

P

a
g

e
I

Dots and Boxes – Final Report

Author: Matthew Rea

Supervisor: Dr Martin Caminada

Moderator: Dr Carolina Fuentes Toro

Module: CM2303 – One Semester Individual Project – 40 Credits

School of Computer Science and Informatics, Cardiff University

P

a
g

e
II

Abstract
The first focus of this project is creating an implementation of the game Dots and Boxes. This

implementation is then used as a testbed for multiple advanced computer players. Some complex

computer players have been created, including a Minimax player and a Monte Carlo Tree Search

player.

The computer players created were made to compete against each other in tournaments on

different sizes of game board, in order to obtain a ranking of the players. The game has also been

analysed using these players to determine some important properties of the game.

A ranking of the players shows their relative strengths and weaknesses as well as highlighting key

areas for improvement.

The game and all of the players are implemented with Python, using the PyQt5 module for graphics.

P

a
g

e
II

I

Acknowledgements
I would like to acknowledge Dr Martin Caminada, my supervisor, for his support and assistance

throughout the duration of this project.

I would also like to acknowledge my friends who helped by playing the game, reading the report,

and offering constructive feedback.

P

a
g

e
IV

Table of Contents

Abstract --- II

Acknowledgements --- III

Introduction -- 1

Project Aims and Scope -- 1

Approach --- 1

Important Outcomes --- 2

Background -- 2

Dots and Boxes --- 2

Game Variants -- 3

Algorithms --- 3

Minimax -- 3

Monte Carlo Tree Search--- 6

Approach --- 7

Implementation --- 9

Game --- 10

GUI -- 12

Game Variants -- 13

Player System --- 14

Players --- 14

Minimax Player --- 15

Monte Carlo Player -- 17

Testing --- 18

Results and Evaluation --- 19

Parameter Selection --- 19

Ordered Player -- 19

Minimax Player --- 20

Monte Carlo Player -- 20

Tournaments --- 21

3x3 --- 21

4x4 --- 22

5x5 --- 23

Performance and Ranking --- 24

Future Work -- 25

Improvements to Minimax -- 26

Improvements to MCTS --- 26

Conclusions-- 26

Reflection -- 27

P

a
g

e
V

Table of Figures -- 28

Table of Abbreviations & Synonyms -- 28

Appendices -- 29

Appendix 1 --- 29

Appendix 2 --- 30

Appendix 3 --- 30

References --- 31

P

a
g

e
1

Introduction
This introduction to the report will briefly describe the aims and scope of the project, the approach

used to tackle the problem and a summary of important outcomes.

Project Aims and Scope

The overarching aims of this project are to analyse the game of Dots and Boxes and to analyse

various game-playing strategies made by game playing agents. The final goal is to produce a ranking

of the players that have been implemented and determine what steps need to be taken to improve

these players and make them stronger.

The first aim of this project is to create a working and reliable implementation of the game Dots and

Boxes that can be played by two players, human or AI.

The second aim of this project is to analyse both the game itself and various strategies used to play

the game. This will be achieved using the implementation of the game as a testbed.

The speĐifiĐ ͚gaŵe plaǇiŶg strategies͛ to be implemented are: making moves randomly, making

moves in a predetermined order, making moves based on a Minimax evaluation of the game tree,

and making moves based on a Monte Carlo Tree Search (MCTS) evaluation of the game tree.

The limited scope of this project means that there will be no further atteŵpt to ͚solǀe͛ the gaŵe of
Dots and Boxes, as has been done for some board sizes (1). Boards up to sizes of 4x5 have previously

been solved; attempting to solve the game for larger board sizes would require a considerable

amount more time and resources than are available for this project. It would also require a lot of

mathematical analysis, whereas this project will focus on a more practical approach.

Approach

The approach being taken to tackle this problem is a practical one. A significant proportion of the

work being done for this project is in the implementation. Creating the game and creating the

players for the game will take some time; the rest of the time will be spent analysing the

performance of the players and writing the report.

Results will be gathered through repeated testing of each game playing strategy. Each player type

will have a strategy they use. To compare them they will be matched against every other player as

well as themselves, in order to produce a ranking from best to worst and quantify their relative

strength.

All of the planned players, with the exception of the random player, will have parameters that can

be tweaked to improve their performance. There will also be repeated testing of these players with

modified parameters to determine what the best configuration is for each player. Once the best

parameters for each player are discovered, the players can be trialled against each other.

The players will be trialled on multiple sizes of game board. Standard trials will take place on 3x3 and

4x4 boards as these boards have previously been solved, allowing comparison between the results

achieved and known results. Trials will also take place on a 5x5 board, as this board has not yet been

solved and it will be interesting to analyse the results on this board.

Facing every player against every other is a good way to analyse the relative strengths of each player

and is also a good way to analyse the game itself. The data obtained from players playing against

copies of themselves can show if a particular board starting position is stronger. If the player who

starts the match wins significantly more games than the player who goes second, it will show that

player 1 is in an intrinsically stronger position than player 2.

P

a
g

e
2

Important Outcomes

There are a number of important specific outcomes for this project based on the aims and

objectives.

• Create a working implementation of the game Dots and Boxes.

o The game should have a title and options screen for choosing game and player

settings.

o The game should be consistent and reliable.

o This should be playable by human and/or computer players.

• Create working computer players for the game.

o These should range from basic to complex.

o There should be a basic player that plays randomly.

o There should be an advanced player that uses the Minimax algorithm.

o There should be an advanced player that uses Monte Carlo Tree Search.

o One of these players should be able to reasonably compete with a human.

• Analyse the players and determine which one performs the best.

o Determine a ranking of the players.

• Analyse the game and learn about game playing strategies.

o Determine which strategies for playing are better than others.

o Determine if player 1 or player 2 is in a stronger position on any game board.

o Determine what can be done in future to improve the players.

Background

Dots and Boxes

Dots and Boxes, first puďlished iŶ ϭϴϵϱ as ͚La Pipopipette͛ ďǇ Édouard LuĐas (2), is a pencil and paper

game for two players.

The game is played on a grid of dots,

commonly ranging from 3x3 to 5x5

grids. Two players take turns drawing

horizontal or vertical lines to connect

adjacent dots. When a player

completes the fourth side of a square

and encloses the space inside, they

͚Đlaiŵ͛ that ďoǆ for theŵselǀes,
usually marking the box with their

initial or their player number. An

additional rule that is crucial to the

complexity of the game is that when a

player draws a line to complete a box,

they must take another turn

afterwards. Players cannot skip turns.

The game is finished when all of the

lines have been drawn. The winner is

the player who claimed the most

boxes. (3)

Figure 1 - Full game example of Dots and Boxes on a 3x3 grid. (25)

P

a
g

e
3

Figure 1 shows a full game of dots and boxes on a 3x3 grid, completed in 9 turns.

Player B is initially mirroring player A͛s ŵoǀes, until turn 8 where they claim a box and so get an

extra move. With this extra move they play another line which opens the board for player A. Player

A then claims the remaining three boxes and wins the game.

Dots and Boxes is a good game to analyse from an Artificial Intelligence standpoint as it is a

͚ĐoŵďiŶatorial͛ gaŵe, ǁhiĐh ŵeaŶs that is has the following properties: (4)

• Two players. There are typically only two players.

• Zero-sum. The gain or loss of a player is exactly balanced by the loss or gain of the

other player.

• Perfect information. The state of the game is fully observable to all players.

• Deterministic. There is no randomness in the development of future states.

• Finite. The number of movements must always be finite.

This makes the game of Dots and Boxes similar to games like Draughts or Chess from a game theory

perspective.

Dots and Boxes has already been previously solved for some smaller board sizes, as shown in (1). (5)

also presents a winning strategy for player 2 on a 4x4 board. Boards that are larger than 5x5 have

not yet been solved, so it is not known if either player can be guaranteed a win on these boards and

there is Ŷo kŶoǁŶ strategǇ for ͚perfeĐt plaǇ͛.
Game Variants

Dots and Boxes is classically played on a grid with all of the lines unfilled, to be played by the player.

This is kŶoǁŶ ďǇ soŵe as aŶ ͚AŵeriĐaŶ ďoard͛. There is aŶother popular ǀariaŶt kŶoǁŶ as a ͚Sǁedish
ďoard͛, in which the lines that make up the edge of the board are filled in from the start. This can

lead to more interesting play and quicker games. (6)

As ǁell as these tǁo ǀersioŶs of the gaŵe, the author proposes a third ǀariaŶt, a ͚raŶdoŵ ďoard͛.
This version of the game will start with a number of the lines filled in from the start, chosen at

random. This variant is inconsequential to the analysis of the game – it͛s simply fun and interesting.

Algorithms

The algorithms chosen and implemented have been picked to help analyse the game itself, and also

to demonstrate how effective different strategies can be in the game of dots and boxes.

Minimax

The minimax theorem is a mathematical theorem in the area of game theory, first proven and

published in 1928 by John von Neumann. The minimax theorem provides conditions that guarantee

that the max–min inequality is also an equality (7).

