
 Implementing Deep Q Learning for Sonic The Hedgehog ʹ

Cardiff University

School of Computer Science and Informatics

CM3203 - One Semester Individual Project - 40 Credits

Author:
Dion James Watts-Evans

Supervisor:
Federico Liberatore

Moderator:
Charith Perera

1

Table of Contents
Table of Contents .. 1

Table of Figures ... 2

Abstract .. 3

Acknowledgements .. 3

1. Introduction ... 4

2. Background .. 5

2.1. Project Context .. 5

2.2. Reinforcement Learning .. 5

2.3. Q learning and Deep Q learning .. 6

2.4. The Gym-Retro Emulator Environment .. 8

2.5. Technologies and Constraints ... 9

2.6. Project Aims. .. 10

3. Approach ... 11

3.1. The Approach in theory .. 11

3.2. The First Approach: Bizhawk ... 11

3.3. The Second Approach: Bizhawk with Colab ... 12

3.4. The Final Approach: Colab... 14

4. Implementation .. 15

4.1. Creating Scenario Files .. 15

4.1.1. Data Files .. 15

4.1.2. Reward Function ... 15

4.1.3. Done Function .. 16

4.2. Creating the Deep Q Network Agent ... 18

4.2.1. Implementation ... 18

4.2.2. The Network Class .. 18

4.2.3. The Agent Class .. 19

4.3. Bringing Everything Together ... 19

5. Results and Evaluation .. 21

5.1. Initial Implementations .. 21

5.2. Experimentation .. 21

5.2.1. The Experiments .. 21

5.2.2. Better Than Random.. 22

5.2.3. The Effects of the Scenario Files .. 24

5.2.4 The Effects of Memory Size ... 25

5.2.5 Generality .. 27

5.3 Other Findings and Evaluation ... 29

2

6. Future Work ... 31

6.1. Improvements and Further Experimentation ... 31

6.2. Implementing for Other Levels .. 31

6.3. System for Predicting Future Reward .. 33

7. Conclusions .. 34

8. Reflection on Learning ... 35

9. Bibliography .. 36

10. Appendix... 37

Appendix A – Video Examples .. 37

 Table of Figures

[Figure 1.1] The Pictures demonstrate that should the player approach certain obstacles without

sufficient momentum, the player will not make forward progress.

4

[Figure 2.1] Diagram showing the relationship between the Agent, Environment, and Interpreter. 6

[Figure 2.2] The Bellman Equation explained. 7

[Figure 2.3] An extremely simple Environment The agent (Sonic) wants to reach the goal state (signpost). 7

[Figure 2.4] the initial Q table for the environment in figure 2.3. 7

[Figure 3.1] Diagram showing how the systems interacted at this point in the approach, interactions in

red had yet to be implemented.

13

[Figure 3.2] diagram showing the final state of the project and how various systems are interacting. 14

[Figure 4.1] A steep hill that Sonic would struggle to get up from his current position. 17

[Figure 4.2] Slightly back from the hill in figure 4.1 is a spring that can propel Sonic up the hill. 17

[Figure 5.1] Initial Experiment plan. 22

[Figure 5.2] Generality Experiment plan. 22

[Figure 5.3] A graph showing the maximum x position over time for a random agent. 23

[Figure 5.4] A graph showing the maximum x position over time for our control agent. 23

[Figure 5.5] A graph that compares the progression of the maximum X position achieved by the scenario

file agents over time.

24

[Figure 5.6] A graph comparing act clears obtained by both agents with loose done functions. 25

[Figure 5.7] A graph comparing the maximum X position achieved by each memory experiment agents

over time.

26

[Figure 5.8] A graph comparing act clears obtained by the control agent and both altered memory agents. 26

[Figure 5.9] A graph comparing the maximum X position achieved by the trained and the untrained agent

in act 2.

27

[Figure 5.10] A map of Emerald Hill Zone act 1. 28

[Figure 5.11] A map of Emerald Hill Zone act 2. 28

[Figure 5.12] A graph comparing act clears obtained by Trained and Untrained agents on act 2 of Emerald

Hill Zone.

29

[Figure 6.1] A map of act 1 of the second level of the game, Chemical Plant Zone. 32

[Figure 6.2] A map of act 1 of the Third level of the game, Aquatic Ruin Zone. 32

3

Abstract

Machine learning implementations for video games have become somewhat of niche

online in recent time, with models being trained on a variety of video games for

education and entertainment purposes. This report covers an implementation of a

reinforcement learning algorithm known as Deep Q Learning for the video game Sonic

the hedgehog 2. The project aims to create a machine learning model that can complete

the first level of the game, with speed of completion being a secondary target. The

model will also be tested on its generality or ability to beat levels not previously seen by

it.

 The report will cover the implementation of this model, from the basic ideas needed to

implement it, to initial attempts for a working solution, and then finally going into detail

about the implementations describing how various functions enable and affect the

performance of the model, We will discuss the results, the successes of the project and

the failures. This report will cover how these results came about by adjusting

parameters that manage how the agent performs.

Results will be analysed and discussed to determine if the solution provided is

successful, ideas to expand the solution in future will be put forward, and we will reflect

on the learning implementing this project has caused. Overall, this report discusses the

journey of the implementing a machine learning model, the positives and the negatives. Acknowledgements

I would like to thank my partner Ffion, for her unfaltering support during the pandemic and this project, without her help I don’t know what state this project would be in.

I would like to thank all the members of Duct Tape House and my Friends for the

memories and the support they have given me these last four years.

Finally, I would like to thank my supervisor Federico Liberatore for all the insight and

guidance he has provided me with.

4

ͳ. Introduction

Machine learning for video games has been a good indicator of forward progress in the

accessibility of machine learning field. Understanding large data sets and how a model

could be used to process that data can be hard even for experts who are trained to do

so. Using video games can make for a good platform for explaining and developing

interests in machine learning technology.

This project aimed to implement a machine learning model for the video game Sonic the

Hedgehog 2 for the Sega Mega Drive1. The game provides several unique challenges for

a machine learning model that other games might not.

• Levels are long horizontal obstacle courses as opposed to single screen

challenges meaning the model will have to adapt to rapidly changing

observations.

• The game features branching level design; thus, decisions early in the level can

severely impact performance later in the level.

• Several sections of the level require significant forward momentum to overcome

meaning the player needs to approach at speed to progress.

(see Figure 1.1)

[Figure 1.1] The pictures demonstrate that should the player approach certain

obstacles without sufficient momentum, the player will not make forward progress.

• Levels often feature complex geometrical patterns which may impact the AI’s
judgement of similar situations.

The project scope was limited to the first level or zone of the game, Emerald Hill Zone.

Each zone is split up into two acts, the project will focus on the first of these two acts,

but some consideration will be given to second act when discussing if the AI can achieve

some level of generality.

The implementation of this project shows some hopeful results, but leaves open some

interesting questions, and provides several avenues for future improvement, due to

some unfortunate issues. This will be covered in more detail in sections 4,, 5 and 6,

discussing the implementation and the problems with it.

This report will cover said implementation of the machine learning model from

beginning to end. Starting with research into the implementation of the chosen machine

learning algorithm, Q Learning. Following the initial discoveries and trials for the basic

1 Known more commonly as the Sega Genesis internationally

5

implementation project. It will then follow on to compare several of the methods I used

by examining the data gathered over multiple training sessions. ʹ. Background

2.1. Project Context

This project exists in the wider context of video game machine learning projects. Several

Sonic the Hedgehog AIs already exist, Most commonly using the Neuroevolution of

Augmenting Topologies algorithm, or NEAT algorithm. The NEAT algorithm is relevant

for this use case as it keeps several distinct topologies2, and evolves by augmentation.

