

A Standalone Crypto Currency Seed Analyser

(suggested by the South Wales Police)

One Semester Individual Project – 40 Credits

Final Report

Author: Andre Mansley (1821796)

Supervisor: Michael Daley

Moderator: Stefano Zappala

Report Contents

1 Introduction ... 4

1.1 Project Scope and Problem 4

1.2 Aims and Objectives 4

2 Background Research 5

2.1 Crypto Currencies 5

2.2 Blockchain Technology 5

2.3 Wallets and Recovery Seeds............... 6

2.4 Existing Tools 7

3 Project Plan .. 8

3.1 Development Methodology 8

4 Specification and Design 9

4.1 Overview: .. 9

4.2 Functional Requirements 9

4.2.1 User Story 9

4.2.2 The Functional Requirements 9

4.2.3 Non-Functional Requirements . 11

4.3 System Design and Architecture........ 12

4.3.1 User Interface Design 12

4.3.2 Website Flow 13

4.3.3 Blockchain Analysis 14

4.3.4 Code Structure 14

4.3.5 Pseudo Code 16

5 Implementation .. 17

5.1 Technologies and Tools Used 17

5.2 Final Implemented Design 17

5.3 Blockchain Analysis & Code............... 20

5.3.1 Changes to the Implementation20

5.3.2 Functionality Implementation .. 20

6 Testing ... 26

7 Future Work .. 30

7.1 Future Implementation Idea 1: 30

7.2 Future Implementation Idea 2: 30

7.3 Feature Implementation Idea 3: 30

7.4 Feature Implementation Idea 4: 30

7.5 Summary ... 30

8 Conclusion ... 31

9 Reflection & Evaluation 32

9.1 Overview .. 32

9.2 Programming Skills 32

9.3 Time Plan & Organisation 32

9.4 Challenges .. 32

9.5 Supervisor meetings 32

9.6 Future Projects 32

10 Glossary .. 33

11 References: ... 34

Table of Figures
FIGURE 1: COINMARKETCAP CRYPTOCURRENCY RANKINGS 5

FIGURE 2: EXAMPLE OF CHAINED BLOCKS 5

FIGURE 3: BLOCKCHAIN.COM SEARCH RESULT 6

FIGURE 4: IAN COLEMAN SCREENSHOT 7

FIGURE 5: DEVELOPMENT TIME PLAN 8

FIGURE 6: ACTOR AND USE CASES 10

FIGURE 7: INITIAL WEB APPLICATION DESIGN 12

FIGURE 8: COLOUR PALLET USED IN THE APPLICATION 13

FIGURE 9: FLOWCHART OF THE WEB APPLICATION 13

FIGURE 10: BLOCKCHAIN ANALYSIS FLOWCHART 14

FIGURE 11: METHODS AND VARIABLES TO BE USED......... 15

FIGURE 12: INITIAL WEB APPLICATION DESIGN............... 17

FIGURE 13: FINAL WEB APPLICATION DESIGN 17

FIGURE 14: INITIAL HEADER DESIGN 18

FIGURE 15: FINAL HEADER DESIGN 18

FIGURE 16: INITIAL DERIVATION SETTINGS DESIGN 18

FIGURE 17: FINAL DERIVATION SETTINGS DESIGN 18

FIGURE 18: INITIAL MAIN BODY CONTENT DESIGN 19

FIGURE 19: FINAL MAIN BODY CONTENT DESIGN 19

FIGURE 20: OUTPUT OF A SUCCESSFUL WALLET ANALYSIS 19

FIGURE 21: OUTPUT OF NO RESULTS FOUND 19

FIGURE 22: OUTPUT OF A PDF EXPORTATION 19

FIGURE 23: A LIST OF DERIVED WALLET ADDRESSES 27

FIGURE 24: BLOCKCHAIN CLASS BEING INITIALISED 27

FIGURE 25: BITCOIN BLOCKCHAIN ANALYSIS RESULTS 28

FIGURE 26: ETHEREUM BLOCKCHAIN ANALYSIS RESULTS .. 28

FIGURE 27: POSSIBLE UI OUTPUTS FROM THE BLOCKCHAIN

ANALYSIS .. 28

FIGURE 28: EXAMPLE OUTPUT OF A SUCCESSFUL WALLET

ANALYSIS .. 29

FIGURE 29: TIMES TAKEN: BITCOIN BLOCKCHAIN (WALLETS

WITH A BALANCE) ... 29

FIGURE 30: TIMES TAKEN: BITCOIN BLOCKCHAIN (WALLETS

WITH NO BALANCES) .. 29

 FIGURE 31: TIMES TAKEN: ETHEREUM BLOCKCHAIN

(WALLETS WITH NO BALANCES) 29

Abstract

Cryptocurrencies are assets/currencies that run on

a cryptographically secured blockchain that can be

used as investments or as a currency to send,

exchange or store value. Many people who invest

in cryptocurrencies do so legally, however, some

people may use cryptocurrencies for illegal

activities. The project I am undertaking will be to

develop a web application that enables

investigators to analyse a retrieved cryptocurrency

wallet recovery seed and determine if any

associated wallet addresses contain any

cryptocurrency value that can be recovered.

This report provides technical documentation of

the design and development of the Standalone

Crypto Currency Seed Analyser that I have created.

The purpose of the cryptocurrency seed analyser

application is to help Police Forensic/Digital

investigators save a lot of time whilst they analyse

a retrieved wallet recovery seed from an

investigation. This project will be working towards

the pro┗ided Hrief ┘hiIh states, さA standalone

cryptocurrency seed analyser. There are tools like

iancoleman.io – but what would be of significant

value would be a tool that would analyse a

recovery seed from a crypto wallet to output

known addresses that it would use. Then a means

of exporting this information to cross-reference

the blockchain. So, in essence, if we have a

recovery seed, the investigator wants to as quickly

as possible understand if there is any value in

recovering the wallet because cryptocurrency may

be present.さ.

This report will discuss the functionalities that I

have implemented into the web application such

as blockchain analysis and cross-referencing that is

used to analyse potential cryptocurrency wallet

addresses associated with an entered mnemonic

wallet recovery seed to determine whether any of

the wallet addresses contain any cryptocurrency

that can be recovered.

I will also be outlining the system architecture via

diagrams to help illustrate the step-by-step

processes involved. The code that has been

created to implement the functionality of the

application has also been documented to help

provide a clear understanding of how each process

of the application functions. I will then proceed to

perform tests against the specified requirements

to determine whether the application meets

expectations and then outline further future work

and functionality that could be implemented.

Acknowledgments

I would like to thank my supervisor Michael Daley

for all the support and advice that he has provided

me throughout this project. I wish you the best

and I hope you have a great retirement!

1 Introduction
Cryptocurrencies are digital currencies and the

first and most well-known cryptocurrency is

Bitcoin which was developed by someone under

the alias name of け“atoshi Nakaﾏotoげ HaIk iﾐ
2008/2009 during the last economic recession.

These types of currencies run on a technology

called a Blockchain which is a decentralised

publicly distributed ledger that uses cryptography

to ensure that all transactions made on the

Blockchain are secure, anonymous, and

immutable.

Cryptocurrencies are stored on addresses, also

known as Crypto Wallets. These addresses which

are comprised of a long string of numbers and

letters can be used to send and receive

cryptocurrency across the blockchain, eliminating

the need for an intermediary such as Banks.

The project I am undertaking will be to develop a

tool that can analyse a recovery seed of a wallet

that will have been obtained during an

investigation to determine how much

cryptocurrency is being held within the wallet and

whether it is worth recovering the funds held

within it.

1.1 Project Scope and Problem

Cryptocurrency transactions on the Blockchain are

anonymous and cannot be linked back to an

iﾐdi┗idualげs ideﾐtit┞ (uﾐless tradiﾐg oﾐ aﾐ e┝Ihaﾐge
where KYC (Know Your Customer) is mandatory).

The anonymity of cryptocurrency usage can lead to

a rise in digital crime and therefore a lot of

cryptocurrencies may be stored in wallets that

may be retrieved during an investigation.

To help the police investigate cybercrime involving

digital currencies I will be developing a web

application that will take in a wallet recovery seed

as an input and will output known addresses as

well as the value of the cryptocurrency being held

within the wallet. This will enable forensic police

investigators to quickly and efficiently determine if

there is any cryptocurrency within the wallet being

investigated and whether it is worth recovering

the funds. During my initial contact with the police

to gather and clarify project requirements they

stated, さTo seize cryptocurrency, it requires quite a

lengthy application to get the authorisation. This is

done prior to recovering a wallet due to time

restrictions. If we could rely on a tool to check

seeds beforehand it would save a lot of time!ざ.

Therefore, to assist them and speed up

investigations, the application I will be developing

will aim to provide them results containing

known/used wallet addresses and the balances of

the wallets associated with the recovery seed they

have retrieved.

1.2 Aims and Objectives

The overall aim of this project is to develop an

easy-to-use web application that will analyse a

wallet recovery seed to determine known

addresses and then cross-reference the blockchain

to output the value of the cryptocurrency present

inside the wallet.

Aim 1: The first aim of this project will be to

develop an easy-to-use interface that will allow

the user to enter a wallet recovery seed as a string.

Objectives: To achieve this aim, the following

objectives must be met:

a. Design a text box input that takes in a

wallet recovery seed as a string (Approx.

12 to 24 random English words. i.e.

ふhaﾏﾏer, pyraﾏid, doﾐkey…ぶ
b. Desigﾐ aﾐ けAﾐal┞seげ Huttoﾐ that ┘ill start

the analysing process of the entered

recovery seed

c. Design an area of the application that will

be used to output the returned results of

the seed analysis

Aim 2: The second aim will be to analyse the

entered wallet recovery seed and determine a list

of output known addresses

Objectives:

a. Recover the wallet associated with the

provided recovery key

b. Extract the wallet address (a long string of

numbers and letters) that can then be

used to cross-reference the blockchain

Aim 3: The third aim will be to cross-reference the

Blockchain and output the value of cryptocurrency

being held within the wallet.

Objectives:

a. To display the amount of cryptocurrency

inside the wallet being analysed (returned

as values in the format £0.00

b. Retrieve and display the results within 5

seconds

2 Background Research

Before starting the development of the

Cryptocurrency Seed Analyser application. I will be

researching various topics that will expand my

knowledge and facilitate development. The

research areas involved will include

cryptocurrencies, blockchain technology, wallets

and recovery seeds, and then other applications

that provide similar functionality to the proposed

application that I will be developing.

2.1 Crypto Currencies

Cryptocurrencies, as previously stated are a form

of digital currency which uses Blockchain

technology and cryptography to function. Many of

the cryptocurrencies on the market are projects

which aim to bring real use cases to the world. For

example, the new and current trend is Defi

(Decentralised Finance) which uses blockchain

smart contracts to verify and create contracts

without the need for central governance such as

Banks and Exchanges (Eng-Tuck Cheah 2021).

Other types of fast-growing projects include

borrowing/lending, IoT-related projects, synthetic

asset creation of real-world assets, gaming, and

many more.