The minimax algorithm is a game playing algorithm for n-player games that is based on this theorem.

The minimax algorithm is designed to minimise the potential loss in any scenario, whilst maximising

potential gain. Minimax was originally designed for n-player zero sum games with perfect

information and has more recently been extended to complex games and general decision making in

the presence of uncertainty. As Dots and Boxes is an n-player zero sum game with perfect

information, minimax is a very good fit for this scenario.

P

a
g

e
4

Minimax is typically implemented using

main three functions; Maximise,

Minimise and Evaluate. In the example in

Figure 1 these are MaxMove, MinMove

and EvalGameState (not written). The

MaxMove function receives a game

state. If the game has terminated in this

game state it will return a static

evaluation of the game using the

EvalGameState function. This returns a

score for the state the game is in, using

specific game knowledge. If the game

has not terminated then all possible

moves from this position are generated

and iterated through. For each move

that can be made a new game state is

generated, simulating the player making

this move. This new game state is then

passed to the MinMove function, which

will perform the same operations with

one key difference. When the bottom of

the tree is reached and the game states

are evaluated, the scores are returned

and passed back to these functions. The

MaxMove function will save the move

that returned the highest score, whereas

the MinMove function will save the

move that returned the lowest score.

These represent opposing players

making moves. The MaxMove function

represents the player making the best move they can possibly make and the MinMove function

represents their opponent making the best move they could possibly make. In the case of a zero-

sum game the best move for an opponent will correspond to the worst move for the player.

Figure 3 shows the ͚state tree͛ that is ďeiŶg traǀersed ďǇ this reĐursiǀe algorithŵ. At the first step,
the player is analysing their own moves, and intends to maximise their potential score. These moves

are represented by green triangles pointing upwards. At the second step, the player is analysing

their oppoŶeŶts͛ potential moves, and assuming that they want to maximise their own potential

score. These moves are represented by red triangles pointing downwards. This tree expands

downwards as more moves are predicted, with each level of the tree corresponding to a move made

by either the player or the opponent, and a minimising or maximising step.

Figure 2 - Minimax algorithm pseudocode (23)

P

a
g

e
5

Figure 3 - Minimax state tree diagram

The Minimax algorithm described in Figure 2 is a very basic version of the game playing minimax

algorithm.

Figure 4 shows a simplified version of

Minimax that exploits the property ݔܽܯሺܽ, ܾሻ ≡ ,ܽ−ሺ݊�ܯ− −ܾሻ

This leads to the NegaMax algorithm, which

simply negates the value returned from the

recursive call to NegaMax. In the case of a

game in which players strictly make alternate

moves this produces the exact same result as

Minimax. This simplifies the algorithm as it

removes the need for separate MinMove and

MaxMove functions.

This algorithm also introduces the concept of

a depth variable. This allows the calling

function to control the depth of the search in

the game tree. When NegaMax is called it will

be passed a positive integer, when NegaMax

is called again, the depth is lowered by 1.

When the depth value reaches 0 an

evaluation of the game state is made and

returned. This is the version of the algorithm

that will be adapted for use in this project.

 Figure 4 - 'NegaMax' algorithm pseudocode

P

a
g

e
6

There are further optimisations that can be made to the Minimax algorithm. Two of these will be

disĐussed later iŶ the ͚iŵpleŵeŶtatioŶ͛ seĐtioŶ.

Monte Carlo Tree Search

Monte Carlo Tree Search is a heuristic search algorithm for decision processes, most notably

employed in game playing software. Monte Carlo Tree Search has been used in the famous

͚AlphaGo͛ prograŵ for plaǇiŶg the ďoard gaŵe Go (8), other board games like Chess and Shogi (9)

and in turn based strategy games such as Total War: Rome II (10).

The Monte Carlo Method is a method which dates back to the 1940s that uses randomness to help

solve difficult deterministic problems. The method relies on repeatedly using random sampling to

find approximate results in problem spaces; as such, the accuracy often increases with increased

numbers of samples. (11)

In 1987, Bruce Abramson modified the Minimax search algorithm to use an expected outcome

model based on random game playouts – a Monte Carlo method – instead of the usual static

evaluation function. (12) This method of searching was developed further to include recursive rolling

out and backtracking and later introduced the Upper Confidence Bound (UCB) heuristic for

constructing trees. (13) In 2006, Rémi Coulom coined the term Monte Carlo Tree Search (MCTS)

when he applied Monte Carlo search to game trees. (14)

The principle of operation of MCTS is to analyse the best moves that are available to the player. A

state tree is constructed with nodes corresponding to potential moves that can be made. These

moves are discovered by the selection process and analysed by random playout. The selection of

moves is made using the UCB formula for exploitation and exploration. The formula for calculating

UCB for each individual move is; ���� + ܿ√ln ���� where; ݓ� = �݊ ,݁݀݋݊ ݏ�ℎݐ ݎ݋݂ ݁ݎ݋ܿݏ ݊�ݓ = ݀݁ݐ�ݏ�ݒ ܾ݊݁݁ ݏℎܽ ݁݀݋݊ ݏ�ℎݐ ݏ݁݉�ݐ ݂݋ ݎܾ݁݉ݑ݊

�ܰ = ܿ ݀݁ݐ�ݏ�ݒ ܾ݊݁݁ ݏℎܽ ݁݀݋݊ ݏ�ℎݐ ݂݋ ݐ݊݁ݎܽ݌ ℎ݁ݐ ݏ݁݉�ݐ ݂݋ ݎܾ݁݉ݑ݊ = .ݐ݊݁�ܿ�݂݂݁݋ܿ ݊݋�ݐܽݎ݋݈݌ݔ݁ .ݕ݈݈ܽݐ݊݁݉�ݎ݁݌ݔ݁ ݀݁݊ݑ�
This calculates a value for UCB with two parameters. The first parameter is the exploitation

parameter, which is simply a ratio of how many winning states have been discovered after this node

and how many times this node has been visited. The second parameter is the exploration parameter,

which factors in how many times this node has been visited in total compared to its parent node.

The exploration parameter is scaled by c, which allows the algorithm to be tuned to explore more or

explore less depending on the use case. (15)

One iteration of the MCTS algorithm includes four steps;

1. Selection: The selection will start at the root node and select the child of this node with the

highest UCB value. This process continues, selecting the child of the current node with the

highest value until a leaf node is reached. A leaf node is a node which has no children.

2. Expansion: Once a leaf node has been found and selected, create children from this node

corresponding to all of the possible moves that could be made from this game state.

P

a
g

e
7

3. SiŵulatioŶ: Choose oŶe of these Ŷeǁ Đhild Ŷodes aŶd perforŵ a ͚rollout͛. This is a siŵulatioŶ
of the game playing out until the end. The basic implementation of this is a random playout.

4. Backpropagation: Take the result of the simulation and backpropagate the score up the tree,

all the way to the root node. (16)

This is the principle of MCTS. Other implementations that incorporate advanced features like domain

specific knowledge & heuristics and advanced techniques like reinforcement learning and deep

learŶiŶg haǀe ďeĐoŵe soŵe of the ǁorld͛s leadiŶg gaŵe plaǇiŶg prograŵs.

Approach
The approach taken to the problem of analysing Dots and Boxes is a practical, experimental one.

Firstly, an implementation of Dots and Boxes is needed. Next, a system with which any type of

computer player can understand and play the game. Then, a variety of computer players are needed

for benchmarking, testing and analysis. The game will also have a Graphical User Interface (GUI), so

that humans can play the game and so that the games can be visualised.

To create the game, player system and players, Python will be used. There are many merits of using

Python for this project; The author is familiar and comfortable with programming in python, vastly

increasing the speed of development. Python can be used to neatly combine multiple programming

methodologies in the same program, allowing the use of both procedural and Object Oriented (OO)

paradigms. There is also an abundance of libraries that can be imported and used to solve general

issues so it is not necessary to solve every problem from scratch.

The PyQt5 module will be used to handle the graphics for the game. (17)

Whilst creating a system that includes the game, the GUI and the players, the main intention is to

create this system to be as loosely coupled and as modular as possible. This means that the

interactions between the game, the GUI and the players will be as limited as possible. This is so that

each part of the program is separate from one another, which will simplify each implementation and

also make creating different player types easier.

For this reason, using an Object-Oriented approach is the most sensible choice. The OO concepts of

encapsulation, inheritance and polymorphism make creating a loosely coupled system like this far

more feasible.

EŶĐapsulatioŶ is the ĐoŶĐept of ͚ǁrappiŶg up͛ Đode aŶd data iŶ the saŵe oďjeĐts aŶd ŵakiŶg this
private, so that it cannot be modified by other objects external to this one, except through custom

public methods designed for access. What this means in terms of this project is that the object that

represents the game cannot be modified by the players or by the GUI, it can only be modified via

Figure 5 - Four steps of the MCTS algorithm (24)

P

a
g

e
8

request. When a player takes a turn in dots and boxes it will not modify the game directly, it will

request to make a move and the game will either make the move if it can and modify itself or reject

the move if it is illegal.

Inheritance in OOP is the ability to define new classes of objects based on other classes of objects.

