
1 

 

 
 

 

A Virtual Reality App to IŶteract with a 2D 
Arcade Gaŵe 

 

Harry Suggett 

Supervisor: Dr Yukun Lai 

 

 

CM3203 One Semester Individual Project – 40 Credits 

Cardiff University School of Computer Science & Informatics 

28th May 2021 

  



2 

 

Abstract 

In this project, the aim was to create a virtual reality (VR) app that could demonstrate a 

novel method of interacting with traditional 2D video games in a 3D VR environment. To 

achieve this, I created both a standalone 2D game to represent a typical side-scrolling 

platform game, and a 3D environment in which the player can interact with the 2D game 

using a VR headset and controllers. 

This project has 3 main objectives: 

• Create a 3D VR environment in which the arcade machine sits.  

• Create a base 2D game to be displayed on the virtual arcade screen.  

• Allow a user to interact with both the 2D and 3D environment by using the VR 

controllers to pick up the 3D blocks and interact with the 2D screen. 

In this report, I will detail the development and evaluation of the features comprising this 

app. 

 

 

 

Acknowledgements 

I would like to give acknowledgement to my project supervisor, Dr Yukun Lai, for his 

continued support and guidance on this project. 

I would also like to acknowledge all the participants who completed my user questionnaire, 

as their feedback was invaluable in evaluating the app. 

Finally, I would like to acknowledge Unity for the use of their game engine. Without the use 

of the Unity game engine and its components, developing this application would have been 

extremely complex and out of scope due to the available timeframe. 

  



3 

 

Contents 

Abstract ...................................................................................................................................... 2 

Acknowledgements .................................................................................................................... 2 

Table of Figures .......................................................................................................................... 4 

Introduction ............................................................................................................................... 6 

Background ................................................................................................................................ 7 

Virtual Reality ......................................................................................................................... 7 

Game Engine - Unity ............................................................................................................... 9 

C# ............................................................................................................................................ 9 

Existing Solutions.................................................................................................................... 9 

Specifications and Design ........................................................................................................ 11 

Requirements ....................................................................................................................... 11 

Non-essential Functionality or Extensions ........................................................................... 12 

Modules ................................................................................................................................ 13 

Design ................................................................................................................................... 14 

Main Game with VR Interaction ....................................................................................... 14 

Main Menu ....................................................................................................................... 14 

Implementation ....................................................................................................................... 15 

Assets.................................................................................................................................... 15 

3D VR Environment .............................................................................................................. 15 

Virtual Screen ....................................................................................................................... 18 

2D Game ............................................................................................................................... 19 

Level Tilemap .................................................................................................................... 19 

Player ................................................................................................................................ 20 

Enemy ............................................................................................................................... 23 

Camera Controller ............................................................................................................ 25 

Main Menu ....................................................................................................................... 25 

In-game UI ........................................................................................................................ 27 

VR Interaction ....................................................................................................................... 30 

Grabbable Block ................................................................................................................ 30 

VR Interaction Code .......................................................................................................... 32 

Bug Fixing ............................................................................................................................. 38 

ϮD PlaǇeƌ͛s Collideƌ ........................................................................................................... 38 



4 

 

2D Level Collider ............................................................................................................... 39 

Results and Evaluation ............................................................................................................. 39 

Testing .................................................................................................................................. 39 

Main Requirements .......................................................................................................... 40 

Non-essential functionalities: ........................................................................................... 43 

User Questionnaire .............................................................................................................. 44 

Questionnaire Results....................................................................................................... 45 

Evaluation ............................................................................................................................. 47 

Future Work ............................................................................................................................. 48 

Conclusions .............................................................................................................................. 49 

Reflection on Learning ............................................................................................................. 50 

References ............................................................................................................................... 51 

Appendix 1 ............................................................................................................................... 52 

 

Table of Figures 

Figure 1 - Tetris Effect .............................................................................................................. 10 

Figure 2 - Super Mario Odyssey ............................................................................................... 10 

Figure 3 - Module Diagram ...................................................................................................... 13 

Figure 4 – Main Game with VR Interaction ............................................................................. 14 

Figure 5 - Main Menu ............................................................................................................... 14 

Figure 6 - Scene setup .............................................................................................................. 16 

Figure 7 - XR Packages ............................................................................................................. 16 

Figure 8 - XR Plugins ................................................................................................................. 17 

Figure 9 - XR Rig ....................................................................................................................... 17 

Figure 10 - Tracked Pose Driver ............................................................................................... 17 

Figure 11 - Finished XR Rig ....................................................................................................... 18 

Figure 12 - XR Controller .......................................................................................................... 18 

Figure 13 - Camera Feed Texture ............................................................................................. 18 

Figure 14 - Camera Feed on Plane ........................................................................................... 19 

Figure 15 - Camera Feed Working ........................................................................................... 19 

Figure 16 - Tile Import Settings ................................................................................................ 20 

Figure 17 - Level Tilemap ......................................................................................................... 20 

Figure 18 - Player Sprite ........................................................................................................... 20 

Figure 19 - Player Movement initial draft ................................................................................ 21 

Figure 20 - Creating Raycast .................................................................................................... 21 

Figure 21 - Checking Raycast for ground ................................................................................. 22 

Figure 22 - Jump Touching Ground .......................................................................................... 22 

Figure 23 - Player Health .......................................................................................................... 22 

Figure 24 - Reset Player ........................................................................................................... 22 



5 

 

Figure 25 - Damage function .................................................................................................... 23 

Figure 26 - Enemy Colour ......................................................................................................... 23 

Figure 27 - Enemy Sprite .......................................................................................................... 23 

Figure 28 - Enemy Controller ................................................................................................... 24 

Figure 29 - Enemy Death .......................................................................................................... 24 

Figure 30 - Camera Controller .................................................................................................. 25 

Figure 31 - Main Menu............................................................................................................. 26 

Figure 32 - Button Navigation .................................................................................................. 26 

Figure 33 - Game Controller Start ............................................................................................ 27 

Figure 34 - Game Controller OnEnable .................................................................................... 27 

Figure 35 - In-game UI .............................................................................................................. 27 

Figure 36 - UI Canvas ............................................................................................................... 28 

Figure 37 - Score Controller Update ........................................................................................ 28 

Figure 38 - End Goal ................................................................................................................. 29 

Figure 39 - End Goal Trigger ..................................................................................................... 29 

Figure 40 - End Goal OnTriggerEnter ....................................................................................... 30 

Figure 41 - Bridge Block ........................................................................................................... 31 

Figure 42 - Bridge Block Kinematic .......................................................................................... 31 

Figure 43 - XR Grab Interactable .............................................................................................. 31 

Figure 44 - XR Direct Interactor ............................................................................................... 32 

Figure 45 - VR_Interactor Start ................................................................................................ 32 

Figure 46 - VR_Interactor Update ............................................................................................ 33 

Figure 47 - new3DLoc .............................................................................................................. 34 

Figure 48 - VR_Controller Trigger Enter ................................................................................... 34 

Figure 49 - VR_Controller Trigger Exit ..................................................................................... 35 

Figure 50 - Bridge 2D Child ...................................................................................................... 35 

Figure 51 - Block 2D Collider .................................................................................................... 35 

Figure 52 - Interactive Block Working on Virtual Screen ......................................................... 36 

Figure 53 - Interactive Block Working in 2D Game .................................................................. 36 

Figure 54 - 3D Block Moves with Camera ................................................................................ 37 

Figure 55 - Interactive Block Example Use ............................................................................... 37 

Figure 56 - Player Getting Stuck Bug ........................................................................................ 38 

Figure 57 - Tilemap Composite Collider ................................................................................... 39 

  

 

  



6 

 

Introduction 

In this project, the goal was to create a virtual reality (VR) app that could demonstrate a 

novel method of interacting with traditional 2D video games in a 3D VR environment. To 

achieve this, I created both a standalone 2D game to represent a typical side-scrolling 

platform game, and a 3D environment in which the player can interact with the 2D game 

using a VR headset and controllers. 

The 2D game was designed to be reasonably simple, with only basic enemies and a final goal 

at the end of the levels. This was because the main purpose of the 2D game was to serve as 

the basis for the interaction within the 3D environment.  

The 3D environment consists of an arcade machine in a room. This arcade machine has a 

screen to display the 2D game. The user can interact with the 2D game by picking up blocks 

and pressing them into the screen. These blocks then interact with the 2D game, allowing 

the player to jump on them and complete levels. 

This concept of interacting with a 2D game in a 3D space using VR is very novel and during 

research, I could not find any prior examples of such a game. Implementing this interaction 

will require translating the location of the block in the 3D space, into the 2D space of the 

game. In Unity 2D games are actually in a 3D space, along a single axis, so this will add 

complexity to the solution. 

The app is aimed at a target audience that already plays regular 2D or 3D games since the 

design and control scheme should be familiar to those who have played a 2D platformer 

game before. The target age demographic is anyone over the age of 13 as this is the age that 

Oculus recommends as a minimum for their VR headsets. 

The players of the game will need a basic understanding of how to install and run a VR 

application, but this is the same for any VR app and no more effort is required than for any 

other VR application readily available to download from the internet. The controls are 

simple and should not pose any significant learning curve to someone who has played a VR 

game in the past. However, if they have never used a VR headset before, then this may 

require some period of learning and in which case an iŶtƌoduĐtioŶ tutoƌial suĐh as OĐulus͛s 
͞Fiƌst “teps͟ should giǀe ŵost people eŶough of aŶ iŶtƌoduĐtioŶ to the ĐoŶtƌols foƌ theŵ to 
use the app successfully. 

I developed the app to be used with an Oculus headset, specifically the Oculus Quest 2 

running from a PC. However, most VR headsets would work with this app provided it had 

enough buttons on the controllers. The app does not require any walking around, as the 

virtual arcade machine is presented in front of the user. Despite this, most VR headsets do 

haǀe a ŵiŶiŵuŵ plaǇ aƌea ǁheŶ used iŶ a ͚‘ooŵsĐale͛ ŵode (typically 2x2 metres). Oculus 

does, however, allow for a stationary play mode which would be suitable for this app. 

  



7 

 

This project has 3 main objectives: 

• Create a 3D VR environment in which the arcade machine sits.  

• Create a base 2D game to be displayed on the virtual arcade screen.  

• Allow a user to interact with both the 2D and 3D environment by using the VR 

controllers to pick up the 3D blocks and interact with the 2D screen. 

The project Is only intended to be a proof-of-concept to demonstrate the method of 

interaction with the 2D game within VR, but the game should function well and meet all 

objectives, with potential for future improvement and expansion of the concept. 

