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1 Abstract 
Machine learning is a method of data analysis that grows increasingly important as coding problems 

grow more complex. One such problem that is quite complex is emotional analysis. The reason why 

this is a complex task is because the emotions of another person can be hard to determine 

sometimes even for humans. The task of ideŶtifǇiŶg oŶe͛s eŵotioŶs usiŶg ŵaĐhiŶe leaƌŶiŶg is 
definitely difficult, but not impossible. There are many different ways in which a person can express 

their emotions and one of them is through music. The intention of this project is to work towards 

being able to predict the emotions of a person by first being able to predict the emotions that are 

conveyed in from the songs that a person listens to. The project will study how accurately machine 

learning can label the emotions that are conveyed by a song by comparing various machine learning 

techniques. The project will look into getting different people to test the accuracy of the predictions 

produced by machine learning technique by implementing them into a web application that will be 

easy for them to access. To achieve these goals, this project will tackle the fundamentals of machine 

learning, the utilisation of different APIs to retrieve data, and the development of a web application.  
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3 Introduction 
There are many people that experience difficulty when sharing their emotions. Either because they 

do not want to, or they find that they are unable to share their emotions. Sometimes it is important 

to eǆpƌess oŶe͛s feelings because not being able to can be very destructive for the person. People 

who need to seek mental help may not be able to because they may feel that they are unable to 

express their feelings explicitly.  There is, however, a way that many people do express their 

emotions without explicitly saying, and that is through the music they listen to.  

Many people will agree that listening to music will influence or reflect the mood you are in. 

Teenagers coming of age would mostly express the way they are feeling through music. Knowing 

this, the music a person is listening to may be used to discover how a person is feeling. Using 

machine learning techniques, it may become possible to dissect their emotions from their music. 

There are, however, some potential drawbacks and challenges that will have to be faced when trying 

to get a machine learning model to predict the emotions conveyed from a song. The first one is that 

there are many songs that convey multiple emotions meaning that it is hard to give it a singular 

label. The second one is that the emotions conveyed from a song can be subjective. For example, 

one person could find a song happy and cheerful while the other could argue that there are negative 

connotations within the deeper meaning of the song, making it actually a sad song.  

To tackle the second problem, the solution proposed for this is to use natural language processing. 

The idea would be to use natural language processing to examine and analyse the deeper meaning 

of a song. This would be used to help enrich the machine learning model predictions.  



3.1 Aims and Objectives 

This pƌojeĐt͛s aiŵ is to studǇ aŶd Đoŵpaƌe ŵaĐhiŶe leaƌŶiŶg teĐhŶiƋues that ĐaŶ help ideŶtifǇ the 
emotions of a person by first finding the emotions that are conveyed through the music they listen 

to. This work can then be carried on in the future to accurately determine how a person is feeling 

with their music. IŶ shoƌt, the studǇ͛s ŵaiŶ ƌeseaƌĐh ƋuestioŶ is: 'Hoǁ effeĐtiǀe ĐaŶ ŵaĐhiŶe leaƌŶiŶg 
identify the feelings conveyed from various songs that a person listens to?' 

There are two main goals for this project: the first is to study how effective a machine learning 

ŵodel Đould pƌediĐt the ŵood ĐoŶǀeǇed fƌoŵ a peƌsoŶ͛s recently played songs, and the second is to 

develop a fun, interactive app that will give users an insight into their recently played music. The 

main priority will be the former, however. These two focuses play to each other͛s stƌeŶgths since 

creating an application for a machine learning model will make it easier to get other people to test 

out the model, and at the same time, using machine learning can be used to enrich the insight that 

the app ǁill pƌoǀide oǀeƌ a peƌsoŶ͛s ŵusiĐ taste.  

The project will require a lot of research into how a mood is represented through music, research on 

using machine learning techniques and using tools for acquiring data.  

4 Background 

4.1 Spotify 

Spotify is one of, if not, the most popular music streaming service with more than 286 million 

monthly users as of 19 February 2020. Other popular music streaming platforms like Apple Music 

(over 60 million monthly subscribers) and Amazon Music (over 55 million monthly subscribers) pale 

in comparison to Spotify in terms of the number of monthly active users. One of the biggest reasons 

foƌ this is ďeĐause of SpotifǇ͛s ŵusiĐ disĐoǀeƌǇ aŶd useƌ ƌeĐoŵŵeŶdatioŶ sǇsteŵ. SpotifǇ͛s 
popularity (especially with the youth) and large database of music is the reason why this specific 

platform was chosen for this project. 

 

4.2 Genius 

Genius is a digital media company that provides access which pro, including songs of different 

languages. The website allows users to add annotations and interpretations to songs which makes it 

more unique than other popular song lyric websites such as AZLyrics and Musixmatch. Genius is a 

well-known company, to the point where it has received a lot of attention from the music industry. It 

has a YouTube Channel which posts interviews from popular song artists talking about the deeper 

meanings of the songs.   

 

4.3 Natural Language Processing 

Natural language processing (or NLP for short) is section of Artificial Intelligence that deals with the 

processing and understanding of the human language. The primary goal of NLP is to get programs 

and computers to understand the human speech and text.  

Models will often be used for the analysis of text and speech. One such example of model that is 

commonly used for processing text is the Bag of Words model. The Bag of Words model counts the 

occurrences of all the words in a piece of text. How often a word is used and how it is used will be 

considered and used as a training data for the classifier which then can be used to process new 

pieces of text.  



Tokenization is the process of cutting sentences and text into just words meaning that punctation 

and other irrelevant data will be thrown away. The parts that are leftover are converted into tokens 

which makes it easier for analysing and identifying the data.  

Sentiment Analysis 

Text written by a person can be perceived as positive, negative, or neutral. Sentiment Analysis is the 

process of analysing the sentiment of text and determining which of the three it conveys. Sentiment 

Analysis usually makes use of natural language processing and may also use machine learning or 

even deep learning algorithms to process the text. Just like with NLP, it uses a model that is trained 

with previous data to classify new pieces of text.  

4.4 Machine Learning 

Machine Learning is a subset of Artificial Intelligence where algorithms and programs can improve 

their capabilities through experience and using data. Machine learning algorithms come mostly in 

the form of models which can be trained with datasets to classify and predict unprecedented data. 

4.4.1 Machine Learning Methods 

There are many different methods for implementing models but there are three different categories 

that machine learning methods fall under: Supervised learning, Unsupervised learning, and Semi-

Supervised machine learning. 

Supervised learning is where the dataset being used to train the model is already labelled. It relies 

on previously determined data to classify or predict values or outcomes from new data. Methods 

that fall under this category include linear regression, logistic regression, random forest classifier and 

support vector machine.  

Unsupervised learning is where the dataset being used to train the model is not labelled. With these 

types of models, they try to discover hidden patterns or group data together (also known as 

clustering) to make predictions. This type of learning does not require the need the help of a human 

and will find patterns or clusters independently.  

Semi-Supervised learning is where the data only some data is labelled. This type of learning is a 

hybrid between supervised and unsupervised learning. It uses a small amount of labelled data and a 

large amount of unlabelled data during training.  