There are currently 8514 cryptocurrencies in the

market as of today according to CoinMarketCap

(Cryptocurrency Prices, Charts And Market

Capitalizations | CoinMarketCap. 2021) which is

one of the most popular websites that lists

cryptocurrencies, their rankings, as well as other

useful information such as their descriptions and

which exchanges the coin can be traded on.

Figure 1: CoinMarketCap Cryptocurrency Rankings

The total cryptocurrency market capitalisation,

which is the value of all cryptocurrencies put

together is currently sitting at approximately

$1.6Trillion after the recent surge in prices across

the entire market. Especially for Bitcoin which has

risen from approximately $4,000 to $58,000 within

a year and is ranked as the number 1

cryptocurrency and the 8th largest asset in the

world in terms of market capitalisation making it

worth more than Facebook, Tesla, and Visa

according to Companies Market Cap (Assets

ranked by Market Cap -

CompaniesMarketCap.com. 2021).

Whilst many people who invest and trade in

cryptocurrency and Bitcoin are doing so legally,

there will be some that will use cryptocurrency for

cybercrime and other criminal activities due to its

anonymity and the market still being unregulated.

Some privacy-focused coins in the market

prioritise anonymous transactions. These types of

coins hide the identities of the user as well as the

amount of cryptocurrency being held within a

wallet. This can make it very difficult to track a

wallet and its value. Some of the most used

privacy coins include Monero, ZCash, Dash, Verge,

Horizen, and Beam (SETH 2021). Due to the

anonymity of these privacy coins, it would be very

difficult to analyse a wallet and retrieve the value

of cryptocurrency being held in these types of

cryptocurrency wallets. Therefore, the application

I will be developing will use the Bitcoin Blockchain

and Ethereum Blockchain to retrieve the value of

cryptocurrency held within Bitcoin and Ethereum

wallets because these are the two most popular

cryptocurrencies.

2.2 Blockchain Technology

A Blockchain is a decentralised and distributed

database consisting of chained blocks that have

been secured cryptographically to provide

transparency, immutability, and most importantly,

security. Blockchains work as a peer-peer network

with no central authority involved and rely on

computers to act as nodes to validate transactions.

Once all nodes on the network agree to a

consensus, the transactions are added to a block

and then chained to the previous block.

Figure 2: Example of Chained Blocks

On the Bitcoin blockchain, each block is

approximately 1MB in size which contains many

transactions, a timestamp for each transaction, as

well as a cryptographic hash of the previous block

which is used to link all the blocks together. An

example of a cryptographic hash may look like this:

1395cf5e4ec872a1036ad408b8294d49384c598133

24437ee54afb16b1cc7c4f (This is a cryptographic

hash.)

The process of transacting on the Bitcoin

blockchain is as follows (Blockchain Tutorial: Learn

Blockchain Technology (Examples). 2021):

1. Someone makes a transaction, from one

wallet to another

2. The transaction is broadcasted to the

blockchain nodes

3. Blockchain nodes (computers) validate

the transaction

4. Transactions are stored in blocks and then

the block is appended to the Blockchain

permanently

The first blockchain was developed over 10 years

ago by Satoshi Nakamoto, the creator of Bitcoin.

However, it was not till recently that Blockchain

has started to become recognised as an emerging

technology that can provide a whole range of

benefits in the technological world, and for

businesses. Some of the advantages of Blockchains

according to IBM include greater transparency,

enhanced security, improved traceability, an

increase in speed and efficiency, and lastly, lower

costs (Hooper 2021).

Blockchains can be public or private. The Bitcoin

blockchain and Ethereum Blockchain that I will be

using for my project are public. This means that all

transactions sent and received from wallets, and

the value of cryptocurrency stored in these wallets

are easily viewable to all (no personal identity is

attached). There are websites such as

Blockchain.com (Blockchain.com Explorer | BTC |

ETH | BCH. 2021) which enable people to easily

view all this information and search for wallet

addresses.

From this website, Blockchain addresses, block

numbers, and transactions can be searched. The

output from a search on this platform would result

in the following format being received. See Figure

3 below.

Figure 3: Blockchain.com Search Result

From searching that blockchain address, we can

see the following information:

• The Bitcoin wallet address

• Number of transactions made from/to

wallet

• The total value of money received

• The total value of money sent

• The balance/value of the wallet currently

The project I am undertaking will require me to

search blockchain to retrieve the amount of

cryptocurrency being held within a wallet address

that will be derived from the entered wallet

recovery seed. To search the blockchain, I will be

using the API provided by Blockchain.com. This will

enable me to pass an xPub wallet address as a

parameter, and retrieve the information listed

above. An xPub wallet address is the main wallet

public address that can hold multiple wallet

addresses within it.

Searching the blockchain with an xPub address will

return a list of associated addresses that have

been used, the balances within each, and all the

transactions that have been made from/to each

address.

2.3 Wallets and Recovery Seeds

Cryptocurrency wallets are addresses on the

Blockchain which people can use to send and

receive crypto. A wallet address is comprised of a

long string of numbers and letters. An example of

a Bitcoin wallet address can be seen below:

1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa

Cryptocurrency can only be sent across its own

blockchain. For example, a Bitcoin address can

only send Bitcoin to another Bitcoin address.

A Bitcoin address cannot send Bitcoin to an

Ethereum address etc. otherwise the funds are lost

and cannot be retrieved.

A user can create a new wallet at any time in

which upon creating they are provided with a

public key and a private key. The private key is

presented to the user as a list of 12 to 24

randomised English words which are selected from

a predefined BIP39 dictionary list with 2048 words.

These are known as BIP39 mnemonic recovery

seeds which can be used to recover/access the

wallet if needed. This makes it very important to

keep private keys secure and safe as others will be

able to get access to the wallet if they obtain the

recovery seeds.

An example of a BIP39 Mnemonic recovery seed:

rookie tiger abstract patient solar opera cattle

debate shrimp finish flower party

The web application that I am developing will take

in a BIP39 mnemonic recovery as an input such as

the one above and will output known addresses,

and then cross-reference the Blockchain to

determine the value of cryptocurrency being held

within the wallet.

2.4 Existing Tools

An existing tool that provides similar functionality

is Ianocoleman.io (BIP39 - Mnemonic Code. 2021).

This tool takes in a set of BIP39 Mnemonic words

and derives the BIP39 private seed equivalent and

a BIPンヲ root ke┞ ┘hiIh is kﾐo┘ﾐ as the けﾏaster
pri┗ate ke┞げ. This ﾏaster pri┗ate ke┞ is theﾐ used
to derive a list of all the potential wallet addresses

that can be used from the entered mnemonics.

Figure 4: Ian Coleman Screenshot

This web application allows for different types of

BIP derivations. BIP stands for Bitcoin

Improvement Protocol. There are currently 5

protocols which include BIP32, BIP44, BIP49,

BIP84, BIP141. These different BIP variants result

in different derivations of wallet addresses. Most

wallet addresses use the BIP32 and BIP44

derivations.

Example of Ian Coleman Mnemonic Code

Converter:

Using the BIP39 mnemonic words previously

mentioned, the following outputs will be derived

and shown:

Bip39 Seed:

0ebfe3c2aa3af5aa2741a64e36d6ce8a442d8971c8

898ac6be2f07bb48a7756baf0d68a930b04868a915

a012d07303011726a1cec401c930e2f4e472b6c778

83

BIP Root Key:

xprv9s21ZrQH143K2FMSgzJ3ECYgJ7PazVcLggT5jbG

wpftgsyBVT8zMBCcgEXUeKyfBQ4G5syrXKhJFpTE4

BR8TRamRy34ca3r3sWyfR8BTdBT

Using a BIP44 wallet derivation method, the

following xPubKey will be derived:

Account Extended Public Key:

xpub6DWFzqfdFEknaazWRRZVmFWCK2nQn8jmCB

5tpe1eSzoJFgKziEtpY1E7aQ62DB4G64odGsrGHBzo

zkpeBPJtNNXmLyeawiD2HMoGhTgfDLP

The account extended public key which I will

reference as the xPubKey throughout this report

will be the value that my application will use to

cross-reference against the blockchain to retrieve

used wallet addresses, and balances.

The source code provided by this tool is under the

MIT license and is free for anyone to use, copy,

modify, publish, and sell. I will be using the source

code from this existing tool (iancoleman/bip39.

2021) to convert the entered mnemonic words

into an xPubKey. I will be redesigning the user

interface as well as implementing new extended

functionality that will meet the requirements set

out in the project brief and requirements.

3 Project Plan

Figure 5: Development Time Plan

3.1 Development Methodology

The development methodology that I will be using

for my project is the waterfall method. The

advantage of using the waterfall methodology for

this project is that it enables me to gather and

understand all the requirements before starting on

the development of the application. Even though

the maximum project timeframe is 15 weeks long,

this still provides enough time to develop a fully

functional web application using the waterfall

methodology.

The stages of the waterfall methodology include

requirement gathering, designing,

implementation, testing of the system, and then

the final stage being deployment.

As I start the development, I will firstly be

designing the application which includes the

website structure and the visual user interface that

the user would interact with.

After the design stage, I will move to the

implementation stage. This is where I will be

implementing the main functionality and features

of the application which includes the seed analyser

and cross-referencing of the blockchain.

Lastly, after the main application features and

technical functionality have been implemented, I

will move to the testing stage where I will test the

application thoroughly to ensure that all features

have been implemented and are functional and

that all technical issues, if any, are eliminated.

4 Specification and Design

4.1 Overview:

This section will describe the system specifications

and designs of this project including the functional

and non-functional requirements.

The functional and non-functional requirements

are important to identify before the start of the

project as these describe how the system should

function, the features and functionality expected

from the software, and how this functionality will

be achieved.

The user interface design and system architecture

design will be detailed and described along with

diagrams to provide a graphical insight into the

functionality of the cryptocurrency seed analyser.

4.2 Functional Requirements

The functional requirements detailed below are

the features and functionality that must be

developed into the proposed web application to

ensure that the requirements outlined in the

project brief are met.

4.2.1 User Story

さAs a IyHerIriﾏe iﾐ┗estigator, I ┘aﾐt to He aHle to

analyse a cryptocurrency wallet recovery seed so

that I can quickly and efficiently determine if any

associated wallets hold any cryptocurrency that

can be recovered.ざ

I have acquired a cryptocurrency wallet seed in the

form of a BIP39 mnemonic seed. I would like to be

able to analyse this seed to determine if there is

any cryptocurrency being held and how much is in

the wallet.

• As a user, I can enter the wallet recovery

seed into the application.

• As a user, I can derive the public key and

private key from the recovery seed I have

entered.

• As a user, I can quickly view wallet

addresses associated with the recovery

seed.

• As a user, I can view the total balance of

cryptocurrency being held within the

wallets and the balance within each

wallet.

• As a user, I can export all the information

derived and retrieved into a

downloadable PDF.

4.2.2 The Functional Requirements

FR1: The application must allow for the input of a

BIP39 mnemonic seed

The BIP39 mnemonic seed will have been

recovered by the police during an investigation. To

analyse the recovered seed, they must be able to

enter the mnemonic seed into the application.

