weight distribution from side to
side is the same. Weight transfer affects the grip of each wheel which is very important when
racing and acceleration is high.

Stationary weight on each wheel is quite simple to work out using moments. For a car as it is
just a distance between axle and the centre of gravity dx divided by wheelbase WB, times
distance to the centre of gravity from axle length divided by axle track AT (0.5 in our case
because the we assumed side to side weight distribution is equal), times gravity g times
mass. (Monster, 2003)

However when we put motion into it, things get more complex. Before multiplying everything
by mass, we need to add or takeaway (depending on the direction of acceleration) lateral
acceleration times centre of gravity CG divided by wheelbase, and similarly, add or takeaway
acceleration sideways times centre of gravity divided by axle track. (Monster, 2003) Here is a
calculation for that:Նՠ = Ֆ · ഉՍա/ՆԱ · ɗ. ɜ · Ր ± ՊՌա · ԲԶ ÷ ՆԱ ± ՊՌբ · ԲԶ ÷ ԰Ճഊ
Turning the car also takes place around its axis which is at the centre of gravity. Therefore the
yaw rate or angular velocity ω has to be multiplied by the percentage weight distribution WD
between the rear and the front to get yaw speed YS. (Monster, 2003)

31

�ՂՏ = ՆԳՏ * ω�Ղ՛ = − ՆԳ՛ * ω
One more step before calculating the friction between tyres and ground is calculating slip
angles. Slip angle S is an angle between where the tyre is heading and where it is pointing.

We need to calculate sideslip and rotation angle. Sideslip SS is the angle between where the
car is heading and where it is pointing, similarity to slip angle. And rotation angle θr is my
previous yaw speed, which is basically lateral velocity divided by the car’s longitudinal
velocity. The calculation for front tyres also takes away the steering angle θs applied by the
player because the tyres do not always point parallel to the car. I joined these two equations
in my code as it runs faster. (Monster, 2003) Here are the equation’s:ՂՂ = Պ՛Ռ՝Պ՗ഉ՟Ռբ ÷ ՟Ռաഊθ՛ = Պ՛Ռ՝Պ՗ഉ�Ղ ÷ ՟ՌաഊՂՏ = Պ՛Ռ՝Պ՗ഉഉ՟Ռբ + �ՂՏഊ ÷ ՟Ռաഊഊ − ՟Ռա · θ՜Ղ՛ = Պ՛Ռ՝Պ՗ഉഉ՟Ռբ + �Ղ՛ഊ ÷ ՟Ռաഊഊ
In a real scenario all tires could lock without ABS however that is hard to implement so I
simplified it a bit. Only the rear tyres lock and they lose grip progressively as the hand brake
is depressed. I did it this way as it is intuitive and helps the car slide well making drifting while
using a handbrake much more enjoyable than foot brake drifting. The value of 0.7 is there as
that is roughly the slip ratio of a locked tire. (Cho et al., 2007)

Finally we can work out the friction at each corner. Tire grip is the limiting factor of the grip.
Therefore we calculate the coefficient of friction itself by multiplying cornering stiffness CS by
slip angle and limit it by maximum tyre grip Gt so that it cannot be bigger than it. Then we
multiply it by the weight on each tire as more pressure on the surface causes more grip.
(Monster, 2003) This all can be put into a simple friction force Ff formula.ԵՏ = ԲՂ · Ղ[] Զ՝

Զ՝ · Նՠ

32

Figure 29

Finally we can get to actually moving the car around its axis. This part is a rehash of a lot of
the drivetrain physics but working with angular motion instead of linear motion. We start with
calculating the angular torque τa, then angular acceleration α which uses inertia I instead of
mass (they are equal in our game), then we increase the angular velocity by acceleration
times delta time, and finally we increase the car’s angle by the angular velocity time delta
time. The only real difference between the equations earlier is how we calculate the torque.
(Monster, 2003)τՊ = ԵՏՏ · ՍՏ − ԵՏ՛ · Ս՛α = τ Պ ÷ Ըω = α · Ս՝θՌ = ω · Ս՝
I also have a check so that when the car’s velocity is low and when certain inputs are being
pressed such as no throttle or fully depressed brake, a lot of the variables responsible for
movement turn to zero to prevent jerking back and forth.