The project will focus primarily on using supervised learning methods.  

4.4.2 Supervised Learning Modelling: 

There are two main types of supervised  methods: Classification and Regression.  

Classification is used to make predictions of data that is labelled where the model is to predict a 

label for new data. Classification problems generally require two or more labels. If a problem 

involves more than two labels, then it is a multi-class classification problem. When trying to evaluate 

the score of a classification model performs, it is best done so by calculating its accuracy. This is 

done by taking the number of correct predictions and dividing it by the number of total predictions. 

From this, a percentage can be inferred and the higher the number, the more accurate the model.  

Regression is used primarily for problems that require continuous, quantitative value predictions. 

Regression models tend to be made to investigate the relationship between a predictable, 

dependant variable (such as time) and an independent variable which is the variable that the model 

is trying to predict.  



The project will focus on classifier models; specifically, multi-class classifiers. 

4.4.3 Multi-Class Classification Methods  

Decision Tree Classifier 

A decision tree classifier uses tree data structure, which is made up nodes and branches, to classify 

data. The structure of a decision tree can be broken down like this: 

- The decision nodes are the decisions made in the tree that splits the data into two. 

- The branches connect the decisions together and represent the result of each decision. 

- The leaf nodes are the end results of the decision tree. This represents the label that the 

data is to be given and has no branches spanning from it. 

 

Figure 1 A simplified example of a decision tree classification problem 

The example used in Figure 1 describes a classification problem using a decision tree to label if a 

person is fit or unfit. The questions that are asked are the decision nodes and the labels at the 

bottom of the structure are the leaf nodes.  

Support Vector Machine (SVM) 

Support Vector Machines uses an n-dimensional space (where n is the number of features to be 

used) to plot data using the values from their features as coordinates.  It will try to distinguish the 

different groups (labels) of data by their positioning. It will separate the groups using a hyperplane 

to split the plane into sections. When trying to make prediction of data items, it will look at the 

features of the items, plot them on the n-dimensional space and then use the locations of the plot to 

determine their labels. 

 

Figure 2 Examples of SVM plots in 2D and 3D space  

 



K-Nearest Neighbours 

Similar to SVM, K-Nearest Neighbours plots the training data but this time just on a graph. A 

datapoint, x, which to be labelled is plotted on the graph. The Euclidean Distance is calculated from x 

to each of the datapoints on the graph and the k closest datapoints will be selected to determine x͛s 
classification. The label that is most prominent within that selection of datapoints will be assigned to 

x. To decide what number should be used for k is matter of trial and error. It will vary between 

different classification problems. The Euclidean Distance formula is as follows: 

 

Figure 3 Euclidean distance formula 

 

Figure 4 In this example, the star will be assigned to Class B at is the most prominent label in the circle  

Gaussian Naïve Bayes’ 
The Gaussian Naïve Bayes classifier is largely based on Bayes͛ theorem in probability theory and 

statistics. The theorem calculates the probability of an event occurring based off of knowledge of 

previous events that are similar.  



 

With Naïǀe BaǇes͛, the events are the classes. It calculates the probability of each class (by dividing 

the number of values that belong to a class by the quantity of values in the training set) and the 

conditional probability of a feature value given a class.  

To put this in the context of the project, if a soŶg ĐaŶ ďe laďelled as eitheƌ ͚happǇ͛ oƌ ͚sad͛ aŶd the 
audio feature being used to calculate the mood is either ͚high eŶeƌgǇ͛ oƌ ͚loǁ eŶeƌgǇ͛, then the 

conditional probabilities for each label can be calculated as: �ሺℎ�݃ℎ ݁݊݁ݕ݃ݎ|ℎܽݕ݌݌ሻ = ݕ݌݌ℎܽ ݁ݎܽ ݐℎܽݐ ݏ݃݊݋ݏ ݂݋ ݎܾ݁݉ݑ݊ݕ݌݌ℎܽ ݁ݎܽ �ܰ� ݕ݃ݎ݁݊݁ ℎ�݃ℎ ݁ݒℎܽ ݐℎܽݐ ݏ݃݊݋ݏ ݂݋ ݎܾ݁݉ݑ݊  

�ሺℎ�݃ℎ ݁݊݁݀ܽݏ|ݕ݃ݎሻ = ݀ܽݏ ݁ݎܽ ݐℎܽݐ ݏ݃݊݋ݏ ݂݋ ݎܾ݁݉ݑ݊݀ܽݏ ݁ݎܽ �ܰ� ݕ݃ݎ݁݊݁ ℎ�݃ℎ ݁ݒℎܽ ݐℎܽݐ ݏ݃݊݋ݏ ݂݋ ݎܾ݁݉ݑ݊  

�ሺ݈ݕ݃ݎ݁݊݁ ݓ݋|ℎܽݕ݌݌ሻ = ݕ݌݌ℎܽ ݁ݎܽ ݐℎܽݐ ݏ݃݊݋ݏ ݂݋ ݎܾ݁݉ݑ݊ݕ݌݌ℎܽ ݁ݎܽ �ܰ� ݕ݃ݎ݁݊݁ ݓ݋݈ ݁ݒℎܽ ݐℎܽݐ ݏ݃݊݋ݏ ݂݋ ݎܾ݁݉ݑ݊  

�ሺ݈݀ܽݏ|ݕ݃ݎ݁݊݁ ݓ݋ሻ = ݀ܽݏ ݁ݎܽ ݐℎܽݐ ݏ݃݊݋ݏ ݂݋ ݎܾ݁݉ݑ݊݀ܽݏ ݁ݎܽ �ܰ� ݕ݃ݎ݁݊݁ ݓ݋݈ ݁ݒℎܽ ݐℎܽݐ ݏ݃݊݋ݏ ݂݋ ݎܾ݁݉ݑ݊  

 

The ƌeasoŶ ǁhǇ it is Đalled Naïǀe BaǇes͛ is ďeĐause it makes the assumption that all the input values 

are iŶdepeŶdeŶt of eaĐh otheƌ. To ŵake pƌediĐtioŶs usiŶg Naïǀe BaǇes͛, the BaǇes͛ theoƌeŵ ǁould 
be like this: ܯ��ሺݕሻ = max ሺ�ሺݕ|ݔሻ ∗ �ሺݕሻሻ    
Where y is the label to be predicted, x is the set of feature values and the MAP(y) is the likelihood of 

y. Using this and going back to the example explained earlier, if a song has ͚loǁ eŶeƌgǇ͛, Naïǀe BaǇes 

will predict the mood like this: ℎܽݕ݌݌ = �ሺ݈ݕ݃ݎ݁݊݁ ݓ݋|ℎܽݕ݌݌ሻ ∗ �ሺℎܽݕ݌݌ሻ ݀ܽݏ = �ሺ݈݀ܽݏ|ݕ݃ݎ݁݊݁ ݓ݋ሻ ∗ �ሺ݀ܽݏሻ 

Naïve Bayes will calculate the likelihood of each value and the song will be assigned the label that is 

the highest likelihood. 

Gaussian Naïve Bayes is an extension of Naïve Bayes is when the feature values are continuous, and 

the features are following a Gaussian distribution (normal distribution). 