Acceptance Criteria:

• Textbox must be positioned in a location

that is easily accessible and modifiable

• Textbox input must be of a string data

type

• Textbox placeholder must state what

input is required

• Input must conform to the BIP39 word list

FR2: The application must output an xPubKey for

the entered mnemonic seed

Acceptance Criteria:

• The system must derive the correct and

valid xPubKey from the entered

mnemonic seed

FR3: The application must cross-reference the

Blockchain to output known used wallet

addresses

To find known used wallet addresses, the system

will use a Blockchain API to find and retrieve

wallets associated with the xPubKey.

Acceptance Criteria:

• The Blockchain API must return all known

addresses associated with the xPubKey

• Wallet addresses returned via API must

be displayed to the user in an easy-to-

read format

FR4: The application must state the balances of

all addresses found

The system will use the Blockchain API to retrieve

and display wallet balances.

Acceptance Criteria:

• The Blockchain API must return the sum

balance of all wallets found

• The Blockchain API must display the

balance of each wallet individually

• Wallet balances must be displayed in a

clear readable format such as

£0,000,000.00

FR5: The application should provide an option to

export all the retrieved information in PDF format

The application will enable the user to quickly and

efficiently export data retrieved from the

mnemonic seed analysis as a PDF.

Acceptance Criteria:

• The export to PDF button must be easily

accessible and provide the user with a

one-click export

• The PDF report must contain the

mnemonic seed, the xPubKey, the

retrieved wallet addresses, and the wallet

balances.

4.2.2.1 Use Cases

The use case diagram shown below depicts the

functionality of the system that the user can

interact with. In this situation, the user of the

system will be the forensic investigator who wants

to analyse a cryptocurrency wallet recovery seed.

Figure 6: Actor and Use Cases

The use cases listed below detail the conditions of

the appliIatioﾐげs ﾏaiﾐ features aﾐd fuﾐItioﾐalit┞.

ID: Use Case 1

Title: Bip39 Mnemonic Seed

Description: The user can enter a mnemonic seed

Primary Actor: User (Investigator)

Preconditions: The application has loaded

Main Flow:

1. The user has loaded the application

2. The user enters the BIP39 mnemonic seed

that was gathered during an investigation

3. The application checks whether the

entered seed is valid

4. The application derives a wallet public key

and a wallet private key

Alternative Flow:

Post Conditions: A wallet public key and wallet

private has been derived (with default derivation

settings)

ID: Use Case 2

Title: Derivation Settings

Description: The user can modify the derivation

settings

Primary Actor: User (Investigator)

Preconditions: A BIP39 mnemonic seed has been

entered

Main Flow:

1. The user selects a derivation tab (BIP32,

BIP44, BIP49, BIP84, BIP144

2. The user modifies the derivation settings i

3. A new wallet public key and a wallet

private key are derived by using the

derivation settings and mnemonic seed

Alternative Flow:

Post Conditions: A wallet public key and wallet

private has been derived (using their entered

derivation settings)

ID: Use Case 3

Title: Blockchain Search.

Description: The user can analyse the blockchain.

Primary Actor: User (Investigator).

Preconditions: A BIP39 mnemonic seed has been

entered, derivation settings have been set, and a

cryptocurrency has been selected for analysis.

Main Flow:

1. The user has IliIked the け“earIh
BloIkIhaiﾐげ Huttoﾐ

2. The application fetches all form data

entered by the user, and the results from

derivation (Cryptocurrency selected, the

derivation type selected, the wallet public

key (xPubKey)

3. The application determines which

Blockchain is required to be used for the

analysis of the xPubKey

4. The application passes in the xPubKey

into the appropriate Blockchain API.

5. The application fetches and retrieves all

data associated with the xPubKey and

sorts through the returned data

6. The application displays the wallet

balances, and wallet addresses to the

user

Alternative Flow:

Post Conditions: The user can view all wallet

balances and wallet addresses that are associated

with the wallet public Key that was derived from

the BIP39 mnemonic seed and derivation settings

that they had entered.

ID: Use Case 4

Title: Exportation of derived information

Description: The user can export the information

that was retrieved during the analysis of the

mnemonic seed

Primary Actor: User (Investigator)

Preconditions: The user has retrieved results from

the blockchain analysis

Main Flow:

1. The user selects clicks the export button

2. The application compiles all the

information used throughout the

application (derivation settings,

mnemonic seed, public and private keys,

wallet address, balances, and

transactions)

3. Information is formatted into a

downloadable PDF

Alternative Flow:

Post Conditions: A downloadable PDF is created

4.2.3 Non-Functional Requirements
These non-functional requirements state how the

system should behave what the user should expect

from using the

1. The application should be available and

functional 99% of the time.

2. The blockchain API should retrieve and

display data to the user within 5 seconds.

3. The application text must be easy to read

and understandable.

4. The application must gather all

information and create a PDF for

exportation within 10 seconds of the user

clicking the export button.

4.3 System Design and Architecture

4.3.1 User Interface Design

Figure 7: Initial Web Application Design

Overview

The wireframe picture above illustrates the layout

and structure of the user interface that I will be

designing for the cryptocurrency seed analyser

application.

The application interface will be split into 3 main

sections; the application header which will allow

for seed input, a left column for derivation

settings, and a central content area which will

provide the output of the derivations and

blockchain results.

This section of the report will describe these 3

layout areas, the content that they will contain,

and the colour scheme that will be applied.

The Header

The website header will consist of a logo/website

title, a text input box for the mnemonic seed, and

a dropdown option to the side of it that will enable

the user to select the coin/blockchain that will be

analysed. The mnemonic seed input box has been

placed at the top and inside the header so that it is

always accessible. To ensure the input will always

be accessible, the header will be fixed to the top of

the page, so the page scroll does not affect its

position.

Derivation Settings

The wallet address derivation settings have been

placed in a column on the left side of the page.

This allows for easy access and requires no page

scroll, unlike the Ian Coleman website where the

user is required to do a lot of scrolling. This section

will contain a tabbed menu for the different BIPs

(BIP32, BIP44, BIP49, BIP84, BIP141) and each

tabbed content will provide the user with text

input boxes that they can modify for the derivation

process.

Main Website Content

The main website content area will consist of 3

sections. The top section which sits just under the

website header will display the number of wallet

addresses found, the total balance value of all

these wallet addresses, the number of transactions

made, and the money outflow/inflow. There will

also be an export button in this section which

upon clicking, will compile all the information

derived from the seed analysis and blockchain

process into a PDF file that can be downloaded by

the user.

This section has been placed at the top under the

header because it will display the most important

and relevant information that the investigator will

want to see first upon the seed analysis

completion.

The second section in the main website body will

list the wallet addresses that have been found

through cross-referencing of the blockchain. The

results from using a Blockchain API will be

displayed as a table in this section with the

Ioluﾏﾐs, けWallet Addressげ, けTraﾐsaItioﾐs Madeげ,
けMoﾐe┞ Iﾐげ, けMoﾐe┞ Outげ, aﾐd けTotal Wallet
BalaﾐIeげ. The number of rows in this table will be

determined by the number of unique wallet

addresses retrieved.

The third section will be displayed just under the

wallet address table. This section will contain

another table that will display all the transactions

made to and from all the wallet addresses that will

have been found.

All this information will be displayed inside the

report upon exportation as mentioned previously.

Colour Scheme

The website will be designed in a dark and light

colour scheme. This will consist of a dark coloured

background with white text in the left column and

white background with black text in the main

website content area which will be used to display

wallet addresses and balances.

I have chosen to develop the web application in

these colours because they provide contrast, and it

ensures that text and outputs are easily readable.

I have decided to use an orange colour within the

application because the Bitcoin logo is orange and

Bitcoin is the largest and most well-known

cryptocurrency in the market.

I will be developing with the colour palette shown

below:

Figure 8: Colour Pallet Used in the Application

4.3.2 Website Flow

The flowchart to the right describes the flow of

actions that are performed when using the

application from start to finish.

Once the web application had loaded, the user will

be able to enter a BIP39 mnemonic seed and

modify the derivation settings which will affect the

output of the BIP39 seed and xPubKey that is

derived.

The BIP39 mnemonic recovery seed must conform

to the standardised BIP39 word dictionary else the

application will not continue with the process until

all entered words are valid.

If both the mnemonic seed and derivation settings

they have specified are valid, the system will then

proceed to the next stage in the process where a

private seed and xPubKey are derived.

Once these values have been derived, the

application will then use a Blockchain API and pass

in the xPubKey as a search parameter. If the

parameter is valid and the wallet address is not

empty, then the application will calculate the total

balance of all associated wallet addresses and then

display out all information to the user including all

the wallet addresses, the balance inside each

wallet address, the number of transactions that

have been made, and all the transactions that

have been made to and from the wallets.

Figure 9: Flowchart of the Web Application

The user will then be provided a button to export

all the information that has been derived and

retrieved during the seed analysis process. This

information will be compiled into a downloadable

PDF which they will be able to access at any time

without them being required to go through the

entire process again.

4.3.3 Blockchain Analysis

The web application will require an algorithm that

detects the blockchain that the user is requiring to

be analysed and then retrieve results based on the

derived wallet address. The blockchain analysis

algorithm will utilise API connections and will pass

in the wallet public key as a parameter and

retrieve wallet balances and transactions. A

flowchart diagram of the blockchain analysis

process is structured below.

Figure 10: Blockchain Analysis Flowchart

Upon submission of the mnemonic seed and the

coin to be analysed, the code I will be developing

will store each of these values inside a variable

that can be used and referenced when required.

The cryptocurrency coin that the user has chosen

to analyse against the entered mnemonic seed will

be passed through a function that will determine

which blockchain is required to be used in the next

stage of the process. For example, a user selecting

Bitcoin will return the blockchain.com API address

from the function.

The derived wallet public key address will then be

appended to the API address as a parameter

before connecting to the API and executing the

query.

The API query will then return any data associated

with the passed-in wallet address public key

parameter as JSON data. The section of JSON data

that lists the wallet balances will be passed to a

function that will process the balances and the

wallet addresses will be passed through to another

function. These 2 functions will then call another

function whilst passing the JSON data as a

parameter along with API headers, which will

create visually neat tables that can be displayed to

the user on the application.

4.3.4 Code Structure

The code I will be developing will be written into

one class Ialled けBloIkIhaiﾐげ. This Ilass ┘ill He
called upon user submission of the mnemonic

recovery seed. The purpose of the Blockchain class

is to process all user input and then find the

appropriate cryptocurrency blockchain to perform

the analysis on.

This analysis will include using an API to find the

addresses, balances, and transactions of a

specified wallet address. This class will then

proceed to extract the relevant information from

returned results and display the information out to

the user in a clear and readable format which will

be in the format of a table.

The function names, variables, data types, and

purpose of each function are described below.