When one object inherits from another, it takes all of the data and code from the parent object and

can then expand on it. This leads to hierarchies of objects going froŵ ͚geŶeral͛ at the top of the
hierarĐhǇ to ͚speĐifiĐ͛ at the ďottoŵ. IŶ the Đase of this projeĐt, a ͚geŶeral͛ oďjeĐt will be an abstract

͚plaǇer͛ oďjeĐt. This will represent any type of player and will define the interface that the game and

GUI can have ǁith a plaǇer oďjeĐt. More speĐifiĐ oďjeĐts that iŶherit froŵ ͚plaǇer͛ will be ͚Minimax

PlaǇer͛ aŶd ͚Monte Carlo PlaǇer͛. This leads oŶ to polǇŵorphisŵ.
Polymorphism is a property that objects can have that means one part of a program does not need

to know what it is interacting with, simply how to interact with it. This means that the program can

be interacting with any type of player, it does not know which, and it will still be able to interact with

it effectively. In the case of this program, each player can be asked to produce a move to be made in

the game and the methods to decide which move is selected can be vastly different from one

another, yet the game does not need to know how this move is produced.

AŶother iŵportaŶt ĐoŶĐept used is the ͚faĐtorǇ patterŶ͛. This ŵethod siŵplifies the ĐreatioŶ of
objects and promotes polymorphism. To use this creation pattern, an interface must be defined that

a part of the program knows how to interact with. This interface will be common to all of the objects

created by the factory. The factory can then provide concrete objects for the program, without the

program knowing the specific implementation of the object or how to create the object itself. (18) In

this project a factory pattern will be used to create different types of player. When instantiating the

game and the players, the controlling code will not know how to create each different type of player.

The controlling code will be provided with a factory which knows how to create players and the

controlling code can then ͚ask͛ the faĐtorǇ for a tǇpe of plaǇer. WheŶ asked, the faĐtorǇ ǁill Đreate
the player and return it to the program under a common player interface. This will reduce program

complexity and code duplication, as the code for creating specific player types is only in one place, in

the factory. The code will not need to be duplicated in every place that players need to be created.

P

a
g

e
9

Implementation
The general structure of the program is described in this UML class diagram:

Figure 6 - UML Class Diagram for Dots and Boxes

This diagram describes the structure and interactions between each class in the program. The basic

operation of the program is as follows:

• StartGUI is created with an instance of PlayerFactory. Here the user can enter game options

such as size and variant and player options such as type and parameters.

• On game creation, StartGUI will ask PlayerFactory for two players which are chosen by the

user. The PlayerFactory will return these to StartGUI. StartGUI will then create a Game

instance. Finally, StartGUI will create a GameGUI instance, and will pass these player and

game instances to it as start parameters.

P

a
g

e
1

0

• The GameGUI instance can read the state of the Game instance and draw this to the screen.

It will then enter a main game loop to control move making. The game loop is as follows:

o The GameGUI instance reads from the Game instance ǁhiĐh plaǇers͛ turŶ it is. TheŶ,
depeŶdiŶg oŶ ǁhat is returŶed froŵ this plaǇers͛ isHuŵaŶ;Ϳ ŵethod, it ǁill do oŶe
of two things.

▪ If this player is a human, the GUI will make the buttons that correspond to

legal moves clickable. When a button is clicked, this will correspond to the

move the human player wants to make.

▪ If this plaǇer is Ŷot a huŵaŶ, the GUI ǁill Đall the plaǇers͛ ĐhooseMoǀe;Ϳ
method. The GUI will pass a deep copy of the game to the player so it can

make a choice. The player will then return a move to the game.

o The GameGUI instance then has the move that the player wants to make. It will send

this move to the Game instance via its take_turn() method. If this is a legal move

then the Game instance will update.

o The GUI will then read the game instance again and update its display. The loop then

returns to the start and will ask the next player for their move.

• Once the Game instance has no moves left to be made, the GUI will read the scores from the

Game instance and will then declare the winner.

This method of control and display creates a loosely coupled relationship between the Game and the

Players. The Players are only ever given a copy of the game so they can never influence or modify

the real version of the game. The players will send a move back to the GameGUI which will pass it on

to the game. The Game itself is never aware of the players who are playing the game, it is only aware

of the moves being made.

A large advantage of this design is the ease with which the program can be decomposed. Each

section of the program was created independently, in isolation of the others. This allowed an agile

method of development to be used with each section being developed, tested and verified before

moving on to the next.

Game

The first challenge to overcome when creating the game itself was how to represent the game. The

gaŵe is Đalled ͚Dots aŶd Boǆes͛, hoǁeǀer ǁheŶ the gaŵe is plaǇed the ŵost iŵportaŶt eleŵeŶts are
actually the lines, with the boxes coming after. Thinking about the game in this way created a simple

dependency. Users play the game with lines, and boxes are dependent on the lines that have been

played. This can be seen in Figure 6; the Game object

consists of Line objects and Box objects and the Box

objects consist of 4 Line objects each.

The next challenge was how to represent this

information. The obvious choice was to place all of the

Line objects in an array, but the best way to structure this

array was not obvious. When creating the game the

intention was to make it possible to create non-square

grids; this eventually led to the decision to split the lines

up into two main arrays: horizontal and vertical. These

were then split up further into two dimensional arrays

such that adjacent lines – lines that share a dot – are in

the same array, and opposite lines – lines that share a Figure 7 - Line and Box indexing scheme

P

a
g

e
1

1

box – are at the same index but are in the next array. This led to the structure in figure 7. The red

horizontal lines are indexed first left to right and then top to bottom. The green vertical lines are

indexed top to bottom and then left to right. These are placed in a three-dimensional array, with the

first index representing the horizontal or vertical collections of lines.

It was decided to represent the boxes using a simple two-dimensional array starting from the top

left. This means that when accessing the boxes it is easy to find the lines that the box is dependent

on. The line to the top of any box (i, j) will be at index (0, i, j), the bottom at (0, i+1, j), the left at (1, j,

i) and the right at (1, j+1, i).

To play the game the players must make moves and these moves equate to the lines in the game.

This means making a move is the same as choosing a line. The simple solution to making moves was

to simply send the index of the line to play to the game. This means moves are made by sending

tuples to the game in the form (o, i, j).

When the game receives a move it first checks if the move is legal. If it is a legal move then the line

that has been selected ǁill haǀe its ͚oǁŶer͛ propertǇ set to the Ŷuŵďer of the plaǇer takiŶg the
move. After this, the game will check the boxes associated with this line to see if they have been

fully enclosed by lines. This is done by looking at the index of the move and calling the

check_completed method of the one or two boxes that are connected to this line. As each Box

object stores a reference to the four lines it is comprised of it can check all four of them to see if

they have all been claimed. If no box has been completed this turn then the internal player counter

will change to the next player. If a box has been completed then the rules state that the same player

gets another turn, so the internal player counter will not increment.

This process of making moves, checking boxes and incrementing the player counter encompasses all

of the rules of the game. Players can make moves if they are legal, the boxes are claimed as points

for each player, and players can take turns in the order they should.

The process of checking if a submitted move is legal or not is simple; the game has an internal list of

all of the possible legal moves that can be made and if a move is in this list, it is legal. This list of legal

moves is generated at the start of the game when the grid is created. When moves are successfully

made they are removed from the list. This method of saving all of the legal moves at the start of the

game and then removing them from the list as they are made is a time saving effort. If it were

necessary to check all of the moves to see if the current move is legal every time then the entire grid

of lines would need to be checked every turn.

To make the representation of the game as lightweight as possible, the

game itself does not have anything to do with the display of the game or

the GUI. This initially made development difficult as the GUI was created

after the game was finished. To aid development and debugging the game

includes a method print_grid, which prints a simple ascii representation of

the game grid. This can be seen in Figure 9, where the first grid is an empty

starting grid and the second grid has had 4 moves made, (0, 0, 0), (0, 1, 0),

(1, 0, 0) and (1, 1, 0). These moves claim the top-left box in index (0, 0) for

player two.

As the game was being developed for complex computer players to play, it

required a method of returning a deep copy of itself. This is a copy of the

game in exactly the same state, but completely separate from the original

so that modifying the copy does not affect the original. As this method may

be called many times whilst a computer player is calculating their move,

Figure 8 - Example of game

print_grid method

P

a
g

e
1

2

this method needed to be as fast as possible. For this reason a game can be constructed initially with

only a height and a width input and can also be constructed using a number of input parameters.

When a copy is made it will send the current player value, list of legal moves and the arrays of lines

and boxes to the copy. The copy will then construct itself using a different constructor method that

copies the owner values of the lines and boxes, rather than using the same arrays.

GUI

The GUI was developed after the game had already been implemented. This means the GUI could be

made to be dependent on the game whilst the game is not dependent on the GUI at all. The GUI

consists of two main components; the Start Frame and the Game Frame. The Start Frame is the first

window that comes up when the game is launched and allows the user to pick all of the options that

are available for the game.