 



4.4.4 Evaluation Methods 

Scoring 

The standard method of scoring is to simply count how many labels are accurately predicted and 

divide that by number of items in a training set.  

Confusion Matrix 

A confusion matrix shows how many labels of items are being predicted correctly, and how many 

items are being labelled wrong. 

 

Figure 5 Simplified confusion matrix view for a binary classification problem 

Leave-One-Out Cross Validation  

Since dataset is split into two groups, training data and test data, the results that this brings forth is 

not representative of the whole dataset because a fraction of the data is being used for testing.  

Leave-One-Out Cross Validation (or LOOCV) is an evaluation method that bypasses this issue. The 

premise of this is to train the model with the entire dataset except for one data point which will be 

used for to test the model. The result generated by predicting the one data point is ideally stored. 

This process is repeated for all data points in the dataset. Normal evaluation methods can then be 

used on all the predictions. 

 

4.5 Tools and Methods 

4.5.1 Spotify API 

The Spotify API was used to gather create datasets for the machine learning model and to also 

gather people͛s SpotifǇ data. To use SpotifǇ͛s API, a Spotify developer account needed to be created. 

After an account has been created, an app would need to be created on the dashboard. This would 

generate the Client ID and the Client Secret which are both used to authenticate requests made to 

Spotify. This allows the app to then request specific data fƌoŵ SpotifǇ͛s seƌǀeƌs.  

If a request involved the data of a user or a group of users, the user would need to login and 

authenticate the app. For this, a redirect URI would need to be added on the Spotify Developer 

Dashboard. The redirect URI specifies where the Spotify Authentication service should be redirected 

to when a user logs in and authenticates the app so that the app can be re-launched.  



The Spotify API allows programs to access pretty much any data from their servers as long as it is 

authorised to do so. The project will primarily focus on retrieving songs from a playlist, retrieving a 

useƌ͛s ƌeĐeŶtlǇ plaǇed songs, and getting the audio features of a particular song. 

Audio features are attributes that are calculated and assigned to each song on Spotify. These can be 

used for learning and analysing each track. Most of these features are stores as a value between 0.0 

and 1.0. These are the definitions of some of the relevant audio features taken directly from the 

Spotify API documentation:  

- Danceability: Danceability describes how suitable a track is for dancing 

- Energy: Energy represents a perceptual measure of intensity and activity.  

- Instrumentalness: Predicts whether a track contains no vocals.  

- Loudness: the overall loudness of a track in decibels (dB).  

- Valence: A measure from 0.0 to 1.0 describing the musical positiveness conveyed by a track. 

- Tempo: The overall estimated tempo of a track in beats per minute (BPM).  

Using methods that request data from Spotify returns the data in JSON format (JavaScript Object 

Notation) which is a format that is composed of attribute-value pairs much like a Python dictionary. 

Spotipy 

Spotipy is a PǇthoŶ liďƌaƌǇ foƌ SpotifǇ͛s API. This library provides methods and classes that makes 

requesting Spotify data much simpler and more convenient to access for Python programs that 

utilises Spotify data.  

 

4.5.2 Genius API 

The Genius API is used to retrieve lyrics and annotations of songs for sentiment analysis. To use 

GeŶius͛ API, ŵuĐh like ǁith SpotifǇ͛s, aŶ aĐĐouŶt ǁould also Ŷeed to ďe Đreated and an app would 

have to be created on the thereafter. This would then generate a Client ID and a Client Secret which 

can then be used to make a token to authenticate the app when requesting for song lyrics. 

LyricsGenius 

Genius API also had a Python library in the form of LyricsGenius which would - just like with Spotipy 

– provide methods and classes. This makes requesting lyrics more convenient when writing 

programs that work with using song lyrics. 

 

4.5.3 NLTK 

The Natural Language Toolkit (NLTK) is Python library designed specifically to provide methods and 

classes which helps for building programs that must work with human speech or text.  

NLTK can allow for downloading additionally packages and models from the internet within the 

program. One such model that is relevant is the VADER (Valence Aware Dictionary for Sentiment 

Reasoning) package which also contain. This model was created and trained specifically for the use 

of sentiment analysis.  VADER uses a dictionary that maps words with independent meanings (such 



as nouns, verbs, and adjectives) to a sentiment score which represent the intensity of the emotion 

present.  

When parsing a piece of text into the VADER model, it will do the tokenization automatically and will 

return a compound score which is computed by summing up the valence scores of each word in the 

parsed-in text, adjusted according to the rules set and then normalised to be between -1 (extreme 

positive) and +1 (extreme negative). The score returned from this is useful for determining the 

sentiment of hordes of texts.  

4.5.4 Scikit-learn 

Scikit-learn is a machine learning library made for Python. It comes pre-loaded with a range of 

supervised and unsupervised learning algorithms making it great gateway for learning the 

fundamentals of machine learning. 

With the help of the preloaded supervised learning algorithms from Scikit-learn, the steps for 

creating model are all quite similar:  

- Firstly, a labelled dataset needs to be loaded. Datasets are commonly stored as CSV (Comma 

Separated Value) files.  

- Next, the data needs to be pre-processed. What this means is that any irrelevant features should 

be removed, and the data should be split between data that will be used to train the model and 

data that will be used to test the model. By default, 75% of the data will be split for training, and 

the other 25% of the data will be used for testing.  

- The selected classifier will be used to fit onto the training dataset.  

- Finally, the accuracy of the model is evaluated by having the model used on the test data. The 

predicted values given by the model are checked against the actual values from the test data.  

 

4.5.5 Web Application Tools 

Flask 

Flask is a web framework made for Python. It is a simple framework to use for building simple 

Python. In comparison to other web frameworks like Django, it is considered a micro-framework due 

to its simplicity and limited functionality. It is mainly used to build the foundation of a web 

application.  

Bootstrap 

Bootstrap is a framework designed specifically for the frontend of web applications. It provides an 

abundance of templates for forms, buttons, tables, navigation, and many other common features 

that are found on websites today. This was developed to help web developers quickly implement 

commonly used web features into their site without having to worry too much about CSS or 

JavaScript. Many companies and application developers resort to using Bootstrap in their websites 

and web apps. 

Heroku 

Heroku is a cloud application platform that allows developer to host and deploy their applications 

and websites to which can then be accessed by anyone the internet. Using this service is free for 

smaller applications and projects but will be scale for larger projects. An account needed to use this 

and once one was created, an app would have to be created on the dashboard. After this the flask 

application can be pushed and deployed from the command line.  



 

Redis 

Redis is an in-memory dictionary data store primarily used as a database, message broker, or queue. 

Redis stores data in the memory rather a secondary storage such as the hard disk drives or solid-

state drives. One of ‘edis͛ featuƌes is providing workers which can be used to run task in the 

background while the app can focus on other tasks. This is particularly useful for long, on-going 

tasks.  

Heroku provides the option of installing this as an add-on in the form of Redistogo which allows 

Redis to be used on deployed applications. Just like with Heroku, this option comes free with small 

applications, but larger ones will have required a monthly payment for.  

