
School of Computer Science and Informatics

Degree Programme: BSc Computer Science

Cardiff University

May 2021

Final Report

Early Years Education
CM3203 – One Semester Individual Project – 40 Credits

Author: Alexander Hardacre

Supervised By: Matthew JW Morgan

Moderated By: Padraig Corcoran

2 | P a g e

Acknowledgements

Grateful acknowledgement is made to Matthew JW Morgan for supervising this project and to

Padraig Corcoran for moderating this project.

3 | P a g e

Abstract
Due to the rise of COVID-19 and social distancing within schools, Early Years (KS1) have suffered a

lack of hands-on teaching when it comes to learning content, such as the alphabet and other basic

drawing/writing skills. My proposal was a mobile application that will allow children to learn and

practice such skills. This involved application development as well as research into how exactly the

skills that a teacher can provide can be transferred into the application to provide a positive

experience for the user. My proposal is that by using a touch screen to learn how the letters are

drawn they can then transfer that to using a pencil as it is a similar movement pattern. I researched

and adapted aŶ aĐtiǀitǇ ǁithiŶ a deliǀeƌǇ ŵethod of eduĐatioŶ Đalled the ͞MoŶtessoƌi Method͟ to
gauge the usability of remote learning applications to promote literacy improvements in ages three

to seven. Based on the report it was ascertained as to whether a more prolonged test into this area

should be created using my application. Initial testing results showed promising results in improving

the literacy abilities of adults and demonstrate that a prolonged test should be considered to

research into beneficial results within children.

4 | P a g e

Table of Contents
Acknowledgements ... 2

Abstract ... 3

Introduction .. 6

Background ... 7

The Montessori Method ... 7

Sandpaper Letters ... 8

Use of this Method Already in Technology ... 8

Other Applications and Market Research ... 9

Validity of the Application .. 11

Conclusion of Research ... 11

Approach ... 12

Framework Comparison .. 12

Kivy vs BeeWare .. 12

The Decision .. 13

A Further Look into Kivy .. 13

Issues and Resolution Within Kivy .. 14

Framework Packages .. 14

Conclusion of Framework Comparison ... 15

External Libraries .. 15

MSE vs SSIM .. 15

MSE ... 15

SSIM .. 16

Comparing the Two Algorithms .. 17

Conclusion of Comparison Algorithm ... 19

Font ... 19

Design Documentation ... 20

Image Matching Window .. 20

Popup Window.. 21

Title Screen.. 22

Letter Screen ... 23

Conclusion of Approach .. 24

Implementation .. 25

Backend of Main Drawing Screen ... 25

Allowing the User to Draw .. 26

Allowing the User to Submit their Progress .. 27

5 | P a g e

Using MSE to compare the Images. .. 28

Final Points of Drawing Backend ... 29

Frontend of the Drawing Window .. 30

Save Button ... 30

Clear Button .. 30

Solving the Order Issue ... 30

Cropping .. 31

Layout Trial and Error ... 31

UI Completed .. 32

Backend and Frontend of the Letter Screen ... 32

Screen Manager .. 33

The Letter Window ... 33

ScrollView .. 34

Backend of the Buttons ... 34

Vaƌiaďles ǁithiŶ KiǀǇ͛s Buildeƌ File ... 34

Background Image .. 35

Backend and Frontend of the Title Screen ... 36

The Popup Window and Accuracy .. 36

UI Work ... 38

Conclusion of Implementation ... 38

Results and Evaluation .. 39

Research Methods .. 39

Graphical Data from the Questionnaires .. 40

Notes from the Questionnaires .. 43

Evaluation ... 44

Future Work .. 44

Conclusions ... 48

Reflection on Learning .. 49

Skills .. 49

Challenges ... 50

Work with Supervisor ... 50

Appendices .. 51

References .. 68

6 | P a g e

Introduction
Due to the rise of COVID-19 and social distancing within schools, Early Years (KS1) between the ages

of three to seven have suffered a lack of hands-on teaching when it comes to learning content such

as the alphabet and other basic drawing/writing skills. These skills are important as they are a

Ŷatuƌal pƌogƌessioŶ iŶ the Đhild͛s eduĐatioŶ aŶd aƌe keǇ iŶ pƌoǀidiŶg the fiƌst step into their literary

education so having that affected by a pandemic is an issue that needs to be solved.

The proposal is a mobile application that will allow children to learn and practice such skills.

Researching into the topic found a teaching technique for those with learning difficulties and others

ǁho aƌe siŵplǇ stƌuggliŶg ǁith theiƌ deǀelopŵeŶt Đalled the ͞MoŶtessoƌi Method͟. Part of the

ŵethod iŶǀolǀes dƌaǁiŶg the shapes of the alphaďet iŶ saŶdpapeƌ, alloǁiŶg theŵ to leaƌŶ the ͞feel͟
of the word, so that when they come to writing the character, they can draw the letter on their

paper with their finger beforehand to remind themselves about the shape of the letter (Gruenberg,

1912).