Meaning several possibilities are considered. A good example of the NEAT algorithm for

Sonic the Hedgehog is demonstrated by Lucas Thompson in his Implementation

tutorial.[1]

While Q Learning for Sonic the Hedgehog 2 has been done such as the implementation

by Alex Kaplan[2], there are extra considerations this project will make when

implementing. Firstly, we want our implementation to play the game quickly. A key part

of Sonic the Hedgehog games is fast movement and preservation of momentum; we

want to reward our AI for speed. Secondly, we want to test the generality of such an

implementation. We will test our trained AI on the second level and compare it to a new

AI to see if the later AI performs better.

2.2. Reinforcement Learning

The project uses a Deep Q Learning neural network to select actions for the computer

player. Q Learning is a Reinforcement Learning technique. This section will go into

detail about Reinforcement Learning as a machine learning paradigm, whereas Q

learning will be covered in section 2.2.

Reinforcement Learning is a machine learning paradigm that seeks to optimize a given

problem using a defined set of actions. The computer player, referred to as the agent

takes an action and receives a reward based off the state following the action. The agent

does not know which move to make at first. It learns which moves yield a high reward

by first taking the move and noting the reward obtained[3].

The way the agent works in theory is quite simple. Given a state, the agent performs an

action. The environment is then changed according to this action, The new state of the

environment is passed to the interpreter which provides the agent with the reward for

this action and the parts of the state that are relevant to the agent.

2 A topology is a specific neural network, kind of like a genome in biology.

6

[Figure 2.1] Diagram showing the relationship between the Agent, Environment, and

Interpreter.

As previously mentioned the agent can only know what moves to make after it has

already made them. This presents a problem for reinforcement learning in the form of

the Explore/Exploit Trade-off. Put simply, the agent can pick one of explore or exploit at

a given time. The agent can learn, or it can act according to what it has learned for a

given action, it cannot do both.

The solution used by this project and most other implementations is called epsilon

greedy. Epsilon greedy stores a value called the epsilon value that starts at some chosen

value between 0 and 1 and decays by a percentage periodically. A random number is

generated, if it is less than epsilon the agent acts randomly, otherwise it acts according

to the model.[4]

Hopefully, the application of this learning paradigm for video games is apparent. It

mimics how we as people learn new concepts by trying and remembering new things,

while also providing a reactive model that can approach different situations differently.

2.3. Q learning and Deep Q learning

This section will cover Q Learning and Deep Q Learning in more detail, but put simply, Q

Learning is a reinforcement learning method that uses a data storage called the Q table

to determine what action to take. The Q table maps rewards or Q-values to state action

pairs. This Q table is updated using the Bellman equation. As figure 2.2 demonstrates,

the Bellman equation assigns Q-values for a given state based off the expected reward of

the action. The primary difference between Q Learning and deep Q Learning is how the

Bellman equation is used. Q Learning updates the Q table whereas deep Q-Learning uses

the bellman equation to update the weights of a neural network that predicts Q-values

of actions for a given state.[5]

7

[Figure 2.2] The Bellman Equation explained[6].

Consider the environment in the figure 2.3. This simple environment has sxi possible

states. The start state shown in the figure, four intermediate states state, and the goal

state. With the assumption that all the agent can do is move on the cardinal directions,

the Q table is initialised by providing a score of 0 for each action at each state, as seen in

figure 2.4. The Epsilon greedy algorithm can then be used to fill the Q table using the

Bellman equation utilising a chosen reward function. Q Learning is suitable for simple

examples like this but what about larger more complicated environments?

[Figure 2.3] An extremely simple Environment The agent (Sonic) wants to reach the

goal state (signpost)

 Up Down Left Right

start 0 0 0 0

1,2 0 0 0 0

1,3 0 0 0 0

2,1 0 0 0 0

2,2 0 0 0 0

end 0 0 0 0

[Figure 2.4] the initial Q table for the environment in figure 2. 3

8

Consider again the environment from figure 2.3. If an enemy was included that moves

randomly throughout the six spaces, our simple six state system increases to a 36 state

system. Increasing the complexity of an environment increases the size of a Q table

multiplicatively. Because of this for more complicated environments, we need a more

space efficient solution to determine the best action from a given state.

This is where Deep Q Learning can be applied. In Deep Q Learning we create two neural

networks, the main network, and the target network. These networks are used to

assign Q-values to state action pairs. Two networks are used to improve learning

stability, limiting the AI’s ability to overestimate. Much Like how the Bellman equation

updates the Q-values in the table, the Bellman equation is used to update the Q-values in

nodes in the neural networks. By using neural networks, we should train an artificial

intelligence that can react more generally to new scenarios than a standard Q Learning

environment could. While also dealing with the potential memory problems mentioned

earlier[7].

2.4. The Gym-Retro Emulator Environment

You may be familiar with the Open AI gym environment[8]. It is a Python module for use

with artificial intelligence. Open AI gym exists mainly to compare different artificial

intelligence models on simple environments, and as a teaching tool for machine

learning.

To use the module, you initialise an environment and go through the states in order

using the step function, providing an action to do in that state. After using the step

function the environment provides a reward value, a boolean value letting you know if

the environment should be reset, Miscellaneous information about the environment,

and most importantly an observation of the environment.

This observation is typically used as a state for machine learning algorithms. The

observation can be anything from a set of variables providing information about the

environment, to a graphical representation of said environment. Using this observation

and the reward value we can update our Q-values on a Deep Q Learning model as

mentioned earlier. This makes Open AI gym incredibly easy to set up for our use case,

something that would greatly benefit the project if discovered earlier3.

Gym retro is very much the same as gym in how it us used. You set up the environment

and step through it action by action in the same way, gym retro provides reward

functions, information and observations exactly like gym. The key difference is that gym

retro comes with several emulators for use.

An emulator is a reconstruction of physical hardware using software. They are

primarily used to simulate old video game consoles to play backups created from old

video game cartridges. Emulators can be computationally expensive, However older

devices such as the Mega Drive tend to be easier to emulate due to advances in

hardware and optimisation of code.

3 See section 3.4.

9

Gym retro’s emulator differs from most other emulators however. Instead of playing

back in real time Gym’s step system is implemented, for video playback the emulator

can create something called a bk2 file, which is essentially just a series of inputs for the

emulator to take. A function can then be run to create an mp4 file using these inputs. In

addition, Gym retro allows us to create custom scenarios for gym environment. Meaning

we can change the reward function and done4 functions. We can write these functions

using simple Lua scripting, to calculate the reward using variables obtain from a JSON

storage of RAM values we can select[9].

2.5. Technologies and Constraints

There are some other technologies that are worth mentioning as a precursors to the

project. Firstly TensorFlow, a machine learning package for Python will be used to

implement the neural networks. TensorFlow offers easy to implement flexible neural

network and provides debugging tools and guides to make implementing a neural

network more pleasant[10].

The project encountered problems due to the lack of processing power available to

successfully run a machine learning project with a sizeable memory in a reasonable

amount of time. Because of this another computing solution had to be found. Google

Colab was chosen due to its ease of use and access, and its variety of features that would

be appealing for the project. Google Colab is a cloud-based Python environment that

provides access to High RAM environments with powerful GPUs. The environment is

structured like a jupyter notebook and has easy installation of modules for the project.

As a bonus the platform easily connects to Google drive for convenient storage

options[11].

The main constraints of the project are in decreasing order of priority:

• Time

• My personal understanding of machine learning implementation

• Computational power provided by Colab

Time is a big limiting factor; time management was a big weakness for this project..