 

4.6 Related Works and Studies 

4.6.1 Klangspektrum 

Klangspektrum is a SpotifǇ appliĐatioŶ that giǀes aŶ iŶsight to a useƌ͛s ŵusiĐ by presenting to them 

the audio features of their top-rated songs. It is presented to them through the use of distribution 

graphs. This is the application that has brought the inspiration of making an application that gives a 

person insight into their music taste. However, this application was not built for the intent of 

emotions analysis as it does not provide any clear insight into how a person is feeling.  

 

4.6.2 Spotify Sentiment Analysis 

This post talks about the development of a flask application that would give users an insight into 

their music the valence of their music. It is mentioned here (fƌoŵ the authoƌ͛s peƌspective) that the 

valence value that is retrieved from Spotify can often be inaccurate and does not represent the 

connotations within certain songs. To enrich the insights provided by the application, sentiment 

analysis would be applied to the lyrics of a song and the values that are given from this would be 

visualised using different charts. This post would serve to be a big inspiration for the development of 

this project. To retrieve the lyrics of a song, the author of the post used Musixmatch API which 

allowed user to get the lyrics of the song. This, however, limited the capabilities of the application by 

a little because, as it is mentioned here, Musixmatch only lets users request the first 30% of a soŶg͛s 
lyrics in the free version. This means that the results generated from running a sentiment analysis on 

the song might not be representative of the whole song. 

To take the ideas presented in this study further, the application being developed for this project will 

apply sentiment analysis, not just on the lyrics of a song, but on the annotations of a song as well 

using Genius. This should further enrich the insight given by the application as it also allows the 

connotations to be explored deeper by the analysis, providing a more accurate result. Genius also 

lets users get the entire lyrics for free. The application will not just be limited to showing if songs are 

positive or negative as machine learning techniques will be used to predict the exact emotion 

conveyed from a song.  

 



4.6.3 Summer hot, Winter not! Seasonal influences on context-based music 

recommendations 

As this project involves the classification of emotions from music, a lot of research would need to be 

done to figure out ways that emotions can be classified from music. This particularly study would 

prove to be very useful as it dives into that specific topic.  

 

Figure 6 Classification of song by energy and valence 

The papeƌ͛s main focus is to study the correlation between the seasons and the mood presented 

fƌoŵ the ŵusiĐ people listeŶ. It disĐusses hoǁ people͛s listeŶiŶg haďits ĐhaŶge depending on the 

season. In this study, a figure was developed that was derived from the Pleasure Arousal model. 

 

Figure 6 would prove to be useful as point of reference for the classifications in the machine learning 

model that was developed. 

5 Approach 

5.1 Design Specification 

The application has a simple design overall since the focus of the project is mostly about how 

accurate the machine learning model is; the main priority was getting the backend of the project to 

work whilst keeping a clean design. Furthermore, having a simplistic design is considered 

professional ďǇ todaǇ͛s staŶdards of applications and websites.  



 

Figure 7: A sequence diagram of the application 

Figure 7 gives a visual summary of how the application interacts with the APIs and how the user will 

navigate from page to the next. Firstly, when a user first enters the application, the user will be 

greeted by a simple homepage. There will be a button that the user can click on which will bring 

them to the Spotify login portal where they can enter their credentials and authenticate the 

application to access their Spotify data.   

When the correct credentials are entered and the user gives permission to the application, the 

appliĐatioŶ ǁill theŶ a seŶd ƌeƋuest the useƌ͛s ƌeĐeŶtlǇ plaǇed soŶgs fƌoŵ the SpotifǇ API. OŶĐe the 
songs are retrieved, the appliĐatioŶ ǁill theŶ ƌeƋuest foƌ eaĐh soŶg͛s audio featuƌes. At the saŵe 
tiŵe, eaĐh soŶg͛s lǇƌiĐal aŶd aŶŶotatioŶ data fƌoŵ GeŶius API ǁill ďe ƌeƋuested.  

Using VADER sentiment analysis, both the lyrical and annotation data will be analysed by VADER and 

it will return a value indicating how positive or negative a song is. In conjuncture with each other, 

the audio features of a song and the values returned by VADER will all be used as features for the 

machine learning model. 

The ŵodel ǁill theŶ ďe Đalled to pƌediĐt eaĐh soŶg͛s ĐoŶǀeǇed eŵotioŶ. OŶĐe this is doŶe, the 
results will be displayed to the user. The app will generate graphs that will provide insights into their 

emotions such as a chart showing the user how many songs are represented by each mood and/or 

the valence of the songs overtime.  

There will also be a logout button that will be implemented so that other users may log in try the 

app on the same device.  



5.2 Methodology 

5.2.1 Experimentations with the APIs and NLTK 

The first thing that was needed to be done, was to be familiarised with the Spotify and Genius APIs. 

Learning Spotify API was first since it the more essential API out of the two. It was required to read 

the API documentation to learn. Its important to know which data was available to be requested 

because the potential and the limitations of the application needed to be known at this stage.  

Once a good level of understanding was developed for the Spotify API, the Genius API was next. 

Since Genius was only needed to request for lyrics and annotations, it would not take long to learn. 

The Ŷeǆt task ǁas to pƌaĐtiĐe usiŶg VADE‘͛s seŶtiŵeŶt aŶalǇsis. Just like with Genius, VADER 

sentiment would only serve for one purpose which was to return a value indicating how positive or 

Ŷegatiǀe a soŶg͛s lǇƌiĐs aŶd aŶŶotatioŶs aƌe. Theƌefoƌe, this ǁould also not take long to learn either. 

After being proficient enough in both APIs and VADER, the knowledge of the three of them would 

now need to be combined to create a method that would get a useƌ͛s ƌeĐeŶtlǇ plaǇed soŶgs aŶd 
ƌetƌieǀe eaĐh soŶg͛s audio features as well as a value from the sentiment analysis lyrics and 

annotations of the song. 

5.2.2 Developing an Understanding of Machine Learning  

The next challenge was to be educated with the fundamentals of machine learning. This would 

require a bit more time to learn as it was not as straight-forward as learning how to work with an 

API. The Scikit-learn tutorial website was a good place to start as it provides tutorials on learning the 

basics of machine learning. This would include an introduction of solutions to classification 

problems. After reading through the website and talking to the project supervisor about how 

machine learning could be implemented into the project, he would bring attention to multiclass 

classification and would provide a link to a tutorial on how to implement a number of multiclass 

classification methods with a dataset. But before this could be done, a labelled dataset would first 

be needed to use those methods on. 

5.2.3 Building the Dataset 

There were many Spotify datasets that could be found on websites such as Kaggle, however, none of 

them were labelled with emotions as this would not be a label provided by Spotify. The solution for 

this then was to create a completely new dataset that would have each song labelled with a given 

mood. This would be done by going on Spotify and search for playlists that represented specific 

emotions. 

For example, for songs labelled happy, happy playlists would be searched for. For songs labelled sad, 

sad playlist would be searched for. This would be done for every emotion that could be easily 

recognised from a playlist. To make sure that the model predicts accurate and consistent results for 

each mood, it was important to balance the number of songs that represent each mood. (see 

Appendix for a full list of playlists that were used). 