Figure 30

33

Results and evaluation
Tests

Test case ID: 1 Purpose: Check top speed of a car in each gear and
whether the gearbox works as expected.

Steps: 7 Preconditions: Stock car configuration, map at least
500 tiles long

Step No: Procedure Expected response Pass/
Fail

1 Accelerate car in first gear until
maximum engine RPM

Have a top speed of 56 km/h +- 15% Pass

2 Accelerate a car in second gear
until maximum engine RPM

Have a top speed of 93 km/h +- 15% Pass

3 Accelerate a car in third gear until
maximum engine RPM

Have a top speed of 134 km/h +- 15% Pass

4 Accelerate a car in fourth gear
until maximum engine RPM

Have a top speed of 169 km/h +- 15% Pass

5 Accelerate a car in fifth gear until
maximum engine RPM

Have a top speed of 204 km/h +- 15% Pass

6 Accelerate a car in sixth gear until
maximum engine RPM

Have a top speed of 217 km/h +- 15% Pass

7 Accelerate a car in reverse for
until maximum engine RPM

Have a top speed of xx km/h +- 15%, in
reverse

Pass

Comments: All of them passed but very close to the margin error, all of the speeds I recorder were
lower than expected other than the top speed which was higher and seemed to agree with the
official top speed

34

Test case ID: 2 Purpose: Check for car’s acceleration

Steps: 2 Preconditions: Stock car configuration, manual
gearbox, map at least 500 tiles long

Step No: Procedure Expected response Pass/
Fail

1 Accelerate from a stop up to 100
km/h

Accelerate from 0 to 100 km/h in 7.6
seconds +- 15%

Fail

2 Accelerate from a stop up to 200
km/h

Accelerate from 0 to 200 km/h in 34.9
seconds +- 15%

Fail

Comments: Acceleration is faster, however I believe that is because I went with a sequential
gearbox and that takes away the time it takes to change gears.

Test case ID: 3 Purpose: Check for maximum sustained lateral g
force

Steps: 2 Preconditions: Stock car configuration

Step No: Procedure Expected response Pass/
Fail

1 Turn max to the right and
accelerate just until the car starts
to slip, hold that speed

Achieve a sustained lateral g force of 0.90 g

2 Turn max to the left and
accelerate just until the car starts
to slip, hold that speed

Achieve a sustained lateral g force of 0.90 g

Comments: I did not implement a way to measure a lateral g force therefore I could not run this test

35

Test case ID: 4 Purpose: Check if the getting drift points is
consistent

Steps: 3 Preconditions: Stock car configuration

Step No: Procedure Expected response Pass/
Fail

1 Accelerate to top speed in 1st
gear, turn all the way left then
press handbrake, repeat 5 times
to calculate average points

Get a consistent amount of points, within
+-10% of each other

Pass

2 Accelerate to top speed in 1st
gear, turn all the way left then
press handbrake, repeat 5 times
to calculate average points

3 Just drift around until getting
100,000 points

Managed to get 100,000 points Pass

Comments: Works as expected

Test case ID: 5 Purpose: Check for memory leaks

Steps: 1 Preconditions: None

Step No: Procedure Expected response Pass/
Fail

1 Measure the memory usage, run
the game for 10 minutes,
measure the memory usage
again

The memory usage at the end should be no
bigger than 15% than at the start

Fail

Comments: Memory usage went up tremendously to the point where the game took up 4GB of RAM
after 10 minutes starting at 750MB

36

Test case ID: 6 Purpose: Check going between menus

Steps: 3 Preconditions: None

Step No: Procedure Expected response Pass/
Fail

1 Go between to game and back to
main menu

Menu menu should look and function exactly
the same

Fail

2 Go to tuning menu and back to
main menu

Main menu should look and function exactly
the same

Pass

3 Go to game and then back to
main menu and then tuning menu

Tuning menu should look exactly the same Fail

Comments: Tuning menu is not accessible, because the button disappears, after the game state is
run.