With the project being so limited in time, proper time management is important, this

constraint will be counteracted by regularly meeting with the project supervisor to

ensure the project is progressing smoothly.

The next limiting factor is understanding of machine learning. Machine learning is a

new, deep incredibly complicated field. Because of this what code is doing may be

harder to parse than what is normally expected. To counteract this constraint, I will

have to be diligent in my implementation and my reading.

Finally, the final constraint on the project is computational power provided by Google

Colab. While Colab provides significantly more resources than the project would

otherwise have access to, there are limits. This is counteracted by upgrading to Colab

pro and timing running the project to maximise resources.

4 The done function determines when a session is done and when a new one should begin.

10

2.6. Project Aims.

As discussed in the initial plan, the project has three aims: The second aim has been

slightly amended as ethics approval was not obtained due to timing issues, so the

experiment was not run. Therefore the aims of the project are as follows:

1. Demonstrate that Q learning can successfully be implemented for Sonic the

hedgehog 2.

2. Demonstrate speed improvement.

3. Demonstrate some degree of generality.

For this project, a successful implementation is one which demonstrates an

improvement over purely random gameplay and can successfully beat the first level of

the game. To demonstrate speed improvement the model will need to improve upon its

time and achieve a low time compared to other implementations found online. To

demonstrate generality, a model trained on act 1 will be run on act 2 alongside another

untrained model. The model will demonstrate generality if performs better than the

untrained model.

11

͵. Approach

3.1. The Approach in Theory

Referring back to figure 2.1, the approach in theory becomes quite obvious. There is an

environment, some system that runs Sonic the hedgehog 2 and allows for data output

and input via a computer interface. An agent, that given an input will produce an action

for the player to make in the environment. And finally, and intermediary between the

two. Some way for the two systems to interact meaningfully. All three of these

components are necessary for the project to be implemented successfully.

The first two implementations fail on the implementation of one of the three necessary

components and had to be iterated on to arrive at the final approach. Before covering

the implementation of the final version of the project we will cover what was worked

for the approaches that came before and what about them was unsuitable for the

project. Every approach uses the same implementation for the neural network and will

be discussed more in section 4. The key differences between these implementations lie

in the code that surrounds the agent, and the power afforded to the network.

3.2. The First Approach: Bizhawk

The initial search for an emulator lead to the Bizhawk emulator[12]. Bizhawk is a multi-

console emulator written in C# for casual gaming and the creation of tool assisted

gameplay. Particularly useful is Bizhawk’s Lua scripting interface that comes with
several powerful tools that would be useful for the project. The Lua interface provides

tools to access RAM values5, the ability to advance frame by frame, and importantly the

ability to toggle which buttons are held.

Initial testing of a Bizhawk implementation went well. Methods to extract and display

RAM values were found quickly, and a system for inputting moves was implemented

shortly after. Initial trouble for Bizhawk came in implementing a method to

communicate between the Lua script in Bizhawk and Python. Data transfer using

temporary files was deemed to slow a solution, so another approach had to be taken.

Looking at other Bizhawk projects that needed to input and output data, a networking

solution looked to the most appropriate. Web sockets were to be used to easily transfer

data between the two systems. Having used the Python sockets module before,

implementing a socket server in Python was not too difficult. The server was

implemented in Python because I believed it would be easier to connect to a network in

Lua than to establish a server in Lua. This proved to be true as the Lua sockets

implementation was quite barebones and left a lot of the work up to the user. the

systems for connecting to an existing server however were quite easy to use.

5 This is useful for getting data for our reward function.

12

Getting Bizhawk to work with Lua sockets proved to be a problem despite the ease of

use. Bizhawk uses its own installation Lua specifically for it own uses cases. Bizhawk’s
documentation does provide information on its networking capabilities, however the

system seems rather archaic. The Lua installation would need direct access to the Lua

sockets module found online. This was initially troublesome, but installation came down

to putting the resources in the right file locations.

At this point the approach was progressing well. Bizhawk’s Lua script extracted RAM

values and sent them to a Python server where calculations were done and then sent

back to Bizhawk to display in real time as a proof of concept. All that needed doing was

creating a neural network and modifying the Lua code to accept a move input and

advance a certain number of frames, before accepting another input. The Lua code had

issue consistently accepting more than one byte of input. It was decided to work inside

this constraint, as it would not be an issue with a careful implantation. Using a random

move trial, the system was functional. The Python server would send a move to Lua

client to execute in Bizhawk, then send commands to advance to the next action.

Functionality to reset the environment was also implemented. Everything was looking

promising for this approach to the problem. However, after implementing the deep Q

learning module, it became apparent that my hardware could not support this

approach.

3.3. The Second Approach: Bizhawk with Colab

After it became obvious that hardware being used would not be able to run the project,

several options had to be considered. One option would be making use of university

computers, while accessing them physically was initially impossible, later becoming

impractical. Using VPN software to access university hardware was always an option

worth considering; however, another technology considered and eventually used was

Google Colabatory. Google Colabatory was recommended by peers who had previously

implemented a machine learning project. Initial observations of Colab looked promising,

Colab offered powerful processing options and implementing what had already been

written seemed like it would be quite simple.

After moving the code on to Google Colab, it was discovered what would ultimately

doom this approach to the project. Google Colab makes use of hosted runtimes on

Googles own servers. A side effect of this is that Google has made it somewhat

impractical to send data between a local pc and the Colab session in real time. The

machine a Colab session is run on is accessed through Googles servers not directly, this

makes setting up the previously implemented socket system impossible. Another issue

that arose from this is that the Python server in addition to connecting the deep Q

learning model to the environment was also gathering data for the model by capturing

the screen of the emulator using a screenshotting module called MSS. This meant that a

large portion of the data going to Colab was graphical, meaning the data transfer

method needed to be efficient if the program was going to run effectively.

13

[Figure 3.1] Diagram showing how the systems interacted at this point in the

approach, interactions in red had yet to be implemented.

Initial research to deal with this issue found the option to connect a Colab session to a

local jupyter notebook runtime. Initially this sounded very promising for implementing

the system described in figure 3.1. Setting up this connection revealed that connecting

to a local runtime like this connects to a local runtime instead of a hosted runtime.

Effectively loosing access to the powerful processing required for this project, ruling out

this option.

Following on, the next option appeared to be creating an SSH tunnel6. This seemed to be

the most common solution suggested online. Through external secure SSH providers it

was possible to import modules into Colab that would allow creation of an SSH tunnel. I

did not have much experience with using SSH, but I was initially able to create an SSH

connection, issues instead arose from using the SSH tunnel. Implementing a successful

SSH connection in Python was not possible within the time plan, and thus a new

solution had to be found.

More unconventional options were considered after these initial failures. Google Colab

has an incredibly robust system for interacting with Google Drive which the project

would later take full advantage of. But this gave me the idea to use Google sheets to send

the data. While this would be slower than ideal, at this point in the project it was worth

considering to at least prototype the solution. After setting up a spreadsheet in Google

sheets and implementing a way to obtain that data on Colab, it was time to implement a

way for the Python server to communicate with Colab.

Google has a Python module for this use case called Gspread. By setting up a Google

Cloud Platform[13] project and giving it the correct permissions, Gspread was able to

communicate with Google Sheets and as a result, Colab. After creating functions to

upload and download data to and from the sheet, I created a timing system so that each

system knew when to upload and when to download. This worked by changing a control

value in the spreadsheet, sadly this didn’t work. The Python server would set the

control value, then immediately begin checking the sheet to see if it had changed. In

practice this prevented Colab from changing the value due to sheet being in constant

use. Things were not looking good for the project at this point. Despite first having a

working implementation, the processing power was not there. Then when a method to

obtain that processing power was found, it was not able to properly be utilised. Other

machine learning implementations were investigated for inspiration and Gym Retro

was discovered.