When a sufficient number of playlists were found for each conceivable emotion, the songs would be 

extracted from Spotify and it is stored in a file. This would be done using a similar method to the 

ŵethod that ǁas Đƌeated eaƌlieƌ that ǁould eǆtƌaĐt a peƌsoŶ͛s ƌeĐeŶtlǇ plaǇed soŶgs ďut iŶstead, the 
songs of a specific playlist ǁould ďe eǆtƌaĐted. This ŵethod ǁould also eǆtƌaĐt eaĐh soŶg͛s audio 
features and would also retrieve a sentiment value from each songs lyrical and annotation data.  

Each playlist would have its own file that it would be stored in so that any mistakes or errors made 



during the playlist extraction could easily be amendable in the file. Once all the songs from the 

chosen playlists were extracted to individual files, the files would all be merged into one file with all 

the songs from all the playlists. This would form the dataset to be used when making the machine 

learning model. 

5.2.4 Creating, Testing and Evaluating the Machine Learning Models 

Scikit-leaƌŶ͛s tool ǁill ďe doǁŶloaded aŶd used foƌ the ĐƌeatioŶ of the ŵaĐhiŶe leaƌŶiŶg ŵodels. 
Since there were multiple multiclass classifier methods that could be used. A model would have to 

be created for each of the methods. The models will take in, data from the dataset file and use the 

values as features for the model. Most of the data will be used for fitting the model on to, and the 

rest of the data will be used for testing and evaluating the accuracy of the model. To evaluate the 

model, the evaluation methods that were mentioned earlier will all be used.  

All of the models will be compared with each other using the results from the evaluation methods 

mentioned, the model with the best results will be implemented into the application.  

5.2.5 Building the Application 

After the model has been chosen, an application needed to be built so that the model can be tested 

by users. The application will be designed as specified earlier. Flask will be used to build the 

application due to its simplicity to learn and flexibility to work with other packages. 

For the front end of both the home page and the results page, bootstrap templates will be adopted 

into the frontend design since the templates they offer give a professional and simplistic look.  

Authenticating the user and generating the results page will primarily be where most of the backend 

code is. The method that retrieved the useƌ͛s recently played from Spotify which was developed 

earlier in the experimentations phase will be implemented here. For each song retrieved, the model 

will predict the mood of the song using the retrieved soŶg͛s featuƌes, and lyrical and annotation 

data. The model will compare the new data with the dataset it was fitted with and it will generate a 

result for each song. Once the model has generated a predicted mood for each song, the website 

will show the user the mood that the model predicted the most from their music followed by a chart 

that will show them the quantity of songs that represent each mood. There will also be a table that 

shoǁs the useƌ͛s ƌeĐeŶtlǇ plaǇed soŶgs aloŶg ǁith eaĐh soŶg͛s pƌedicted mood. 

5.2.6 Deploying the Application 

Heroku will be used to deploy the application since it is free for smaller projects like this and it works 

with Flask applications as well. An account needed to be created to deploy the application and the 

Heroku Command Line Interface would also be needed to push the application to their servers.  

5.2.7 Testing and Evaluating the Application and Machine Learning Model 

Since the app will be tested with other people, the approval of the ethics committee will be needed. 

This will require having to send in an application form, consent form, participation form and any 

other files that will be needed for them to approve the testing. Once approval is obtained from the 

Ethics committee, a broadcast message will be sent out either by email or through social media. This 

message will let people know that people will be needed to test out the application and will give 

details about the project and the application. When enough people have contacted and 

demonstrated their interest, a consent form and participant form will be sent to them to be signed. 

When they have signed it, they will now be able to test the application out. 



To test the application, the participants are asked to look at their recently played songs prior. They 

will then be asked to pick from three moods from a list of moods; these will be a list of all the 

labelled moods that are in the dataset. They will then be asked to rank the moods they have chosen 

from most to least representative. Doing all this will give them an expectation of what mood the 

application should predict.  

Then, they will be instructed to login to the application with their Spotify accounts. In doing so, the 

application will analyse their music, predict their moods, and show them the results. They are then 

asked how accurate the model predict their moods and how accurately the model predicts the 

moods of their music. Finally, they will be asked to give some general feedback on the model and 

application overall. 

The responses from this will be used for analysis and evaluation.  

6 Implementation 
This section will discuss in detail the implementation of the methodology previously described.  

The backend of the application is mostly developed in Python. The application will make use of 

Spotipy, LyricsGenius, NLTK and Scikit-learn Python packages. Before starting the implementation of 

the app, a GitHub repository would need to be created at the root of the source folder.  

6.1 Extracting Songs from Spotify Playlists and Building the Dataset 

Song would need to be extracted from the chosen playlists so that songs a dataset may be formed. 

This was done in the ͚SentimentAnalysisPlaylist.ipynb͛ file. These were the steps that were taken to 

retrieve the data necessary to build the dataset. 

• Firstly, variables that would authenticate the Spotify application would need to be declared. 

o The username of the account to be accessed is provided.  

o The Client ID and Client Secret are both strings that would be generated from the Spotify 

developer page.  

o The Redirect URI specifies the URL that the user will be redirected to after logging in and 

authenticating the app. For now, it is set to redirect the user to a temporary URL. This 

would be later changed to redirect the user to the results page of the application once it 

is setup.  

o The scope specifies the data that is to be requested from the user. In this case, the data 

to be reƋuested is the useƌ͛s ƌeĐeŶtlǇ plaǇed soŶgs. 
• These variables would all be used to create the token.  

• The Genius access token is generated from the Genius developer dashboard after creating an 

app there. This would respectively be used to authenticate the application so that it may use the 

Genius API to request the lyrical data and annotation data of songs. 

• The API objects would now need to be created using the tokens that were declared. The objects 

would be used to call the different methods that would be needed for the extraction of the 

playlist.  

• After everything has been declared, each playlist is retrieved from Spotify using a unique URI 

code that is assigned to each playlist (see Appendix for a full list of playlists that were used). The 

number that is assigned to mood value indicates which mood the playlist will be labelled as.  

• Extract each song from the playlist and put them into a list. 

• For each song: 

o ‘etƌieǀe the soŶg͛s audio featuƌes 



o Search for the song on Genius with the Genius API by passing in the soŶg͛s Ŷaŵe aŶd 
artist. ‘etƌieǀe the soŶg͛s lyrical and annotation data if the song can be found.  

o Using VADER, run a sentiment analysis on the lyrical and annotation data of the 

song. 

▪ (Sometimes it will fail to run a sentiment analysis on the data. This is either 

song can not be found on Genius, or the song does not contain lyrics. To 

solve this issue, a try except statement would be used. If no values were 

returned from this, a ͚Ŷull͛ ǀalue ǁill ďe assigned in the dictionary instead).  

o Using the audio features and the values returned by VADER, create a dictionary with 

all the retrieved values as well as the song name and artists. 

o Append the dictionary to a list of dictionaries 

• The list will contain all the data needed to be used as features for the model. 

• Convert the dictionary into a Pandas data frame. This will be done to make exporting it easier. 