Test case ID: 7 Purpose: Check if tuning settings work

Steps: 2 Preconditions: None

Step No: Procedure Expected response Pass/
Fail

1 Go to tuning menu and adjust
settings drastically...

The numbers display correctly and sliders
slide properly

Pass

2 ...and then back to main menu
and then to game

The car is affected by the tuning settings Pass

Comments: Works perfectly!

37

Test case ID: 8 Purpose: Clutch

Steps: 2 Preconditions: None

Step No: Procedure Expected response Pass/
Fail

1 Rev up the engine to 7500 RPM
with car in gear and clutch
disengaged

The car does not move Pass

2 Engage the clutch and let off the
throttle

The car accelerates quickly to a speed of
roughly 15 km/h +- 10 km/h

Fail

Comments: Engine does not send a pulse to the wheels through the clutch

38

Physics
I am really happy with the physics implementation as it touches upon a lot of aspects that are
definitely essential when drifting and most of them work as can be seen from the tests.

Top speed in each gear is on the very margin of error I allowed which is not amazing but I
suspect it might be to do with the rolling and/or air resistance. They all come up short and last
gear is limited by air resistance and this makes me think that another cause of this might be
the engine does not really propel the car at idle like a real car would so the overall rev limiter
is actually 700 RPM lower.

Acceleration is substantially higher than real acceleration. I believe however that this problem
is not directly with the physics calculations themselves but with the inputs. The lack of clutch
and just the fact that the user is using a gamepad where pressing and releasing a button
takes 0.1 sec compared to a real car where changing gears takes way more time. Accounting
for the fact that vertical (eg. 1st to 2nd) shift time takes 0.5sec and horizontal (eg. 2nd to 3rd)
shift time takes 1 sec, the final acceleration values would be well within 10% of the real
acceleration values.

I could not measure the grip through maximum lateral force because I did not implement a
way of measuring it.

One thing I wish I ended up making work is the fully manual gearbox with a clutch as I feel
like that is very important to drifting.

The implementation is rather simplistic however quite immersive for what it is. It serves as an
amazing basis to build up with other features as specific parts, such as advanced tyre grip
physics or engine model, can be just plugged in without modifying the rest of it.

39

Engine
The sliders work amazing though for many different variables with no hardcoded values.

The UI is not working properly as the button goes missing after going back to the main menu
from a game. I tried to locate the bug but I could not in such a short amount of time therefore I
have no idea what the cause could be.

I am also not entirely happy with how I went about changing states. The idea was right but the
execution missed the mark. Instead of adding and removing the processors, I will need to add
and remove processors and entities when changing states. This fixes the problem I where I
had to put a state variable for a button as the buttons were displayed on both states because
they both used the same processor. This also possibly frees up memory so the game gets
better performance.

Rendering systems are not modular at all either because I did not have time to refactor them,
so there is one for a car and one for objects, and another one for tilemap.

The steering input is contained within the main game loop. it is harder to modify the values
and it is likely slower than a proper implementation. I tried implementing input as a system
however it seemed like the input it was getting was very patchy. One time it would work and
other times it would not. The current implementation works great from a user standpoint and
is very responsive and there is no ghosting.

The engine is mostly just a framework with not many transferable features right now. It is also
not very modular. This will require rewriting some aspects of it when writing more features,
especially if they involve more than one car. Because it is not big though, I could make it into
a basic framework over a weekend that would allow me to make games of any type while
taking care of inputs, rendering, changing game states etc.

40

Other aspects
The drift points system works as expected and longer, faster drifts award more points. Testing
this part of the would require.

Particles came out looking great. The performance is adequate with how many of them are
there. One small thing is that they follow the middle of the screen however that is not very
perceptible in our game unless driving at a huge speed. The bigger problem is that they are
not modular at all. If I was to need different particles I would need to create a separate system
and change a lot of hard coded variables instead of just passing arguments into a function.

I feel like 2D was a good idea from a programming standpoint as it allowed me to program
more features without spending lots of times on making geometry and assets work. However
it made the game not as immersive as I would ideally want it to be, especially considering it is
a simulator.