 The specific inputs have been

chosen so as to eliminate the

possibility of a user entering

bad data. The inputs that

control grid size are integer

only and can only be between 3

and 10. The player choice

inputs are dropdowns that are

populated by stored values in

the player factory. When

selecting an advanced

computer player – either

minimax or monte carlo –

inputs appear to change the

parameters for these specific

types of player. There are also

colour pickers which are

completely cosmetic choices

that simply make the game feel nicer, and a variant radio box group, which can switch between the

different variants of the game.

Figure 9 - Start Frame GUI

P

a
g

e
1

3

WheŶ the ͚Start Gaŵe͛ ďuttoŶ is ĐliĐked iŶ the start frame, the

game frame part of the GUI is created in a separate window.

This frame is sent the player and the game objects from the

start frame and displays the game grid as a series of buttons.

These buttons are dynamically made and placed on

initialisation after reading the grid from the game object. After

this point, the player or computer player can choose their

moves and they are visualised as the buttons being filled in

with their colour, as well as becoming permanently

unclickable. The buttons are unclickable by default, but when it

is a huŵaŶ plaǇers͛ turŶ the GUI ǁill read the state of the
game to find the legal moves and it will make the

corresponding buttons clickable. This limits the possible inputs

that can be made by the player strictly to the legal moves

available. As can be seen in Figure 10, each button can display

its grid index when hovering over it, as a tooltip.

The boxes are filled in with both colour and the player number

when a player captures them.

One big advantage of having a GUI dependent on the game

that has not yet been discussed is the ease of changing player types. With this implementation it is

possible to play a game with two human players that take turn clicking buttons, one human player

who will click and one computer player who will decide their own moves, or two computer players

who both play independently.

Game Variants

As preǀiouslǇ disĐussed, there are tǁo ͚offiĐial͛ ǀersioŶs of the gaŵe – ͚AŵeriĐaŶ͛ aŶd ͚Sǁedish͛.
There is also the third variant proposed by the author – ͚raŶdoŵ͛. These ǀariaŶts haǀe all ďeeŶ
implemented using inheritance. Both the Swedish and Random variants are subclasses of the

American variant, only with a modified constructor that fills in the required lines as if they are

owned by a non-player. These lines are filled in with the colour black.

Figure 11 - 'Swedish board' variant Figure 12 - 'Random board' variant

Figure 10 - Game Frame GUI

P

a
g

e
1

4

Player System

The player system is based on the hierarchy of players that can be seen in figure 6. Every type of

player inherits from the generic class PlayerBase, meaning they can share a common interface. The

HumanPlayer class is an empty implementation, with the only difference being that its ͚isHuman͛
method returns True. The ComputerPlayer class acts as a parent class for all of the computer players,

which return False from their isHuman method.

The code for the Player Factory – shown in Figure 13 – mostly consists of a simple if-elif-else

statement that can switch between the different string representations of each player. If the

͚plaǇerTǇpe͛ ǀariaďle passed iŶto ŵakePlaǇer is Ŷot iŶ the iŶterŶal list of plaǇers the faĐtorǇ siŵplǇ
returns a default Human Player. This prevents the program from crashing if the factory receives a

bad input. The factory can construct each different type of player along with the parameters they

require and returns this from the makePlayer method. Because of this, any type of player can be

made while only requiring the string name and an index. The factory can fill in any missing

parameters if they are needed.

As the factory also holds the list of player types hard coded, the dropdown selection boxes in the

StartFrame GUI can be populated directly with these. This allows new player types to be added and

removed only by updating the factory, without needing to change the GUI.

Figure 13 - Code for Player Factory

Players

There are 5 player types in the game. These are Human, Random, In-order, Minimax and Monte

Carlo.

The Human player class is an empty class. It needs no implementation as the GUI simply lets the

human click the button they want.

The Random player class is a basic computer player. When its chooseMove method is called and it is

passed a copy of the game, it uses PǇthoŶ͛s built-in random module to return a random choice from

the list of legal moves.

P

a
g

e
1

5

The In-order player is also a basic computer player. It simply returns a move from the list of legal

moves, from a predetermined index. This is the most basic strategy but can be modified by changing

the order in which moves are returned.

The Random and In-order players serve as basic first steps in creating the more advanced players,

and also serve as benchmarks for testing and comparing the more advanced players.

Minimax Player

The Minimax player was made by learning from and modifying an implementation demonstrated in

a lecture series for an Artificial Intelligence module. The original implementation that was used to

teach was for the game Pacman, written in Java. (19)

This player was a basic Minimax player, consisting of chooseMove, MinMove, MaxMove and

Evaluation methods. However, it was quickly understood that this approach would not work for Dots

and Boxes due to the irregular turn order that the rules create. Figure ϯ shoǁs aŶ ͚ordiŶarǇ͛ MiŶiŵax

game tree, in which the players take alternate turns. The game tree for a particular game of Dots

and Boxes however looks more like Figure 14. Rather than having strict alternating turns, some

moves are capturing moves. These moves, marked with an asterisk in the diagram, are moves where

the player captures a square, meaning the capturing player gets another turn. This makes the

minimax implementation more complex as the same depth of game tree can contain moves from

either player.

This problem of inconsistent turn order was solved by using and adapting the NegaMax algorithm

shown in Figure 4. The NegaMax algorithm uses one recursive method to explore the game tree,

rather than the two methods used in the basic Minimax algorithm. The NegaMax algorithm will

simply negate the value returned from its recursive calls, causing the Min and Max steps to

alternate. The solution used in the Dots and Boxes implementation takes this and introduces a

conditional step in order to determine whether or not the returned value should be minimised or

Figure 14 - Minimax state tree for Dots and Boxes

P

a
g

e
1

6

maximised. This conditional step, highlighted in Figure 15, determines whose turn it is in any

particular game state. If the Minimax player is taking a turn, then the returned values are

maximised; if the player taking the turn is not the minimax player, the returned values are

minimised. This conditional step also affects another optimisation included in the algorithm, Alpha-

Beta pruning.

Alpha-Beta pruning is a method used

to ͚pruŶe͛ the ďraŶĐhes of the gaŵe
tree under certain conditions (20).

The algorithm keeps track of the best

score so far, just as Minimax does,

and also keeps track of two values,

alpha and beta.

The alpha value is the best value that

the maximising steps can guarantee

for the player so far.

The beta value is the best value that

the minimising steps can guarantee

for the player so far.

The alpha value starts at negative

infinity and the beta value starts at

positive infinity. These values are

updated with the best score returned

so far from their respective steps.

This means that alpha keeps a record

of the highest scoring move found

and beta keeps a record of the

lowest scoring counter move found

so far. If the value for beta ever falls below the value for alpha, it indicates that this branch of the

tree cannot possibly find a better value than it has already. This is true as it is assumed the

minimising player will always pick the lower value, meaning any higher value found in this branch

will be unobtainable. This means the branch can be pruned and the algorithm will not waste time

exploring this part of the tree.

Another optimisation that has been applied to Minimax is called Iterative Deepening. This concept is

usually applied to Depth First Search to improve its runtime, but here has been applied to Minimax.

Iterative Deepening is the concept of iteratively increasing the depth of the search. This means that

initially the search starts with a max depth of 1, meaning it will search 1 move ahead and then return

the best move. Once this is completed, the max depth is incremented by 1 and the search will be

performed again to a max depth of 2.

The main reason for this optimisation being applied is so that Minimax can adhere to a time limit.

Without this extra consideration Minimax would only be able to search to a fixed depth and would

take a variable amount of time to complete this search. Using iterative deepening means that the

search can be performed to the max depth attainable in the time allowed. This turns Minimax into

aŶ ͛aŶǇtiŵe algorithŵ͛. The best score returned from any of the calls to getScore will be returned as

the best move.

This optimisation also makes Minimax adaptable. If the search space is large then Minimax will not

be able to search to a great depth, however if the search space is small then Minimax can search to a

greater depth in the same amount of time. Implementing iterative deepening means this adaptivity

Figure 15 - Minimax implementation. Conditional elements highlighted.

P

a
g

e
1

7

does not need to be defined, and the algorithm will always do the best it can do in the time it has

available.

The evaluation function is an important part of the Minimax algorithm. An evaluation function must

be tailored to the game being played if it is to be effective, it is not always enough to simply count

the scores in the state being evaluated.

The evaluation function created for this Minimax implementation is variable, meaning that it can

produce a different result from the same board depending on whose turn it is. This is important for

Dots and Boxes as the same state on a different turn can be very desirable or very undesirable.

Generally, if there is a box with three sides completed then this will lead to one of the players

sĐoriŶg oŶ the Ŷeǆt turŶ. IŶ the eǀaluatioŶ fuŶĐtioŶ, if it is the MiŶiŵaǆ plaǇer͛s turŶ theŶ ǁe ǁill
increase the heuristic score for a board with boxes that have three sides, as this means the Minimax

player can capture this box and increase their score. If we are evaluating a game state in which it is

the other plaǇer͛s turŶ theŶ ǁe ǁaŶt to aǀoid leaǀiŶg three sided ďoǆes as the other plaǇer Đould
capture the box and increase their score.