6 Put extremely simply an SSH tunnel is an encrypted connection between two sources.

14

3.4. The Final Approach: Colab

Initially for the project it was assumed that the Open AI gym module, used for many

machine learning examples, was limited to the preinstalled environments that come

with the module. However, examples sourced online cited using Open AI gym for their

machine learning project in video games. This sparked deep research into the system,

leading to the discovery of Open AI gym retro, the extension of gym that emulates retro

video game consoles.

This discovery meant that the entire project could be hosted on Colab. This comes with

several advantages. Having one system instead of three meant there were less fault

points, this also would decrease the latency of the project which is desirable considering

the possibility of long runtimes of the project. Using Colab exclusively also meant that

there was no hardware burden on personal computing devices which would have a

positive effect on performance.

Installing and implementing gym retro was a simple process, the module could easily be

installed through PIP and only some minor changes to my code was needed to make it

function correctly. The primary issue in implementing gym retro on Colab came in the

form of playback. Hosted runtimes on Colab have no displays or display drivers.

Meaning gym retro had to be run in a no display mode. This was fine for running the

project, but some visually output would greatly increase the appeal of the end product.

Gym retro has a simple movie recording system that allows for recording of input in the

form of an archive called a bk2 file. These bk2 files can then be taken and turned into an

mp4 using a command that comes packaged with retro. The documentation for gym

retro mentions this as an argument for the environment object, what the documentation

fails to mention is that this can be toggled on and off with a simple function, allowing

recording only after a certain point. This is useful for the project, as there are moments

of gameplay that do not need to be recorded.

[Figure 3.2] Diagram showing the final state of the project and how various systems

are interacting. Gym retro’s implementation led to an overall improvement in the project, allowing it to

be entirely independent of local computing power and being centralised on mostly one

service baring saving and loading of data. Implementing the project in this way vastly

increased the speed and efficiency of the project.

15

Ͷ. Implementation

4.1. Creating Scenario Files

4.1.1. Data Files

To know what rewards to give the agent and when to reset the environment, gym retro

makes use of json files it calls scenarios. As we can see in q.json the basic use case is

relatively simple. While it is possible to calculate rewards and done flags entirely within

this json file by assigning changes in certain RAM addresses a reward value or a true or

false flag to reset the environment. This was not a particularly robust system so instead

we point the environment towards a Lua function for the reward and done flags.

This function has access to certain RAM values from the emulator as mentioned earlier.

The environment access these RAM values through a file known as data.json. The

data.json file is a list of RAM addresses, a name and how the data should be taken7. Most

games already supported in gym retro come with a data.json file, however the project

needed access to a few more RAM addresses, specifically the in-game timer and the

current act. A full list of Sonic the Hedgehog 2 RAM values was easy to find on Sonic

Retro[14], but the RAM addresses hosted here are stored as hexadecimal bites. These

worked perfectly for Bizhawk but gym retro’s RAM addresses were regular decimal

numbers. A comparison of the hexadecimal values to the decimal values revealed they

were not the same numbers. Comparing two address shows that the hex and decimal

values were offset by the same amount. So, to get the decimal values simply compare

the hex value of the wanted address to another hex with a known decimal value.

With the RAM addresses set up correctly the reward and done functions8 could now be

created. The done function depends on actions taken in the reward function to work so

we will cover the reward function first. The reward function shown is my final test

iteration. Other reward functions were used to gather data for comparison, the same is

true of the done function. We will discuss these changes in more detail in section 5

where we will compare how changing parameters effected the results.

4.1.2. Reward Function

 The reward function first initialises certain values, At first this was done because the

example reward function did this, however after implementing the checkpoint system

this became a necessity due to a peculiar issue with how lua handles 0 and nil values.

Assigning values at the start ensured the function worked correctly so it was kept.

There are three ways the agent can influence their reward:

• Making forward progress in the level.

• Collecting or losing rings.

• Advancing past a checkpoint.

7 Upper/lower byte, big/small endian, etc.
8 Found in positive loose.lua.

16

The agent is rewarded for forward progress in a simple manner. The system tracks Sonic’s movement through the level through his X position in pixels from the beginning

of the level. When Sonic achieves a new X position that is greater than the previous

maximum i.e., closer to the goal. The agent begins gaining reward equal to the distance

between Sonics current position and their previous position. This implementation

encourages forward exploration and speed. In order for the agent to gain reward it has

to make progress in the level, and since it gains reward based of distance travelled,

traveling a further distance in between steps increases the reward gained and thus

traveling forward at a high speed provides more reward than traveling forward at a low

speed.

The second way reward can be influenced is via rings. Rings in Sonic the Hedgehog act

as a sort of health, if Sonic has at least one ring you do not lose a life when you get hit,

you instead lose all your rings. To ensure Sonic can progress through the level, when

sonic has zero rings the agent is rewarded for collecting one ring. The agent is not

rewarded for any additional rings collected as it is conducive to fast gameplay. The

agent loses reward when Sonic gets hit, as this generally slows Sonic down. To ensure a

cycle of losing and gaining rings does not happen, the reward for getting Sonic’s first
ring is less than the reward lost for getting hit.

Finally, there is the checkpoint system. The checkpoint system acts as a way to

encourage forward progress and one of the ways the done function can reset the

environment. The way it works is quite simple. When ever Sonic reaches an X position

that is a multiple of 100, the agent gets a reward value of 100. The function then checks

for the next multiple of 100 until a multiple has not been passed. Then, to start gaining

more reward sonic must pass a new multiple of 100. This system gives the agent the

biggest reward so it should really encourage the agent to make forward progress.

4.1.3. Done Function

As previously mentioned, the done function exists to tell gym retro to reset the

environment. It is similar to the reward function in that it returns a value determined by

values gathered in the data file. Values created in the reward function can also be used in

the done function, this allows us to track non RAM values like Sonic’s maximum X

position. Using these values, it can be determined if the environment should be reset by

returning true or false. The done function makes the following considerations to

determine if the environment should be reset:

• Has sonic gone too far backwards?

• Has sonic lost a life?

• Has sonic recently passed a checkpoint?

• Has sonic entered a special stage?

• Has sonic cleared the level?

17

Knowing how far back to let sonic go is important. Take this hill for example.

[Figure 4.1] A Steep hill that Sonic would struggle to get up from his current position.

Due to Sonic the Hedgehog’s physics system a large amount of speed is needed to pass

obstacles like the hill shown in figure 4.1. Holding right to run up the hill simply makes

sonic fall down the hill. In order to get this speed sonic needs to either have time to

build up to a higher speed or accelerate quickly via methods provided by the

environment.

[Figure 4.2] Slightly back from the hill in figure 4.1 is a spring that can propel sonic up

the hill.

As we can see in figure 4.2, the key to making forward progress sometimes lies

backwards. Determining the right amount of backward distance allowed is key to a

functional agent. Later levels experiment with this concept to a much larger degree than

emerald hill, and this approach would not work for many levels later in the game but

should make creating an agent for acts 1 and 2 more efficient. The main implementation

checks if Sonic has gone too far backwards by checking to see if Sonic’s x position is 400

pixels less than the maximum obtained x position. This allows the agent to take

advantage of situations like the one displayed in figure 4.1 and 4.2, while also

optimising the speed of the training, ending attempts that go too far backwards.

The function also makes use of the checkpoint system. If during the reward function a

new checkpoint is passed, a variable called check_flag is set to 1. This flag is checked in

the done function. If the flag is not set to 1 the function increments a counter by 1. If this

counter reaches a certain value, the environment is reset. The check flag is reset to 0 at

the end of each done function, and the counter is rest when ever sonic passes a

checkpoint. This part of the done function ensures that the agent does not get stuck at

one point it cannot pass and waste valuable processing time.