 

Background 

Virtual Reality 

The concept of virtual reality (VR) was arguably not invented by any one person but rather 

created by a series of advancements in engineering and technology. The teƌŵ ͞ǀiƌtual 
ƌealitǇ͟ itself ǁas popularised by Jaron Lanier of VPL Research in 1987[1], however, there 

were many developments into stereographic 3D images and videos before this time, which 

could be considered early examples of the technology: 

In 1838 Sir Charles Wheatstone described stereopsis, which is the perception of depth 

resulting from receiving 2 images, one from each eye[2]. From this discovery, Wheatstone 

created an early type of stereoscope which could display static 3D images using a pair of 

mirrors at 45 degrees[3]. 

In 1935 the American science fiction author Stanley Weinbaum described a pair of goggles 

in his book Pygmalion's Spectacles, which enabled "a movie that gives one sight and sound 

... taste, smell, and touch. ... You are in the story, you speak to the shadows (characters) and 

they reply ... the story is all about you, and you are in it."[4]. This description very closely 

matches the current model of a VR headset, albeit typically without the senses of taste, 

smell, and touch. 

In 1956 MoƌtoŶ Heilig iŶǀeŶted his ͞“eŶsoƌaŵa͟, which was a booth designed to stimulate 

the senses using 3D video, stereo sound, vibrations, scent producers and fans[5]. Heilig 

patented the device in 1962 and went on to develop the Telesphere Mask[6], which was the 

first head-mounted display (HMD), an important precursor to modern HMDs. 

In 1979 McDonnell-Douglas Corporation added head tracking into its HMD, the VITAL 

helmet, designed for military use. This head tracking folloǁed the pilot͛s eǇe ŵoǀeŵeŶts so 
the display could match the computer-generated images[7]. This is akin to how modern VR 

headsets track your head movements. 

Jaron Lanier and Thomas Zimmerman founded VPL Research in 1985. This company was the 

first to sell VR goggles and gloves[1]. Jaron Lanier was the person credited with popularising 

the teƌŵ ͞Viƌtual ‘ealitǇ͟ ǁhile ǁoƌkiŶg at VPL ‘eseaƌĐh. VPL ‘eseaƌĐh͛s V‘ aŶd gƌaphiĐs 



8 

 

patents were later purchased by Sun Microsystems in 1999 after the company declared 

bankruptcy in 1990[8]. 

Investment into VR technology somewhat stagnated until 2010, when Palmer Luckey 

created the first prototype of the Oculus Rift headset. The prototype had a much larger field 

of view than previous headsets and used a PC to deliver the images[1]. In 2012 Palmer 

Luckey launched a Kickstarter crowdfunding campaign for his Oculus Rift headset, which 

raised over 2.4 million dollars[9]. 

In 2014 Facebook bought Oculus for 2 Billion Dollars[1], this illustrated the massive increase 

in funding for VR at the time, and may now be seen as a relatively low price for the 

company. 

Since then, VR has progressed both in outright technological advancements and in reducing 

the cost of entry into the tech. Today you can buy a headset such as the Oculus Quest 2 for 

$299, a huge decrease from the initial cost of even the original Oculus Rift headset at $599 

at launch. Modern headsets come with tracked controllers, and many do not require 

tracking cameras at all, unlike the original Oculus Rift, and rather use an inside-out tracking 

system. The modern headsets have also increased in both resolution and screen refresh 

rates, giving a more immersive experience. 

The VR market size is projected to rise to over $100 billion by 2027. This increased 

investment into the technology has been further fuelled by the Covid-19 pandemic. With 

less social contact permitted, or even wanted anymore, people are looking to new 

technology to socialise online and pass their time indoors.  

VR has many applications, although now if you ask someone what they think VR is for, they 

are likely to say ͞gaming͟. This is not the only use case, however, as there are almost 

limitless applications for VR including fitness, teaching, healthcare and communication.  

VR has two levels of tracking: 3dof (3 degrees of freedom), where the rotation of the 

headset is tracked, and 6dof (6 degrees of freedom), where the rotation and position of the 

headset are tracked. My app is tracked to 6dof, as this is important for the interaction 

method I aimed this app at. 

VR also has the potential to change the way people think about sensitive topics. One study 

quoted: ͞put a ďuzziŶg joǇstiĐk iŶ paƌtiĐipaŶts͛ haŶds, ŵiŵiĐkiŶg a ĐhaiŶsaǁ as theiƌ ǀiƌtual 
hands sawed down a tree. Afterwards, when an experimenter pretended to accidentally 

knock over a glass of water, those who had sawed down a virtual tree reached for 20 

percent fewer napkins than those who only read a passage describing a tree being cut 

down͟[10]. This shows that VR has the potential to make a positive, or even negative, 

impact on the way people think about their actions. 

I chose to use VR to create this app, as I believe it gives a unique opportunity to introduce 

people to different ways of interacting with something they may be quite familiar with, such 

as a 2D platformer game. Almost everyone has played a game like Super Mario Bros, but 

people may not have thought about interacting with such a game in a VR environment. 



9 

 

 

Game Engine - Unity 

To develop this app, I used the game engine Unity. Unity is a game engine that allows cross-

platform development, frequently used to create mobile and desktop games. It was first 

released in 2005 and supports multiple platforms such as PC, Consoles, VR and mobile. 

Unity allows you to develop games quickly, by handling most of the graphics in the graphical 

user interface (GUI), leaving more time for coding, at the expense of some amount of 

freedom in terms of low-level access to the graphics APIs. Unity works by coding scripts and 

attaching them to game objects in the unity scene. These scripts are now written in C# in 

Unity, so this is the programming language I use in this project. Unity used to also support 

scripts in UnityScript (JavaScript) and Boo, though support for these was deprecated. 

I chose to use the Unity game engine, as it allowed me to focus on the functionality of the 

app, rather than spending a large amount of time coding low-level graphics functionality in 

C. As the project has a timescale of 12 weeks, not using a game engine was not feasible due 

to the time which would have been needed to code the solution. 

Unity also has built-in support for developing VR and other mixed reality applications 

through their XR (Extended Reality) plug-in framework, which gives native support for 

platforms such as Oculus, PlayStation VR, and Windows Mixed Reality[11]. I used this plug-in 

to allow me to develop for the Oculus platform, although it would be trivial to make builds 

for other platforms supported by this plugin, as I only used controls that are available on 

most headsets. Additionally, the third-party OpenVR Unity Plug-in could be utilised to 

support different headsets through the SteamVR platform. 

I decided to use the Unity version 2019.4.20f1 as it was a long-term ǀeƌsioŶ that didŶ͛t 
ŵaŶdate the use of UŶitǇ͛s Ŷeǁ iŶput system, which was less well documented online due 

to its recent release. 

C# 

Unity uses the C# language for scripting. C# is an object-oriented programming language 

developed by Microsoft as part of the .NET framework alongside Visual Basic and F#. C# 

uses a syntax similar to other C style languages such as C++ and Java. 

 

Existing Solutions 

I have found a few examples of existing solutions that use a similar concept of a 2D game 

being projected into a 3D world as in my app, although none use VR to actually interact with 

a 2D game using tracked controllers. 

One of these is Tetris Effect, which has a VR version[12]. This takes an ordinarily 2D game of 

Tetris and places it into a 3D VR environment. 



10 

 

 

Figure 1 - Tetris Effect 

In this eǆaŵple, the V‘ aspeĐt doesŶ͛t add aŶǇthiŶg to the gaŵeplaǇ, ƌatheƌ it just adds to 
the immersion of the 2D game by placing it into a VR environment. This could be seen as 

just a port of an existing game into VR, rather than using a novel way to interact with the 

game, such as turning the Tetris blocks with your hands in VR. 

 

 

Another example of a 2D game being projected into 3D is Super Mario Odyssey[13]. In this 

3D game, there are sections where you can play 2D minigames projected onto walls in the 

3D world. This adds variety to the gameplay by using nostalgia from old 2D Mario games. 

 

Figure 2 - Super Mario Odyssey 

 

  



11 

 

Specifications and Design 

 

Requirements 

For this project, I had several requirements that must be met for the app to be developed to 

a good standard and meet my overall aims. These requirements can be split into 3 groups 

based on my 3 main objectives for the project as outlined in the introduction. 

3D VR Environment 

The first objective was to create a 3D environment that the user can be in when using the 

app with a VR headset. This allows the user to get a sense of presence and immersion as if 

they are in an arcade playing on an arcade machine. The 3D environment would need to 

meet these requirements: 

1. There must be a simple room to contain the arcade machine and any other 

background objects. 

2. There must be a camera that follows the useƌ͛s head ŵoǀeŵeŶts iŶ V‘, both in 

rotation and position. 

3. The room must have some form of lighting. 

4. There must be objects that follow the user's hand movements in VR, tracked using 

the VR controllers. These could be hand models, controller models etc. 

5. The room must have a simple arcade machine or another model to house a screen to 

display the 2D game.  

6. There must be object(s) that will be used to interact with the 2D game, for example, 

bridges, blocks, or stairs.  

7. The room must have a surface or location to house these block(s) near to the screen. 

2D Side-Scrolling Game 

The next objective was to create a 2D game that the user would play on the virtual screen. 

This game will work standalone, but the levels are designed around the VR interaction which 

is implemented as part of the final objective. The 2D game will need to meet these 

requirements: 

8. The game must have a player object and texture. 

9. The game must have a background. This could be a static or dynamic image. 

10. There must be obstacles for the player to avoid. 

11. There must be terrain for the player to walk around on. 

12. The game must have enemies for the player to avoid or kill. 

13. The enemies must deal damage to the player if they come into contact with them. 

14. The enemies must move on their own. 

15. The enemies must be able to be killed by jumping on them. 

16. There must be a camera that follows the player around the levels. 

17. There must be an end goal at the end of the level(s) where once the player touches 

them, it ends the level. 



12 

 

18. At the end of the level, the gaŵe ŵust displaǇ the useƌ͛s sĐoƌe aŶd go ďaĐk to the 
main menu 

19. A main menu to choose which level to play. 

20. A simple control scheme that is easy to use with VR controllers. 

21. A user interface (UI) to show the plaǇeƌ͛s health, sĐoƌe aŶd ƌeŵaiŶiŶg tiŵe. 

 

VR interaction with the 2D game 

The final main development objective was to display the 2D game projected onto the screen 

in the 3D environment and to implement interacting with the 2D game by placing objects 

into the screen with their hands. To complete this objective these requirements need to be 

met: 

22. The 2D game must be projected onto the screen in the 3D environment. 

23. There must be a system to translate the location of 3D blocks that are moved into 

the screen using VR from the 3D space on the virtual screen to the 2D space of the 

2D game so that they can interact with the 2D game. 

24. When the camera moves after a 3D block has been placed, the block placed into the 

screen must follow the apparent location of the 2D block based on the camera 

movement. 