I think the gamepad controls work really well and aid the immersion with the analog inputs.
When playing on a keyboard I do not feel as much control over the car which causes me to
change my inputs, eg. instead of holding a trigger at 50% to keep RPMs the same, I need to
tap the W key which breaks the immersion and makes the inputs more twitchy.

41

Looking back at the timeline

Figure 31

Looking back at the timeline, a lot of things went differently. Starting off with the report, I
ended up not writing it continuously, but in 3 chunks. This was mostly because I wanted to get
started on the project quickly and make a good basis for the rest of the features. After I did
that I sat down and wrote “Introduction”, “Background” and “Design” sections of the report.
Then I did more coding and when I had the general idea of where the project was going to
end up, I went over the stuff I already wrote and added “Future work” section. Then after I
finished programming I wrote “Implementation”, “Results”, “Conclusion” and “Reflection”
sections.

Initially I was hoping to write down the implementation as I was writing it however that proved
difficult due to how fast everything was changing. That would require frequent rewriting of
some sections which would be a waste of time. I also wanted to have specification and design
done before starting the majority of the work, however I felt a lack of experience in that area
and needed to start shaping the project a bit before getting a good idea of how it will end up.

I expected some roadblocks when writing the physics however they were more severe than I
thought. If it was not for them I the physics system would be much fleshed out.

Another aspect I did not take into account at all before was refactoring. I did the majority of it
near the end of the project however I feel like it would have been more productive if I spent
one day a week refactoring what I wrote in the past 4 days.

42

Refleciton
There are many new considerations that I did not see before when it comes to planning out
such a big project. Next time I plan a big project I would allow myself some time at the end of
each week for refactoring and a few days extra before the deadline. I also would not be as
ambitious with report writing as I expected to be while the whole project is going at such a
quick pace.

Another thing many do not consider is allowing yourself breaks. There were some weekends
where I was stuck on a problem and worked them out through the weekend however other
times I came up with a new solution on Monday even though I had time off on the weekend.
This seems counterproductive but I found that a lot of learning is done when your brain is
resting and it allows you to destress which slows down work.

One more takeaway is that certain algorithms work on paper, in isolation or in someone else's
project, does not mean they will work straight away in your own project, especially when
adding new features that interact with those.

Something I did not realize before is the importance of refactoring. All the projects I have
wrote before were short and after writing them I did not have to worry about it anymore. Aside
from the fact I want to develop this project further, just over the short period of 10 weeks I
noticed the increasing technical debt. I tried to keep my code clean but sometimes the
“prototypes” were left in production however as time went on I had to end up rewriting and
refactoring some parts to make them work with other aspects of the program.

This is also the first time I wrote a performance critical application. I only had to optimize my
particles as they were causing low framerate but it gave me another insight into creating real
time applications. This taught me how to identify performance critical parts of code.

I also did not instantly realize I had a memory leak. I am glad I thought of testing it as it
allowed me to realize it is there and it is the highest priority fix now. I have not learnt how to
find a source of a memory leak but I am planning to really soon.

I have also never wrote a proper documentation before and while the report touches upon
only the most important aspects of my game, it gave me a chance to expand those skills so
that it would come easier in future.

Finally, I found out that writing a game from the ground up instead of using an already made
game engine reinforces good coding practices through requiring me to make decoupled code
and just comprehending all of that code requires it to be clean. It allows for more freedom in
implementation and most importantly, teaches the basics of game development and just
computer science in general, much better than creating a game in an engine would.

43

Conclusion
The aim of this project was to create a 2D driving simulator game with a focus on drifting. I
feel like I achieved that however I came up short with a few smaller things that could make
this game better however they mostly related to gameplay aspects which were secondary to
the physics. The game met most of the test I set out for it which further strengthens my
opinion. I believe it is close to being a minimum viable product. it is quite realistic and mildly
immersive but I think that is because 2 dimensional graphics cannot “sell” the experience as
much.

Choosing ECS gave the code some structure which saved me some time further down the
line as it increased prototyping speed and decreased the amount of iterations of each module
I had to do due to the way it retrieves variables.