Function: blockchainNetwork

Parameters: None

Functionality:

- Detects which Blockchain API to use

- Returns an array containing the API

address and API result headers

Function:

- processData

Parameters:

- blockchainData (Data Type: JSON Array)

- apiDetails (Data Type: Array)

Functionality:

- calls showBalances()

- calls showAddresses()

- calls showTransactions()

Function: showBalances

Parameters:

- balances (Data Type: JSON Array)

Functionality:

- Read balances

- Convert balances to a GBP format

- Display balances to the user

Function Name: showAddresses

Parameters:

- addresses (Data Type: JSON Array)

- apiAddressHeaders (Data Type: Array)

Functionality:

- calls createTable()

Function: showTransactions

Parameters:

- transactions (Data Type: JSON Array)

Functionality:

- calls createTable()

Function: createTable

Parameters:

- tableData (JSON Array)

- headers (Array)

Functionality:

- creates and populates a table with the

data passed through to the function

Function: blockchainAPIConnection

Parameters: apiDetails (Array)

Functionality:

- Read array which contains the API

website URL and API result headers which

are required later

- Asynchronous API call function with

results returned as JSON format

- Returns JSON format from function to be

processed

Function: blockchainSearch

Parameters: None

Functionality:

- The first function that is called upon user

submission

- Detects which derivation, and

cryptocurrency coin was selected for

analysis

- Creates and initialises a new Blockchain

Class and passes in the wallet address

public key and the select cryptocurrency

network

Class Diagram

The following class diagram illustrates the

functions and variables that will be used within the

Blockchain class.

Figure 11: Methods and Variables to be Used

4.3.5 Pseudo Code

The following pseudo-code describes how the

blockchain analysis will function. This code will be

responsible for extracting details from the form

submission, determine which blockchain is

required for analysis, use API queries to search the

selected blockchain, and then lastly, process the

data and display the results to the user.

CLASS BLOCKCHAIN

Function: constructor

Declare variable: coin (String)

Declare Variable pubkey (String)

Function: initialise

Call function blockchainNetwork

Call function blockchainAPIConnection

Function: blockchainNetwork

Declare variable: blockchain (string)

Declare variable: apiDetails (Array)

Declare variable: apiAddressHeaders (Array)

Switch: Coin

Determine which blockchain is required

Set variable blockchain to a blockchain API address

Set variable apiAddressHeaders to the JSON keys

that will be received from API results

Set variable apiDetails to blockchain and

apiAddressHeaders

Return the apiDetails

Function processData(Array: blockchainData,

Array: apiDetails)

Call function showBalances(JSON: wallet values)

Call function showAddresses(JSON: walletAddress)

Function showBalances(JSON Array: balances)

Read JSON Data: final wallet balance

Read JSON Data: total money sent

Read JSON Data: total money received

Convert balances into a currency format

Display balances to the user

Function create Table(Array: tableData, Array:

tableHeaders)

Create element table

Create element table header

Create element table body

FOR header in tableHeaders:

Create table header column with

tableHeaders value

FOR the number of results in tableData:

 Loop through Array and create a row

 FOR data in tableData:

 Create a column inside a row

Append row to table body

Append table body to the table element

Return the table to the function that initiated

Function showAddresses(Array: addresses, Array:

apiAddressHeaders)

Call function createTable(Array: addresses, Array:

apiAddressHeaders)

Display table with addresses to the user

Function blockchainAPIConnection(Array:

apiDetails)

Declare variable: apiAddr (String)

Declare variable: blockchainData (JSON Array)

Set variable apiAddr to API Blockchain URL

Run a query that connects to the blockchain API

Set variable blockchainData to API JSON results

Call function processData(JSON Array:

blockchainData, Array: apiDetails)

END CLASS

Function blockchainSearch()

Declare variable: pubkey (String)

Declare variable: derivationType (String)

Declare variable coinValue (String)

Declare variable blockchainConnection (String)

Get derivation method selected by the user and

store in variable derivationType

Get the value of the public key from chosen

derivation method and store it in variable pubkey

Set variable coinValue to the user-selected

cryptocurrency

Call and Create a new Blockchain Class(String:

coinValue, String: pubkey)

5 Implementation

This section will outline the implementation

process that was used to develop the

cryptocurrency seed analyser application including

the tools, technologies, and software that have

been used, the final user interface design of the

application, and explanations of the code that

provide the functionality I have developed.

5.1 Technologies and Tools Used

The web application that I have developed was

built using HTML, CSS, and JavaScript. The HTML

and CSS were used for front-end design whilst the

JavaScript was used for the backend functionality.

This required an Integrated Development

Environment, commonly known as an IDE. The IDE

software that was used to code the application

┘as けVisual “tudio Codeげ which is a code editor

made and designed by Microsoft.

Existing software and code have been

implemented into the application to provide the

functionality which analyses the mnemonic private

seed entered by the user to derive a list of

potential wallet addresses. These wallet addresses

are then used for the blockchain search & analysis

that I have developed. This existing functionality

has been implemented into the application

because the Police (the client) stated that they are

essentially requiring an expansion of the current

existing seed analyser application that they are

using (BIP39 - Mnemonic Code. 2021).

Before implementing this code from Ian Coleman, I

investigated the licensing which has been listed

under the MIT license (The MIT License | Open

Source Initiative. 2021). This license states that

permission has been granted to use, copy, modify,

merge, publish, distribute, sublicense, and/or sell

copies of the software. After implementation of

this functionality, I proceeded to develop and

implement additional features on top such as

analysing user input, cross-referencing and

searching on the appropriate blockchain, retrieval

and output of balances, and detecting known

wallet addresses that have been used. Another

functionality I implemented was the exportation of

all the information that is extracted from the

blockchain to a downloadable PDF. The code

behind some of these functionalities I have

discussed in Section 6.3, Blockchain Analysis &

Code.

5.2 Final Implemented Design

The final design that I have created resembles a

similar structure as drawn and detailed in section

5.3.1, User Interface Design. Figure 12 below

depicts the original proposed design for the

application.

Figure 12: Initial Web Application Design

Throughout the development of the user interface,

some structural modifications were made. Details

of the modifications made to the design will be

described under their respective headings below.

Figure 13 is the result of the application user

interface design.

Figure 13: Final Web Application Design

Colour Scheme

The colours used throughout the application have

remained the same as initially described.

The left column background has used the

hexadecimal colour #1F2025. I have made this

section darker than the rest of the application to

provide some contrast to the white colour used

and to attract the userげs atteﾐtioﾐ to the

derivation settings that they can modify.

The rest of the application has used a white colour

(#FFFFFF) for simplicity and readability. Some

heading titles and the information submitted by

the user have been displayed in an orange colour

(#F7931A) to ensure they stand out to the user as

the values associated with them are the important

values returned by the blockchain search.

The Header

The header has had the biggest modification out of

all sections compared to the original design.

Originally, the header, shown in Figure 14 below,

would have taken up the full width of the

application and be positioned along the top.

Figure 14: Initial Header Design

However, whilst designing the application, I

decided to remove the header and move the

content initially in this section into a smaller

section that is now situated at the top of the main

body content.

The fiﾐal けheaderげ Ioﾐteﾐt Iaﾐ He seeﾐ iﾐ Figure 15

below which consists of a title, an input box for the

mnemonic wallet recovery seed, a dropdown

menu for the cryptocurrency network they would

like to be analysed, a button that upon clicking will

connect to a blockchain and fetch details

associated with the derived xPubKey, and lastly, an

export button which will extract all information

into a PDF that the user can download.

Figure 15: Final Header Design

Derivation settings

Figure 16: Initial Derivation Settings Design

The design of the derivation settings has not

changed much compared to the original prototype

which can be seen in Figure 16.

The derivation settings section consists of a tabbed

menu row. These tabs provide the user with

different derivation methods. BIP32, BIP44, BIP49,

BIP84, and BIP141. Below the tabbed menu, there

is a BIP32 Derivation Path which details the

derivation method being used.

The input boxes below allow for modification of

derivations. The けpurposeげ is the BIP ﾐuﾏHer

(Bitcoin Improvement Proposal), the けcoinげ iﾐput is

auto-filled with a value based on the

cryptocurrency that the user selects (positioned

next to the mnemonic seed input). The けAIIouﾐtげ is
the starting index of the wallet addresses that is

used upon derivation and the External/Internal is

whether an internal chain/ external chain is to be

used. Internal are wallet addresses that are not

visible outside of a wallet, and external are wallet

addresses that are meant to be visible outside of

the wallet.

These four inputs, along with the entered

mnemonic seed are used to derive the wallet

xPubKey. This functionality comes from the

existing code that has been implemented.

Upon derivation, the Account Extended Private

Key, and the Account Extended Public Key

(referenced as xPubKey throughout the report) are

displayed below.

Figure 17: Final Derivation Settings Design

Main Body Content

The main body content is where the wallet balance

totals and a list of used wallet addresses with

value inside them are displayed out to the user.

The image below illustrates the layout of the initial

design for the application.

Figure 18: Initial Main Body Content Design

The final design of the main body content that I

have implemented can be seen below in Figure 19.

This design is displayed to the user before they

have entered the mnemonic seed and started the

blockchain analysis process. The final design has

stayed very accurate to the initial drawing. Both

contain a row that outputs the balances and

another section underneath which lists all

associated wallet addresses.

Figure 19: Final Main Body Content Design

One new section that I have added here is the

け“earIh ‘esults forげ. This Ioﾐtaiﾐs all the
information and settings that the user-specified

such as the mnemonic seed, the derivation path,

and the cryptocurrency blockchain that they would

like to be analysed.

The けE┝port as PDFげ Huttoﾐ has Heeﾐ ﾏo┗ed froﾏ
this section into the header, next to the

application title.

Upoﾐ IliIkiﾐg the け“earIh BloIkIhaiﾐげ Huttoﾐ ┘hiIh
can be seen in Figure 15 iﾐ the seItioﾐ けThe
Headerげ, the appliIatioﾐ ┘ill fill the Ioﾐteﾐt ┘ith
the wallet address, and its balance as well as the

total money received and sent to each address.

See Figure 20 for an example of the final output

that is shown to the user.

Figure 20: Output of a Successful Wallet Analysis

If no addresses from the blockchain results contain

a balance, aﾐ output statiﾐg けNo ‘esults Fouﾐdげ ┘ill
be displayed to the user. This will indicate that the

wallet addresses associated with the mnemonic

seed entered are empty and contain no

value/cryptocurrency.

Figure 21: Output of No Results Found

Exportation of Results:

After the analysis process, the user will be able to

export all the information returned from the

blockchain analysis results as a downloadable PDF.

The PDF that is created upoﾐ IliIkiﾐg the けE┝portげ
button, will essentially be a snapshot of the main

body content where all the information used for

derivation, the total calculated balances of the

analysed wallet, and the wallet addresses a.

re-listed. An example of the PDF output can be

seen in Figure 22.

Figure 22: Output of a PDF Exportation

5.3 Blockchain Analysis & Code

Overview

This section will describe how the functionality of

the application has been implemented as well as

the code to some of the functionality which

includes extracting information from the

blockchain, processing and outputting the relevant

information to the user and the exportation of the

information as a PDF.

5.3.1 Changes to the Implementation

During the design and specification stage of the

project, it was initially planned to use the derived

xPubKey (Account Extended Public Key) to search

the blockchain and retrieve all known/used wallet

addresses. However, when it came to the

implementation stage, I realised this would not be

possiHle due to ﾏaﾐ┞ HloIkIhaiﾐ APIげs ﾐot allo┘iﾐg
an xPubKey to be entered, let alone a yPubKey,

and zPubKey (derived using a BIP49, and BIP84

derivation Path respectively).