• Export the data into a separate CSV file. 

 

Figure 8 Example of what the extracted song data looks like in a Pandas data frame 

This process will be repeated for all the playlists. When all the playlists have been extracted, the CSV 

files would then need to be merged to form the dataset.  

To merge them, a small program would be made Đalled ͚MeƌgeCS.pǇ͛. 

 

Figure 9 Python program to merge the CSV files together 

 



6.2 Creating the Models 

The models would now need to be created using the Scikit-learn package. A base model would first 

be created. Since the process for creating a model is the same, this would be used as a template for 

them to avoid repetition and to make testing the models more convenient.  

- The model would first read in the dataset CSV file that was created. 

- The data would then need to be pre-processed. This would just eliminate any columns that 

are not relevant or any columns that cannot be fitted onto the model. Columns have to be 

integers for it to be fitted on the model. The rows need to be randomised since the rows are 

ordered by mood in the CSV file. This is done to so that the model because the model so that 

there are no uneven splits when fitting the data. 

- The data is then split. 

- As this is being done in a Jupyter Notebook, there is a command that is available which is 

͚%stoƌe͛. This alloǁs ǀaƌiaďle to ďe aĐĐessed aĐƌoss diffeƌeŶt JupǇteƌ Noteďooks.  

 

Figure 10 Variables being stored so that they can be accessed in other notebooks 

After the base model is complete, the other models can be made. This would be done in a new 

Jupyter Notebook for each model. 

The first things that needs to be done is to load up the variables that were stored from the base 

model. 

 

Figure 11 Retrieving the values in a different Jupyter Notebook from the Base Model Notebook 

The data would then be fitted onto each respective classifier and will make predictions.  

 



 

 

 

6.3 Testing the Models 

They are then tested and evaluated against each other. This is done first by calling the standard 

score() method which gives an overall score for how accurately the model predicts each label. The 

scores of each model would be recorded in a table. When each score has been recorded, the base 

model code would be ran again so that the it would randomise the rows again and each model can 

be tested with the same randomised rows. Doing this would make the tests fair as the models are all 

using the same data. 

 

When using the normal scoring method for getting the accuracy of the model, the method would 

give scores of about 40-60%. This is because the method only counts the songs that are predicted 

correctly. Since emotions of music can be subjective, the evaluation needs to be more lenient when 

checking the accuracy of the model. The solution proposed for this would be to create a custom 

scoring function.  

The scoring function would contain a matrix that would defines the relationship between each 

mood. Each relationship would be given a value between 0.0 - 1.0; the higher the value, the more 

similar the mood is. The predicted emotions and the correct emotions would be passed into the 

function. This matrix was created through a mixture of the Valence-Arousal Figure and using 

heuristics.  



 

Figure 12 Similarity matrix used to define the similarity between the labels 

For each predicted emotion and correct emotion, the function would use the matrix to check how 

similar the emotions are. It would return the value that is assigned to the two emotions and the 

value would be added to a total sum. The total sum would then be divided by the number of 

predicted emotions giving a more lenient accuracy score for the models.  

As this is a custom scoring method however, the scores produced by this method would need to be 

validated during the user testing. For the model that is chosen for the web application, the score 

given by this method for that model would also need to be reflected by the responses that the user 

gave.  

Confusion matrices would also be constructed to better show which labels the model is getting 

confused with.  

 

Figure 13 Example confusion matrix showing how many of each labels are being wrongly predicted 



 

Another function that was created for evaluating the models was a function that would count how 

many moods were labelled correctly for each mood. This would serve to provide a simple view at 

how many labels are getting accurately predicted. 

 

After the models were tested normally, the same set of evaluation methods would be done again. 

However, this time it would be tested using LOOCV. When using LOOCV, it would give the same 

results every time since each row of the dataset is being validated individually, which means that the 

test does not need to be repeated. 

 

The results of the testing would show that the SVM model was the most accurate out of the models 

at predicting the labels. This would later be elaborated on in the Results and Evaluation section. 

 



6.4 Building the Web Application 

To start making the web application, the Flask application file would need to be created first. This 

would be where most of the backend code would go and where each URL would take the application 

to.   

6.4.1 Home Page 

First the home page needed to be created. The home page HTML file would be adopted from a 

Bootstrap template.   

 

Figure 14 Template used for the home page 

The Flask framework provided the use of blocks which allows HTML scripts to be placed inside from 

other HTML files allowing for it to be used as a template file.  

 

Figure 15 Contents of the homepage 

The home page only contains a sentence describing what the application does and then a button 

that would let the user login to their Spotify. The use of Bootstrap was helpful for keeping the design 

clean and minimal. Both the home page and results page were made from a Bootstrap HTML 

template. 

The application was giǀeŶ the Ŷaŵe ͚ViďeCheĐk͛ ǁhiĐh is displayed at the top of the application. The 

Ŷaŵe ͚ViďeCheĐk͛ ǁas ĐhoseŶ ďeĐause the ǁoƌd ͚ǀiďe͛ is slang for the emotions or atmosphere one 

is eǆpeƌieŶĐiŶg. It is also a shoƌteŶed ǀeƌsioŶ of the ǁoƌd ͚ǀiďƌatioŶs͛ ǁhiĐh Đould ďe diƌeĐtlǇ ƌelated 
to how music produces vibrations, or rather, soundwaves.  



A stock image of someone listening to music would be used for the background to make the site 

more appealing to viewers. There were plans to create a navigation bar for an about page which 

would more information about the application, and a contacts page where an email and GitHub link 

would be given. However, due to the time constraints of the project, the focus was put on 

developing the bare essentials of the website. Since the about page and contacts page were not 

considered important for the functionality of the website, they would be implemented in the final 

design of the application.  

 

Once the frontend was finished, the route for the home page needed to be declared in the main 

Flask application file which would tell the application which template to render when a user is 

directed to the page. 

 

 

6.4.2 Authentication Page 

WheŶ a useƌ ǁould ĐliĐk oŶ the ͚LogiŶ to SpotifǇ͛ ďuttoŶ, it ǁould take theŵ to the SpotifǇ 
authentication portal. From here they can enter their credentials, and the app would show the user 

which data is going to be accessed which would be necessary for generating the results, to which the 

user may then choose to authenticate the application. 

This was done by redirecting the user to the Spotify authentication page.   



 

 

After a user logs in and authenticates the app, the app redirects back to the application with 

api_callback() function which requests an access and refresh token to be used. The access token lets 

the application request data that it has been authorised to retrieve. The refresh token is used to get 

a new token when the current one become invalid.  

The results would then be generated by the application so that it may be displayed to the user. This 

is done by fiƌst gettiŶg the useƌ͛s ƌeĐeŶtlǇ plaǇed soŶgs and the data of the songs which would use 

the exact same method that was created earlier in the experimentation phase. The model that was 

the most accurate from the testing is created as well using the same method to create the model. 

The playlists dataset is loaded in and pre-processed for the model to use. The dataset no longer 

needs to be split into training data and test data. It would instead use the entire dataset for training 

the model. The predictions aŶd the useƌ͛s data aƌe passed ďaĐk to ďe used to displaǇ to the useƌ.  