The engine, world building and some of the functions could be reused into creating a very
basic real game engine that I could develop other games on. This would cut down time it
takes to setup universal thing such as window, controls or rendering.

Most importantly, this project was an amazing learning experience and taught me so many
things I have only heard about but have not had a chance to experience. From refactoring,
through week long roadblocks I had to overcome myself, to working with performance critical
application on this scale for the first time.

44

Future Work
This is a really good prototype and I would like to carry on working on it. I believe that with
some extra work it could become a fully fledged game for anyone to play.

A super simple feature that I have not thought of would be to save the top scores, car setups
etc. as currently the game just starts up fresh each time.

Another simple thing for a full release would be graphical and sound assets. I would like
something original that is at least semi-realistic and improves the immersion. The fact that I
am using a tileset is a bit of a problem when creating tracks too as it limits the possibilities. A
free flowing way to create tracks would be really interesting and it would even allow me to
replicate famous tracks such as the ones at Ebisu or Kansai/Suzuka circuit. An in game track
editor would be amazing and it would allow the players to create circuits for endless hours of
play.

The game would obviously need more tracks and possibly some type of career mode or
progression. Highest scores are fun but they get old quickly, especially without a multiplayer
leaderboard, which is a good idea. Carrying on with that idea, introduction of drift battles or
tandems would provide hours of fun however that would require a ton of work and should be
left till the end.

I am really glad with how the physics came out and they do not need much work in their
current state, just some fine tuning of some constants. Although there are many more physics
features I could add such as more advanced suspension and real engine power calculations
based on the engine physics instead of getting the values from torque table. This would
expand car tuning to include modifying the engine and more advanced suspension tuning as
well. Fixing the clutch would also be a priority. Cosmetic modification would be needed to
make this game more enjoyable as individuality is a huge part of drifting. Especially if I was to
introduce multiplayer mode.

An interesting addition from a programming perspective would be AI. I believe that from a
player perspective multiplayer would have been better due to the fact that you can have real,
competitive people to play against. However AI would be really interesting to implement due
to the interesting rules of drifting compared to traditional racing. A machine learning project
like this could be a good idea for a masters dissertation.

A lot of these changes would require refactoring the current codebase to make some aspects
of it more modular and allow bigger range of inputs and outputs.

As the game grows I hope that PyGame’s performance does not hinder me however PyGame
2 is slowly being updated to port over more of SDL2 functionality and the performance is
improving. I also have not optimized the game at all aside of the particle system so there is
definitely room for improvement. However if that was indeed the case I would plan to either
move the project to C++ or Rust as I am interested in learning Rust.

45

Appendix A - tests

Test case ID: 1 Purpose: Check top speed of a car in each gear and
whether the gearbox works as expected.

Steps: 7 Preconditions: Stock car configuration, map at least
500 tiles long

Step No: Procedure Expected response Pass/
Fail

1 Accelerate car in first gear until
maximum engine RPM

Have a top speed of 56 km/h +- 15%

2 Accelerate a car in second gear
until maximum engine RPM

Have a top speed of 93 km/h +- 15%

3 Accelerate a car in third gear until
maximum engine RPM

Have a top speed of 134 km/h +- 15%

4 Accelerate a car in fourth gear
until maximum engine RPM

Have a top speed of 169 km/h +- 15%

5 Accelerate a car in fifth gear until
maximum engine RPM

Have a top speed of 204 km/h +- 15%

6 Accelerate a car in sixth gear until
maximum engine RPM

Have a top speed of 217 km/h +- 15%

7 Accelerate a car in reverse for
until maximum engine RPM

Have a top speed of xx km/h +- 15%, in
reverse

Comments:

46

Test case ID: 2 Purpose: Check for car’s acceleration

Steps: 2 Preconditions: Stock car configuration, manual
gearbox, map at least 500 tiles long

Step No: Procedure Expected response Pass/
Fail

1 Accelerate from a stop up to 100
km/h

Accelerate from 0 to 100 km/h in 7.6
seconds +- 15%

2 Accelerate from a stop up to 200
km/h

Accelerate from 0 to 200 km/h in 34.9
seconds +- 15%

Comments:

Test case ID: 3 Purpose: Check for maximum sustained lateral g
force

Steps: 2 Preconditions: Stock car configuration

Step No: Procedure Expected response Pass/
Fail

1 Turn max to the right and
accelerate just until the car starts
to slip, hold that speed

Achieve a sustained lateral g force of 0.90 g

2 Turn max to the left and
accelerate just until the car starts
to slip, hold that speed

Achieve a sustained lateral g force of 0.90 g

Comments:

47

Test case ID: 4 Purpose: Check if the getting drift points is
consistent

Steps: 3 Preconditions: Stock car configuration

Step No: Procedure Expected response Pass/
Fail

1 Accelerate to top speed in 1st
gear, turn all the way left then
press handbrake, repeat 5 times
to calculate average points

Get a consistent amount of points, within
+-10% of each other

2 Accelerate to top speed in 1st
gear, turn all the way left then
press handbrake, repeat 5 times
to calculate average points

3 Just drift around until getting
100,000 points

Managed to get 100,000 points

Comments:

Test case ID: 5 Purpose: Check for memory leaks

Steps: 1 Preconditions: None

Step No: Procedure Expected response Pass/
Fail

1 Measure the memory usage, run
the game for 10 minutes,
measure the memory usage
again

The memory usage at the end should be no
bigger than 15% than at the start

Comments:

48

Test case ID: 6 Purpose: Check going between menus

Steps: 3 Preconditions: None

Step No: Procedure Expected response Pass/
Fail

1 Go between to game and back to
main menu

Menu menu should look and function exactly
the same

2 Go to tuning menu and back to
main menu

Main menu should look and function exactly
the same

3 Go to game and then back to
main menu and then tuning menu

Tuning menu should look exactly the same

Comments:

Test case ID: 7 Purpose: Check if tuning settings work

Steps: 2 Preconditions: None

Step No: Procedure Expected response Pass/
Fail

1 Go to tuning menu and adjust
settings drastically...

The numbers display correctly and sliders
slide properly

2 ...and then back to main menu
and then to game

The car is affected by the tuning settings

Comments:

49

Test case ID: 8 Purpose: Clutch

Steps: 2 Preconditions: None

Step No: Procedure Expected response Pass/
Fail

1 Rev up the engine to 7500 RPM
with car in gear and clutch
disengaged

The car does not move

2 Engage the clutch and let off the
throttle

The car accelerates quickly to a speed of
roughly 15 km/h +- 10 km/h

Comments:

50

Appendix B - glossary of physics terms

Subscript c denotes variable in terms of car direction
Subscript w denotes variable in terms of world coordinates
Subscript f denotes front axle
Subscript r denotes rear axleՍ՝ = ԳՎՕ՝Պ ՝�ՖՎՁ��Վ = Դ՗Ր�՗Վ՜ Ձ��՟Ռ = ԲՊ՛՜ ՟ՎՕ՘Ռ�՝բ՛ՠ = ՆℎՎՎՕ ՛ՊՍ�՞՜ԶՁ = ԶՎՊ՛ ՛Պ՝�՘ · ഉՌ՞՛՛Վ՗՝ ՐՎՊ՛ ՛Պ՝�՘՗ · Ս�ՏՏՎ՛Վ՗՝�ՊՕ ՛Պ՝�՘ഊՁՊՍ/՜ ՝՘ Ձ�� = ɝɗ ÷ ഉə · ƫഊՁ�� ՝՘ ՁՊՍ/՜ = ഉə · ƫഊ ÷ ɝɗτՠ = Ճ՘՛՚՞Վ Պ՝ ՠℎՎՎՕ՜τՎ = Ճ՘՛՚՞Վ Պ՝ Վ՗Ր�՗Վ՝ = Ճℎ՛՘՝՝ՕՎ ՙ՘՜�՝�՘՗ՏՋ = Ե՘՘՝ Ջ՛ՊՔՎ �՗ՙ՞՝ԵՏՋ = �Պա Տ՘՘՝ Ջ՛ՊՔՎ Տ՘՛ՌՎℎՋ = ԷՊ՗Ս Ջ՛ՊՔՎ �՗ՙ՞՝ԵℎՋ = �Պա ℎՊ՗Ս Ջ՛ՊՔՎ Տ՘՛ՌՎԵ՝Ջ = Ճ՘՝ՊՕ Ջ՛ՊՔ�՗Ր Տ՘՛ՌՎԵՠ = Ե՘՛ՌՎ Պ՝ ՝ℎՎ ՠℎՎՎՕ՜Ե՝ = Ճ՘՝ՊՕ Տ՘՛ՌՎ ՘՗ ՝ℎՎ ՌՊ՛ՁՁ = Ձ՘ՕՕ�՗Ր ՛Վ՜�՜՝Պ՗ՌՎ Ռ՘ՎՏՏ�Ռ�Վ՗՝ԲՍ = Բ՘ՎՏՏ�Ռ�Վ՗՝ ՘Տ Ս՛ՊՐ԰Տ = Ե՛՘՗՝ՊՕ Պ՛ՎՊ ՘Տ ՝ℎՎ ՌՊ՛ƬՊ = ԰�՛ ՍՎ՗՜�՝բ԰Ձ = ԰�՛ ՛Վ՜�՜՝Պ՗ՌՎ Ռ՘ՎՏՏ�Ռ�Վ՗՝ = ɗ. ɜ * ԲՍ * ԰Տ * ƬՊԵՍ = Ճ՘՝ՊՕ Տ՘՛ՌՎ ՘Տ Ս՛ՊՐ = ՁՁ * ՅՌ + ԰Ձ * ՅՌ əՊՌ = ԲՊ՛'՜ ՊՌՌՎՕՎ՛Պ՝�՘՗Ֆ = ԲՊ՛'՜ ՖՊ՜՜θՌ = ԲՊ՛'՜ Պ՗ՐՕՎഉ՘՛�Վ՗՝Պ՝�՘՗ഊՆՠ = ՆՎ�Րℎ՝ ՘՗ Պ ՜ՙՎՌ�Տ�Ռ ՠℎՎՎՕ ՠℎ�ՕՎ Ֆ՘՟�՗ՐՍա = Գ�՜՝Պ՗ՌՎ ՝՘ Պ ՜ՙՎՌ�Տ�Ռ ՊաՕՎ Տ՛՘Ֆ ՌՎ՗՝՛Վ ՘Տ Ր՛Պ՟�՝բՆԱ = ՆℎՎՎՕՋՊ՜Վ԰Ճ = ԰աՕՎ ՝՛ՊՌՔՐ = Ր՛Պ՟�՝բԲԶ = ՌՎ՗՝՛Վ ՘Տ Ր՛Պ՟�՝բ ℎՎ�Րℎ՝ՆԳ = ՙՎ՛ՌՎ՗՝ՊՐՎ ՠՎ�Րℎ՝ Ս�՜՝՛�Ջ՞՝�՘՗�Ղ = �Պՠ ՜ՙՎՎՍω = ԰՗Ր՞ՕՊ՛ ՟ՎՕ՘Ռ�՝բՂ = ՂՕ�ՙ Պ՗ՐՕՎθ՜ = Ղ՝ՎՎ՛ Պ՗ՐՕՎՂՂ = Ղ�ՍՎ ՜Օ�ՙԲՂ = Բ՘՛՗Վ՛�՗Ր ՜՝�ՏՏ՗Վ՜՜

51

Զ՝ = Զ՛�ՙ ՘Տ Պ ՝�՛ՎԵՏՏ = Ե՛�Ռ՝�՘՗ Տ՘՛ՌՎ ՘Տ Տ՛՘՗՝ ՊաՕՎԵՏ՛ = Ե՛�Ռ՝�՘՗ Տ՘՛ՌՎ ՘Տ ՛ՎՊ՛ ՊաՕՎτՊ = ԰՗Ր՞ՕՊ՛ ՝՘՛՚՞ՎԸ = Ը՗Վ՛՝�Պα = ԰՗Ր՞ՕՊ՛ ՊՌՌՎՕՎ՛Պ՝�՘՗

52

Appendix C - file structure

53

References

Adam. (2007). Entity Systems are the future of MMOG development. T-machine.