It was then decided that the most appropriate way

of implementing the blockchain analysis would be

to use a list of individual wallet addresses that are

derived upon entering a mnemonic seed and the

derivation settings. The derivation of these wallet

addresses is created from the Ian Coleman code.

Upon the derivation of these addresses, I created

an array that would then store these addresses

globally so that they would be accessible from

within my code.

I have implemented the blockchain search

functionality for two of the most common

cryptocurrency blockchains which are Bitcoin and

Ethereum. Initially, the plan was to include all

possible cryptocurrencies that are available on the

Ian Coleman website (which the Police have

currently been using to derive wallet addresses).

However, there are over 150+ cryptocurrencies

listed on Ian Coleman and therefore the

implementation of all the different Blockchain APIs

required to achieve this would take a very long

time to add.

The two Blockchains APIs that I have implemented

are Blockchain.com (for Bitcoin), and Ethplorer-API

(for Ethereum) (EverexIO/Ethplorer. 2021). I have

chosen to use the Blockchain.com API because it is

one of the most common and most well-known

blockchain search websites for Bitcoin. Although

Blockchain.com allows users to search Ethereum

addresses, their API documentation did not

support the Ethereum blockchain. Therefore, I was

required to search elsewhere for an Ethereum API.

After extensive research, Ethplorer-API appeared

to be the best option to use for Ethereum wallet

address analysis. Many other blockchain APIs that I

came across required a paid subscription or did

not provide the details that I required from a

search.

Both of these APIs allow for a wallet address to be

passed through as a parameter which will then

return a set of results in a JSON format. This

returned JSON data is then processed by reading

through the JSON data set and extracting the

relevant and important information that is

required for processing and output to the user.

The blockchain.com API allows for an xPubKey to

be passed through, as initially planned. However, it

does not allow for a yPubKey, and a zPubKey to be

passed through. The Ethplorer API does not allow

for any xPub, yPub, or zPub to be passed in as a

parameter. Therefore, the decision was made to

individually pass in each potential wallet address

derived and retrieve the results via that method.

5.3.2 Functionality Implementation

In this section, I will be describing the step-by-step

process of the appliIatioﾐげs functionalities

implemented along with the code that I have

created. Due to the client (the Police) suggesting

that a Web Application would be most suitable for

them, I decided to use the programming/scripting

language called JavaScript. JavaScript is a very

common and popular client-side scripting language

that is used amongst many websites to provide

functionality and interaction.

The code I have created is stored within a class

oHjeIt Ialled けBloIkIhaiﾐげ ┘hiIh is iﾐstantiated and

initialised upon the user IliIkiﾐg the け“earIh
BloIkIhaiﾐげ Huttoﾐ. A list of all the methods and

variables with their data types that have been

used within my code and the けBloIkIhaiﾐげ Ilass Iaﾐ
be seen in the table below.

Methods and Variables:

Method Variables

Constructor()

this.coin(String)

this.walletAddresses

(Array)

this.devType (String)

this.network (String)

Initialise() --

Bip44Blockchains() var blockchain44 (String)

var apiDetails44 (Array)

var ext (String)

var type (String)

var delimiter (String)

Bip49Blockchains() var blockchain49 (String)

var apiDetails49 (Array)

var ext (String)

var type (String)

var delimiter (String)

Bip84Blockchains() var blockchain84

var apiDetails84 (Array)

var ext (String)

var type (String)

var delimiter (String)

BlockchainNetwork() var apiDetails (Array)

processData() var balance_totals (Object)

var addresses_balances

(Array)

var temp_address_list (Obj

ect)

var balance_all (Number)

var total_out (Number)

var total_in (Number)

var ethw (Number)

var btcw (Number)

var blockchainData

(Object)

crypto2gbp() var gbpvalue (Number)

var conversion (Number)

var result (Number)

showBalances() var balances (Object)

var final_balance

(Number)

var total_sent (Number)

var total_received

(Number)

showAddresses() var addresses (Object)

createTable() var table (Element)

var tableHead (Element)

var tableBody (Element)

var addrCount (Number)

var a (String)

var i (Number)

var tableData (Object)

var vals (String)

var x (String)

var y (String)

var z (String)

var privateKey (String)

blockchainAPIConnecti

on()

var apiAddr (String)

var apiExt (String)

var apiDelimiter (String)

var apiValues (String)

var apiURL (String)

var apiSingleAddresses

(Array)

var blockchainResponse ()

var blockchainData

(Object)

apiLimitInterval (Function)

var c (Number)

var j (Number)

fetchGBPValues()

var gbpquery ()

var priceData (Object)

blockchainSearch() var derivationPath (String)

var walletSeed (String)

var derivationType (String)

var derivationPath (String)

var coinValue (Number)

var networkName (String)

Main Code:

Once the user has entered the mnemonic seed and

set the derivation settings and has clicked the

け“earIh BloIkIhaiﾐげ Huttoﾐ, the function

けHloIkIhaiﾐ“earIh is called and executed. This

following set of code declares the variables and

retrieves the mnemonic seed the user has entered

along with the type of derivation that they have

specified.

1. function blockchainSearch() {
2. var derivationPath = "";
3. var walletSeed = DOM.WS.value;
4. var derivationType = document.queryS

elector(".derivation-
type > li.active").id;

The switch statement below then detects the type

of wallet derivation used and retrieves the used

derivation path. For e┝aﾏple, ﾏ/ヰげ/ヰげ/ヰげ.

1. switch (derivationType) {
2. case "bip32-tab":
3. derivationPath = DOM.DP32;
4. break;
5. case "bip44-tab":
6. derivationPath = DOM.DP44;
7. break;
8. case "bip49-tab":
9. derivationPath = DOM.DP49;
10. break;
11. case "bip84-tab":
12. derivationPath = DOM.DP84;
13. break;
14. case "bip141-tab":
15. derivationPath = DOM.DP141;
16. break;
17. }

The selected cryptocurrency and the blockchain

required for the analysis are then extracted.

18. // get coin
19. var coinSelect = DOM.NP;
20. var coinValue = coinSelect.value;
21. var networkName = coinSelect.options

[coinSelect.selectedIndex].text;

These values are then outputted into the main

Hod┞ Ioﾐteﾐt seItioﾐ uﾐder け“earIh ‘esults For:げ

At the bottom of the blockchainSearch function, a

new class Ialled けBloIkIhaiﾐげ is instantiated with

parameters passed in such as the cryptocurrency

selected, the list of derived addresses (derived

from Ian Coleman code), and the type of

derivation that the user had selected.

22. DOM.LD.style.visibility = "visible";
23. DOM.MS.innerHTML = walletSeed;
24. DOM.DU.innerHTML = derivationPath;
25. DOM.BU.innerHTML = networkName;
26. DOM.AO.innerHTML = "";
27.
28. // create new blockchain connection
29. var blockchainConnection = new Block

chain(coinValue, networkName, wallet
AddressList, derivationType);

30.
31. // initiate the blockchain process
32. blockchainConnection.initialise();

The Blockchain Class

The Blockchain class contains all the information

and methods required to build a Blockchain API

query, execute the query, and then process all the

data from the query and display it out to the user

in a tidy format.

The code below creates a class called けBloIkIhaiﾐげ.
The constructor processes the parameters passed

into the class and stores them in variables for ease

of access within the code later. The initialise

function, once called, calls the first method,

けBloIkIhaiﾐ Net┘orkげ, and then passes the return

┗alue iﾐto the ﾏethod けBloIkIhaiﾐ API
CoﾐﾐeItioﾐげ.

1. class Blockchain {
2.
3. constructor(coin, networkName, walle

tAddresses, derivationType) {
4.
5. this.coin = coin;

6. this.walletAddresses = walletAddress
es;

7. this.devType = derivationType;
8. this.network = networkName;
9. }
10.
11. initialise() {
12. this.blockchainAPIConnection(this.bl

ockchainNetwork());
13. }
14.

Method: blockchainNetwork

The blockchainNetwork method detects which

derivation type was chosen by the user and then

calls the appropriate function to fetch the details

required for the API connection.

1. blockchainNetwork() {
2. var apiDetails = [];
3. if (this.devType === "bip32-tab") {
4. apiDetails = this.bip44Blockchains()
5. }
6. else if (this.devType === "bip44-

tab") {
7. apiDetails = this.bip44Blockchains()
8. }
9. else if (this.devType === "bip49-

tab") {
10. apiDetails = this.bip49Blockchains()
11. }
12. else if (this.devType === "bip84-

tab") {
13. apiDetails = this.bip84Blockchains()
14. }
15.
16. return apiDetails;
17. }

Bip44Blockchains method()

An example of one of the Blockchain methods for a

derivation selected can be seen below. If a BIP44

derivation type was selected by the user then this

method would be called and executed.

This method detects which cryptocurrency was

selected and then assigns the necessary details

required to build a full URL for the API query to

variables such as the base API URL, whether the

addresses can be appended into one query (multi),

or individual requests will need to be sent for each

wallet address (single). These variables are then

stored inside an array which is returned and

passed through to another method called

けHloIkIhaiﾐAPICoﾐﾐeItioﾐげ.

The two cryptocurrencies which have been

implemented, as previously mentioned, are Bitcoin

and Ethereum.

1. bip44Blockchains() {
2.
3. var blockchain44 = "";
4. var apiDetails44 = [];
5. var ext = "";
6. var type = "";
7. var delimiter = "";
8.
9. switch (this.network) {
10.
11. case "ETH - Ethereum":
12. blockchain44 = "https://api.ethplore

r.io/getAddressInfo/";
13. ext = "?showETHTotals=true&apiKey=EK

-2VyLa-DhJ5UYC-qd5bU";
14. type = "single";
15. delimiter = "";
16. break;
17.
18. case "BTC - Bitcoin":
19. blockchain44 = "https://blockchain.i

nfo/multiaddr?active=";
20. ext = "";
21. type = "multi";
22. delimiter = "|";
23. break;
24. default:
25. blockchain44 = "None";
26. }
27.
28. apiDetails44.push(headers, blockchai

n44, ext, type, delimiter);
29. return apiDetails44;
30. }
31.

Method: blockchainAPIConnection

The purpose of the method

けHloIkIhaiﾐAPICoﾐﾐeItioﾐげ is to Huild a full API U‘L
that can be used within a POST request to fetch

data from the blockchain API servers.

The code below defines all the variables for this

section and reads data from the array created

previously.

1. blockchainAPIConnection(apiDetails)
 {

2. var apiAddr = apiDetails[1];
3. var apiExt = apiDetails[2];
4. var apiType = apiDetails[3];
5. var apiDelimiter = apiDetails[4];
6. var apiValues = "";
7. var apiURL = "";
8. var apiSingleAddresses = [];

The code below is an asynchronous function that

makes an HTTP request to the appropriate

Blockchain API. The full API URL is used here. The

results from this request are returned in a JSON

format that is then processed in the next method.

9. async function blockchainQuery() {
10. let blockchainResponse = await fetch

(apiURL);
11. let blockchainData = await blockchai

nResponse.json();
12. return blockchainData;

If the Blockchain API has to run with 1 wallet

address at a time, then the code below is used. For

this code, I have implemented a setInterval

function. This means the code is run every

0.2seconds to prevent exceeding API request limits

set by the API providers.