There is a small issue that would prove to be a problem later with using Genius. Genius takes 2-5 

seconds to search and return the data for singular song. The method uses Genius when retrieving 

the data from the useƌ͛s recently played songs. Since there are about 50 songs being searched for, 

this means that the time that Genius takes to search for a song would add up and the method 

overall would take about 2-5 minutes to complete. 



 

 

Figure 16 Spotify authentication page 

6.4.3 Loading Page 

When trying to deploy the application to Heroku, a timeout error kept occurring when trying to 

generate the results for the user. This is because Heroku sets a time limit of 30 seconds when 

processing a request and application takes around 2-5 minutes to generate results for a user. Heroku 

does not allow the timeout value to be adjusted to make sure that deployed applications are 

responsive and would scale better. A solution that was thought of was to use a Redis background 

worker which would generate all the results in the background. Then a loading page would need to 

be made that would periodically refresh and check if the results have been generated.  

The process for the loading page is as follows: 



- After the user has logged into Spotify and authenticated the app, the user is then redirected 

to the static loading page that refreshes itself every 5 seconds. 

- Whilst that is happening, a Redis worker would generate the predictions in the background 

- When the results have been generated, the predictions and the data would be passed in and 

then processed before passing them into the results HTML template. 

- The user is redirected from the loading page to the rendered results template. 

6.4.4 Results Page 

Just like with the Home page, the front end of the results page would also be adopted from a 

Bootstrap template. The Bootstrap template provides simple and professional-looking graphs that 

would be used to display the results to the user. Bootstrap also has some pre-styled tables that 

would be used to display all the recently played songs to the user along with the mood that was 

predicted by the model. Bootstrap would also prove to be useful for the overall layout and structure 

of the application as it allowed it to look nice even if the application were being accessed from a 

mobile phone. The stǇliŶg theŵes used foƌ the ƌesults page took iŶspiƌatioŶ fƌoŵ SpotifǇ͛s daƌk 
theme. 

The results page tells the user which mood is most conveyed from their music and would display a 

pie chart that shows the how many songs were labelled a certain mood. If the user hovers their 

mouse over the chart, it will show how many songs predicted to convey the specific mood that is 

being hovered over. There are 2 line graphs that displays the valence and energy of the songs over 

time which are taken directly from Spotify. Originally, there would only be a single graph with two 

different coloured lines with one representing valence and the other representing energy. However, 

when this was implemented, the plots would be quite clustered and was not so easy to read. To 

make the graphs as coherent as possible, they would be kept separate. The last graph that would be 

displayed would be a scatter graph showing the relationship between the valence value and energy 

value of the songs.  This took inspiration from the Valence-Arousal model. At the bottom of the page 

there would be a table showing the user all their recently played songs along with a predicted mood 

for each song. Finally, there is a logout button that would simply log the user out and redirect them 

back to the home page. 

 



 

Figure 17 Top of result page showing the result to the user and a mood distribution pie chart 

 

 

Figure 18 Line graph showing the valence of songs overtime 



 

Figure 19 Line graph showing the levels of energy exuded from songs over time 

 

 

 

Figure 20 Scatter graph showing the relationship between the valence and energy of the songs 



 

Figure 21 List of recently played songs along with the predicted mood for each song 

6.5 Deploying the Application 

To deploy the application on to Heroku, the Heroku Command Line Interface needed to be 

downloaded which allows the files for the application to be pushed from the command line. 

Gunicorn also needed to be installed which is a Web Server Gateway Interface (WSGI) that is 

commonly used to run python applications. What Ŷeeded to ďe doŶe fiƌst ǁas to go to the sǇsteŵ͛s 
terminal, go to the root directory where all the source code for the project was, and then use the 

ĐoŵŵaŶd ͚heƌoku apps: Đƌeate <iŶseƌt app Ŷaŵe heƌe>͛.  This will create the application on Heroku. 

The next step was to create a Procfile which basically tells Heroku what command is needed to start 

the application. A requirements.txt file is also required as it tells Heroku which Python packages are 

needed for the application to run. Once this was all setup, the app would then be ready for 

deployment, which was done by committing and then pushed to Heroku using the following 

ĐoŵŵaŶd: ͚git push heƌoku ŵasteƌ͛.  This would then deploy the application to Heroku provided that 

there were no errors.  

The web application can be accessed with this link: https://vibecheck1.herokuapp.com/home 

 

 

 

https://vibecheck1.herokuapp.com/home


7 Results and Evaluation 

7.1 Evaluation of the Machine Learning Models 

The models that have LOOCV implemented will mostly be discussed here as they result, they show 

are the most representative of the dataset. The scoring that will mostly be focused on will be the 

custom scoring method that was created because the score that is generated by this is more 

representative to the models than the normal scoring method. The score produced by this method 

will be referred to as the ͚Lenient Accuracy͛ score. 

Classifier Lenient Accuracy % 

Decision Tree 0.7491782553729498 74.91% 

SVM 0.8165865992414686 81.65% 

K-Nearest Neighbours 0.7173198482932994 71.73% 

GaussiaŶ Naïǀe BaǇes͛ 0.7928445006321114 79.28% 

 

The table of results shows that the SVM model was the most accurate for predicting the emotions 

beating Gaussian Naïve Bayes͛ by just 2%. Even though these scores are a lot higher compared to the 

scores that were calculated from the normal testing methods, the models are still not completely 

accurate. The models will need a bit more experimenting with in the code, to try to get the accuracy 

to be higher. For now, the SVM model will be sufficient enough to be used in the web application.  

7.1.1 Confusion Matrices 

Looking at the decision tree confusion matrix, the model is classifying most of the data as either chill 

or energised. This shows that the decision tree classifier is not the best for this problem. Ideally, 

there should be a high concentration of numbers that form diagonal line that goes through top left 

cell to bottom right cell. This can mostly be seen in the SVM confusion matrix and the Gaussian 

Naïve Bayes confusion matrix. When examining this line, it is clear to see that the SVM has the most 

prominent showing line. This proves that the SVM model is the most accurate of the models.  

 

 

Figure 22 Decision Tree confusion matrix 



 

Figure 23 SVM model confusion matrix 

 

 

 

 

Figure 24 K-Nearest Neighbours confusion matrix 

 



 

Figure 25 Gaussian Naive Bayes confusion matrix 

One thing that is consistent across all the models is that the predictions for ͚Sleepy͛ are always the 

highest accurately predicted mood. This is probably because the dataset for ͚Sleepy͛ has the greatest 

number of songs and the music used for it is all mostly very similar. The playlist used to represent 

most of the emotions would be quite varied in terms of genres. This was done to hopefully get 

better outcomes for the predictions. However, looking at these graphs, it seemed to confuse the 

models for a lot of the classifications. Some work might need to done on the datasets to better 

improve the results of the models. Energised, chill and calm would all also show to be relatively 

consistent in some of the models. Happy, sad, and aroused might need ones that are somewhat 

inconsistent, and their dataset may need some work on. 