25. When a block is moved by the above feature and reaches the edge of the screen, it 

must be removed from the screen and return to its original location in the 

environment. 

 

Non-essential Functionality or Extensions 

In addition to the main requirements, some functionalities could be desirable to implement 

but are not necessary for the project to reach its aims. These are: 

1. Animations within the 2D game, for example, sprite animations for the enemy and 

player when they walk, jump, and take damage. 

2. Sound effects when actions happen in the 2D game. This would give the player some 

more feedback within the game. 

3. Multiplayer capabilities. Perhaps allowing 2 players to compete at the same time, or 

one player to deal with the game and one to assist with the 3D blocks. 

4. The ability to pause and leave games once a level has started. 

5. A system to keep track of high scores on each level. 

6. Multiple different levels. 

7. Collectable items such as coins in the levels. 

 

  



13 

 

Modules 

The stages of the project development can be split into different sections or modules based 

on their functionality in the app. These broadly fall into two groups: the 2D game and the 3D 

environment with the VR interaction.  

Figure 3. below outlines all of the modules in the project. 

 

Figure 3 - Module Diagram 

In figure 3, all the modules in the left red box are exclusively for the 2D game, being related 

to the scoring, enemy movement, player movement and player health. These modules are 

universal for all levels in the game and can be reused in each level.  

The modules in the middle red box can be considered as part of the 2D game but are 

independent of the individual levels of the game, and handle components such as the 

camera and main menu. 

Finally, the red box on the right contains only the module that handles the VR interaction 

with the 2D game using the 3D blocks. This module is again, independent of the 2D levels. 



14 

 

Design 

Main Game with VR Interaction 

 

Figure 4 – Main Game with VR Interaction 

Figure 4. above shows a mock-up of how I expected the 2D screen and VR interaction to 

look, as outlined in my initial plan. The mock-up shows the virtual screen with the 2D game 

projected onto it. It is also possible to see the hand models tracked in the space, and they 

are grabbing a block that is to be used in the game. 

Main Menu 

 

Figure 5 - Main Menu 

Figure 5 above details a mock-up created of the main menu that should allow the user to 

select levels and view the high scores for each level. In this mock-up, the multiple levels and 

high score display fall under the non-essential features, while the rest of the functionalities 

are classed as main requirements (main menu). 



15 

 

Implementation 

In this section, I will describe how the project is implemented. I will focus on the sections of 

code that are non-trivial or are critical to the functionality of the project. I will aim to explain 

briefly how each of these sections works, but an understanding of C# and Unity may be 

necessary to understand some sections. Explaining these sections is outside the scope of 

this project, however. 

Assets 

During the development process, I required the use of a few 3D and 2D models, as creating 

these myself would have been highly complex and taken too much time out of the already 

limited time frame for the project. These assets were all from the Unity Asset Store[14], and 

all allowed free use. 

The first asset I used was ͞Arcade Machines Pack 01 - Lowpoly Pack͟ ďǇ AuƌǇŶ“kǇ[15]. This 

asset pack includes the 3D model of the arcade machine which I used in my scene. 

The next asset I used was ͞Heƌo KŶight͟ ďǇ Luiz Melo[16]. This was a 2D sprite pack that I 

used as the basis for the player and enemies. 

Finally, I used ͞Free 8-Bit Pixel Pack͟ ďǇ Super Icon Ltd[17], which was a pack of 2D tiles 

which I used to create the 2D levels. 

 

3D VR Environment 

The first step in development was to create a 3D environment for the user to be placed in 

and be able to look around in VR. 

To do this I started a new Unity project using the new Universal Render Pipeline (URP). This 

is UŶitǇ͛s ƌeplaĐeŵeŶt foƌ the old Built-in Render Pipeline. I ended up running into issues 

with using this render pipeline that I will detail later.  

Starting a project with the URP automatically loads in a sample scene with some sample 

assets, so I created a new empty scene for my game. 

I added a floor using a plane and added the model of the arcade machine[15]. I then placed 

a cube next to the arcade machine to act as a table for the interactive blocks to be held on. 

Next, I added some textures to the floor and the table using some of the materials from the 

URP sample scene. Finally, I added a directional light above the scene to provide some extra 

local light in addition to the skybox lighting. 



16 

 

 

Figure 6 - Scene setup 

 

The next step was to set up the Unity packages/plugins and project settings required to 

enable the VR integration with the Oculus headset. First I installed the XR Interaction Toolkit 

and XR Plugin Management packages, which enable VR interaction and allow me to select 

which XR plugins to use, respectively. These are the XR packages that are now installed: 

 

Figure 7 - XR Packages 

After this, I set up the XR Plugins in the Project Settings panel to allow integration with the 

Oculus Plugin: 



17 

 

 

Figure 8 - XR Plugins 

With Unity now set up for VR integration, I then converted the main camera in the scene to 

a device based XR rig. The XR rig will contain the VR camera as well as the 2 controllers. 

 

Figure 9 - XR Rig 

This also sets up the Main Camera to track the headset͛s ƌotatioŶ aŶd positioŶ ;6dofͿ usiŶg a 
Tracked Pose Driver in the camera. 

 

Figure 10 - Tracked Pose Driver 

This takes the position of the centre of the XR HMD and applies it to the camera this Tracked 

Pose Driver component is attached to. At this point, the VR camera works and you can look 

around and move correctly in the scene. 

Next, I added models to represent the controllers and track them as well. To do this I 

created two coloured spheres as prefabs and added them to an XR Controller (Device-

based) component within both the left and right-hand controller game objects within the XR 

Rig. 



18 

 

 

Figure 11 - Finished XR Rig 

 

Figure 12 - XR Controller 

At this point, the cameƌa folloǁs the V‘ headset͛s positioŶ aŶd ƌotatioŶ, aŶd the Ϯ spheƌes 
follow both ĐoŶtƌolleƌs͛ location and rotation. 

Virtual Screen 

At this stage, I decided to set up the virtual screen, as I wanted to be able to develop the 2D 

game with the camera and screen in mind. To do this I created a second camera called the 

͞Feed Caŵeƌa͟ and placed it at 40, 2, -10 coordinates. This was because I intended to place 

the 2D game along the x-axis starting at 40, 0, 0. The camera was set up as an Orthographic 

camera, so there is no perspective to the image. 

To display the Feed Camera͛s output oŶ a ǀiƌtual sĐƌeeŶ I needed to create a material that 

would go on the plane(screen). I first created a new teǆtuƌe Đalled ͞Caŵeƌa Feed Teǆtuƌe͟. I 
then set up the Feed Camera to target this texture as an output. 

 

Figure 13 - Camera Feed Texture 



19 

 

Next, I Đƌeated a Ŷeǁ ŵateƌial ͞Caŵeƌa Feed Mateƌial͟ aŶd added the teǆtuƌe to the 

material. Finally, I added this material to a plane I had created within the arcade machine. 

 

Figure 14 - Camera Feed on Plane 

At this point, I expected this to show the output of the camera, but it did not work at all. I 

searched for solutions to this online and I did find one person with a similar problem when 

using the new URP. Without the prospect of identifying a solution, I finally decided to 

change the project to the Built-in Render Pipeline. This was due to the fact that I concluded 

there was a bug in the URP, and I did not have a sufficient timeframe to attempt updating 

my version of Unity to see if that resolved the problem. I did this by altering the graphics 

settings in the project settings menu to remove the URP asset, which reverts it to the Built-

in Render Pipeline. 

After switching to the Built-in Render Pipeline, the screen now displays the output from the 

camera. 

  

Figure 15 - Camera Feed Working 

2D Game 

The next step was to work on creating the 2D game that the app would be based around.  

Level Tilemap 

The first step towards the 2D game was to create a surface for the level. To do this, I made 

use of the tiled pixel assets[17]. To create a level from these tiles, I Ŷeeded to use UŶitǇ͛s 
tilemaps. Tilemaps allow you to add tiled assets onto a grid and allow the creation of 

colliders for these tiles. 

Before creating the grid, I needed to alter the ďloĐk asset͛s iŵpoƌt settiŶgs to ĐhaŶge the 
Pixels Per Unit. This tells Unity how many pixels each tile takes up. Without this set, the tiles 



20 

 

would be too small for the default grid size and only fill half of a grid square. In my case, this 

was 32 pixels. 

 

Figure 16 - Tile Import Settings 

With this set, I added a Tileŵap gƌid aŶd used UŶitǇ͛s Tile Pallet to draw a simple level base 

Đalled ͞gƌouŶd͟ as shown in figure 17 below. 

 

Figure 17 - Level Tilemap 

Unity automatically adds a Tilemap Collider, which adds colliders for every block. However, 

later in development, I noticed that the player would catch slightly on every ground block 

while running along a flat surface. I detail my solution to this problem in the Bug Fixing 

section at the end of the Implementation.  

Player 

To create the player I created a new game object and added a sprite from the Hero Knight 

asset[16]. I used the ͞idle 0͟ spƌite, as this ǁould look acceptable without any animation. I 

added the necessary rigidbody and collider to allow physics and collision. I also constrained 

the rotation of the rigidbody around the Z-axis, as I did not want the player to rotate at all. 

 

Figure 18 - Player Sprite 

Next, I needed to make the player move, so I Đƌeated a Ŷeǁ sĐƌipt ͞PlaǇeƌ_MoǀeŵeŶt͟ and 

attached it to the player game object. Attaching a script to an object in Unity means that the 



21 

 

script runs when the player is active, and an instance of the class is created for each of these 

objects. Therefore, if there were more than one player, it would create a new instance of 

Player_Movement for each player. 

 

Figure 19 - Player Movement initial draft 

This code is relatively straightforward and just takes the horizontal movement from the 

horizontal axis and multiplies it by the movement speed defined to give the new horizontal 

velocity. The jumping simply adds an upwards force to the player. Note that this is not the 

final code, rather an unfinished version. Later versions are documented additionally. 

The flipPlayer function when I first implemented it, iŶǀeƌsed the plaǇeƌ͛s ǆ loĐal sĐale to 
effectively flip the whole object 180 degrees so it faces the other way. I later changed this to 

use the “pƌite‘eŶdeƌeƌ ĐoŵpoŶeŶt͛s flipX function to just flip the sprite, rather than the 

game object. 

At this stage, the player can keep jumping whilst they are in the air, therefore there was a 

requirement to make a check for if they were touching the ground. Initially, I did this by 

tagging the ground tilemap ǁith the tag ͞GƌouŶd͟ aŶd ĐheĐkiŶg oŶ ĐollisioŶs if the tag ǁas 
ground and if so, setting a ǀaƌiaďle ͞touĐhiŶgGƌouŶd͟, but I later decided to switch to using 

a raycast pointing down. This allowed me to specify distances and would be useful later for 

detecting when the player jumps on an enemy. 