The code here is also used to create a full API URL

that includes the base URL (the domain), and the

address to be searched and then the asynchronous

blockchainQuery function above is called which

uses the full API URL just created. The JSON data

return is then stored inside an array that is then

sent through to the けprocessDataげ method.

13. if (apiType == "single") {
14. var c = 0;
15. var apiLimitInterval = setInterval(f

unction() {
16.
17. if (c >= walletAddressList.length) {
18. clearInterval(apiLimitInterval);
19. this.processData(apiSingleAddresses,

 apiDetails, apiType);
20. }
21. else {
22. apiURL = apiAddr + walletAddressList

[c]["address"] + apiExt;
23. blockchainQuery().then((blockchainDa

ta) =>
24. apiSingleAddresses.push(blockchainDa

ta)
25.);
26. c += 1;
27. }
28. }.bind(this), 200);
29. }

The code below is similar to the one described

above, however, this code below is executed if the

Blockchain API provider allows for multiple

addresses to be sent at once and therefore the

query only needs to be run once. In this code, a

delimiter is appended at the end of each wallet

address as it is concatenated against the previous

address.

Therefore, this code builds one long API URL that

can be sent and processed in one go, rather than

through many iterations as is required in the

さapiT┞pe == けsiﾐgleげざ Iode.

1. if (apiType == "multi") {
2.
3. for (var j = 0; j < this.walletAddre

sses.length; j++) {
4. apiValues += this.walletAddresses[j]

['address'] + apiDelimiter;
5. }
6. apiURL = apiAddr + apiValues + apiEx

t;
7. blockchainQuery(apiAddr).then((block

chainData) =>
8. this.processData(blockchainData, api

Details, apiType)
9.);
10. }

Method: ProcessData

This method processes the JSON data received

from the API request by reading, extracting, and

storing the relevant data into a new array.

1. processData(blockchainData, apiDetai
ls, apiType) {

2.
3. var balance_totals = {};
4. var addresses_balances = [];
5. var temp_address_list = {};
6. var balance_all = 0;
7. var total_out = 0;
8. var total_in = 0;
9.

This method also detects which blockchain

network was selected. If the blockchain was

Ethereum, then the code below is run. Similar

code has been constructed for Bitcoin with a slight

variant.

The code below will loop through the number of

records received by the Blockchain API and will

extract the balance, money in, and money out for

each wallet address. The totals will be calculated

for each of these and a separate array list for each

wallet address and their balances are stored ready

to be displayed out to the user in a table format.

1. if (this.network === "ETH - Ethereum
") {

2.
3. for (var ethw = 0; ethw < blockchain

Data.length; ethw++) {
4. balance_all += blockchainData[ethw][

"ETH"]["balance"];
5. total_out += blockchainData[ethw]["E

TH"]["totalOut"];
6. total_in += blockchainData[ethw]["ET

H"]["totalIn"];
7.
8. temp_address_list = {};
9. temp_address_list["address"] = block

chainData[ethw]["address"];

10. temp_address_list["totalOut"] = bloc
kchainData[ethw]["ETH"]["totalOut"];

11. temp_address_list["totalIn"] = block
chainData[ethw]["ETH"]["totalIn"];

12. temp_address_list["balance"] = block
chainData[ethw]["ETH"]["balance"];

13. addresses_balances.push(temp_address
_list);

14. }
15.
16. balance_totals["final_balance"] = ba

lance_all;
17. balance_totals["total_sent"] = total

_out;
18. balance_totals["total_received"] = t

otal_in;
19.
20. this.showBalances(balance_totals);
21. this.showAddresses(addresses_balance

s, apiDetails[0]);
22. }

Method: createTable

This method is responsible for displaying all the

information out to the user in table format. The

information shown will include the total balance of

the wallet, the total money in, the total out, the

wallet address, the balance of the address, the

money received and sent to/from the address, and

its private key (which is used to access a wallet).

The code listed below creates the structure of the

table. This includes iterating through a predefined

list of table headers and then create a table

header element for each before appending to the

main table element.

1. createTable(tableData, headers) {
2. var table = document.createElement("

table");
3. var tableHead = document.createEleme

nt("thead");
4. var tableBody = document.createEleme

nt("tbody");
5. var addrCount = 0;
6. table.appendChild(tableHead);
7.
8. for (var i = 0; i < headers.length;

i++) {
9. if (i == 1) {
10. tableHead
11. .appendChild(document.createElement(

"th"))
12. .appendChild(document.createTextNode

("Private Key"));
13. }
14. tableHead
15. .appendChild(document.createElement(

"th"))
16. .appendChild(document.createTextNode

(headers[i]));
17. }
18.

19. table.setAttribute("class", "table k
nown-addresses");

The next stage within this method is to loop

through the table data and check which wallet

addresses contain a current balance or have

previously had some money within in it. If a wallet

address matches this criterion then it will loop

through a set of data that contains derived wallet

addresses, and its public key for a match. If there is

a match between the two wallet addresses, then

the private key will be retrieved and stored ready

for output.

1. for (i = 0; i < tableData.length; i+
+) {

2. if (tableData[i]['balance'] !== 0 ||
 tableData[i]['totalIn'] !== 0) {

3. var row = document.createElement("tr
");

4. for (var j = 0; j < this.walletAddre
sses.length; j++) {

5. var y = JSON.stringify(this.walletAd
dresses[j]["address"].toUpperCase())
;

6. var z = JSON.stringify(tableData[i][
"address"].toUpperCase());

7.
8. if (y == z) {
9. var address = this.walletAddresses[j

]["address"];
10. var privateKey = this.walletAddresse

s[j]["privkey"];
11. }
12. }
13. addrCount += 1;

The processed JSON data retrieved from the

Blockchain API is then looped through one dataset

at a time. A table cell for each value in each

dataset is created. The balance, totalIn, and

totalOut fields are converted into a GBP value

(from a Satoshi or Gwei value, which are the

smallest units that make up a Bitcoin/Ethereum).

The value is then converted into a readable GBP

format, for example, 1000.00 to £1,000.00

14. for (var x = 0; x < headers.length;
x++) {

15. if (x == 1) {
16. var cell = document.createElement("t

d");
17. cell.textContent = privateKey;
18. row.appendChild(cell);
19. }
20.
21. var a = headers[x];
22. var vals = tableData[i][a];
23. var cell = document.createElement("t

d");
24.

25. if (x >= 3) {
26. cell.textContent = currencyFormat.fo

rmat(this.crypto2gbp(vals));
27.
28. if (tableData[i]['balance'] !== 0) {
29. cell.setAttribute("style", "color: #

009432; font-weight:bold");
30. } else if (tableData[i]['totalIn'] !

== 0) {
31. cell.setAttribute("style", "color: r

ed; font-weight:bold");
32. }
33. } else if (x > 0 && x < 3) {
34. cell.textContent = currencyFormat.fo

rmat(this.crypto2gbp(vals));
35. } else {
36. cell.textContent = vals;
37. }

Once a dataset within the JSON array has been

looped through and a table cell for each value has

been created, the row will be appended to the

table. Once all datasets within the JSON array have

been processed, the table is displayed out to the

user, as illustrated in the previous section.

38. row.appendChild(cell);
39. }
40. tableBody.appendChild(row);
41. }
42. }
43. table.appendChild(tableBody);
44. DOM.AC.innerHTML = addrCount;
45.
46. return table;
47. }
48.

6 Testing

The test cases described below will be tested on

the application that I have developed to ensure

that the application meets the requirements set

out in the brief and the functional/non-functional

requirements that were detailed in the

け“peIifiIatioﾐ & Desigﾐ seItioﾐ. These test cases

will be tested as though the user is using the

application and they are trying to derive balances,

and wallet addresses from an entered mnemonic

seed. The table below is a summary of all the tests

that have been made and their outcome. Details

and comments about the tests performed will be

described underneath.

Summary of Test Cases

Test # Test Title Status

1 Application Loads PASS

2 Mnemonic Seed

Input

PASS

3 xPubKey Derivation PASS

4 Wallet Address

Derivation

PASS

5 Search Button PASS

6 Bitcoin Blockchain PASS

7 Ethereum

Blockchain

PASS

8 Used Wallet

Address

PASS

9 Balance Calculations

& Formatting

PASS

10 Timing of Results PASS

To test the application, I deposited £20 worth of

Bitcoin into a Bitcoin Wallet that I was able to

retrieve a mnemonic seed for. The mnemonic seed

that I will be using for testing is:

- さthought butter time mention lemon

ostrich stove belt possible cushion sphere

fallざ

This mnemonic seed has been used throughout

the testing to determine used/known addresses

and if the balances that have been retrieved are

calculated and displayed correctly. A randomly

generated mnemonic seed with wallet addresses

that have no value attached to them was also used

within the testing process to check whether the

application provides a valid response when no

balances are returned.

The test cases outlined below describe the testing

performed on eaIh proIess of the appliIatioﾐげs
functionality to ensure that they work as expected.

Additional comments have also been provided

under each test to describe what I had done to

test the functionality or the values that have been

used or received from the tests.

Test Case 1:

Title: Application Loads

Description: Testing of the application to ensure it

loads without any errors

Expected: The web application should load all UI

elements and be ready for use without any errors

Actual: Web application loads. No Errors. Criteria

met.

Comments: None

Status: PASS

Test Case 2:

Title: Mnemonic Seed Input

Description: Testing of the mnemonic seed input.

The user must be able to enter a valid mnemonic

seed.

Expected: The user should be able to enter a

wallet mnemonic seed into the application

Actual: A valid mnemonic seed was able to be

entered into the application

Comments:

The Mnemonic seed entered:

- thought butter time mention lemon

ostrich stove belt possible cushion sphere

fall

Status: PASS

Test Case 3:

Title: xPubKey, or yPubKey, or zPubKey derivation

(Bitcoin) and Ethereum

Description: A correct public key is derived from

the entered mnemonic seed. In the format of

either an xPubKey, yPubKey, or a zPubKey

Expected: The application should derive a public

key from the mnemonic wallet recovery seed

Actual: The application successfully derived the

three different types of public keys for both the

Bitcoin and Ethereum Blockchain.