The technique has potential to be adapted to no longer need the sand, as the main aim of the

technique is to learn the shape from your finger moving, so a positive reinforcement system on a

mobile application where they would trace using the touchscreen should allow the transfer of those

kinaesthetic skills allowing the user to develop and grow at their own pace. This will allow part of the

activity to be transferred to the children and it will allow for the easy remote teaching of the

alphabet, both during the pandemic, and afterwards when in person teaching is resumed.

Research was carried out into the various algorithms and methods that could be used to implement

the comparison of the data, as well as the Framework to be used to develop the application. The

framework comparisons concluded on Kivy as the choice, with MSE being used as the comparison

algorithm, also known as Mean Squared Error (Kivy.org, 2021).

Discussion of the benefits of Kivy compared to other Frameworks is carried out, as well as the design

and implementation of the application, issues that occurred during the completion of the application

and how the usability of the application fared (Kivy.org, 2021).

Due to the timeframe set, only a short amount of testing on an older age range than desired is

present, to test the usability of the application. Further trialling will be needed over a longer period

of time to see whether the application is truly beneficial for the Education Sector. However, from the

opinions of the testers, a base understanding is gained of how well the application seems to suit a

wider audience, as well as their stipulations into whether it would be useful for younger ages.

7 | P a g e

Background
The issue first came to light when the pandemic hit the United Kingdom, as I have family members

working in primary education. They explained how their colleagues teaching children were

particularly struggling with supervising the development of the alphabet, and how during lockdown

it was hard to have one to one supervision with development. After noticing the extreme success of

applications like Zoom ǁheƌe aĐĐoƌdiŶg to the BBC ͞Use of the fiƌŵ͛s softǁaƌe juŵped ϯϬ-fold in

Apƌil͟ ;BBC, ϮϬϮϬͿ as they discuss the success of the application during the pandemic. From this

massive rise in remote forms of work, consideration was taking in that a remote form of delivering

eduĐatioŶ ǁould alloǁ foƌ a Ŷeǁ ǁaǇ of deǀelopiŶg ĐhildƌeŶ͛s eduĐatioŶ.

Despite progress with managing the impact of the pandemic, with the vaccines seeming to be

successful, the use of remote applications will still prove to be useful when communicating and

working with others. Applications that allow for remote learning are likely to be successful, as it

means that the education sector can continue at the same rate even if something unforeseen occurs

such as another pandemic.

After determining that an alphabet application would be beneficial, Research began of techniques

for teaching the alphabet. the majority of education was primarily kinaesthetic, with examples such

as early years education tracing the letters on paper. While the majority of the research into these

methods proved that although they were appropriate for children with a starting competency in the

alphabet, the association between the shape and what it represented for those who did not have

that competency, or those with learning difficulties proved especially challenging (Clues to Dyslexia

in Early Childhood, 2021). This brought forward the realisation that even though every child must be

struggling with education during the pandemic, those with learning disabilities must be experiencing

even more difficulty as the remote form of learning does not lend itself to the one-on-one support

that can be a necessity for those with disabilities.

Researching into forms of education delivery specifically designed for those suffering from learning

disabilities, A method of delivery emerged that seemed to support the hypothesis of the project.

This ŵethod of teaĐhiŶg iŶǀolǀed a ǀeƌǇ kiŶaesthetiĐ foƌŵ of leaƌŶiŶg Đalled the ͞MoŶtessoƌi
Method͟ (Gruenberg, 1912).

The Montessori Method

The Montessori Method was first developed in 1907 by Italian researcher Maria Montessori as a way

of building education for children more naturally (Lillard,2013). This approach started to gain mass

attention in the 1960s when she released further publications on the method, which encouraged

other researchers such as Joseph Hunt in 1968, to publish their own research into the topic of this

form of educational delivery. Research into the method is still being investigated, with papers such

as ͞The EaƌlǇ Yeaƌs: EǀaluatiŶg MoŶtessoƌi EduĐatioŶ͟ ďǇ AŶgeliŶe Lillaƌd iŶ ϮϬϬ6 still disĐussiŶg the
now over 100-year-old method, and still discussing its benefits as well as how the method has been

modernised and adapted over time (Lillard, 2006).