Monte Carlo Player

The implementation of Monte Carlo Tree Search (MCTS) was created following guides found online.

The algorithm itself was learned in (21) and the class structure was inspired by (22). This class

structure can also be seen in Figure 6. The Player class MonteCarloPlayer contains an instance of

MonteCarloTree. This instance of MonteCarloTree is populated with multiple MonteCarloNode

instances. The methods that make up the MCTS algorithm are contained in MonteCarloTree and in

MonteCarloNode.

The implementation created for this project works on the same principle as MCTS described in the

guides, however the methods and control logic operate slightly differently.

This is the main loop for

MCTS. This controls the

͚SeleĐtioŶ͛ step of the
algorithm and can initiate

the ͚SiŵulatioŶ͛ aŶd
͚BaĐkpropagatioŶ͛ steps.

Each pass of the loop will

first check if the current

node has not been visited,

or if the game in that state

is finished.

If these conditions are not

true then the best child of this node will become the new current node. This method, chooseChild,

also ĐoŶtrols the ͚EǆpaŶsioŶ͛ step of the algorithŵ. If the Ŷode has Ŷo Đhildren when its chooseChild

method is called then it will create children for itself and return one of these.

If the current node has not been visited before (n == 0), then the algorithm will perform a rollout

from this node. A rollout consists of making a copy of the game, getting the list of all moves left to

be made, shuffling this list, and then playing all of the moves. At the end of the rollout method, the

node will call its own backpropagate method. This will increment its visit counter (n) and will update

its win counter (t). The backpropagate method then calls the backpropagate method of its parent

node. This will ensure the values are backpropagated up the entire tree all the way to the root. Once

this is complete, the main loop will set the current node back to the root node and start again. This is

Figure 16 - MCTS Main loop implementation

P

a
g

e
1

8

performed until the time limit is reached, at which point the child of the root node with the highest

UCB value is returned.

All of the guides used to create this implementation of MCTS have one drawback; they all are limited

to making an algorithm that can choose the best move when given any state. None of the

implementations or any of the literature found online considered creating a consistent game player

that would play an entire game start to finish.

A novel optimisation of an MCTS player was developed with this consideration in mind. This

optimisation was not found anywhere online or in research papers and so may be a new technique.

The optimisation works as follows;

• When starting a new game and creating a new player an empty instance of MonteCarloTree

will be created.

• On the first turn of this player, the tree will be given a copy of the game state. This will

become the root node of the tree.

• On every subsequent turn of this player, rather than discarding the old tree and creating a

new one from scratch, the player will traverse the existing tree and locate the node

corresponding to the new state of the game. This node will become the new root of the tree.

This optimisation can save computation time throughout a game, and it means that a player using

this strategy will be slightly stronger towards the end of the game. As the tree is explored, each node

gathers data about the number of visits and wins from this position. As the existing tree already

contains some data for each node it is efficient not to discard this data where it is relevant.

The code that traverses

the tree to find the new

root node is in Figure 17.

The game object internally

saves a list of all moves

that have been made in

the game so far. This code

uses the lists in the current

root and the new game

state to determine which

moves have been made

between the root state

and the new state. It then

goes through each node in

turn, finding the child nodes that correspond to the moves that

have been made. Once there are no more moves, the new root node has been found and this can

now be used to perform MCTS. If any of the nodes do not have any child nodes, a new root node will

be built and used.

Testing
To ensure that the game is reliable and consistent, even after changes are made, a set of unit tests

have been made. These unit tests use the built-iŶ PǇthoŶ testiŶg fraŵeǁork ͚uŶittest͛. This ŵeaŶs
the tests can be made without creating a custom testing framework for the game. The unittest

module includes features that cover test methods, organisation, discovery, execution and reporting.

These tests can be run from the command liŶe ďǇ siŵplǇ eŶteriŶg ͚>python -ŵ uŶittest͛.

Figure 17 - Code to replace root node.

P

a
g

e
1

9

There are a total of 22 tests for the system that cover the game, the player system, the Minimax

player, and the Monte Carlo player. The test report can be seen in Appendix 1.

The tests for the Game cover everything from game creation to copying to move making. These tests

ensure that the game will always behave correctly even when copied and will always play by the

rules. There are also important tests that deliberately send bad input data to the Game object. These

ensure that when bad input is sent the Game will handle it correctly, either by rejecting the input or

simply crashing. When creating a Game instance with bad inputs the intended behaviour is for the

Game to crash, so a Game cannot be played with impossible boundaries.

This validation is also backed up by the GUI. As the GUI only allows certain values to be used when

creating Game and Player objects and these values are limited to only valid parameters, it is

impossible to set up a game with bad values while using the GUI. This is also true while playing the

game using the GUI. Players are only ever called on in turn and only ever get to enter one move,

which means moves cannot be entered in the wrong order. This is also helped by the design decision

to ŵake the Gaŵe oďjeĐt deĐide ǁhiĐh plaǇer͛s turŶ it is. As the gaŵe deĐides, neither the User or

the GUI has control over who is taking a turn, and so can only send the move to the game to be

rejected or accepted.

Results and Evaluation
To analyse and evaluate the game and the players that have been implemented, a series of round

robin tournaments will be performed. This tournament method has been chosen as the number of

contestants is low and games can be completed quickly (23).

Parameter Selection

Three of the players can be modified with different parameters. These are the Ordered player, the

Minimax player, and the Monte Carlo player.

Ordered Player

The Ordered player is affected by the order in which moves are returned and selected. A potential

solution for choosing the best moves in order would be to rank the moves using a heuristic, however

this is more of a best-first approach and would not lead to a static order, which is not the intention

behind this player.

The chosen solution is to take the list of legal moves returned from the game object and to take a

move at a particular index. 6 different variations of this player were tested against a random player

to compare their strengths. These variations are: first move, last move, one quarter, halfway, three

quarters and one/three quarters alternating. These correspond to where in the list the move will be

taken from when the player is asked for a move. The first move strategy will always take the first

move in the list, the halfway strategy will always take the move in the middle of the list and the

alternating strategy takes a move at the one quarter mark on one turn then the three-quarter mark

on the next turn.

These strategies were motivated by the order in which moves are returned from the game, which is

shown in Figure 7. Taking moves from different points in this list should roughly correspond to

where they are on the board.

P

a
g

e
2

0

 The results from these trials are

shown in Figure 18. These trials were

all done on a 4x4 game grid with the

random player as player 1 and the

ordered player as player 2. 500 games

were played against each version of

ordered player.

The win rates shown in the results are

all close to 50%, which is expected

against a random player.

The author expected the 25-75

alternating strategy to perform the

best, as this would roughly

correspond to picking moves close to

the middle of the board, however this

is not the case.

The strategy that performs the best is

the halfway strategy, with a win rate of 62%. This implies that moves in the middle of the list are

generally stronger. At the start of the game the halfway point of the list corresponds to the top-left

vertical line. If player 1 makes moves either side of this halfway point, the halfway point of the list

will then correspond to the bottom-right horizontal move. It is possible that this alternating of top-

left and bottom-right moves creates a strategy that is marginally more effective than random move

selection.

Minimax Player

Initially, the depth that minimax searched to was a variable parameter. However, once iterative

deepening was implemented this was no longer an option. At this point, the max depth reachable by

minimax became the only parameter to modify. Increasing the max depth would allow minimax to

search deeper and further into the game, but only if it is still within the time limit. Consequently, the

max depth value is not often reached as the time limit is reached first.

While the time limit is a parameter that can be modified to improve performance, increasing the

time limit gives the Minimax player an advantage over the other players. For this reason, the time

limit is kept at a static value that is the same for both the Minimax and Monte Carlo player. This

makes the comparison fairer, as both players are given the same resources. The problem with

increasing the time limit also shows when running tournaments. The longer each player is given to

choose each move, the longer the entire tournament will last. Due to this, time limit is balanced

between speed and performance.

Monte Carlo Player

The Monte Carlo player has one parameter that can be varied to modify performance. This value is

the exploration coefficient c, which is a part of the UCB formula shown in the Monte Carlo

background section. Modifying the exploration coefficient will make the MCTS algorithm explore

more or less. With a high exploration coefficient, the algorithm will be biased towards nodes that

have not been visited as much. With a low ĐoeffiĐieŶt the algorithŵ ǁill ͚plaǇ it safe͛ aŶd ŵore ofteŶ
choose the nodes that have a higher known score.

(15) shows that the value for the exploration coefficient is theoretically optimal at √2, however the

best value for a specific application should be chosen experimentally. To determine the best value

Figure 18 - Ordered player strategy comparison.

first move 25% 50% 75% 25-75 last move

0%

10%

20%

30%

40%

50%

60%

70%

Ordered Player winrate vs Random

player

P

a
g

e
2

1

for Dots and Boxes, trials of different values were performed. Values ranging from 1.0 to 5.0 were

tested to discover which values result in higher win rates.