18

The rest of the done function is mostly checking important RAM values. While we could

let the agent play until it gets a game over, the project assumes that avoiding losing lives

will improve overall play. The other cases the function is checking for is if Sonic enters

a special stage and if Sonic clears the level. It is highly unlikely the model would enter a

special stage9 but this was implemented as a failsafe.

Creating the Scenario files had to consider both optimization and giving the agent

enough room to experiment as we will discuss in section 5. The methods described

above are my original implementations that were iterated on to their current state then

compared against other methods.

4.2. Creating the Deep Q Network Agent

4.2.1. Implementation

The implementation of deep q learning for this project was made following the example

demonstrated in[15]. The implementation uses tensorflow 1 as opposed to the more

recent tensorflow 2. This was not discovered until the project was ported to Google

Colab, where the agent had to be run in compatibility mode for tensorflow 1.

Tensorflow 2 comes with this compatibility mode for legacy reasons but in the future it

would be better practice to upgrade to the newest supported version.

The implementation consists of two classes, the deep q network class and the agent

class. The deep q network class contains the code to create and store a recursive neural

network. While the agent uses the deep q network class to generate it selected move.

The agent creates two networks as mentioned earlier as this stabilises the model and

prevents the agent from focusing on one solution. A good way to think about the system

is to imagine the networks as tools that the agent class controls.

4.2.2. The Network Class

The network class contains two main function and then another two functions for saving

and loading. The first function initialises the object when it is made, the second builds

the neural network contained in the object. The two save and load functions

conveniently make use of tensorflow’s built in model saving. It was initially planned to

save the agent object to save the current replay memory, however tensorflow cannot

save objects, and all object saving modules attempted had trouble saving tensorflow

variables, so the implementation of object saving was scrapped.

The class initialises with several variables provided to it via the agent class, mainly

learning and control parameters. The function assigns these variables then begins a

tensorflow session. Sessions are tensorflow ͳ’s class for running operations on neural
nets. It then constructs the neural network using the network class’ build network

function, hands the variables to the tensorflow session and defines the checkpoint files.

By using tensorflow sessions in this way, most of the interactions with the network

done in the agent class go through the tensorflow session class, greatly simplifying its

use once set up correctly.

9 To enter a special stage sonic must collect 50 rings then jump into a special portal that open above in

game checkpoints(not the checkpoints used in the reward function)

19

The main function of the network class other than creating the tensorflow session is

building the neural network. The neural network accepts an observation as an input,

typically a 224 by 320 by 3 array which represents the RGB channels of the screen

image. This image is then passed through three 2d convolution layers with relu

activation. We parse the input in this way to put into a form that the neural network can

interoperate more information from. The convolved input is then flattened and passed

through two dense layers to obtain the Q values. To optimise the network, we calculate

the loss between our Q and our Target networks, and we attempt to minimize that using

tensorflow’s adam optimiser.

4.2.3. The Agent Class

The agent class is responsible for providing the network class with the appropriate

information and collecting and using the outputs received. Much like the network class

the agent class initialises starts by initialising its variables. It then creates two neural

networks, Q_eval and Q_next. Q_eval is used to obtain the selected move, while Q_next is

used to tweak Q_eval after a set interval to stabilise the learning process.

The agent stores previous actions in the form of transitions. Several arrays are kept with

length up to the maximum size determined by the class, and for each index there is an

array that stores, the action taken, the reward and the state of the environment before

and after the action was taken. This transition memory is used to update the neural

networks in the learn function. When the transition memory fills, the agent starts

writing over the oldest transitions. This way the transition memory is usually full of

recent transitions.

To learn the agent provides the networks with a selection or batch of transitions from

the transition memory. These batches are fed into the neural networks. A target network

is then using the reward batch and the Q_next network. The Q_eval network then uses

the previously mentioned optimizer. Occasionally the graph for Q_eval is updated using

parameters from Q_next. This happens every time the memory reaches a certain

threshold.

4.3. Bringing Everything Together

All the elements previously discussed are then brought together in a Colab .ipynb file.

This file also follows the framework established in the tutorial. However, the .ipynb file

has been more heavily modified for the projects use case. After initial testing there was

a structure to the .inpyb file that worked. Copies of that .ipynb file were made and then

slightly altered for the experiment in section 5.

Each experiment has its own folder, where its neural networks, results, Bk2 files and

scenario files as kept. When the experiment starts the .ipynb file first must set up by

mounting to Google Drive, importing the necessary modules and copying over the

scenario and other files. Before the code is run there is a manual check step to ensure

that everything is set up correctly. This seems trivial but reminders to check the code

and the files before running caught errors that may have otherwise slipped through.

20

The bulk of the .ipynb file can be split into three categories; setup, filling the memory,

and training/playing. The setup simply initialises the environment and the agent and

loads any previously made neural networks if needed. After the setup the script fills the

transition memory by allowing the agent to perform random moves. This done so that

when the agent starts to select from the memory there will always be transitions to

select. Once the memory is full the agent is in full control, using epsilon greedy to

explore and exploit the solution. The agent gets to select a move every 10 frames or

every sixth of a second. That move is then carried out for the next ten frames until it

selects a new move. The rewards are calculated on every frame and summed and then

stored as a transition. The script gathers data from each attempt and amends them to a

pandas data frame. This data frame is appended to the end of a csv file and cleared

every 10 attempts. The csv is then backed up to Google drive.

21

ͷ. Results and Evaluation

5.1. Initial Implementations

The primary aim of this project was the implementation of working model. For the

purposes of this project a working model is a model that can beat the level at least once.

The initial version had a very strict done function and heavily rewarded forward

movement through an overtuned checkpoint system, whilst penalising backwards

movement to a large degree. This resulted in a model that made fast progress through

the level but was not able to progress up steep hills that blocked its path.

The first major overhaul was a rescaling of the reward function to smaller numbers, and

a removal of negative reward for moving in the wrong direction. And while this had a

negative effect on the initial learning rate of the model, the player was making it further

into the level but was still experiencing trouble with hills. As we can see in the video

example in appendix A1, the agent makes good initial progress through level, then

approaches the hill shown in figure 1.1. The agent attempts to run up the hill without

sufficient speed and begins to fall down the hill. The agent correctly responds to this

and enters Sonic’s ball mode10 and begins gaining speed. However, just before colliding

with the spring that would get the agent passed the hill, the done function resets the

environment.

This signalled another change that should be made. The done flag needed to be adjusted.

The distance sonic could go backwards and length of time without making progress

were both increased dramatically whilst the program was still running. This could be a

good idea to expand upon in a future implementation as we will explore in section 6.

This change ultimately led to the first successful clear of act 1 as can be seen in appendix

A2.

5.2. Experimentation

5.2.1. The Experiments

In the creation process, parts of the implementation were tweaked until a model that

could beat the level was created. This model was used as the control in a series of

experiments to determine if the model could be improved by tweaking some of the

scenario files. The initial outline for the experiments looks like this. Each model was to

be run for 5000 attempts, this allows for data capture of the agent in training and

performing as a trained agent.

10 When Sonic is in a ball they gain increased amounts of speed going down slopes allowing for easy

clearance of obstacles.

22

Movement selection Reward Function Done Function Transition Memory Size

1 Random Positive only Loose 6000

2 Model Positive only Loose 6000

3 Model Positive only Strict 6000

4 Model Negative Loose 6000

5 Model Negative Strict 6000

6 Model Positive only Loose 18000*

7 Model Positive only Loose 2000

[Figure 5.1] Initial Experiment plan .