Retrieved 05 14, 2021, from

http://t-machine.org/index.php/2007/09/03/entity-systems-are-the-future-of

-mmog-development-part-1/

The British Drift Championship. (n.d.). Just How IS Drifting Scored? Retrieved

05 14, 2021, from

https://www.thebritishdriftchampionship.co.uk/just-how-is-drifting-scored/

CarX Technologies, LLC. (2017). CarX Drift Racing Online. Retrieved 05 14,

2021, from https://carx-online.com/

Cho, J. R., Choi, J.-H., Lee, H., Woo, J.-S., & Yoo, W.-S. (2007). Braking

Distance Prediction by Hydroplaning Analysis of 3-D Patterned Tire Model.

ResearchGate. Retrieved 05 14, 2021, from

https://www.researchgate.net/publication/245525713_Braking_Distance_P

rediction_by_Hydroplaning_Analysis_of_3-D_Patterned_Tire_Model

DD Performance Research LLC. (2013). FRS & BRZ Dyno Compiliation dyno

testing results. DD Performance Research LLC.

https://www.ddperformanceresearch.com/forum/viewtopic.php?f=2&t=95

54

Dennis Jarvis (Director). (1995). Jeremy Clarkson's Motorworld (Season 1,

Episode 1) [TV series episode].

https://www.youtube.com/watch?v=3_IoR6nm4dU

Descartes, R. (1637). Discourse on the Method.

eran0004. (2015-2019). Programming a driving simulator, how hard can it be?

GTPlanet. Retrieved 05 14, 2021, from

https://www.gtplanet.net/forum/threads/programming-a-driving-simulator-h

ow-hard-can-it-be.324556/

Funselektor Labs Inc. (2015). Absolute Drift. Retrieved 05 14, 2021, from

http://absolutedrift.com/

GTChannel, Tsuchiya, K., & de Vera, R.J. (2010). Drifting 101 featuring the Drift

King Keiichi Tsuchiya - GTChannel. YouTube. Retrieved 05 14, 2021, from

https://www.youtube.com/watch?v=eLDejTKH388

Kavanagh, J. (2012). 2013 Scion FR-S: Dyno Tested. Edmunds.

https://www.edmunds.com/car-reviews/track-tests/2013-scion-fr-s-dyno-te

sted.html

Kenney. (2019). Racing Pack. Kenney. Retrieved 05 14, 2021, from

https://www.kenney.nl/assets/racing-pack

Lear, S. (2021). Drifting and Its Rapid Growth in Popularity. Retrieved 05 14,

2021, from

55

https://grassrootsmotorsports.com/articles/drifting-and-its-rapid-growth-po

pularity/

Monster, M. (2003). Car Physics for Games. Retrieved 05 14, 2021, from

https://asawicki.info/Mirror/Car%20Physics%20for%20Games/Car%20Phy

sics%20for%20Games.html

Newton, I. (1736). Method of Fluxions.

PyGame. (2021). PyGame documentation. PyGame. Retrieved 05 14, 2021,

from https://www.pygame.org/docs/

Tsuchiya, K. (n.d.). Keiichi Tsuchiya - Toyota AE86 Drift lessons. YouTube.

Retrieved 05 14, 2021, from

https://www.youtube.com/watch?v=S_CY5KIFV4I

Bibliography

"DaFluffyPotato", C. (2018-2021). PyGame Tutorial Series. YouTube. Retrieved

05 14, 2021, from

https://www.youtube.com/watch?v=xxRhvyZXd8I&list=PLX5fBCkxJmm1fP

Sqgn9gyR3qih8yYLvMj

Best Motoring. (n.d.). Best Motoring videos. YouTube. Retrieved 05 14, 2021,

from

https://www.youtube.com/channel/UCrmsruqPgCIs4PImiZs0t9w

56

Donut Media. (2018-2019). Science Garage. Retrieved 14, 05, from

https://www.youtube.com/playlist?list=PLFl907chpCa7R39l29VY5DygA8R

gBQZBf

57