 These trials were all

performed on a 3x3

game grid. All were

performed with the

random player as

player 1 and the

Monte Carlo player as

player 2. Each c value

was tried in 100

games. The results of

these trials, shown in

Figure 19, show no

obvious trend or

optimal value. The

horizontal line

represents the

average win rate of

ϲϰ.ϱϵ%, ǁhiĐh is oŶlǇ ŵargiŶallǇ ďetter thaŶ the ordered plaǇer͛s optiŵal ǁiŶ rate. As there is no

obvious optimal value, the value of √2 will be used for the final tournaments.

Tournaments

3x3

The first tournament to take place will be the tournament on a 3x3 game grid. This tournament

consists of each player competing against each other player in 100 games, meaning each player will

play 800 games total. 200 of these games will be against copies of themselves, so each player plays

600 games against all of the other players.

In this tournament, the Minimax and Monte Carlo players each get 1 second to choose their move.

This is because the small grid size leads to a smaller branching factor, so the complex players do not

require a long time to reach a suitable depth.

As the 3x3 grid has 4 boxes, ties are possible. These are not included in Figure 20. The full

tournament results, including ties, are in Appendix 2. The results are presented here in a table for

readability.

Figure 20 - 3x3 tournament results.

Figure 20 shows the results of each set of 100 games. The percentages correspond to the win rate of

player 1. For visibility, the results in which player 1 came out on top are coloured green. Blue results

PLAYER 2
PLAYER 1 RANDOM ORDERED MINIMAX MONTE

CARLO

RANDOM 37.11% 42.00% 100.00% 83.00%

ORDERED 58.00% 100.00% 100.00% 99.00%

MINIMAX 3.00% 0.00% 100.00% 0.00%

MONTE CARLO 30.00% 5.00% 100.00% 71.00%

Figure 19 - Results of trials to determine optimal c value.

1

1
.2

1
.4

1
.4

1
4

2
1

1
.6

1
.8 2

2
.2

2
.4

2
.6

2
.8 3

3
.2

3
.4

3
.6

3
.8 4

4
.2

4
.4

4
.6

4
.8 5

0

10

20

30

40

50

60

70

80

90

100

c value

Monte Carlo player wins vs Random player

P

a
g

e
2

2

mean Player 2 won. While the results show the win rate of player 1, they do not factor in draws. For

example, the match up of Monte Carlo vs Minimax shows a win rate of 0% for Monte Carlo. While it

is true that the Monte Carlo player did not win a single game, the Minimax player did not win 100.

Minimax only won 68 out of 100 games, with 32 draws.

As the table of results shows, the Minimax player is the strongest player. The Minimax player only

lost three games in total over the course of the entire tournament; these were three games in which

the random player won. This shows that the simple strategy implemented by Minimax in its

evaluation function is useful when competing against other players without any game knowledge.

The Monte Carlo player is shown to be the second strongest player. It came out on top of the

uninformed players in every case, showing that the Monte Carlo method is also effective against

uninformed strategies.

There is evidence to show that on a 3x3 grid, player 1 is in a stronger natural position than player 2.

This is best shown by the matchup of Minimax vs Minimax. In this case, the player 1 Minimax

instance won every game, showing that player 1 has more control over the game and can win more

often than player 2. This is also true for the Monte Carlo player, though the results are not as

definitive.

This is also backed up by the fact that while the Monte Carlo player did not win a single game against

the Minimax player, it did draw 32 of its games when Minimax was player 2. The Monte Carlo player

is clearly not as strong as the Minimax player, but when it is player 1 it can force a draw more often.

However, the matchup of random vs random does not support this conclusion. While the table in

figure 20 shows that the random player that went first achieved a win rate of 37.11%, this does not

mean that player 2 achieved a 62.83% win rate. The results table in appendix 2 shows the full

picture; player 2 won 52 games out of 100, while player 1 won 36, with 12 draws. This shows a slight

bias to player 2, which is not in line with the results from Minimax and Monte Carlo.

4x4

A game of Dots and Boxes on a 4x4 grid is different from a game on a 3x3 or 5x5 grid. This is because

the 4x4 grid has 9 boxes, meaning the players cannot draw.

In the 4x4 tournament each player will play 100 games as in the other tournaments, but the time

limit for the Minimax and Monte Carlo players is increased to 5 seconds. This is an attempt to see if

the performance of these players can be further improved over the uninformed players.

Figure 21 - 4x4 tournament results

Figure 21 shows the results of the 4x4 tournament. This tournament shows again that Minimax is

the strongest player that has been implemented, winning 100% of its games. It also supports the

conclusion that the Monte Carlo player is the second strongest, coming out on top of the random

and ordered players in most of the games it played.

PLAYER 2
PLAYER 1 RANDOM ORDERED MINIMAX MONTE

CARLO

RANDOM 53.00% 66.00% 100.00% 86.00%

ORDERED 38.00% 0.00% 100.00% 74.00%

MINIMAX 0.00% 0.00% 6.00% 0.00%

MONTE CARLO 24.00% 26.00% 100.00% 44.00%

P

a
g

e
2

3

The results of this tournament show a slight difference in strength between the ordered and the

raŶdoŵ plaǇer. The ordered plaǇer͛s ǁiŶ rates of ϲϲ% aŶd ϲϮ% iŶdiĐate that it is marginally stronger

than the random player. This implies that the ordered strategy of making top-left and bottom-right

moves is at least somewhat stronger than a completely random strategy.

In contrast to the first tournament, the second tournament does not indicate that player 1 has a

stronger position. The result of random vs random is 53/47, and Monte Carlo vs Monte Carlo is

44/56. Neither of these results strongly support the conclusion that either position is stronger from

the start. The results of minimax vs minimax show the opposite of this; player 2 won 94 games out of

100, which would seem to support the conclusion that player 2 has a stronger position with more

board control. This is in line with the real solution to the 4x4 game of Dots and Boxes presented by E.

Berlekamp (5), which shows that player 2 can win every game on this grid size.

5x5

The results from the 5x5 size tournament took the longest to obtain, as there are more moves to

make in the larger game. The complex players also got 5 seconds to think about each move in this

tournament. The decision to give this much time to the players was made due to the larger

branching factor of this board. If the players were given less time they would not be able to search

to an effective depth, meaning they would be less effective on the larger board.

Similar to the 3x3 board previously, a 5x5 board has an even number of boxes. This means that it is

possible to draw on this board. As before, draws are not factored into the results table below. They

are included in Appendix 3 however, in the full list of results.

Figure 22 - 5x5 tournament results

As in the previous two tournaments, Minimax comes out on top. This is another strong result for

Minimax, as it won all 600 of the games it played against other players. This is also the strongest

result yet for Monte Carlo, winning 303 of its 600 games against other players.

This tournament showed no significant results for the random and ordered players. With win rates

of close to 50% against each other, there is no indication of one being stronger than the other. This

may mean that the strategy that the ordered player uses loses its effectiveness on other board sizes.

It was somewhat effective on the 4x4 board but lost any advantage it may have had on the larger

5x5 board.

There was also no evidence from the random or monte carlo player that would indicate either player

position is stronger. These matchups also had win rates close to 50% for either player, showing no

strong evidence to prefer either one.

The Minimax player did show a strong preference, however. The Minimax player that was player 1

won all of its matches against the player 2 Minimax player. This would seem to point to player 1

being stronger, but this may not be the case. As the minimax algorithm that has been implemented

PLAYER 2
PLAYER 1 RANDOM ORDERED MINIMAX MONTE CARLO

RANDOM 49.00% 47.00% 100.00% 74.00%

ORDERED 46.00% 100.00% 100.00% 76.00%

MINIMAX 0.00% 0.00% 100.00% 0.00%

MONTE CARLO 18.00% 27.00% 100.00% 51.00%

P

a
g

e
2

4

is completely deterministic, it does not have any random elements like monte carlo, this may mean

that the minimax player 1 simply wins every time with the same board, starting conditions and

resources.

Performance and Ranking

After completing the

tournaments on multiple

board sizes, the players

can now be statistically

compared over all of the

games.

It is clear that Minimax is

the strongest algorithm in

every setting, achieving

win rates near 100% in

every match up on every

board size.

It also shows that Monte

Carlo is stronger and

performs better than the two uninformed players. The Monte Carlo player lost to Minimax, but

when competing against the uninformed players it won more often than it lost or drew.

These observations lead to an initial ranking, with Minimax being the strongest and Monte Carlo

being the second strongest. This is shown in Figure 23; it shows the total number of wins achieved

by each player on each board size. The bars clearly show Minimax winning far more than any other

player, and show Monte Carlo taking the second most wins.

 The two other players, random and

ordered, require a closer look to

rank. Statistically the ordered player

won more games overall than the

random player, however this is only

by a very small margin and is not

enough to definitively say that

ordered is the better player. To

clarify this, another set of trials were

performed. As the random and

ordered players are the uninformed,

non-complex players, these trials

could be completed very quickly.

This means it was possible to

simulate 10000 games in a short

span of time. This should show with

more precision which player comes

out on top more often.