These experiments were designed with certain questions in mind, with experiment 2

serving as the control. Is the implementation provably better than a random agent? The

biggest problem found in initial testing was consistency, the model almost seems to

forget, only to suddenly remember, can changing the amount of transition memory help

this problem. What effects do the reward function and done function have on the agent?

These are the questions the first 7 experiments were made to examine.

Experiments 8 and 9 however were made to test the generality of our solution.

We would take the best model trained on act 1 and compare it to a new model that will

train on act 2 with the same parameters and compare how the two perform.

Movement selection Reward Done condition Memory amount

8 Best Trained Model ??? ??? ???

9 Untrained Model ??? ??? ???

[Figure 5.2] Generality experiment plan

5.2.2. Better Than Random

To be sure that the agent can perform better than a random agent we must compare the

model to a one. As mentioned Previously consistentcy was a big issue with the

implementation, comparing correlation does not work for the implementation due to

the inconsistency. Instead, we compare scatter plots of the maximum X position of the

agent over time. We can also perform a T-test to see if the results are statistically

significant.

23

[Figure 5.3] A graph showing the maximum x position over time for a random agent.

[Figure 5.4] A graph showing the maximum x position over time for our control agent.

By comparing the two graphs, it is obvious to see that the control agent improves upon

a random agent, by overcoming obstacles that a random agent cannot and as a result

progressing further. The results of the T-test back up this finding. A one-tailed, Two-

sample unequal variance T-test was performed and a p-value of 1.66925E-48 was

obtained. This p-value is significant less than 0.05, suggesting that the difference in

results is statistically significant.

An interesting observation from the scatter plot is the appearance of lines at obstacles

that are hard to progress past. For example, the obstacle at around x position 6000 that

the random agent cannot pass is the hill from figure 1.1. Because of the increased

progress and the ability to beat the level, we can say that our control agent is better

than random.

0

2000

4000

6000

8000

10000

12000

0 1000 2000 3000 4000 5000

M
a

xi
u

m
 X

 P
o

si
ti

o
n

Attempt #

Maximum X Position Over Time (Random Agent)

0

2000

4000

6000

8000

10000

12000

0 1000 2000 3000 4000 5000

M
a

xi
m

u
m

 X
 P

o
si

ti
o

n

Attempt #

Maximum X Postion Over Time

24

5.2.3. The Effects of the Scenario Files

In addition to the control, experiment 2, there are three other Experiments that observe

the difference in behaviour with different scenarios. There are two different reward

functions and two different done functions. The positive reward function and Loose done

functions are the ones described in section 4.1, whereas the negative reward function

and the strict done function approximate my original implementation described in 5.1.

The negative function is different in that it always gives a score based off the change in

position instead of only when a new maximum is obtained, meaning negative reward

can be obtained by going backwards. The strict done function functions the same as the

loose done function except the amount of time between checkpoints and distance able

to be travelled backwards have both been greatly reduced.

[Figure 5.5] A graph that compares the progression of the maximum X pos ition

achieved by the scenario file agents over time.

As can be seen in the above graph changing this part of the reward function has little

impact on the performance of the agent. Both can overcome hard obstacles and

complete the level. Whereas the Done function seems to have a dramatic effect on the

ability of the agent. Much like the random agent, agents with a strict done function have

trouble passing obstacles that require considerable speed to pass. This shows the

importance of a good done function, allowing the agent reasonable space to explore the

environment, should produce a better agent.

The two loose agents compare rather similarly to each other. The have a similar average

distance; 1163 for positive and 1180 for negative. The positive agent was able to reach

the end of the level slightly more than the negative agent. Obtaining 18 act clears

compared to 16 for negative. Comparing the act clears over time in a graph reveals that

once again they are very similar.

0

2000

4000

6000

8000

10000

12000

0 1000 2000 3000 4000 5000

Maximum X Position Achieved by each Agent

2(Positive Loose) 3(Positive Strict)

4(Negative Loose) 5(Negative Strict)

25

[Figure 5.6] A graph comparing act clears obtained by both agents with loose done

functions.

This provides evidence that modifying the reward function in this way does very little

for the performance of the agent. This could be for a variety of reasons. Perhaps it is the

checkpoint system not the X position system that is the main driver of the reward

function. Or maybe for the sake of move selection there is not much difference between

negative and zero points.

5.2.4 The Effects of Memory Size

To compare the effects on memory size the project runs two experiments. One that

converts the RGB image to a greyscale image, affording the system 3 times the amount

of storage by making the input less costly in memory. And another that looks at the

effects of having a third of the memory has on the system. Unlike the Done function

changes the memory seems to have a more subtle and nuanced effect on the agent. Both

agents in experiment 6 and 7 were able to successfully complete the act, their progress

is compared in the graph bellow. Since all agents completed the level, the graph has

been shortened to ease comparison.

0

2

4

6

8

10

12

14

16

18

20

0 1000 2000 3000 4000 5000

Act Clears Over Time

2(Positive) 4(Negative)

26

[Figure 5.7] A graph comparing the maximum X position achieved by each memory

experiment agents over time.

As the graph shows they are all rather close and interconnected but the control does

beat the level before the other agents, however the other agents do reach milestones

before the control implying that more information is needed to understand the data.

Changing the memory amount may benefit certain aspects of the AI while hampering

others. A good example of this is the average distance covered by the agents, the

lowered memory agent has a significant improvement in average distance over the

control, 1259 to 1163. Whereas the increased memory has an overall lowered average

with 1085. These results are especially interesting as they do not correlate with how

many act clears each agent gets.

[figure 5.8] A graph comparing act clears obtained by the control agent and both

altered memory agents.

0

2000

4000

6000

8000

10000

12000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Maximum X Position Achieved By Each Agent

2 (Control) 6(expanded) 7(Lowered)

0

5

10

15

20

0 1000 2000 3000 4000 5000

Act Clears Over Time

2(Control)

6(Expanded)

7(Lowered)

27

The Expanded memory has more act clears than the control, whereas the lowered

memory agent falls behind. While the inconsistency could be interpreted as negative as

its unclear what effect memory has on the system, another way to interpret the data, is

that there are many ways we can change how the agent performs and each method has

its upsides and downsides and future optimisations will have to balance these desirable

features.

5.2.5 Generality

The final experiment is testing if the project’s implementation of deep Q learning can

display any generality. Google describes generality as:

ǲGeneralization refers to your model's ability to adapt properly to new,

previously unseen data, drawn from the same distribution as the one

used to create the model.ǳ [16]

This description explains generality well for our use case. The agent trained in

experiment 6 was taken and compared to a brand new agent with the exact same

parameters on how it performs on act 2 of Emerald Hill Zone. The trained agent is at its

minimum epsilon value so it will act greedily most of the time, whereas the untrained

agent will have to learn the level from scratch. This first graph compares the maximum

X position obtained by the trained agent and the untrained agent on act 2.

[Figure 5.9] A graph comparing the maximum X position achieved by the trained and

the untrained agent in act 2.

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600

Maximum X Position Achieved By Each Agent

8(Trained) 9(Untrained)

28

This graph is visually distinct to the other graphs shown in this section. The untrained

agent acts as expected, while the trained model spends some time at the begin exploring

the solution, but almost immediately clears the level soon afterwards. This sounds like

quite the success for generality for the project. And it is a success in that the model does

demonstrate generality. However, on further inspection, there are some things that

make this less significant. Below is a comparison of the maps of act 1 and act 2 of

Emerald Hill Zone.

[Figure 5.10] A map of Emerald Hill Zone act 1[17].