Further research into this form of education delivery does bring up some issues as a lot of the papers

must be considered a product of their time, as the wording regarding those with special education

needs would not be considered appropriate nowadays suĐh as iŶ PiĐkeƌiŶg͛s papeƌ ͞“uĐĐessful
AppliĐatioŶ of MoŶtessoƌi Methods With ChildƌeŶ At ‘isk Foƌ LeaƌŶiŶg Disaďilities͟ ;PiĐkeƌiŶg, ϭ99ϮͿ.
However, from further reading into these papers, there appears to be no malice in these words.

Instead they were simply using the terminology of the time, and the methods were developed with

the aim of a positive outcome for those using them.

8 | P a g e

The method is divided into 5 main sections, involving several activities per section. Research began

into the methods and regarding each set of these activities that they contain. One of these activities

seems to refer to the a relevant approach to the problem presented: the ͞“aŶdpapeƌ Letteƌs͟.

Sandpaper Letters

With this method, Montessori hypothesised that writing comes before the use of reading, as when

the child would try and read, there could be issues when discerning a letter. If the child became

confused about a certain letter, they could write the letter instead to understand what the shape

was as it had been imprinted into their muscle memory which would give them a greater chance of

understanding (Pickering, 1992). The original method involved the learner tracing their finger on

cards with letters created with glued sand, similar to the texture of rough sandpaper. As the learner

traced the letter, they would speak the sound of the letter, allowing for a multisensory approach to

learning, giving a greater chance of retention. This original method was then adapted into a more

modern form which involves a two-step process, where the learner would be presented with a tray

of sand, with either the instructor working in the same tray, or for an easier understanding of the

method, their own tray of sand. The instructor would present a piece of card with the shape of a

letteƌ foƌ eǆaŵple ͞L͟ iŶ sand glued on. The child would then trace the letter on the card to get the

͞feel͟ of the shape, with the child being asked to repeat the sound of the letter to allow for visual,

auditory, and kinaesthetic learning to all be achieved in one fluid motion. The learner would then try

and trace the same letter into their tray of sand to see if they can replicate the shape of the letter.

The instructor would trace at the same time in their own tray so that the child could visually see

whether the letter matched, allowing them to easily understand that with positive reinforcement

that they were following the correct shape (Sandpaper Letters - Refresh Your Presentations -

Montessori Services, 2021).

This approach would then continue with other letters for a small amount of time, at which point a

new activity would commence, to ensure the learner stayed engaged. Over a set time period, such

as twice a week for a month, the task would be repeated and the learner would begin to learn in

their muscle memory at a semi-rapid rate the shape of the letters, allowing them to recognise the

shape of the letter when reading as they would trace the shape when confused.

This activity does seem to match an adaptable solution to the problem proposed, as the use of

kinaesthetic learning would be similar to the method of delivery proposed. This is due to it allowing

for the child to use a touchscreen instead of sandpaper to learn the shape of the letter, with instant

gratification on successful completion. The auditory element would also be key if the project was to

follow the Montessori Method exactly, but the kinaesthetic side of the method would still provide a

positive learning experience. While this is not a direct tool of learning, this would be beneficial as a

supplemental program to the teaching already provided.

Use of this Method Already in Technology

Looking into whether this solutioŶ has alƌeadǇ ďeeŶ Đƌeated ǁith the ͞MoŶtessoƌi Method͟ iŶ ŵiŶd

is crucial to understand whether this project is necessary to continue. Applications involving

different sections of the ͞Montessori Method͟ can be disregarded as the application development

ǁould iŶǀolǀe oŶlǇ adaptiŶg the ͞“aŶdpapeƌ Letteƌs͟ seĐtioŶ of the Method. This is due to it being

the closest relation to the problem proposed, as other activities involved more complex literacy

learning such as learning words. Online research established that there were several sites displaying

applications that had been developed with the ͞Montessori Method͟ in mind. While other sites did

display relevant applications, they appeared to demonstrate what certain Montessori schools would

provide following enrolment, such as the site from Northwest Montessori Preschool would provide

9 | P a g e

(Northwest Montessori Preschool, 2021). Although this provided useful knowledge about the

viability of the proposed application, due to the restricted access to existing applications, the

application would remain valid as a learning experience for everyone, not restricted to fee paying

institutions. As mentioned previously, several sites did mention applications that could be

downloaded, and I will discuss one of the sites: ͞Moďile MoŶtessoƌi͟ (Mobile Montessori, 2021).

After reviewing the applications that ͞Mobile Montessori͟ provides, the closest activity to the

proposed application was the ͞Alphaďet͟ application. The user is required to drag letter tiles to the

correct spacings, an approach that is different enough from the application proposal that within

Montessori specific applications, the project remained unique (Mobile Montessori, 2021).