 

Figure 20 - Creating Raycast 



22 

 

 

Figure 21 - Checking Raycast for ground 

 

Figure 22 - Jump Touching Ground 

The result was that the player cannot jump unless they are touching the ground. 

The Ŷeǆt step ǁas haŶdliŶg the plaǇeƌ͛s health aŶd ƌespaǁŶing them if they die. To do this I 

Đƌeated aŶotheƌ sĐƌipt Đalled ͞PlaǇeƌ_Health͟, again attached to the player object. This 

ǁould stoƌe the plaǇeƌ͛s health, handle damage, and the code to handle the player falling 

off the map. 

 

Figure 23 - Player Health 

 

Figure 24 - Reset Player 

This script simply checks once per frame if the playeƌ͛s health reaches zero, and if so sets 

isDead to true. If isDead is true, the reset player function is called, which resets the plaǇeƌ͛s 
position, rotation, velocity, and health. The playerHealth variable starts at 3. 

It also checks if the player has gone below -10 on the Y direction, and if so, sets isDead to 

true. This could also have been done by creating a dedicated collider below the ground to 

trigger the death if they collide with it. This could be useful if the game needed to go very 



23 

 

far down in a level, as otherwise, the player could fall for a long time before dying. This was 

not necessary for my game, as the levels never go below -10, but nevertheless, it is 

something to consider if the levels were to expand to go down further. 

I also added a puďliĐ fuŶĐtioŶ ͞Daŵage͟, ǁhiĐh I ǁill use lateƌ ǁheŶ ĐƌeatiŶg the eŶeŵǇ 
script to send damage to the player on contact. This just ƌeduĐes the plaǇeƌ͛s health ďǇ 
whatever value is passed to it. 

 

Figure 25 - Damage function 

Now the player will die if they fall below -10 and be respawned at the start position. The 

ƌeasoŶ I ƌeset the plaǇeƌ͛s loĐatioŶ ƌatheƌ thaŶ just destroying the player and creating a new 

one, is that I knew that the 2D camera tracking system would have to be reset later if I did 

this. This is because the camera will look for a player at the start and changing the instance 

of the player would mean the original instance was no longer there. 

Enemy 

To create the enemy, I used the same asset as with the player to create a sprite but 

coloured it red by changing the sprite colour parameter to make it look distinct from the 

player sprite. As with the player, I added a rigidbody and collider for physics and collisions 

and constrained the rotation around the Z-axis. 

 

Figure 26 - Enemy Colour 

 

Figure 27 - Enemy Sprite 

Then I needed the enemy to move with some degree of autonomy, so I added a script 

͞EŶeŵǇ_CoŶtƌolleƌ͟ to the eŶeŵǇ gaŵe object. 



24 

 

 

Figure 28 - Enemy Controller 

In this script, once a frame it sends out a raycast in the direction the enemy is facing, if it hits 

anything closer than 0.4 then it flips the sprite and flips the direction it is travelling. If the 

collider it hits is a player, then it gets the instance of the Player_ Health class that is 

attaĐhed to the Đollideƌ͛s gaŵe object and calls the Damage function from Player_Health for 

1 damage. 

This means that whenever the enemy gets to a collider, it will flip and start travelling the 

other way. This also happens when it hits a player, and damage is dealt. 

At this point, I wanted to have the ability to kill the enemies by jumping on them. I did this 

ďǇ addiŶg a ĐheĐk iŶ the PlaǇeƌ_MoǀeŵeŶt͛s ƌaǇĐast: 

 

Figure 29 - Enemy Death 

This ĐheĐks the Đollideƌ foƌ the tag ͞EŶeŵǇ͟ aŶd if it is, it Đalls the juŵp function and starts a 

coroutine enemyDeath. This coroutine flattens the enemy object to half its height, to 

appear squashed and waits 0.2 seconds before destroying the enemy. 

 



25 

 

Camera Controller 

The next part of the 2D game I created was a script to make the camera follow the player 

around the game. Originally, I had decided to have the camera as part of the level prefabs 

and respawn it every level to avoid having to connect the camera controller with the player 

every level as the player changed. As I was intending to create a Main Menu and this would 

need a camera to attach the canvas to, this would make this more difficult as I would need 

another camera. Additionally, changing the camera would unlink the Camera Feed Texture 

which is needed to display on the arcade screen. For these reasons I decided to uncouple 

the camera with the level prefabs, so it is now a permanent part of the 3D game, 

independent of levels.  

To move the camera around with the player, I attaĐhed a sĐƌipt ͞Caŵeƌa_CoŶtƌolleƌ͟ to the 
Feed Camera. 

 

Figure 30 - Camera Controller 

This script sets the X and Y position of the camera to ďe eƋual to the plaǇeƌ͛s X aŶd Y 
position, provided they are within the min and max values set in the corresponding 

variables. This works as the camera is parallel to the 2D game which is placed along the X-

axis. Additionally, the camera is an Orthographic camera, therefore has no perspective. This 

means that it doesŶ͛t ŵatteƌ ǁheƌe the Đaŵeƌa is plaĐed oŶ the Z-axis, it will always show 

the saŵe sized output. IŶ this Đase, the sĐƌipt just ŵaiŶtaiŶs ǁhateǀeƌ the Feed Caŵeƌa͛s X 
position was previously. 

I also added a function ͞‘eset͟ to fiŶd the plaǇeƌ gaŵe oďjeĐt usiŶg UŶitǇ͛s ͞FiŶdWithTag͟ 
function. Note that this function is inefficient, so should only be run when needed. In this 

case, the Reset function will only be run once when the levels are started, so this is not a 

problem, but it would be a poor use of resources to run this once a frame for example. 

The camera can now follow the player around the level. 

Main Menu 

The next component is the main menu, which will allow the user to select levels and view 

their high scores. To do this I needed the 2D game to be part of a prefab, so the selected 

level can be instantiated by the main menu. 

After putting the ϮD gaŵe iŶto a pƌefaď, I Đƌeated a Ŷeǁ gaŵe oďjeĐt Đalled ͞Leǀel MeŶu͟ 
which will hold the UI Canvas object. Placing the Canvas within another game object meant I 

could disable the canvas to hide the menu, without disabling the Level Menu object. This 



26 

 

allows me to find the Level Menu object to re-enable the canvas when the level ends and 

the menu needs to be visible again. 

I designed the menu using a background, title, 2 buttons and 2 text fields: 

 

Figure 31 - Main Menu 

By setting the NaǀigatioŶ settiŶg oŶ the ButtoŶs to ͞VeƌtiĐal͟, it allows me to use the built-in 

event system to navigate the menu using the default vertical buttons on either keyboard 

(for testing) or the joystick on the VR controller. 

 

Figure 32 - Button Navigation 

After this, I Đƌeated a Ŷeǁ sĐƌipt Đalled ͞Gaŵe_CoŶtƌolleƌ͟ to haŶdle the main menu and 

loading of levels.  

First, the script adds listeners to the onClick events for both of the level buttons (this could 

be expanded to however many levels are used). These listeners will run the lambda 

expression which calls the LoadLevel function with the corresponding prefabs for the levels 

which are defined in the Unity editor. It also sets the high score text to a PlayerPrefs 

variable. PlayerPrefs are designed to store player preferences such as settings, so isŶ͛t a 
very secure way of storing the high scores, as it is reasonably easy to modify these values. 

However, this is not a concern in this project, as it is more a proof of concept. I set these 

high scores later when I set up the scoring and end game 



27 

 

 

Figure 33 - Game Controller Start 

LoadLevel instantiates the level prefab passed to it in the position 40, 0, 0. It then finds the 

Canvas component in its children objects and sets the world camera of that canvas to the 

Feed Camera. This is a canvas used later on for the in-game UI. Next, the script calls the 

Reset function in the Feed Caŵeƌa͛s Caŵeƌa_CoŶtƌolleƌ to fiŶd the plaǇeƌ oďjeĐt foƌ the 
camera to follow. Finally, it deactivates the canvas. 

 

Figure 34 - Game Controller OnEnable 

The OnEnable method is called when the canvas is re-enabled and resets the high score text 

in case the high score has changed since the last game. 

In-game UI 

Before adding in a timer, scoring and end goal, I needed to add a UI for the game to display 

the plaǇeƌ͛s sĐoƌe, health, aŶd remaining time. For this, I added a canvas to the 2D level 

prefab, with text fields for the score, health and time placed at the top of the screen. I also 

added another text field that I will use for displaying the score at the end of the level. Here 

the End Score Text is not visible as it is disabled. 

 

Figure 35 - In-game UI 



28 

 

 

Figure 36 - UI Canvas 

Then, to manage the score and timing of the game, I added a new script to the player called 

͞“Đoƌe_CoŶtƌolleƌ͟. 

 

Figure 37 - Score Controller Update 

This script updates the time left every frame by the time since the last frame (deltaTime). 

This is so the tiŵeƌ is iŶdepeŶdeŶt of the gaŵe͛s fƌaŵe ƌate aŶd ĐouŶts iŶ ƌeal-time. It also 

updates the time and score text to reflect any changes. Next, if the time has run out, it 

reactivates the main menu and the canvas then deletes the 2D game prefab, ready for the 

next level to be launched by the main menu. 

After this, I added a new object to the tileŵap iŶ the leǀel Đalled ͞EŶd Goal͟ ǁith the tag 
͞EŶd Leǀel͟. This will serve as the target that the player must reach to end the level. Again, I 

used the pixel art tiles for this. 



29 

 

 

Figure 38 - End Goal 

To detect ǁheŶ the eŶd goal is ƌeaĐhed, I set the eŶd goal͛s Đollideƌ to ďe a tƌiggeƌ. This ǁill 
allow me to detect when it collides with the player, without the player bumping into the 

goal. In other words, the player can walk into the end goal and it will trigger. 

 

Figure 39 - End Goal Trigger 

I then added an OnTriggerEnter2D method to the Score_Controller. This checks if the trigger 

was the end goal and if so, starts the coroutine endLevel. EndLevel calculates the score and 

displays it on the End Score Text. It then saves the score as a high score if it is higher than 

the saved high score. Next, it ƌeŵoǀes the eŶd goal͛s Đollideƌ, in case the player runs out of 

the goal and back in again. This stops the player from being able to gain points repeatedly at 

the end of the level. Then it waits for 3.5 seconds, re-enables the main menu canvas, and 

destroys the 2D game ready for the next level. 



30 

 

 

Figure 40 - End Goal OnTriggerEnter 

At this stage, the 2D game functioned as I intended. The movement and jumping are not 

quite as smooth as in a finished commercial game, but it was still very playable. 

 

VR Interaction 

Grabbable Block 

The final step in the implementation was to develop the interaction between the 2D game 

and the 3D environment using VR. 