Results for Bitcoin:

Derived xPubKey:

xpub6C54TtTm2WQTcaG9QqaoWc8zN1qsLViZBjJy

o78nb8tteZimzSKXpeth5o78hB4c5yVYzJh7LB4YYhG

788Rijer1UbMXYFruLTnahKDWUEY

Derived yPubKey:

ypub6Xz6RPG8ov8jyY18vh3cBjo5Szc4VrCWVkyXtb

dpxgb2nv1YcgB8fp9PYuiNGN5DePAF2PTJaJJSCu9i

gomxpeyPp5Cxe85rVmVpFkdP1zj

Derived zPubKey:

zpub6rSqYJiq2BKEb3Hdt61QMCqFDRpTgLYgskt9Cp

yJLeRhSYGsUA27Jg9aEDb2xUBhXwyrJ4xs7xjLreHnb

fpVeXvL7g411VcJW9mh9tLv5Xe

Results for Ethereum:

Derived xPubKey:

xpub6CFA4ktgkBwAHJjugXPux1E2C4eAnRR9TFUka

8zfpBZ472WyiBYoEFpCoBvvMb8KLrX3Bz19dwPWV

TDeqxdvuMCjxCLLd9EozAGttZKTjeA

Derived yPubKey:

ypub6YEHtKDmWnWqaVxQA5AozP31z2E1ptvt7in6

r1aJaSQFUzUGGLA2JxjLrv9dYw26itBTDxg5VRRNt4

gDN4JTMKCkpHJ7ad7t1zu2AFNJvLH

Derived zPubKey:

zpub6r3i14RMmJzJ7zrdJqiBVsWtdSoqYQafdD7yQt

NeixrKWoNKESMpTanQwYd3dXT2VLt2KFzSceWgh

M5TUs7bAUkCyVSM7yAVMsMxhRxJ3Ja

Comments:

- Used the same mnemonic seed as

previously commented.

- The functionality of this test case was

implemented from the Ian Coleman Code.

- These derivations are no longer used

within the functionality I implemented

due to the changes mentioned previously

in the report.

Status: PASS

Test Case 4:

Title: Wallet Address Derivation

Description: Test that a list of potential wallet

addresses and their private keys associated with

the previously derived public key are derived.

Expected: Wallet addresses and private keys are

derived successfully from the public key

Actual: Same as expected.

Screenshot of addresses and private keys

generated:

Figure 23: A List of Derived Wallet Addresses

Comments:

- This functionality is implemented from the Ian

Coleman Code.

- The wallet addresses used are stored within an

array and are used later within the functionality I

have created.

- The wallet addresses are created from the

mnemonic seed previously mentioned.

- The array of wallet addresses, and private keys

have been printed to the browser console log as

shown in the screenshot above.

Status: PASS

Test Case 5:

Title: Search Button

Description: Test that the Iode Iげ┗e created is

called and ran as expected upon the user clicking

the け“earIh BloIkIhaiﾐげ Huttoﾐ.
Expected: The application should work as

expected and the Blockchain Class should be

successfully initialised upon the user clicking the

けBloIkIhaiﾐ “earIhげ Button.

Actual: The blockchain class code upon the user

clicking the button successfully worked. The

browse console log received outputs when the

user clicked the search button.

Screenshot:

Figure 24: Blockchain Class Being Initialised

Comments:

- To test this functionality and check that

the class object is initialised upon clicking

the search button, I added temporary

code that will print out the text to the

browser console log when each stage of

the code is executed.

Status: PASS

Test Case 6:

Title: Bitcoin Blockchain

Description: Test that the correct Bitcoin

blockchain API works correctly and that data is

returned from the API request.

Expected: The application should connect to the

Bitcoin Blockchain API and successfully retrieve a

set of results associated with the wallet addresses

being analysed.

Actual: Bitcoin Blockchain API connection was

successful. Data from the Bitcoin Blockchain was

returned as a set of JSON data.

Screenshots:

Figure 25: Bitcoin Blockchain Analysis Results

Status: PASS

Comments:

- These wallet addresses and balances have

been returned from the Bitcoin

Blockchain API using the mnemonic seed

mentioned previously.

- Data was retrieved successfully without

any errors

Test Case 7:

Title: Ethereum Blockchain

Description: Test that the Ethereum blockchain

API works correctly and that data is returned from

the API request.

Expected: The application should connect to the

Ethereum Blockchain API and successfully retrieve

a set of results associated with the wallet

addresses being analysed.

Actual: Ethereum Blockchain API connection was

successful. Data from the Ethereum Blockchain

was returned as a set of JSON data.

Screenshot:

Figure 26: Ethereum Blockchain Analysis Results

Comments:

- These wallet addresses and balances have

been returned from the Bitcoin

Blockchain API using the mnemonic seed

mentioned previously.

- Data was retrieved successfully without

any errors

Status: PASS

Test Case 8:

Title: Used Wallet Addresses

Description: List all wallet addresses that contain a

valid balance and have been used.

Expected: Used wallet addresses should be

displayed to the user. If no wallet addresses have

been used, then a message stating that there were

no results found should be displayed.

Actual: Wallet Addresses that have been used

┘ere sho┘ﾐ to the user iﾐ a taHle forﾏat. けNo
‘esults Fouﾐdげ ┘as sho┘ﾐ ┘heﾐ ﾐo used ┘allet
addresses were found.

Screenshots:

Figure 27: Possible UI Outputs from the Blockchain

Analysis

Comments:

- The first screenshot is the output of the

mnemonic seed used for testing (thought

butter time mention lemon ostrich stove

belt possible cushion sphere fall) returned

an address that contains a balance

(Success). This is a wallet address that I

deposited some Bitcoin in.

- The second screenshot is the output of a

randomly generated mnemonic seed that

has no balances attached was used. No

Results Found was returned (Success)

Status: PASS

Test Case 9:

Title: Balance Calculations & Formatting

Description: Balances should be converted from

Satoshi value (units that make up a Bitcoin) or

Gwei (units that make up an Ethereum) and

displayed as a numeric and formatted GBP value

Expected: The application should display a

converted Satoshi or Gwei value into a GBP format

(£0,000.00)

Actual: Wallet Balances are converted and

displayed successfully as a GBP formatted value.

Screenshots:

Figure 28: Example Output of a Successful Wallet

Analysis

Comments:

- The Satoshi value received from the

Bitcoin Blockchain API was 48598. This

value is converted into a decimal Satoshi

format (0.00048598) and then converted

and formatted into the GBP value

displayed above.

Status - PASS

Test Case 10:

Title: Timing of Results

Description: A list of used wallet addresses with

their balances should be processed and displayed

to the user within 5 seconds.

Expected: Wallet addresses and balances to be

shown to the user within 5 seconds of the user

IliIkiﾐg the け“earIh BloIkIhaiﾐげ Huttoﾐ.
Actual: Results were retrieved, processed, and

displayed within the 5-second objective.

Screenshots:

Figure 29: Times Taken: Bitcoin Blockchain (Wallets with

a Balance)

 Figure 30: Times Taken: Bitcoin Blockchain (Wallets with

No Balances)

 Figure 31: Times Taken: Ethereum Blockchain (Wallets

with No Balances)

Comments:

- The results timings returned are in

milliseconds which are counted from the

user pressing the search button and the

results being displayed out to the user

- An average of the timing results was

created from 10 tests on each blockchain

with and without known wallet addresses.

- The application took an average of 168ms

when processing a wallet with a used

wallet on the Bitcoin Blockchain

- The application took an average of 101ms

on a Bitcoin wallet with NO used wallet

addresses or balances.

- The application took an average of

4231ms on the Ethereum Blockchain with

no wallet addresses. This is due to having

to implement an API request limit on the

Ethereum Blockchain request which runs

every 0.2seconds and due to each

Ethereum wallet address having to be

processed individually.

Status: PASS

7 Future Work

The web application that has been developed has

met all the requirements that were intended and

outlined in the functional and non-functional

requirements. However, there is still a lot of room

for further expansion of the application which can

enable a wider variety and more in-depth analysis,

as well as providing more features and

functionality. This section will discuss the potential

future improvements and features that can be

implemented into this web application.

7.1 Future Implementation Idea 1:

Due to time constraints, only a limited of

cryptocurrency blockchain APIs could be

implemented into the application. As of now, only

Bitcoin and Ethereum blockchains have been

added. Future work could include implementing

more blockchain APIs to provide a wider range of

cryptocurrency options for the analyst using the

platform. The Ian Coleman website, which the

developed functionality has been built over and

improved on currently has 202 cryptocurrencies in

a select dropdown that potential wallet addresses

can be derived for.

Implementing more of these cryptocurrencies'

blockchain APIs into the application would help for

greater and wider analysis and help save the time

of those investigating a mnemonic wallet seed to

determine the blockchain used and the amount of

cryptocurrency that has been stored within wallet

addresses associated with the entered mnemonic

wallet seed.

7.2 Future Implementation Idea 2:

Additioﾐal fuﾐItioﾐalit┞ suIh as aﾐ けAuto-Aﾐal┞seげ
feature could potentially save the investigator

using the web application a lot of time. The idea

behind this feature would be for the application to

loop through each of the cryptocurrency

blockchains and derivation settings automatically

to determine the blockchain and wallet addresses

that have been used that are associated with the

mnemonic seed.

Currently, the investigator is required to manually

select a blockchain and derivation settings before

searching. If there were no results, they would

have to manually change the cryptocurrency

blockchain/derivation settings until they retrieved

a result. Iﾏpleﾏeﾐtiﾐg the けAuto-Aﾐal┞seげ feature
would eliminate the need for the investigator to

do this and therefore save them a lot of time and

manual interaction.

7.3 Feature Implementation Idea 3:

Another feature that could be implemented into

the web application is the option to map out the

transactions sent to and from wallet addresses

that have been returned positive containing a

balance from the application. This would enable

the investigator to interact with the application to

visually see where money has been sent to/from

so the addresses Iaﾐ He added iﾐto a け┘atIhlistげ
for further inspection and monitoring if necessary.

Currently, the application just returns the balances

of wallet addresses and the total money in and the

total money out. Knowing where this money has

been sent from or being sent to allows for further

wallets to be tracked which leads to the next

feature idea.

7.4 Feature Implementation Idea 4:

Implementing a feature that can automatically

track the activity of wallet addresses of interest

associated with the mnemonic seed would enable

investigators to monitor where the money is being

sent to and from and get real-time alerts of when

the wallet is being active / when it was last active

in receiving and sending funds. Wallet addresses

Iould He added to a け┘atIhlistげ feature oﾐ the ┘eH
application that will automatically track the

balances within them.

7.5 Summary

The four new implementation ideas mentioned

above would expand the web application with

more advanced functionality as well as save the

investigator a lot of time with the seed analysis

and provide a greater level of depth and insight

into the used wallet addresses and the money that

is being sent to and from them.

8 Conclusion
The aim of developing the cryptocurrency wallet

seed and blockchain analyser web application is to

assist investigators with their analysis on a

cryptocurrency wallet as well as save them as

much time as possible. Currently, the Police are

using a web application called Ian Coleman which

allows them to enter a cryptocurrency mnemonic

wallet seed and derive a long list of potential

wallet addresses.

The application that I have developed further

enhances the functionality of the Ian Coleman web

application to quickly analyse wallet addresses on

the blockchain and determine which of the derived

potential wallet addresses contains a balance. This

results in a huge amount of time saved as

otherwise the investigator would be required to

manually analyse each address individually to

determine if there is a balance within it.

This web application takes in an input of a

mnemonic wallet recovery seed which then

derives a list of potential wallet addresses. These

wallet addresses are then analysed on the

appropriate blockchain and the balances, if any,

are calculated, converted, and displayed to the

user. Resulting in the user quickly knowing (in

approx. 2 seconds) the exact wallet addresses that

have been used and the balances inside them.