[Figure 5.11] A map of Emerald Hill Zone act 2[17].

At first the levels look very similar, but there is an important difference that makes act 2

a lot easier for a model to clear the level. The difference here is how slopes are used in

the level. Slopes are much less of a problem for the agent in act 2 than act 1. In act 1 the

only way to avoid the two incredibly steep slopes is by keeping to the upper path. This

is a hard task for our agent, our agent instead tends to stick to the lower easier path.

You may notice that act 2 also has two steep slopes that an agent going along the bottom

of the level would need to pass, this is a valid concern, lets discuss what makes these

slopes different. Both slopes in act 1 come after an enemy and a jump. These cause

complications for our model, slowing Sonic down, making them less likely to

successfully pass the slope. Both slopes in act 2 however are easy to overcome for

different reasons. The first slope has uninterrupted flat land in front if it, easily allowing

the agent to reach a high enough speed to pass. The second is a slightly odd case. By the

time an agent is getting to the end of the level, it should have learned that to progress it

needs to move to the right. Notice that taking the easiest path through act 2 puts Sonic

above the second hill near the corkscrew object. If the model is holding right to progress

as it has likely learned to do by this point it will enter the corkscrew object and

completely bypass the second steep slope.

One may think that while the second act is certainly easier than act 1 it should not have

too much of an effect on the performance of the agents. This discussion of how level

design affects how successful the agent is important, less as tool to demonstrate how

the project demonstrates generality but more on how seemingly subtle things can affect

model success. Both agents were able to complete act 211 over 200 times. An order of

magnitude greater than the best agent for act 1.

11 Act 2 contains a boss at the end that is not considered for this implementation. The environment is

reset at the boss area before the boss fight occurs.

29

[Figure 5.12] A graph comparing act clears obtained by Trained and Untrained agents

on act 2 of Emerald Hill Zone.

Looking at the graph above we can see that the agent trained on act 1 and the agent

trained on act 2 are about as good as each other in the ability to beat the level. The

trained agent just begins with the advantage of acting greedily earlier, and it keeps a

consistent advantage over the untrained agent. Both agents have similar average

distances12, further signifying that the implementations are equal in quality. From the

information gather in this section we can gather that while the implementation

certainly displays generality there are factors that are making this an easier outcome

than would be expected.

5.3 Other Findings and Evaluation

Before Discussing the evaluation of the project, Appendix A3 and A4 should be

mentioned. They contain the best clear times for act 1 and act 2 respectively over all

models trained. Discussing Speed for a moment, the projects best act 1 attempt, is faster

than the reinforcement learning example provided by Kaplan, A in [2] but narrow loses

to the NEAT implementation by Thompson, L in [1]. I believe it is fair to say that the

project performs comparatively well to other machine learning implementations in

regard to speed.

 Where the project’s implementation does not quite reach a desirable standard is in its

consistency. There is a fundamental flaw somewhere in the implementation that was

not found, as such the results obtained are wildly inconsistent, with the agent spending

dozens of attempts doing nothing. This flaw does weaken a lot of the achievements

made by this project.

Because despite the consistency issues the project has reached each of its goals. Several

working agents were produced that were able to clear the level where a random agent

12 1158 for trained and 1125 for untrained, the slight gap again coming from an earlier solution.

0

50

100

150

200

250

0 1000 2000 3000 4000 5000

Act Clears Over Time

8(Trained) 9(Untrained)

30

could not. The agents were able to match the speeds of other Machine Learning

implementations for Sonic the Hedgehog 2. And finally, the agent displays generality,

being able to beat levels it had not previously seen with relative ease. These

accomplishments make the inconsistency issues feel worse than they otherwise would

as there is clearly a good solution under this overwhelming problem.

31

͸. Future Work

6.1. Improvements and Further Experimentation

Any future work on this project should first seek to solve the primary issue of

inconsistency. While it is clear from the generality tests that the issue is not exclusively

on the agents, it should be primary focus of any work following on from this project.

There are many things that could be responsible for this issue. From tensorflow 1

compatibility issues, issue with the optimizer, or perhaps deeper issues with the

implementation. It would be productive to consider alternative deep Q learning

approaches like double or duelling deep q networks[18].

It would conducive to run more experiments in a similar manner to the experiments

demonstrated in section 5.2. There is a large variety of systems in this project that have

the capability to be tested such as the model optimizer, or Q Learning training

parameters for the Bellman equation. These parameters play huge role in how the

project works and should be considered with more scrutiny in future work.

To summarise here is what should be considered for anything that follows on from the

project:

• Fix Overlying Flaw in Implementation.

o Q learning parameters may reveal a major area of improvement.

o Consider rethinking the current transition memory in the form a full

replay Buffer.

o Tensorflow 2 upgrade may improve performance.

o Other more advanced methods or upgrades of Deep Q learning could be

implemented.

• Experiment with new Data Possibilities.

o Allowing an agent more attempts to see if there is more convergence as

time goes on?

o Implementing time in the reward function, perhaps encouraging faster

play?

o Minimalizing the rewards and done functions, simplification may yield

interesting effects?

o Creating a variable Done Function, where the agent gets more or less time

and space around difficult obstacles depending on performance?

By implementing these changes, more information will be discovered about the project,

and likely even more questions and optimisations will be found.

6.2. Implementing for Other Levels

The most obvious place for a machine learning implementation for video games to go

after successfully completing the first level of the game is to other levels of the game.

Other levels of the game range from hard but possible, to completely unfathomable to

beat using the current implementation. As a case study the first acts of the second and

third levels in the game will be compared.

32

[Figure 6.1] A map of act 1 of the second level of the game, Chemical Plant Zone[17].

[Figure 6.2] A map of act 1 of the third level of the game, Aquatic Ruin Zone[17].

Comparing the two maps it can be seen that both are bigger and more complicated than

Emerald Hill Zone. Chemical Plant Zone has numerous winding pathways that

interconnect. Whereas aquatic ruin has two to three main pathways but has increased

difficulty in manging the water mechanic in the level. All other levels in the game follow

these two templates to some extent. Multiple interconnected winding paths or long

challenging straightaways.

While Aquatic Ruin Zone is certainly a harder level for a human player than Chemical

Plant Zone, Aquatic ruin Zone contains a lot less obstacles that may be confusing to the

model, which would likely made it easier for the model to learn overall. In order for the

agent to even begin playing Chemical Plant Zone the agents done function would need to

be completely overhauled. Unlike Emerald Hill Zone there are significant portions of

Chemical Plant Zone and later levels that are styled similarly that require the agent to go

leftwards. In act 1 for example there are several pipes that move you about the level,

often necessary to progress in the level that move sonic much further back in the level.

This is where the difficulty of designing this system becomes obvious. Levels like

Aquatic Ruin Zone are easy to create reward and failure states for, as the primary goal is consistently ǲmove right towards the goalǳ. Whereas many closed levels like Chemical

Plant Zone become harder to solve. When should the environment be reset? How to

encourage the agent to make backwards progress to make future forward progress?

A successful implementation for later levels would have to make those considerations.

Making the done function a lot weaker or allowing it to vary through the course of

training. For rewarding the agent, three options are proposed. Reward traveling along

the Y axis in some way, going backwards typically comes with a change in altitude.

Another option would be to design a system that explores and remembers the level, and

rewards the agent, not for forward progress but for achieving a new location on the

33

map, perhaps with additional reward for consistent change to a new position. The final

system will be explored in more detail in next subsection, but in short rewarding the

agent for taking actions that allow for future reward would improve the implementation

considerable.

6.3. System for Predicting Future Reward

What does predicting future reward mean for Reinforcement Learning? In this case its

not predicting and more about connecting two learned pieces of information.