To do this, I first added a block to the 3D scene which would act as a bridge in the game. I 

added a texture to this from the Unity URP sample materials and added a rigidbody and 

collider. I decided to make the ďloĐk͛ ƌigidďodǇ kiŶeŵatiĐ. This ŵeaŶs that foƌĐes suĐh as 
gravity and collisions will not affect the block at all, and the only thing that can change the 

position of the block are scripts. This may not have been necessary, but it simplified the 

development later and the ďloĐk Ŷot haǀiŶg gƌaǀitǇ doesŶ͛t affeĐt the fuŶĐtioŶalitǇ iŶ aŶǇ 
ǁaǇ. It also ŵakes it a ďit easieƌ foƌ a ŶoǀiĐe useƌ to use, as if theǇ ͚dƌop͛ the ďloĐk, theŶ it 
ǁoŶ͛t fall to the flooƌ. 

I also set the ďloĐk͛s Đollideƌ to aĐt as a tƌiggeƌ. This alloǁs the grab component used next to 

tell if there is a collision with an interactable object. 



31 

 

 

Figure 41 - Bridge Block 

 

Figure 42 - Bridge Block Kinematic 

Neǆt, I Ŷeeded to ŵake the ďloĐk ďe aďle to ďe ͚gƌaďďed͛ ďǇ the plaǇeƌ usiŶg the V‘ 
controllers. To do this I added the component XR Grab Interactable to the block. This will 

allow the block to be grabbed by an XR Interactor. I later found out that I should set the 

ŵoǀeŵeŶt tǇpe iŶ the Gƌaď IŶteƌaĐtaďle to ͞IŶstaŶtaŶeous͟ fƌoŵ the default ͞KiŶeŵatiĐ͟, 

as otherwise, this caused problems when moving the block within the screen later.  

 

Figure 43 - XR Grab Interactable 

Then I needed to add an XR Direct Interactor to both VR controller objects. This will detect 

any trigger colliders that enter the spheres I added earlier to represent the 

controllers/hands. If these trigger objects contain the XR Grab Interactable component, it 

will allow the player to grab them using the grip button on the controllers. 



32 

 

 

Figure 44 - XR Direct Interactor 

With this done, the player can grab the block with either hand using the grip button. The 

block stays where the player left it once they let go. This is also another benefit to making 

the block kinematic, as when the player lets go, it does not then collide with their hands, 

which could push the block out of reach. 

VR Interaction Code 

The final aim in development was to make the block appear in the 2D game when you push 

it into the screen in the 3D space. Finding a solution to this was not trivial and so I needed to 

find a simple way to translate the virtual screen space in 3D, into the ͚ϮD͛ spaĐe of the 
game. Note that the 2D game is actually in the 3D space, just along the X-axis starting at 40, 

0, 0. 

The solution I came up with was to work out 2 ratios for the difference between the size of 

the virtual screen, and the camera size, then use this ratio to translate the location based on 

the position of the camera at the time. 

To do this, I created a new script oŶ the sĐƌeeŶ oďjeĐt Đalled ͞V‘_IŶteƌaĐtoƌ͟ ǁhiĐh ǁill 
contain all the code for the interaction: 

 

Figure 45 - VR_Interactor Start 



33 

 

First, when the script is first loaded, it calculates the height and width of the camera. This is 

ĐalĐulated usiŶg the Đaŵeƌa͛s size aŶd aspeĐt ƌatio. I took these values from the camera 

rather than setting them manually, as it gives the option to change the camera size later 

without having to change this code at all. 

Next, it calculates the height and width of the virtual screen by multiplying the scale of the 

plane that makes up the screen by 10 and 0.4. 10 because the screen is made of a plane, 

which is always 10x10 units at a scale of 1, and 0.4 as this is the scale of the arcade machine 

the screen is the child object of, so the plane has also been scaled by 0.4. 

Then it calculates the width and height ratio between the camera and the screen. 

After this, it adds listeners to the onSelectEntered and onSelectExited functions of the XR 

Direct Interactor components in the left and right controllers. These are lambda functions 

which call SetGrabbed to set a variable ͞ďloĐkGƌaďďed͟ ǁhiĐh stores whether the block is 

currently being grabbed. This will be used later to check whether the block is still being 

moved by the player or has been placed in a position and let go of. 

Next, I added the code which will translate the position of the block into the 2D space: 

 

Figure 46 - VR_Interactor Update 

This code is run every frame, and first calculates the position of the 3D block relative to the 

screen. It then stoƌes the Đaŵeƌa͛s loĐatioŶ. If newVRBlock exists, which will be a reference 

to the new block iŶ the ͚ϮD͛ spaĐe of the gaŵe, then it checks if the block is being grabbed. 

If it is still being grabbed, then it defines a Vector3 (3d position) ͞ŶeǁϮDLoĐ͟ as the 

Đaŵeƌa͛s ĐuƌƌeŶt loĐatioŶ plus the ďloĐk͛s ƌelatiǀe loĐatioŶ ŵultiplied ďǇ the ƌatio ĐalĐulated 
at the start. Note that the X ǀalue is ĐalĐulated fƌoŵ the ďloĐk͛s ) loĐatioŶ oŶ the sĐƌeeŶ, as 
the screen is at 90 degrees to the 2D game space, therefore the Z-axis corresponds to the X-

axis in the camera plane. It then stores the world (not relative) position of the camera and 

the block when they were placed. 

If the block has been placed (newVRBlock exists) ďut the ďloĐk isŶ͛t ďeiŶg gƌaďďed aŶǇmore, 

then it defines a new position ͞ŶeǁϯDLoĐ͟: 



34 

 

 

Figure 47 - new3DLoc 

This calculates a new location for the 3D Block so that if the camera moves, the location of 

the block in the screen moves to reflect this. This is calculated by first taking the difference 

between the camera location when it was placed and the current camera position and 

dividing it by the ratios calculated earlier. It then adds this to the placed block location. 

Finally, it sets the location of the 2D Block in the game and the 3D block in the screen to 

their new locations. 

When I coded this initially, I had a bug where once the camera moved, the block would 

shoot off, but in the right direction. I eventually realised that I was adding to the actual 

location of the 3D block once a frame, rather than the placed location. This meant that the 

position kept getting added to every frame and it kept moving. The solution to this was just 

to store the location the block was placed at with the placedBlockLoc variable. 

 

The next function I developed was the detection of the block being pushed into the screen. 

Initially, I tried doing this using UŶitǇ͛s OnCollisionEnter and Exit functions, but I ran into a 

bug where when you pushed the ďloĐk iŶto the sĐƌeeŶ, it ǁould keep ͚eŶteƌiŶg͛ aŶd ͚eǆitiŶg͛ 
every frame, rather than just once when the block enters and once when it leaves. Instead, 

as desĐƌiďed eaƌlieƌ, I set the ďloĐk͛s Đollideƌ to ďe a tƌiggeƌ aŶd used UŶitǇ͛s OnTriggerEnter 

and OnTriggerExit to handle this, as this worked with no problems. 

 

Figure 48 - VR_Controller Trigger Enter 

This code checks if the trigger was a VR Block, and if it is, sets the variable vrBlock to the 

collider that triggered. It then instantiates a copy of the block at the position defined in 

new2DLoc in the code in figure 47. Then it scales up the new block by 8 to better match the 

scale and stops its collider from being a trigger. 

Finally, I added the code to handle when the block is pulled out of the screen and delete the 

block in the 2D game: 



35 

 

 

Figure 49 - VR_Controller Trigger Exit 

This resets the 3D block back to its original position on the table and destroys the new block 

in the 2D game to reflect the block being removed from the screen. 

This mostly functioned as I expected, in that the block created in the 2D game followed the 

placement of the 3D block. However, the player in the 2D game could not collide with the 

ďloĐk, so ĐouldŶ͛t use the block to jump on. 

I determined that this is because although 2D and 3D objects in unity share the 3D space, 

they use different physics engines, physX for 3D and Box2D for 2D. To get around this, I 

added a 2D box Đollideƌ to the ďloĐk oďjeĐt. This doesŶ͛t affeĐt the ďloĐk iŶ 3D but allows 2D 

objects to collide with it. Normally unity does not allow 2D and 3D components on the same 

object, however, I solved this by creating a child of the ďloĐk Đalled ͞ϮD͟ just foƌ the ϮD 
collider: 

 

Figure 50 - Bridge 2D Child 

I could then add a 2D collider to this child object: 

 

Figure 51 - Block 2D Collider 

Now the 2D player can jump on the block when it is placed into the screen, and the block is 

removed from the 2D game when the 3D block is pulled from the screen: 



36 

 

 

Figure 52 - Interactive Block Working on Virtual Screen 

Here is the ďloĐk that is Đƌeated iŶ the ͚ϮD͛ game: 

 

Figure 53 - Interactive Block Working in 2D Game 

The placed 3D block also follows the apparent position of the ͚ϮD͛ ďloĐk on the screen when 

the camera is moved: 



37 

 

 

Figure 54 - 3D Block Moves with Camera 

Here is an example of the block being used in the game: 

 

Figure 55 - Interactive Block Example Use 

In figure 55 above, the player cannot cross the gap by jumping as it is too far, so the user 

must use the interactive block to create a platform in the middle to jump to. 

Unfortunately, it is not easy to show the full functionality of this through pictures alone. I 

created the above photos by placing the blocks using the VR headset, then pausing the 

game through the Unity Editor to take screenshots. 

 



38 

 

Here Is a screenshot of the Unity project hierarchy at the end of development: 

 

Bug Fixing 

During and after development, there were some changes I made to make the game a little 

easier to control. None of these would change whether my requirements were met but 

were notable as they made the game more consistent and thus slightly easier to play. 

2D Player’s Collider 

Initially, the 2D player only had a capsule collider to handle collisions with the level and 

objects. I used a capsule collider so that the collider could be rounded at the corners so that 

the ĐoƌŶeƌ ǁouldŶ͛t ĐatĐh oŶ the edge of ďloĐks. This successfully worked most of the time, 

but there were some instances where the player would not be able to jump if they tried 

while touching something next to them. For example, in figure 56 below the player cannot 

juŵp if theǇ hold the ͚ƌight͛ diƌeĐtioŶ at the same time, as there is friction between the right 

side of the plaǇeƌ͛s Đollideƌ and the block: 

 

Figure 56 - Player Getting Stuck Bug 



39 

 

The solution I found was to change the collider to a box collider and add a component called 

͞Platfoƌŵ EffeĐtoƌ ϮD͟. This ĐoŵpoŶeŶt alloǁs Ǉou to alteƌ the behaviour of the collider 

such as whether there is friction or bouncing on the sides of the collider. This component is 

specifically designed for 2D platformer colliders. 