Figure 24 shows the results of these

trials. The random and ordered

players played sets of 10000 games against each other as both player 1 and player 2. These were

played on all of the previously tested board sizes. The matches of ordered vs ordered were not

3x3 Board

Player 1 P1 Wins Draws P2 Wins Player 2

Random 4218 1551 4231 Random

Random 3938 1297 4765 Ordered

Ordered 5251 1169 3580 Random

4x4 Board

Player 1 P1 Wins P2 Wins Player 2

Random 5025 4975 Random

Random 3665 6335 Ordered

Ordered 5953 4047 Random

5x5 Board

Player 1 P1 Wins Draws P2 Wins Player 2

Random 4752 570 4678 Random

Random 2917 578 6505 Ordered

Ordered 6558 558 2884 Random

Figure 24 - Table of results for large tournaments.

0

500

1000

1500

2000

3x3 4x4 5x5 Total

Total Wins for Each Player

Random Ordered Minimax Monte Carlo

Figure 23 - Total number of wins achieved by each player.

P

a
g

e
2

5

performed, as these matches always have the same outcome.

Figure 24 shows a clearer picture of which player is stronger. On all three boards, the ordered player

wins more games than the random player, regardless of whether it is player 1 or 2. The large number

of matches played means that these results likely show real trends and not just anomalies.

This shoǁs that the ordered plaǇer͛s strategǇ is stroŶger thaŶ a strategǇ of piĐkiŶg ŵoǀes at raŶdoŵ.

With these new results, it is now possible to make a ranking of the four players. This ranking is as

follows.

1. Minimax

2. Monte Carlo Tree Search

3. Ordered

4. Random

Determining if player 1 or player 2 has a stronger initial position is still difficult even with all of the

results gathered. Figure 25 shows all of the wins for player 1 and player 2 from the three initial

tournaments totalled

up. As can be seen, on

the 3x3 board player 1

won more often, on

the 4x4 board player 2

took the lead and on

the 5x5 board player 1

came out on top. The

largest difference is for

the 3x3 board, with

player 1 winning

62.85% of games. The

other boards have

smaller differences and

so there is even less

confidence in those

results.

The 4x4 board should show a clear advantage for player 2, as there is a known strategy for player 2

to win every time on this board. The fact that this is not obvious in the statistics shows that the

methods used to determine this are not good enough to show the correct result. It may be that the

players do not have enough of a well-defined strategy to exploit the advantage that certain positions

come with.

Future Work
The implementation of the game and the player system has been designed with future work in mind.

The game has been designed to be standalone and accessible; the player system has been designed

so that the specific implementation of a player does not matter to the game. As creating new players

and incorporating them to the game is designed to be as simple as possible, it would be easy to use

this implementation to test many other players and strategies.

One possible area of future work is analysing different board sizes. As the board can be made any

0

500

1000

1500

2000

2500

3000

3x3 4x4 5x5 Total

Total Wins for Player Position

Player 1 Player 2

Figure 25 - player 1 vs player 2 overall results

P

a
g

e
2

6

size and this does not matter to the player, this implementation can be used to analyse many other

shapes and sizes of board.

Improvements to Minimax

There are many improvements that could be made to the minimax algorithm. Firstly, the evaluation

function can be improved to incorporate more game knowledge about specific situations. Currently,

the evaluation function only factors in game score and number of complete edges for each box. The

evaluation function could be updated to recognise chains of boxes and be taught to make beneficial

sacrificing moves. These two parts of the game are recognised strategies that humans use to play

and win. Most games will end up with one or more chains of boxes that can all be captured at once;

having control of the chains usually means that the controlling player can win or force a tie (3). In

many situations keeping control of the chains requires sacrificing boxes, something that the minimax

player currently does not do intentionally.

Improvements to MCTS

The current implementation of MCTS does not use any game knowledge, nor does it use any of the

advanced features that MCTS can incorporate. One of the first steps to improving MCTS would be to

parallelise the algorithm. (24) MCTS has the advantage of being very easy to run in parallel, with

multiple different methods of parallelisation. Doing this, especially when run on a more powerful

computer with multiple processor cores, would speed up the execution of MCTS dramatically, thus

improving its performance.

MCTS can also be improved with game knowledge. It can incorporate an evaluation function, similar

to Minimax, that can weight nodes based on their static evaluation score. If this is an effective

evaluation function, it will further improve the performance of MCTS.

Yet another potential improvement is to the rollout step of the algorithm. Currently, a rollout

consists of playing purely random moves from a game state until the end. This can be improved by

implementing some other strategy as part of the move selection. For instance, the selection strategy

used by the current ordered player could improve performance, as this has been proven to be more

effective than random move selection.

There is also, of course, the possibility of incorporating machine learning and neural networks. These

methods have been proven to be very effective and have produced some of the best computer

players of various games in the world to date. (9)

Conclusions
The aims of this project that were outlined in the important conclusions section included creating an

implementation of the game, creating working computer players and analysing game playing

strategies. Most of these objectives have been successfully achieved, with the exception of

determining which player position is stronger.

A working and reliable implementation of the game Dots and Boxes has been created. The time

spent designing and implementing the game in a modular way paid off; the game is reliable and the

player system is very loosely coupled to the game system. This can be seen in the implementation

section of the report, and in Figure 6, the UML class diagram. The game is proven to be reliable with

the suite of unit tests created and described in the testing section.

A working GUI has also been created to make playing the game enjoyable and easy. The GUI has

been designed so that users cannot enter data that would cause the game to crash. It has also been

designed so that humans can play against each other, against the computer or can watch two

computer players play against each other.

P

a
g

e
2

7

The computer players created for the game are successful in their implementation. They play reliably

and are consistent in their strategies. Data was collected by simulating many games with each of the

players, on multiple different board sizes. This data was analysed and a ranking was produced,

ordering the players from strongest to weakest. This ranking is Minimax, Monte Carlo Tree Search,

Ordered then Random. Multiple potential improvements to the players that could be made have

been identified after analysis of the data obtained and further research. These are described in the

future work section of the report.

The only aim that has not been achieved is determining if either player 1 or player 2 is in a stronger

position on any board size. This was attempted and data was gathered, but the data was

inconclusive and no definitive answer was found. This is likely because the computer players that

have been implemented are not strong enough to exploit the strength inherent in either position. To

determine this in future, stronger players would need to be produced and more trials would need to

be performed.

Reflection
In reflection, I believe my project has been a success. Most of the aims that were laid out were

achieved, and those that were not have been understood.

The time spend designing and implementing the game and the player system paid off as it allowed

me to gather all the data I required easily. With a reliable game and player system I could set

tournaments running in the background for multiple days at a time without fear of the program

crashing.

The modular design of the system also helped to simplify the development process. As the program

could be very easily decomposed into discrete sections, each part could be developed in isolation.

I have realised while undertaking this project the importance of flexibility in development. Initially, I

planned equal amounts of time to develop the game, the GUI, the player system and then the

players. When I came to develop the program I got through the first parts very quickly. I then made

the decision to move on to other parts of the program early once I had finished these parts, rather

than wasting the time I had by sticking rigorously to my schedule. Because of this, I had far more

time to develop the later parts of the program and I could spend longer bug fixing, tweaking and fine

tuning the advanced players. This extra time spent on the advanced computer players meant that

they were better and more developed than I could have hoped for with the time previously

allocated.

If I were to do this project again, I would change the way in which I collected my results. I did not

have a very organised method for collecting results, simply collecting them when I could. I believe it

would be beneficial to have a more rigorous testing schedule, determining what I need before

collecting data. If I had done this, I would only need to perform each test/trial/tournament once. As

it was, I collected tournament data multiple times due to changes that were made to the players

after performing the tournaments. If I had planned out my testing, I would have done all of the

parameter selection testing first and then completed all of the tournaments after I had already

determined the optimal configurations of the AI players.

P

a
g

e
2

8

Table of Figures
Figure 1 - Full game example of Dots and Boxes on a 3x3 grid. (25) -- 2

Figure 2 - Minimax algorithm pseudocode (23) --- 4

Figure 3 - Minimax state tree diagram -- 5

Figure 4 - 'NegaMax' algorithm pseudocode--- 5

Figure 5 - Four steps of the MCTS algorithm (24) --- 7

Figure 6 - UML Class Diagram for Dots and Boxes -- 9

Figure 7 - Line and Box indexing scheme -- 10

Figure 8 - Example of game print_grid method --- 11

Figure 9 - Start Frame GUI -- 12

Figure 10 - Game Frame GUI --- 13

Figure 11 - 'Swedish board' variant Figure 12 - 'Random board' variant ---------------- 13

Figure 13 - Code for Player Factory --- 14

Figure 14 - Minimax state tree for Dots and Boxes --- 15

Figure 15 - Minimax implementation. Conditional elements highlighted. --- 16

Figure 16 - MCTS Main loop implementation -- 17

Figure 17 - Code to replace root node. --- 18

Figure 18 - Ordered player strategy comparison. --- 20

Figure 19 - Results of trials to determine optimal c value. --- 21

Figure 20 - 3x3 tournament results. -- 21

Figure 21 - 4x4 tournament results --- 22

Figure 22 - 5x5 tournament results --- 23

Figure 23 - Total number of wins achieved by each player. -- 24

Figure 24 - Table of results for large tournaments. -- 24

Figure 25 - player 1 vs player 2 overall results --- 25

Table of Abbreviations & Synonyms

Abbreviation Meaning & Synonyms Description

MCTS Monte Carlo Tree Search The Monte Carlo Tree Search

method is used by a player

agent to explore the decision

tree.