Although the initial plan was to use an xPubKey to

analyse the blockchain and retrieve a set of known

wallet addresses, changes were made to manually

analyse individual potential wallet addresses. This

change was made due to many blockchain APIs not

allowing for an xPubKey to be passed through, but

wallet addresses were allowed. Although this

change was made and differs slightly from

originally described during the design and

specification section, the application still works as

intended.

During the testing stage of the web application, I

tested the functionality of analysing a randomly

generated mnemonic seed and a real mnemonic

seed of a cryptocurrency wallet that I had created.

As e┝peIted, the appliIatioﾐ outputs けNo ‘esults
Fouﾐdげ ┘heﾐ aﾐal┞siﾐg the raﾐdoﾏl┞ geﾐerated
mnemonic seed (which has associated wallet

addresses with no balances). The analysis from the

mnemonic seed of a real wallet address that I had

deposited money into, resulted in the application

correctly retrieving the correct wallet address with

a correctly formatted wallet balance that was

displayed out neatly on the UI for the user to read.

Whilst the application functionality has met the

requirements I had initially set out to achieve,

there is plenty of room for further improvement

and for new features to be implemented which

ha┗e Heeﾐ disIussed ┘ithiﾐ the けFuture Workげ
section of this report. The web application as it is,

provides a functional proof of concept that

enables a user to quickly determine wallet

addresses and their total balances associated with

the entered mnemonic seed. Although only two of

the most popular blockchains have been

implemented (Bitcoin and Ethereum), with room

for more to be implemented, I believe this is

sufficient to provide a functional proof of concept.

Overall, I am pleased with the developed web

application despite some of the challenges faced

during the development. It has been an enjoyable

project to work on with new and existing skills

being learned and utilised.

9 Reflection & Evaluation

9.1 Overview

This crypto-currency-based project has enabled

me to develop a web application in an area of

fairly new technology. The idea of this project has

kept me motivated even whilst issues arose during

development. The application that I have

developed has required the use of a wide range of

skills including, programming knowledge, time

management, organisational skills, self-discipline,

and learning how to manage a large project

effectively.

9.2 Programming Skills

I developed the web application for this project

using the JavaScript language. This enabled me to

further develop my existing knowledge and skills in

JavaScript, especially with using classes, working

with API requests, and extracting important

information from a set of returned JSON data.

Having worked with JavaScript before several

years ago, this project enabled me to refresh my

existing skills as well as learn new ones.

9.3 Time Plan & Organisation

This project has helped me with my time

management and organisational skills, as well as

managing to progress when setbacks and

unseen/unplanned issues arose. Managing to

effectively measure the length of time for each

project stage before development and then work

to the devised time plan and achieve the targets

was a little challenging at times, but overall, it was

kept well apart from a few setbacks.

The time plan that I had devised before the start of

the application development was initially followed

very well and tasks/milestones were completed by

the date targets I had set out. However, some

issues arose during the web application

development that required me to reprogram a

large section of the code which resulted in the

date targets set being pushed back further.

9.4 Challenges

Throughout the project, I had encountered some

challenges that resulted in some functionality

being delayed past its estimated completion date.

One of the main issues that I had encountered was

the implementation of searching the blockchain.

The initial plan was to use a derived wallet public

address key (the xPubKey) to search for known and

used wallet addresses. However, when it came to

the implementation, I had realised that this was

only possible on the Blockchain.com API and not

on the Ethplorer-API. Although pressured for time,

this resulted in me having to restructure and

recode a lot of the functionality so that it would

instead loop through and analyse a list of

individual derived wallet addresses. This issue

could have been prevented and saved me a lot of

time and stress later if I have undergone more in

depth-research into blockchain APIs at the start

rather than making assumptions that all APIs

would offer the feature to search by an xPubKey,

yPubKey, and zPubKey.

COVID-19 has been one of the major challenges

throughout this project as it had affected my

mental health which resulted in me feeling very

unmotivated, unwilling, and stressed. To overcome

this, I created a daily work routine and tried to

ensure I completed one small task at a time, and I

aimed for a minimum of 2 to 4 hours a day.

9.5 Supervisor meetings

It was pre-arranged during the first week of the

project that supervisor meetings would be held

every two weeks. (except over the Easter break). I

have had a total of 5 supervisor meetings

throughout the project. These meetings took place

oﾐ the ┗ideo Ialliﾐg platforﾏ, けMicrosoft Teaﾏsげ.
These supervisor meetings enabled me to share

the progress I have been making on the project

and ask any further questions that I may have.

Emails were also sent to/from the supervisor to

receive feedback on report writing as well as

answer any general queries that I had.

I found my supervisor to be extremely helpful

throughout the project and has provided strong

guidance and ideas that were used to further

enhance my report and project overall. The

support and feedback on the work I had

completed had encouraged me to keep going

when the project got tough.

9.6 Future Projects

In future projects, I will devise a time plan that

allows for slightly more flexibility so that if issues

were to occur it would not impact the deadlines

and targets set for each milestone, which

consequently has a knock-on effect otherwise. I

will also not make assumptions and ensure that I

investigate every little detail where required.

10 Glossary

BIP – BIP stands for Bitcoin Improvement Protocol.

These protocols are used to propose

improvements to the Bitcoin Protocol which can

include new features, security, and information.

BIP 84 – BIP84 is used to derive native SegWit

addresses. These addresses start ┘ith さHIヱざ.
(Wallet 2021)

Bip32 – BIP32 defines the rules used to derive

wallet addresses.

BIP44 – BIP 44 is the most common BIP for

deriving addresses that are non-SegWit. These

types of addresses begin with the number 1.

(Wallet 2021)

BIP49 – BIP49 is used to derive SegWit compatible

addresses. These addresses begin with the number

3. (Wallet 2021)

Blockchain – A blockchain is a distributed peer-to-

peer network of cryptographically secured blocks

that hold information and transactions that are

sent to the blockchain by those interacting with it.

Mnemonic Seed – A mnemonic seed is a list of

words that act as a private key to recover a wallet.

These usually consist of a string of 12 or 24 words.

Knowing the mnemonic seed to the wallet enables

access to the funds stored inside.

SegWit – “SegWit is the process by which

the block size limit on a blockchain is increased by

removing signature data from bitcoin transactions.

When certain parts of a transaction are removed,

this frees up space or capacity to add more

transactions to the chain.ざ (Frankenfield 2021)

xPubKey – An xPubKey is an account extended

public key. These keys provide read-only access

into wallets and balances held by a person.

Created through derivation using BIP44.

yPubKey – An yPubKey is an account extended

public key. These keys provide read-only access

into wallets and balances held by a person.

Created through derivation using BIP49.

zPubKey - An zPubKey is an account extended

public key. These keys provide read-only access

into wallets and balances held by a person.

Created through derivation using BIP84.

11 References:

1. Assets ranked by Market Cap -

CompaniesMarketCap.com. 2021.

Available at:

https://companiesmarketcap.com/assets-

by-market-cap/ [Accessed: 18 February

2021].

2. BIP39 - Mnemonic Code. 2021. Available

at: https://iancoleman.io/bip39/

[Accessed: 4 March 2021].

3. Blockchain Tutorial: Learn Blockchain

Technology (Examples). 2021. Available

at: https://www.guru99.com/blockchain-

tutorial.html [Accessed: 24 February

2021].

4. Blockchain.com Explorer | BTC | ETH |

BCH. 2021. Available at:

https://www.blockchain.com/api

[Accessed: 24 February 2021].

5. Cryptocurrency Prices, Charts, And

Market Capitalizations | CoinMarketCap.

2021. Available at:

https://coinmarketcap.com/ [Accessed:

18 February 2021].

6. Eng-Tuck Cheah, J. 2021. What is Defi and

why is it the hottest ticket in

cryptocurrencies?. Available at:

https://theconversation.com/what-is-

defi-and-why-is-it-the-hottest-ticket-in-

cryptocurrencies-144883 [Accessed: 23

February 2021].

7. EverexIO/Ethplorer. 2021. Available at:

https://github.com/EverexIO/Ethplorer/w

iki/Ethplorer-API [Accessed: 6 May 2021].

8. Frankenfield, J. 2021. SegWit (Segregated

Witness). Available at:

https://www.investopedia.com/terms/s/s

egwit-segregated-witness.asp [Accessed:

21 May 2021].

9. Hooper, M. 2021. Top five blockchain

benefits transforming your industry -

Blockchain Pulse: IBM Blockchain Blog.

Available at:

https://www.ibm.com/blogs/blockchain/

2018/02/top-five-blockchain-benefits-

transforming-your-industry/ [Accessed:

23 February 2021].

10. https://www.guru99.com/blockchain-

tutorial.html Blocks Image

11. iancoleman/bip39. 2021. Available at:

https://github.com/iancoleman/bip39

[Accessed: 5 March 2021].

12. Project Allocation & Tracking System

(PATS). 2021. Available at:

https://pats.cs.cf.ac.uk/ [Accessed: 9

February 2021].

13. SETH, S. 2021. Six Private

Cryptocurrencies. Available at:

https://www.investopedia.com/tech/five-

most-private-cryptocurrencies/

[Accessed: 22 February 2021].

14. The MIT License | Open Source Initiative.

2021. Available at:

https://opensource.org/licenses/MIT

[Accessed: 5 March 2021].

15. Wallet, S. 2021. BIP 44, BIP 49, and BIP84.

Available at:

https://support.samourai.io/article/65-

bip-44-bip-49-and-bip84 [Accessed: 21

May 2021].

https://companiesmarketcap.com/assets-by-market-cap/
https://companiesmarketcap.com/assets-by-market-cap/
https://iancoleman.io/bip39/
https://www.guru99.com/blockchain-tutorial.html
https://www.guru99.com/blockchain-tutorial.html
https://www.blockchain.com/api
https://coinmarketcap.com/
https://theconversation.com/what-is-defi-and-why-is-it-the-hottest-ticket-in-cryptocurrencies-144883
https://theconversation.com/what-is-defi-and-why-is-it-the-hottest-ticket-in-cryptocurrencies-144883
https://theconversation.com/what-is-defi-and-why-is-it-the-hottest-ticket-in-cryptocurrencies-144883
https://github.com/EverexIO/Ethplorer/wiki/Ethplorer-API
https://github.com/EverexIO/Ethplorer/wiki/Ethplorer-API
https://www.investopedia.com/terms/s/segwit-segregated-witness.asp
https://www.investopedia.com/terms/s/segwit-segregated-witness.asp
https://www.ibm.com/blogs/blockchain/2018/02/top-five-blockchain-benefits-transforming-your-industry/
https://www.ibm.com/blogs/blockchain/2018/02/top-five-blockchain-benefits-transforming-your-industry/
https://www.ibm.com/blogs/blockchain/2018/02/top-five-blockchain-benefits-transforming-your-industry/
https://www.guru99.com/blockchain-tutorial.html
https://www.guru99.com/blockchain-tutorial.html
https://github.com/iancoleman/bip39
https://pats.cs.cf.ac.uk/
https://www.investopedia.com/tech/five-most-private-cryptocurrencies/
https://www.investopedia.com/tech/five-most-private-cryptocurrencies/
https://opensource.org/licenses/MIT
https://support.samourai.io/article/65-bip-44-bip-49-and-bip84
https://support.samourai.io/article/65-bip-44-bip-49-and-bip84