With this component added, and the side friction and bounce disabled, the player collider 

now has no friction on the left and right sides and so the player can hold a direction and run 

at the same time. This also fixed the occasional bug I had where if the player hit the side of a 

block when in the air from jumping, if they held down the direction of the block, they would 

stick to the side of the block rather than sliding off it. This was caused by the same problem 

with the friction on the side of the collider. 

2D Level Collider 

Earlier when I created the level, I used a Tilemap Collider, which adds colliders for every 

block, however later in development I noticed that the player would catch slightly on every 

ground block while running along a flat surface. This was because the collider was made up 

of ŵultiple sŵalleƌ oŶes, aŶd the plaǇeƌ͛s Đollideƌ ǁould sŶag oŶ the edge of eaĐh Đollider as 

it went over it. 

The solution I found for this was to add a Composite Collider 2D component to the ground 

Tileŵap. This takes the Tileŵap͛s multiple colliders, and merges any connecting blocks into 

single polygon colliders, thereby smoothing out the colliders, fixing the issue. 

 

Figure 57 - Tilemap Composite Collider 

Results and Evaluation 

This section will aim to show to what extent the app has met the aims and requirements I 

set out before starting the project in the Specification section. I will demonstrate this by 

detailing the results of both my own testing and the results from user testing I carried out. I 

will then give a critical appraisal of the project as a whole, and to what extent I feel it was 

successful. 

 

Testing 

To test the app myself, I tested the game against my original requirements set out in the 

specification by repeatedly playing the app and determining if each requirement was met. I 

feel that these tests will give a good indication of where the app has and has not met my 

overall aims for the project. 

  



40 

 

 

The results of my own testing are as follows: 

Main Requirements 

These tests are against the main requirements set out in the specification. These 

requirements are categorised as main requirements because they are integral to meeting 

the objectives of the project. 

Table 1. 

Test 

Number 
Requirement Description 

Pass/Fail/ 

Partial 
Comments 

 3D VR Environment 

1.         

There must be a simple room to 

contain the arcade machine and 

any other background objects. 

Pass 
There is a basic room with the arcade 

machine and table 

2.        

There must be a camera that 

folloǁs the useƌ͛s head 
movements in VR, both in 

rotation and position. 

Pass 

The camera can follow the user's 

head movements, both in rotation 

and position. 

3.         
The room must have some form 

of lighting. 
Pass 

There is a directional light in the 

room, in addition to the skybox 

lighting. 

4.         

There must be objects that follow 

the user's hand movements in 

VR. Tracked using the VR 

controllers. These could be hand 

models, controller models etc. 

Pass 
There are spheres that represent the 

user's hands in VR. 

5.         

The room must have a simple 

arcade machine or another 

model to house a screen to 

display the 2D game.  

Pass 
There is an arcade machine model 

which contains the screen. 

6.         

There must be object(s) that will 

be used to interact with the 2D 

game, for example, bridges, 

blocks, or stairs.  

Pass 

There is one object that can interact 

with the 2D screen, although more 

could be added by tagging an object 

with "VR Block". 

7.         

The room must have a surface or 

location to house these block(s) 

near to the screen. 

Pass 

There is a table for holding the 

objects, although it is not strictly 

needed, as the objects do not have 

gravity  



41 

 

2D Side-Scrolling Game 

8.         
The game must have a player 

object and texture. 
Pass 

The player object has a static sprite 

texture. 

9.         
The game must have a 

background.  
Partial The background is just a static colour 

10.     
There must be obstacles for the 

player to avoid. 
Pass 

The game has several gaps to jump 

over, stairs to climb and level 2 has a 

'stepping stone' section. Additionally, 

there are also enemies. 

11.     
There must be terrain for the 

player to walk around on. 
Pass 

The game has a base level terrain 

composed of tiled blocks. 

12.     
The game must have enemies for 

the player to avoid or kill. 
Pass 

The game has multiple (identical) 

enemies. 

13.     

The enemies must deal damage 

to the player if they come into 

contact with them. 

Pass 

The enemies deal 1 damage value if 

they contact the player when facing 

towards them. 

14.     
The enemies must move on their 

own. 
Pass 

The enemies' movement is controlled 

by a script that moves them in one 

direction until they hit something, at 

which point they turn around. 

15.     
The enemies must be able to be 

killed by jumping on them. 
Pass 

The player can kill enemies by 

jumping on them from above. 

16.     

There must be a camera that 

follows the player around the 

levels. 

Pass 

The feed camera follows the player 

around the levels and is bounded by 

the clamp variables. 

17.     

There must be an end goal at the 

end of the level(s) where once 

the player touches them it ends 

the level. 

Pass 

The levels have an end goal tagged 

"End Level". If the players hit this, 

then the level ends. 

18.     

At the end of the level, the game 

ŵust displaǇ the useƌ͛s sĐoƌe aŶd 
go back to the main menu 

Pass 

When the user reaches the end of the 

level, their score is displayed for 3.5s 

and then is returned to the main 

menu. 

19.     
A main menu to choose which 

level to play. 
Pass 

The game has a main menu where 

you can select between 2 levels. 

20.     
A simple control scheme that is 

easy to use with VR controllers 
Pass The 2D game is controlled using the 

left joystick to move left and right, 



42 

 

and the 'A' button on the right 

controller to jump. 

21.     
A UI to shoǁ the PlaǇeƌ͛s health, 
score and remaining time 

Pass 
3 text fields display the player's 

health, score and remaining time. 

 VR interaction with the 2D game 

22.     

The 2D game must be projected 

onto the screen in the 3D 

environment. 

Pass 

The 2D game is projected onto the 

screen by using a feed texture from 

the camera applied to the screen. 

23.     

There must be a system to 

translate the location of 3D 

blocks that are moved into the 

screen using VR from the 3D 

space on the virtual screen to the 

2D space of the 2D game so that 

they can interact with the 2D 

game. 

Pass 

When a block is pushed into the 

screen, its location is translated into a 

location in the 2D game space. 

24.     

When the camera moves after a 

3D block has been placed, the 

block placed into the screen must 

follow the apparent location of 

the 2D block based on the 

camera movement. 

Pass 

When the camera moves, any blocks 

that have been placed are moved so 

that they appear to follow the 

location of the 2D block on the 

screen. 

25.     

When a block is moved by the 

above feature and reaches the 

edge of the screen, it must be 

removed from the screen and 

return to its original location in 

the environment. 

Partial 

When a block reaches the edge of the 

screen, it is removed and returns to 

the table to the right of the player. 

The block does go over the edge of 

the screen before this happens 

though, as the block's collider doesn't 

trigger the exit function until the 

innermost edge leaves the screen. 

 

 

  



43 

 

Non-essential functionalities: 

These tests are against the non-essential functionalities or extensions to the app. These 

functions were determined to not be crucial to the overall success of the project but could 

potentially further the project with their inclusion. 

Table 2. 

Test 

Number 

Functionality Description Pass/Fail/ 

Partial 

Comments 

1. Animations within the 2D game, 

for example, sprite animations 

for the enemy and player when 

they walk, jump, and take 

damage. 

Fail The only animation 

implemented was the enemy 

getting flattened when jumped 

on by the player and this was a 

crude implementation. 

2. Sound effects when actions 

happen in the 2D game. This 

would give the player some 

more feedback within the game. 

Fail The game has no sound. 

3. Multiplayer Capabilities. 

Perhaps allowing 2 players to 

compete at the same time, or 

one player to deal with the 

game and one to assist with the 

3D blocks. 

Fail There is no functionality for 

playing with more than one 

person at a time. 

4. The ability to pause and leave 

games once a level has started. 

Fail There is no pause functionality. 

The user must wait until the 

gaŵe͛s tiŵeƌ ƌuŶs out, oƌ they 

must reach the end of the level 

to go back to the main menu. 

5. A system to keep track of high 

scores on each level. 

Partial The high scores are not 

independent of each level, as 

the script that controls the score 

doesŶ͛t kŶoǁ ǁhiĐh leǀel it is 
controlling. This means the high 

scores only work for level 1. 

6. Multiple different levels Pass The game has 2 different levels 

7. Collectable items such as coins 

in the levels. 

Fail There are no collectable items 

 

  



44 

 

User Questionnaire 

The aim of the project was to develop a virtual reality (VR) application that demonstrates a 

novel way of interacting with a 2D video game in a VR environment. At its core, the 

application is intended for recreational use and as such, in addition to the technical success 

or failure of the project, users of the app needed to enjoy interacting with it. Furthermore, 

since the enjoyment of the app is subjective and may vary between users, I felt that it would 

be key for the success of this aspect of the app to be based on user feedback.  

To gather user feedback, I designed a questionnaire with the intention of testing the 

application on a small number of participants (Appendix 1.). The number of participants I 

could test with was limited, as due to current Covid-19 restrictions, they had to be members 

of my household. 

Ethical approval was sought and obtained from The School of Computer Science and 

Informatics Ethics Board for the inclusion of participants undertaking the questionnaire. 

There was a small risk to participants using a virtual reality environment that they may 

suffer from motion sickness or may be at risk to themselves or their environment should 

they fall or collide with objects in their immediate vicinity. Participants, therefore, received 

the following advice included in the participant information sheet (see supplementary 

materials) 

͞AĐĐessiŶg a ǀiƌtual ƌealitǇ eŶǀiƌoŶŵeŶt ŵeaŶs that useƌs of the app ǁill haǀe a ǀisual 
experience which often does not match the physical experience. In some users, this can 

affect their balance and rarely causes motion sickness. Potential participants who have a 

disaďilitǇ ǁhiĐh affeĐts theiƌ ďalaŶĐe, suffeƌ fƌoŵ seǀeƌe ŵotioŶ siĐkŶess oƌ MeŶieƌe͛s 
disease or who have an ear infection, are advised not to take part. Participants using the 

app are advised to remain standing still to avoid the possibility of losing their balance or 

ďuŵpiŶg iŶto oďjeĐts iŶ the ͞ƌeal͟ eŶǀiƌoŶŵeŶt.͟   

Potential participants confirmed they were happy to take part by signing a consent form 

(see supplementary materials).  

Participants were asked to access the app and enter the virtual reality environment wearing 

the VR headset. They were then asked to play the game for 5-10 minutes before completing 

the questionnaire. 

The questions were designed to specifically address the useƌ͛s overall enjoyment of the 

experience, the acceptability of the design and their suggestions for further development 

and for the purpose of questionnaire analysis, the questions were categorised as such.  

The results are summarized in the table below: 

 

  



45 

 

Questionnaire Results 

 

Table 3. 

No. Question 
Question 

Type 

Mean Average 

Score (1-5) 
where 1 is not at all 

and 5 is extremely 

Comments 

1. Did you enjoy using the game?  E 4.75 
All participants scored 4 or 

5 

2. 
Did you think the game was 

immersive? 
E 4.75 

All participants scored 4 or 

5 

3. 