Sometimes certain actions13 yield no reward on their own but are necessary for making

progress later and gaining a large reward. Coding an intrinsic system for this would be

difficult as it would require a large amount of memory to store which actions lead to

which states. This mimics the Q-table of a standard Q-learning approach, which we

would like to avoid in our implementation.

A possible implementation of this idea would instead apply a percentage of, or the

current reward to a few of the previous transitions in the transition memory. This could

encourage certain action that would not typically gain reward to taken more often. This

system paired with the other changes mentioned in this section should combined create

a more robust, well realised agent, that takes more optimised paths through the level

and better selects the appropriate move.

13 Moving backwards is the classic example here.

34

͹. Conclusions

The project has obtained mixed results. There is a lot of promise in the methods used

and results obtained. The project meets each of the aims it set out to accomplish but is

ultimately ruined by a few implementation problems that leave the project’s agent in a
mess of inconsistency.

The report suggest that deep Q learning can be implemented successfully for Sonic the

Hedgehog 2. The project has demonstrated agents that are capable of beating the level

and acknowledges the roadblocks in the way of beating the level and discusses how the

agent may overcome these roadblocks. We can gather from comparison to other

machine learning implementations and by comparing the first act completions to later

act completions that the agent has improved to a decent speed for a machine learning

implementation. And finally, despite the realisation that act 2 is significantly easier than

act 1, the implementation was able to demonstrate generality by overcoming unseen

obstacles that otherwise take significantly longer to overcome successfully.

Ultimately the success of the project is heavily muddied by the failure, but overall the

project can still be considered a success.

35

ͺ. Reflection on Learning

I think if I were to do this project again, I would focus a lot more on the implementation

of the actual neural network. Problems with it were the main downfall of the project.

Like I mentioned at the beginning of the report, prior to the project I had incredibly

little experience with machine learning outside of a passing knowledge of classification

systems. Spending that extra time to really develop a deep understanding of the

underlying mechanics of the neural network would really help the project. Being the

biggest weakness of the project.

Completing this project has taught me a lot about Reinforcement learning. It is an

incredibly diverse field that is full of potential. It has a lot of differences from other

machine learning paradigms. These differences can easily be interpreted as problems,

but should be considered as opportunities, these models can have a lot of problems but

show great potential to improve and provides you with the avenues to make these

improvements.

Two technologies that I was not expecting to learn so much about when I started this

project was Lua and networking. Lua was used in every approach to the project. In

hindsight this is because of its ease of use and implementation, but mostly because of Lua’s speed in comparison to similar languages like Python. I picked up a surprising

amount a networking knowledge over the course of this project, increasing my

understanding of network sockets, and briefly dabbling with SSH tunnels.

Completing this project has taught me how to attempt and consider multiple options

when implementing code. It has taught me to see multiple ways of processing and

consider and weight all these options. It has taught me the values and the dangers of

thinking outside of the box. This project has allowed me to personally develop and a

practitioner of software development by allowing me to experiment, fail, and learn from these experiences and I’ve developed considerably in this regard because of it.

36

ͻ. Bibliography

[1] Thompson, L., 2020. Sonic-Bot-In-OpenAI-and-NEAT. [online] GitLab. Available at:

<https://gitlab.com/lucasrthompson/Sonic-Bot-In-OpenAI-and-NEAT> [Accessed 14

May 2021].

[2] Kaplan, A., 2018. rl-sonic. [online] GitHub. Available at:

<https://github.com/KaplanAlex/rl-sonic> [Accessed 14 May 2021].

[3] Sutton, R. and Barto, A., 2018. Reinforcement Learning: An Introduction. 2nd ed.

pp.1-2.

[4] Maroti, A., 2020. Reward based ε decay. [online] Reward Based Epsilon Decay.

Available at: <https://aakash94.github.io/Reward-Based-Epsilon-Decay/> [Accessed 11

May 2021].

[5]Shyalika, C., 2019. A Beginners Guide to Q-Learning. [online] Medium. Available at:

<https://towardsdatascience.com/a-beginners-guide-to-q-learning-c3e2a30a653c>

[Accessed 12 May 2021].

[6] ADL, 2018. An introduction to Q-Learning: reinforcement learning. [online]

freeCodeCamp.org. Available at: <https://www.freecodecamp.org/news/an-

introduction-to-q-learning-reinforcement-learning-14ac0b4493cc/> [Accessed 12 May

2021].

[7] Wang, M., 2020. Deep Q-Learning Tutorial: minDQN. [online] Available at:

<https://towardsdatascience.com/deep-q-learning-tutorial-mindqn-

2a4c855abffc#:~:text=Critically%2C%20Deep%20Q%2DLearning%20replaces,process

%20uses%202%20neural%20networks.> [Accessed 12 May 2021].

[8] Gym.openai.com. 2016. Gym: A toolkit for developing and comparing reinforcement

learning algorithms. [online] Available at: <https://gym.openai.com/> [Accessed 12

May 2021].

[9] OpenAI. 2018. Gym Retro. [online] Available at: <https://openai.com/blog/gym-

retro/> [Accessed 13 May 2021].

[10] TensorFlow. n.d. TensorFlow. [online] Available at:

<https://www.tensorflow.org/> [Accessed 14 May 2021].

[11] Colab.research.Google.com. n.d. Google Colaboratory. [online] Available at:

<https://Colab.research.Google.com/notebooks/intro.ipynb> [Accessed 14 May 2021].

[12] Tasvideos.org. 2012. TASVideos / Bizhawk. [online] Available at:

<http://tasvideos.org/BizHawk.html> [Accessed 18 May 2021].

[13] Console.cloud.Google.com. n.d. Google Cloud Platform. [online] Available at:

<https://console.cloud.Google.com/> [Accessed 19 May 2021].

37

[14] Info.sonicretro.org. 2020. SCHG:Sonic the Hedgehog 2 (16-bit)/RAM Editing - Sonic

Retro. [online] Available at:

<https://info.sonicretro.org/SCHG:Sonic_the_Hedgehog_2_(16-bit)/RAM_Editing>

[Accessed 20 May 2021].

[15] Tabor, P., 2019. Reinforcement Learning Course - Full Machine Learning Tutorial.

[online] Youtube.com. Available at:

<https://www.youtube.com/watch?v=ELE2_Mftqoc> [Accessed 22 May 2021].

[16] Google Developers. 2020. Generalization | Machine Learning Crash

Course | Google Developers. [online] Available at:

<https://developers.Google.com/machine-learning/crash-

course/generalization/video-lecture> [Accessed 23 May 2021].

[17] Soniczone0.com. 2010. Emerald Hill Zone. [online] Available at:

<http://www.soniczone0.com/games/sonic2/emeraldhill/> [Accessed 23 May 2021].

[18] Wang, Z., Schaul, T., Hessel, M., Van Hesselt, H., Lanctot, M. and de Freitas, N.,

2016. Dueling Network Architectures for Deep Reinforcement Learning. [online]

Arxiv.org. Available at: <https://arxiv.org/pdf/1511.06581.pdf> [Accessed 24 May

2021].
 ͳͲ. Appendix

Appendix A – Video Examples

1 - https://www.youtube.com/watch?v=1AeOBBOdj5E

2 - https://www.youtube.com/watch?v=cZq9L7WVyjo

3 - https://youtu.be/8JoF4GSDh8o

4 - https://youtu.be/bGvKi-0lhZU

https://www.youtube.com/watch?v=1AeOBBOdj5E
https://www.youtube.com/watch?v=cZq9L7WVyjo
https://youtu.be/8JoF4GSDh8o
https://youtu.be/bGvKi-0lhZU