7.2 User Evaluations 

7.2.1 Evaluation of the SVM Model 

When asked about the accuracy of the model on a scale of 1-5 (5 being the most), the average 

response was a 4 out of 5 with some people even saying that the model accurately predicted their 

mood. This is overall good because this meant that the custom scoring method that was developed 

for giving a lenient score can be trusted. This also means that the model can be relied on somewhat 

for predicting the emotions conveyed from different songs.  

When reviewing the songs from the table, most of the participants said that they are all mostly 

accurate with a few exceptions. There were quite a few that mentioned that ͚angry͛ was predicted 

as the mood for some songs when it should have been labelled as something else. There might be a 

possibility that the playlists that were labelled as ͚angry͛, may not properly represent the emotion. 

There was a bit of a struggle trying to find playlists that represented angry because there were not 

many suitable playlists that were provided by Spotify. When choosing the playlists, it was safest to 

stick to playlists made by Spotify as they are generally well-maintained and are popular with many 

users. Spotify, for one reason or another, does not have many playlists that clearly represent ͚aŶgeƌ͛. 

Unfortunately, ŶoŶe of the paƌtiĐipaŶts Đlaiŵed to haǀe ͚SleepǇ͛ as oŶe of theiƌ ƌepresentative 

moods, which means that it was not possible to test validate the accuracy of it being predicted on 

their songs. On the other hand, all the other emotions had at least one person stating that it was 



represented their music which means that they could validate the accuracy of the model when 

predicting all the other moods. 

7.2.2 Evaluation of the Web Application 

Overall, the participants seemed really pleased about the functionality and design of the application. 

Many of them commented on the ͚professional design͛ of the app and the fun experience they had 

with testing it out. Fortunately, no one mentioned any errors when testing the application which 

meant that the functionality of the app is consistent.  

When the participants were asked to give feedback, most of them commented about clarity of the 

graphs on the results page. The vast majority of them did not understand what the graphs 

represented and had to be provided an explanation. This was because there was no explanation of 

what they were presenting which is an oversight on the developeƌ͛s side. Besides that, some of them 

said that the gƌaphs did look ͚Đool aŶd pƌofessioŶal͛  

Two of them would also comment oŶ ͚hoǁ sloǁ the app ĐaŶ͛. They were told prior to testing the 

application that after logging, it would take 2-5 minute to for the results to load. However, they 

specified that the home page would take a few minutes to load as well. Upon further inspection into 

the Heroku console logs, it can be seen that the application goes idle when there is no activity in the 

application for more than 20 minutes. This is something that cannot really be fixed since that is just 

Heƌoku͛s ǁaǇ of saǀiŶg ƌesouƌĐes.  

 

Figure 26 Screenshot of the Heroku console log; shows when the web app becomes idle 



 

Figure 27 Full list of the user test results; moods are chosen and ranked by representativeness, with the mood on the left 

being the most representative 

 

8 Future Work 
An option to give feedback directly to the model i.e., have a button in the table of songs labelled 

something like ͚this soŶg does Ŷot ĐoŶǀeǇ this eŵotioŶ͛ aŶd ĐliĐkiŶg that button will make a pop-up 

form appear where the user can then select the proper emotion that they feel the song conveys. 

This could provide the model with the chance to grow and become more accurate. 

The addition of more emotions as well could benefit people more as well since there are more than 

8 emotions that can be conveyed through music. This would require searching for more playlists to 

use as a dataset. 

Other quality of life features such as being able to see which song is being represented on the graph 

when hovered over. It is possible to determine the songs represented on the graph by hovering over 

a plot point, looking at the number and then finding the song that correlated to the number on the 

list. However, this is a very tedious process, and the user would much benefit from just being able to 

see the song on the graph without it being visually cluttered. 

Different approaches to the problem could be explored next time, such as using a multi-label 

classification model or maybe even going for a unsupervised or semi-supervised approach.  

The code could benefit more from being optimised. One such method for this would be to maybe 

use a different API for retrieving lyrics. Using the Genius API made the application slower because it 

had to search for songs individually. Although it was slightly faster when deployed onto Heroku, it 

would be nice if the user only had to wait a maximum of 10 seconds for the results page to load. 

Doing so might encourage them to try it out more often. There were considerations of also using the 



useƌ͛s top-rated tracks or most recently liked songs. However, adding more songs for the application 

to request from will make loading times longer. Currently, there are only 50 songs that are being 

requested which only takes a 2-5 minutes for results to be generated. Any longer would potentially 

discourage users from using the application.  

 

9 Conclusions 
The application was able to mostly please the participants upon testing and there did not seem to be 

many issues outside of the graphs not having much explanation. Other than that, there were no 

errors reported and the data seemed to be presented well to the participants.  

The graphs that were implemented did not seem to provide the quality of insight to the user that 

was initially intended. If the graphs had an explanation, the user would probably get more 

enjoyment from using the application.  

The machine learning model seem to also be mostly successful in predicting the emotions conveyed 

from a person͛s music. There definitely needs to be improvements made to the model and the 

dataset, but for a first attempt, this a great start.  

Overall, the project was a success. Both of the main aims of the project were achieved to a sufficient 

manor. This whole study has proven that it is possible to use machine learning techniques to predict 

the emotions of music conveyed through their music.  

In future, the results could potentially be expanded and improved upon in future works to directly 

predict the mood of a person.  

10 Reflection on Learning 
This project was challenging to say the least. Requiring me to learn how to do several things like 

working with an API, working with natural language processing, understanding, and implementing 

machine learning techniques, developing both frontend and backend developing skills, and learning 

how to deploy the application. There was a lot of research that needed to be done for this project 

and it constantly challenging me every step of the way. However, I like the challenge that this project 

provided as it pushed me to continuously think of solutions and workaround for different problems.  

Overall, I am quite proud of what I have achieved with this project as it combined different aspects 

of computer science into one project. 

  



11 Appendix 
Full list of playlists used for the dataset. 

Playlist Name Mood No. 

of 

Songs 

Happy Hits! Happy 100 

Good Vibes Happy 133 

Mood Booster  Happy  74 

FeeliŶ͛ Good Happy 100 

Sad Songs Sad 60 

All The Feels Sad 100 

Life Sucks Sad 100 

Idk. Sad 100 

Atmospheric Calm Calm 93 

Calm Calm 100 

Deep Focus Calm 196 

Sleep Sleepy 186 

Deep Sleep Sleepy 201 

Night Rain Sleepy 317 

Energy Booster: Dance Energised 100 

Beast Mode Energised  200 

Beast Mode Rock Energised 100 

Motivation Mix Energised 100 

Beast Mode Hip-Hop Energised  76 

Drum and Bass Top 

100 

Energised  100 

Sexy R&B Aroused  55 

Sexy as Folk Aroused  49 

Love Pop Aroused  100 

Timeless Love Aroused  100 

Bedroom Jams Aroused  74 

Rage Beats Angry 100 

Complete Chaos Angry  100 

New Metal Tracks Angry 100 

Angry rap Angry 188 

Chill Hits Chill 207 



Chill Vibes Chill  50 

Chill R&B Chill 75 

Indie Chillout Chill  100 

Lowkey Chill  
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