Would you be more likely to play the 

game if it had more levels or variation 

(assuming you had a VR headset)? 

D 4.25 
All participants scored 4 or 

5 

4. 

Has the game made you more 

interested in VR games, or VR in 

general? 

E 4.25  

5. 

Did you think that the VR aspect of the 

game improved the otherwise purely 

2D game? 

D 4.5 
All participants scored 4 or 

5 

6. 

Did you find any obvious or otherwise 

serious bugs while you were playing 

the game? 

D No 
All participants responded 

͞Ŷo͟ 

7. 

If you noticed any bugs, how much did 

they affect your enjoyment of using 

the game? 

D NA 
All participants responded 

͞Ŷo͟ to ƋuestioŶ 6 

8. Did you like the VR environment? D 4.5 
All participants scored 4 or 

5 

9. 
Would you be likely to play a game like 

this again? 
E 4.25 

All participants scored 4 or 

5 

10. What did you like about the game? F Free type 

Themes: 

- Degree of difficulty was 

good 

- Positive feedback 

regarding the use of VR 

environment 

11. 
What would you improve about the 

game? 
F Free type 

Themes: 

- Additional functionality 

and more 3D shapes 

- Sound effects 

 

12. 
Do you have any other comments 

about the game? 
F Free type 

Themes: 

- Great use of consistent 3D 

physics in the 2D 

environment 

- Suggestions for additional 

functionality 
 

 Key: 

E = Question related to experience 

D = Question related to game design 

F = Question related to future development 

 

  



46 

 

The results clearly demonstrated that the application scored highly on experience and 

design. Participant suggestions for further enhancement included: 

• Additional levels in the game. 

• The inclusion of sounds and animation. 

• The ability to see further ahead in the 2D game. 

• ͞poǁeƌ-ups͟, so when successful with a level, you gain more blocks to use in other 

levels. 

• The ability to use buttons on the arcade machine. 

• Additional 3D objects to insert into the 2D environment to enhance the capability of 

the game player. 

The following are some examples of quotes from participants: 

͞V‘ is defiŶitelǇ ŵoƌe iŵŵeƌsiǀe thaŶ a staŶdaƌd ͞keǇďoaƌd͟ ĐoŶtƌolled gaŵe.͟ 

͞I thought the faĐt that the ϯD oďjeĐt ǁheŶ applied to the ϮD gaŵe still ƌetaiŶed the 
fuŶĐtioŶalitǇ that the V‘ ϯD ĐoŶtƌol gaǀe ǁas ǀeƌǇ iŶŶoǀatiǀe/iŵŵeƌsiǀe͟ 

͞Good iŶtegƌatioŶ of ďloĐk iŶto ϮD gaŵe. CoŶsisteŶt ϯD PhǇsiĐs͟ 

Due to the pandemic and social distancing, the user group was limited to a small group of 4 

users in my household. In the event of further development of the application, feedback 

would be sought from a group of at least 20 participants to allow an analysis of a wider 

demographic.  

I noted that 3 out of the 4 participants had never previously accessed a virtual reality 

environment. This may have had the potential to impact their subjective analysis of their 

enjoyment and whether the VR component of the game significantly enhanced the 

enjoyment of a 2D arcade game. If repeating the questionnaire, it may be pertinent to 

include an additional question as to whether the participant had ever experienced a virtual 

reality environment in the past and analyse the results, comparing the responses from those 

participants with experience and those without.   

I also noted that for question 6, no participants reported noticing any bugs. This may have 

been because they either did not notice any bugs or that they did not know what a ͚ďug͛ 
was in this game.  

The raw responses from the questionnaires can be found in the supplementary materials. 

 

  



47 

 

Evaluation 

I believe that the app has achieved most of the functionality I set out in the specification. 

This is evident in that all but 2 of my main requirements were met when tested. This means 

that most of the base functionality was present in the app.  

One area that I identified for improvement in the app is the block being reset when it leaves 

the screen. This, therefore, appears inferior in design to a finished commercial game, as the 

block should not in any way leave the arcade machine before its position is reset. Currently, 

I think this is one of the most significant parts of the app which makes it look unfinished or 

amateur and could be confusing to users who were not expecting this behaviour. 

Another main requirement that was only partially met was the background. I initially 

intended to have a dynamic background that would give a sense of depth to the levels by 

moving with a parallax effect behind. This was not implemented, although this is an 

aesthetic shortcoming rather than a functional one. 

In terms of the non-essential functionalities, my app was not as successful. I think that this 

was mainly down to time constraints during development, rather than any inherent 

problem during development, as I feel that all the additional features which I did not 

implement would be relatively straightforward to add at a later date given more time. These 

additional features were also the last things I planned to do because they did not impact the 

success of the app. For this reason, I prioritised the more important features. 

I do consider that there is a possibility for bias in both my own testing and the user testing in 

the form of the questionnaire. This is because the requirements by which it was tested were 

created by me, and in the case of my own tests, tested by myself as well. Despite this, I think 

that the number of requirements tested and met gives a strong justification for the overall 

success of the development of the app.  

The group of participants could also have been more varied in terms of demographic and 

experience in VR or games in general. The group were also all connected to me, the 

researcher, so this could skew the results. Given the restrictions on the number of 

participants I could use, this was unavoidable. 

I think that the core functionality of the app was received well by the participants, with all of 

them commenting that they liked the interaction method with the block. The aim of the 

project was to develop an app that demonstrated this method of interaction with the 2D 

game using VR, so is encouraging to see the participants commenting positively on this 

element of the app specifically. 

Overall, I think that the development of the app went well, however, a large portion of the 

time developing was spent learning the Unity engine and C# language as I went along, and 

the time spent on this could perhaps have been better spent on some of the additional 

features or perfecting the main functionality. I also think that some of the scripts could 

potentially be refactored to reduce class dependencies, but due to a lack of time at the end 

of development, I did not get to do this. 

  



48 

 

Future Work 

Although as stated in the Results and Evaluation section, as intended, I implemented almost 

all the main features of the app, there are still many features I would have liked to have 

added. These were not included primarily because of the inherent time constraints in the 12 

weeks I had to complete the project, rather than because they were too difficult, or not 

possible. 

If given more time, the first thing I would add to the app would be tǁeakiŶg the V‘ BloĐk͛s 
behaviour. One of the things that I noted from the evaluation was that when the block 

leaves the screen, it does not actually reset until the whole of it fully leaves the screen. This 

leaves it partially sticking outside the arcade machine, which does not look professional or 

realistic. There are a few ways this could be remedied. One would be to simply expand the 

borders around the screen or the actual walls of the arcade machine. This would give a small 

buffer for the block to go into before it goes far enough to be removed. Otherwise, a more 

complex collider on the block could check when the outer edge leaves the screen. 

I also would have liked to make the rotation of the 2D block mirror that of the 3D block in 

the screen. This was not necessary and did not constitute a requirement, so I decided to 

focus on the position of the block instead. I would have liked to complete this, however, and 

it should only require similar calculations to the code for translating the position. 

Another feature I think would add greatly to the experience of using the app is adding sound 

effects, and this was mentioned by several of the participants in the questionnaire. This 

would not be difficult to implement and would only require the scripts to also call and run 

these sound clips when actions happen. 

Similarly, animations on the player and enemies would help significantly towards making 

the app look more finished, polished, and professional and would not be too complex to add 

as the player sprite I used for the player and enemy already has animations for many 

actions. This would just need integration into the player and enemy control scripts.  

Another additional feature that I felt would be valuable after reflecting on the responses 

from the participants, was the possibility of an in-game tutorial or prompts on objects such 

as the interactive block, for example. This would make the game much easier to pick up, as I 

had to tell the participants how to use the app prior to them putting on the headset. 

Finally, the enemies in the game are relatively simplistic in their movements and do not 

haǀe aŶǇ iŶtelligeŶĐe toǁaƌds the plaǇeƌ͛s loĐatioŶ. AŶ iŵpƌoǀeŵeŶt to the game could be if 

the enemies had a more sophisticated AI to make them follow the player rather than just 

bouncing off objects they hit. 

  



49 

 

Conclusions 

In this project, the goal was to create a virtual reality app that could demonstrate a novel 

method of interacting with traditional 2D games in a 3D VR environment.  

The first objective I set out in my introduction was to create a 3D VR environment in which 

the arcade machine sits. I believe that this aspect of my app was implemented well, as I met 

all my requirements for this section. This objective was the simplest to implement, as it was 

all developed inside the Unity editor GUI, not requiring any code. 

The second objective was to create a base 2D game to be displayed on the virtual arcade 

screen. I think that as I showed in my testing of the 2D game, I met almost all the main 

requirements set for the 2D game, and those that I did not complete were not crucial to the 

gameplay. 

The final objective was to allow a user to interact with both the 2D and 3D environment by 

using the VR controllers to pick up the 3D blocks and interact with the 2D screen. This 

objective was the most challenging, both technically and timewise, as this was something 

that I had never seen done before in a game, and I could not find anyone online who had 

attempted it. With that said, my final solution was not overly complex, and a lot of the time 

spent developing it was due to my inexperience with Unity and C#. However, I do think that 

overall, I achieved most of this objective, as I met all the main functionalities set out, apart 

from the small visual imperfection when the block sticks out of the edge of the arcade 

machine before it is reset. 

Because overall, all 3 of my objectives were met, I am confident in saying that I met the 

pƌojeĐt͛s oǀeƌaƌĐhiŶg goal of creating a virtual reality app that could demonstrate a novel 

method of interacting with traditional 2D games in a 3D VR environment. 

I believe that my user questionnaire furthers the evidence for my conclusion that my goal 

was met, as all 4 participants reported enjoying the game, and finding it immersive, all 

scoring 4 or 5 for these questions. Perhaps more importantly, all participants thought that 

the VR aspect of the game improved the otherwise purely 2D game. 

While I did not complete many of the non-essential functionalities, I do not think this 

detracted from the overall success of the project. As I set out in the specification, these 

ǁeƌe alǁaǇs ŵeaŶt as additioŶal featuƌes that Đould iŵpƌoǀe eitheƌ the app͛s ease-of-use or 

visuals. There was simply not enough time to develop these in the timeframe and this is 

something to reflect on and learn for future work or projects. 

In conclusion, I believe that the project was successful at reaching its main goal and was 

highly complimented by all the participants after testing. 

  



50 

 

Reflection on Learning 

This project was very challenging at times during development but was equally very 

rewarding once completed. Given the opportunity again, I would structure my work plan 

very differently. 