UCB Upper Confidence Bound Formula used by MCTS to give

nodes weighting based on

their utility and an exploration

parameter.

OO, OOP Object-Oriented, Object-

Oriented Programming

Programming paradigm

focused on the interactions

between defined objects.

GUI Graphical User Interface Visual interface used to

interact with a digital

computer system.

UML Unified Modelling Language Modelling language designed

and used to describe systems.

file:///C:/Users/Matt/Documents/University/YEAR3/PROJECT/final_report_final.docx%23_Toc72926529
file:///C:/Users/Matt/Documents/University/YEAR3/PROJECT/final_report_final.docx%23_Toc72926530
file:///C:/Users/Matt/Documents/University/YEAR3/PROJECT/final_report_final.docx%23_Toc72926532
file:///C:/Users/Matt/Documents/University/YEAR3/PROJECT/final_report_final.docx%23_Toc72926533
file:///C:/Users/Matt/Documents/University/YEAR3/PROJECT/final_report_final.docx%23_Toc72926535
file:///C:/Users/Matt/Documents/University/YEAR3/PROJECT/final_report_final.docx%23_Toc72926536
file:///C:/Users/Matt/Documents/University/YEAR3/PROJECT/final_report_final.docx%23_Toc72926537
file:///C:/Users/Matt/Documents/University/YEAR3/PROJECT/final_report_final.docx%23_Toc72926538
file:///C:/Users/Matt/Documents/University/YEAR3/PROJECT/final_report_final.docx%23_Toc72926541
file:///C:/Users/Matt/Documents/University/YEAR3/PROJECT/final_report_final.docx%23_Toc72926542
file:///C:/Users/Matt/Documents/University/YEAR3/PROJECT/final_report_final.docx%23_Toc72926543
file:///C:/Users/Matt/Documents/University/YEAR3/PROJECT/final_report_final.docx%23_Toc72926544
file:///C:/Users/Matt/Documents/University/YEAR3/PROJECT/final_report_final.docx%23_Toc72926545
file:///C:/Users/Matt/Documents/University/YEAR3/PROJECT/final_report_final.docx%23_Toc72926546
file:///C:/Users/Matt/Documents/University/YEAR3/PROJECT/final_report_final.docx%23_Toc72926550
file:///C:/Users/Matt/Documents/University/YEAR3/PROJECT/final_report_final.docx%23_Toc72926552

P

a
g

e
2

9

Appendices

Appendix 1

Unit test result report.

P

a
g

e
3

0

Appendix 2

3x3 tournament full results.

Player 1 P1 Wins Draws P2 Wins Player 2

Random 36 12 52 Random

Random 58 9 33 Ordered

Random 3 31 66 Minimax

Random 30 9 61 Monte Carlo

Ordered 42 12 46 Random

Ordered 100 0 0 Ordered

Ordered 0 0 100 Minimax

Ordered 5 2 93 Monte Carlo

Minimax 100 0 0 Random

Minimax 100 0 0 Ordered

Minimax 100 0 0 Minimax

Minimax 100 0 0 Monte Carlo

Monte Carlo 83 11 6 Random

Monte Carlo 99 0 1 Ordered

Monte Carlo 0 32 68 Minimax

Monte Carlo 71 7 22 Monte Carlo

Appendix 3

5x5 tournament results.

Player 1 P1 Wins Draws P2 Wins Player 2

Random 49 4 47 Random

Random 46 3 51 Ordered

Random 0 0 100 Minimax

Random 18 2 80 Monte Carlo

Ordered 47 3 50 Random

Ordered 100 0 0 Ordered

Ordered 0 0 100 Minimax

Ordered 27 0 73 Monte Carlo

Minimax 100 0 0 Random

Minimax 100 0 0 Ordered

Minimax 100 0 0 Minimax

Minimax 100 0 0 Monte Carlo

Monte Carlo 74 4 22 Random

Monte Carlo 76 0 24 Ordered

Monte Carlo 0 0 100 Minimax

Monte Carlo 51 0 49 Monte Carlo

P

a
g

e
3

1

References
1. Solving Dots and Boxes. Barker, Joseph K, and Korf, Richard E. 2012, Proceedings of the Twenty-

Sixth AAAI Conference on Artificial Intelligence, Vol. 26, pp. 420-426.

2. La Pipopipette: nouveau jeu de combinaisons. Lucas, Édouard. s.l. : Paris: Gauthier-Villars et fils,

1895, L'arithmétique amusante, pp. 204-209.

3. Chapter 16: Dots and Boxes. Berlekamp, Elwyn R, Conway, John H and Guy, Richard K. 2, s.l. :

Academic Press, 1982, Winning ways for your Mathematical plays, Volume 3, Vol. 3, pp. 507-550.

4. Improving Monte Carlo Tree Search With Artificial Neural Networks without Heuristics. Cotarelo,

Alba, et al. 5, 2021, Applied Sciences, Vol. 11, p. 2056.

5. Haran, Brady and Berlekamp, Elwyn. How to always win at Dots and Boxes - Numberphile.

YouTube. [Online] 12 January 2015. https://www.youtube.com/watch?v=KboGyIilP6k.

6. Wilson, David. Dots-And-Boxes Analysis Results. [Online] [Cited: 01 04 2021.]

https://wilson.engr.wisc.edu/boxes/results.shtml.

7. Zur Theorie der Gesellschaftsspiele. Von Neumann, J. 1928, Mathematische Annalen, Vol. 100, pp.

295-320.

8. Mastering the game of Go with deep neural networks and tree search. Silver, David, et al. 2016,

Nature, Vol. 529, pp. 484-489.

9. Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm. Silver,

David, et al. s.l. : Cornell University, 2017.

10. Champandard, Alex J. AiGameDev. [Online] 12 August 2014. [Cited: 14 April 2021.]

https://web.archive.org/web/20170313041719/http://aigamedev.com/open/coverage/mcts-rome-

ii/.

11. Monte Carlo Methods. Johansen, A.M. 2012, International Encyclopedia of Education (Third

Edition), pp. 296-303.

12. Abramson, Bruce. The Expected-Outcome Model of Two-Player Games. Columbia : Department

of Computer Science, Columbia University, 1987.

13. An Adaptive Sampling Algorithm for Solving Markov Decision Processes. Chang, Hyeong Soo, et

al. 2005, Operations Research, Vol. 53, pp. 126-139.

14. Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. Coulom, Rémi. Turin,

Italy : Springer, 2006, Computers and Games, 5th International Conference, pp. 29-31.

15. Finite-time Analysis of the Multiarmed Bandit Problem. Auer, Peter, Cesa-Bianchi, Nicolò and

Fischer, Paul. 2002, Machine Learning, Vol. 47, pp. 235-359.

16. Choudhary, Ankit. Analytics Vidhya. [Online] 2019. [Cited: 20 03 2021.]

https://www.analyticsvidhya.com/blog/2019/01/monte-carlo-tree-search-introduction-algorithm-

deepmind-alphago/.

17. Riverbank Computing Limited. PyQt5==5.15.2. Dorchester : Riverbank Computing Limited, 2020.

18. TutorialsPoint. Tutorials Point. [Online] [Cited: 15 March 2021.]

https://www.tutorialspoint.com/design_pattern/factory_pattern.htm.

P

a
g

e
3

2

19. Shockaert, Steven. CM3112 Artificial Intelligence. Cardiff : Cardiff University, 2020.

20. Geeks for Geeks. GeeksforGeeks. [Online] 2019. https://www.geeksforgeeks.org/minimax-

algorithm-in-game-theory-set-4-alpha-beta-pruning/.

21. —. GeeksforGeeks. [Online] 2019. https://www.geeksforgeeks.org/ml-monte-carlo-tree-search-

mcts/.

22. Baeldung. Baeldung. [Online] 2020. https://www.baeldung.com/java-monte-carlo-tree-search.

23. Byl, John. Organizing Successful Tournaments-4th Edition. Ontario : Human Kinetics, 2014.

9781450460279.

24. Parallel Monte-Carlo Tree Search. Guillaume, M.J-B., Chaslot, Mark H.M. and Winands, Jaap van

den Herik. Beijing : Springer, 2008, Computers and Games, 6th International Conference, pp. 60-71.

978-3-540-87607-6.

25. Tiger66. Wikimedia. [Online] 21 11 2011. [Cited: 01 04 2021.]

https://commons.wikimedia.org/wiki/File:Dots-and-boxes.svg.

26. A Comparative Study of Game Tree Searching Methods. Elnaggar, et al. 2014, International

Journal of Advanced Computer Science and Applications., Vol. 5, pp. 68-77.

27. Rmoss92. Wikimedia. [Online] 3 April 2020. [Cited: 20 04 2021.]

https://en.wikipedia.org/wiki/File:MCTS-steps.svg.