While I planned to write the implementation section of the report alongside development, I 

quickly failed to comply as I soon became immersed in numerous iterations of 

programming.  Unfortunately, I mostly wrote the section retrospectively. This was very 

difficult, as some of the functions I was writing about I had completed 2 months 

beforehand, and I could not remember a lot of what I had done. This resulted in much more 

time spent, as I had to go back and work out exactly what I had done. This inevitably 

impacted the quality of the report slightly, as some sections were not as detailed as I would 

have liked due to a lot of my time having been spent reviewing my work. If done again, I 

would have stuck more closely with my initial aim of recording all my development as I went 

along. Perhaps the use of a simple notebook to jot down key points of coding along the way 

would have been appropriate. 

One aspect of the project that I felt helped more than I thought was the initial plan. I used 

this more than I thought I would to look back on and check that I was implementing the app 

as I had described in it. Without this, I feel I may have strayed more from my initial vision for 

the app. 

I also think that my method of learning Unity and C# as I went along may not have been the 

best approach. I could have instead dedicated more time at the beginning of the project to 

go through tutorials to teach me how to use them. I spent a large amount of time at the 

beginning of the project getting familiar with the software despite not using a formal 

tutorial. I have learnt that preparation and planning are key, with the result that I would 

approach learning new software or programming languages very differently in the future. 

I think that my method of self-testing iteratively during development was extremely helpful 

in informally evaluating sections of the code. This allowed me to add a section of code and 

immediately evaluate whether it met the requirement I was attempting to fulfil. Essentially, 

I was performing quality control of sorts to my design which meant that bugs were 

identified promptly, and a solution identified. This was obviously supplemented by the 

formal testing in the results and evaluation section. 

Overall, I believe that while I managed to complete the project with relative success, there 

are several areas I can look to improve in the future. Chiefly, time management, and my 

approach to documentation during development.  

These learning areas will stay with me for a long time, and I think the project is overall one 

that I have a positive reflection on. 

  



51 

 

References 

 

1. BARNARD, D. History of VR - Timeline of Events and Tech Development. 2019  

22/05/2021]; Available from: https://virtualspeech.com/blog/history-of-vr. 

2. Howard IP, R.B., Binocular vision and stereopsis. New York: Oxford University Press, 

1995. 

3. The Stereoscope. The Times 1856  22/05/2021]; Available from: 

https://www.thetimes.co.uk/archive/article/1856-10-

31/10/7.html?region=global#start%3D1856-01-01%26end%3D1985-01-

01%26terms%3Dyour%20stereoscope%26back%3D/tto/archive/find/your+stereosco

pe/w:1856-01-01%7E1985-01-

01/1%26prev%3D/tto/archive/frame/goto/your+stereoscope/w:1856-01-

01%7E1985-01-

01/1%26next%3D/tto/archive/frame/goto/your+stereoscope/w:1856-01-

01%7E1985-01-01/3. 

4. Weinbaum, S. Pygmalion's Spectacles. 1935  22/05/2021]; Available from: 

https://www.gutenberg.org/files/22893/22893-h/22893-h.htm. 

5. Brockwell, H. Forgotten genius: the man who made a working VR machine in 1957.  

22/05/21]; Available from: 

https://www.techradar.com/uk/news/wearables/forgotten-genius-the-man-who-

made-a-working-vr-machine-in-1957-1318253. 

6. INVENTOR IN THE FIELD OF VIRTUAL REALITY.  22/05/2021]; Available from: 

https://www.uschefnerarchive.com/morton-heilig-inventor-vr/. 

7. Virtual-Reality - Education and training.  22/05/2021]; Available from: 

https://www.britannica.com/technology/virtual-reality/Education-and-training. 

8. VPL Research Jaron Lanier.  22/05/2021]; Available from: 

https://www.vrs.org.uk/virtual-reality-profiles/vpl-research.html. 

9. Oculus. Oculus Rift: Step Into the Game.  22/05/2021]; Available from: 

https://www.kickstarter.com/projects/1523379957/oculus-rift-step-into-the-game. 

10. Zhang, S. Can VR Really Make You More Empathetic?  22/05/2021]; Available from: 

https://www.statista.com/topics/2532/virtual-reality-vr/#dossierSummary. 

11. Unity Manual - XR.  22/05/2021]; Available from: 

https://docs.unity3d.com/Manual/XR.html. 

12. Tetris Effect.  22/05/2021]; Available from: https://www.tetriseffect.game/. 

13. Super Mario Odyssey.  23/05/2021]; Available from: 

https://www.nintendo.com/games/detail/super-mario-odyssey-switch/. 

14. Unity Asset Store.  23/05/2021]; Available from: https://assetstore.unity.com/. 

15. Arcade Machines Pack 01 - Lowpoly Pack.  23/05/2021]; Available from: 

https://assetstore.unity.com/packages/3d/props/arcade-machines-pack-01-lowpoly-

pack-73020. 

16. Hero Knight.  23/05/2021]; Available from: 

https://assetstore.unity.com/packages/2d/characters/hero-knight-167779. 

17. Free 8-Bit Pixel Pack.  23/05/2021]; Available from: 

https://assetstore.unity.com/packages/2d/environments/free-8-bit-pixel-pack-

79530. 

 

https://virtualspeech.com/blog/history-of-vr
https://www.thetimes.co.uk/archive/article/1856-10-31/10/7.html?region=global#start%3D1856-01-01%26end%3D1985-01-01%26terms%3Dyour%20stereoscope%26back%3D/tto/archive/find/your+stereoscope/w:1856-01-01%7E1985-01-01/1%26prev%3D/tto/archive/frame/goto/your+stereoscope/w:1856-01-01%7E1985-01-01/1%26next%3D/tto/archive/frame/goto/your+stereoscope/w:1856-01-01%7E1985-01-01/3
https://www.thetimes.co.uk/archive/article/1856-10-31/10/7.html?region=global#start%3D1856-01-01%26end%3D1985-01-01%26terms%3Dyour%20stereoscope%26back%3D/tto/archive/find/your+stereoscope/w:1856-01-01%7E1985-01-01/1%26prev%3D/tto/archive/frame/goto/your+stereoscope/w:1856-01-01%7E1985-01-01/1%26next%3D/tto/archive/frame/goto/your+stereoscope/w:1856-01-01%7E1985-01-01/3
https://www.thetimes.co.uk/archive/article/1856-10-31/10/7.html?region=global#start%3D1856-01-01%26end%3D1985-01-01%26terms%3Dyour%20stereoscope%26back%3D/tto/archive/find/your+stereoscope/w:1856-01-01%7E1985-01-01/1%26prev%3D/tto/archive/frame/goto/your+stereoscope/w:1856-01-01%7E1985-01-01/1%26next%3D/tto/archive/frame/goto/your+stereoscope/w:1856-01-01%7E1985-01-01/3
https://www.thetimes.co.uk/archive/article/1856-10-31/10/7.html?region=global#start%3D1856-01-01%26end%3D1985-01-01%26terms%3Dyour%20stereoscope%26back%3D/tto/archive/find/your+stereoscope/w:1856-01-01%7E1985-01-01/1%26prev%3D/tto/archive/frame/goto/your+stereoscope/w:1856-01-01%7E1985-01-01/1%26next%3D/tto/archive/frame/goto/your+stereoscope/w:1856-01-01%7E1985-01-01/3
https://www.thetimes.co.uk/archive/article/1856-10-31/10/7.html?region=global#start%3D1856-01-01%26end%3D1985-01-01%26terms%3Dyour%20stereoscope%26back%3D/tto/archive/find/your+stereoscope/w:1856-01-01%7E1985-01-01/1%26prev%3D/tto/archive/frame/goto/your+stereoscope/w:1856-01-01%7E1985-01-01/1%26next%3D/tto/archive/frame/goto/your+stereoscope/w:1856-01-01%7E1985-01-01/3
https://www.thetimes.co.uk/archive/article/1856-10-31/10/7.html?region=global#start%3D1856-01-01%26end%3D1985-01-01%26terms%3Dyour%20stereoscope%26back%3D/tto/archive/find/your+stereoscope/w:1856-01-01%7E1985-01-01/1%26prev%3D/tto/archive/frame/goto/your+stereoscope/w:1856-01-01%7E1985-01-01/1%26next%3D/tto/archive/frame/goto/your+stereoscope/w:1856-01-01%7E1985-01-01/3
https://www.thetimes.co.uk/archive/article/1856-10-31/10/7.html?region=global#start%3D1856-01-01%26end%3D1985-01-01%26terms%3Dyour%20stereoscope%26back%3D/tto/archive/find/your+stereoscope/w:1856-01-01%7E1985-01-01/1%26prev%3D/tto/archive/frame/goto/your+stereoscope/w:1856-01-01%7E1985-01-01/1%26next%3D/tto/archive/frame/goto/your+stereoscope/w:1856-01-01%7E1985-01-01/3
https://www.thetimes.co.uk/archive/article/1856-10-31/10/7.html?region=global#start%3D1856-01-01%26end%3D1985-01-01%26terms%3Dyour%20stereoscope%26back%3D/tto/archive/find/your+stereoscope/w:1856-01-01%7E1985-01-01/1%26prev%3D/tto/archive/frame/goto/your+stereoscope/w:1856-01-01%7E1985-01-01/1%26next%3D/tto/archive/frame/goto/your+stereoscope/w:1856-01-01%7E1985-01-01/3
https://www.gutenberg.org/files/22893/22893-h/22893-h.htm
https://www.techradar.com/uk/news/wearables/forgotten-genius-the-man-who-made-a-working-vr-machine-in-1957-1318253
https://www.techradar.com/uk/news/wearables/forgotten-genius-the-man-who-made-a-working-vr-machine-in-1957-1318253
https://www.uschefnerarchive.com/morton-heilig-inventor-vr/
https://www.britannica.com/technology/virtual-reality/Education-and-training
https://www.vrs.org.uk/virtual-reality-profiles/vpl-research.html
https://www.kickstarter.com/projects/1523379957/oculus-rift-step-into-the-game
https://www.statista.com/topics/2532/virtual-reality-vr/#dossierSummary
https://docs.unity3d.com/Manual/XR.html
https://www.tetriseffect.game/
https://www.nintendo.com/games/detail/super-mario-odyssey-switch/
https://assetstore.unity.com/
https://assetstore.unity.com/packages/3d/props/arcade-machines-pack-01-lowpoly-pack-73020
https://assetstore.unity.com/packages/3d/props/arcade-machines-pack-01-lowpoly-pack-73020
https://assetstore.unity.com/packages/2d/characters/hero-knight-167779
https://assetstore.unity.com/packages/2d/environments/free-8-bit-pixel-pack-79530
https://assetstore.unity.com/packages/2d/environments/free-8-bit-pixel-pack-79530


52 

 

Appendix 1 

 



53 

 

 