The next stage of research involved a review of Montessori specific applications on the Google Play

Store. ͞MoŶtessoƌi PƌesĐhool͟ is an application that appeared to follow a similar method, therefore

it would be important to assess if this application was a valid competitor product. A practical review

of the application identified that it had a confusing UI and navigation approach that caused delays

when locating activities that matched the application proposal. Scrolling the main activities shown

uncovered the aĐtiǀitǇ ͞“aŶdďoǆ͟, seeŵiŶglǇ siŵilaƌ to the ŵoƌe ŵodeƌŶ ǀeƌsioŶ of the ͞“aŶdpapeƌ
Letteƌs͟ aĐtiǀitǇ, as ǁell as the application providing their own form of the ͞“aŶdpapeƌ Letteƌs͟
activity (Montessori Preschool,2021).

When reviewing the ͞“aŶdďoǆ͟ aĐtiǀitǇ, The Capital Letters and Cursive Letters activities were

locked, so proceeded with the lower-case option. The application would auditorily identify the letter

you wished to draw, then allowed the user to draw in an unrestricted manner before simply exiting

the activity. The lack of positive or negative feedback to the user resulted in the exercise having

more in common with a simple drawing application. The proposal is sufficiently different from this

activity, due to it assessing accuracy and providing feedback to the user (Montessori

Preschool,2021).

When researching the one remaining related activity ͞“aŶdpapeƌ Letteƌs͟ this exercise was

restricted by a paywall requiring an annual £44.99 subscription to activate. Unwilling to pay this

price to simply test the application for similarities, the preview images provided did suggest

similarities to the proposed application. However, the paywall restriction to access the application

highlighted a key point regarding affordability. Schools might be unwilling to pay for a year of

teaching for this application, as it would be multiple classes containing multiple pupils all requiring

that £44.99 to be paid, and parents would not be happy if this payment were instead forced upon

them instead by the school. The application was very generic , focusing on a large quantity of

activities, rather than specialising in one specific activity. This does have its benefits as it means if

you do pay you get more pecuniary value. However, when it comes to learning tools children can be

easily distracted, so having an application such as the one proposed can ensure that they do not run

the wrong activity and the teacher knows exactly the navigation needed, as confusion ensued when

the application was initially used trying to find the relevant activities. These differences cemented

that the proposed application was to be considered unique enough compared to Montessori

Method specific applications, so it was then time to consider the application within the realm of

applications in general (Montessori Preschool,2021).

Other Applications and Market Research

Research then began into the market appeal of the application. If there were no applications that

were similar that did not reference the Montessori Method, that could indicate either the method

could be unsuccessful as a method of delivery, or that it was an unpopular method of delivery

instead.

10 | P a g e

In contrast, if the market were saturated with similar applications, it would at least have the positive

effect that the method is used and is popular. However, it was required to ensure that the

application was coming from a different approach instead to make it unique enough to be wanted.

Research began by using the Google Play Store search function with the phrase ͞Alphaďet TƌaĐiŶg͟
as that was the main principle of the application. This came up with several results, and the market

did indeed look saturated to begin with, requiring further research into how the application could be

different. Looking into these applications and trialling them out, a common theme occurred within

the vast majority of them, they all had a very distracting format. Everything was either animated,

contained bright colours or using sounds to encourage the child with one even using an animated

dog to watch the user͛s finger movement.

The majority of the apps used heavily limited where the user was able to draw, only being able to

dƌaǁ ǁithiŶ the shapes that the app speĐified, ǁith oŶe appliĐatioŶ alloǁiŶg to ͞paiŶt͟ the eŶtiƌe
screen and because the shape had been filled in doing so, it was deemed correct. This was an

obvious difference to the hypothesis where it specified that tracing letters would cause muscle

memory to learn the alphabet, instead this considered only seeing the correct shape would cause

learning to form instead. Thinking about the restrictive nature of these applications, as well as the

chaotic nature of the application related back to the research of the Montessori Method, about how

they discussed a controlled environment.

According to Kingsley Montessori School, the controlled environment as Montessori stated was the

location that the child interacted with the activities, where the main principles of the controlled

environment are (Lacroix, 2021):

• Freedom

• Structure

• Order

• Beauty

• Nature

• Reality

In practice, this is hard to understand. AŶ aƌtiĐle Đalled ͞The Pƌepaƌed EŶǀiƌoŶŵeŶt͟ describes the

process differently. It stated that the environment should allow the child ͞independent learning͟,

where freedom would be considered the most important part of the principles. Due to the

restrictiveness of some of these applications, if the user is allowed to have a slight freedom within

the application, especially when it comes to the drawing side this will further develop the specifics of

the Montessori Method and hopefully provide a more independent form of learning (Lacroix, 2021).

11 | P a g e

The article also stated that the ͞BeautǇ͟ of the eŶǀiƌoŶŵeŶt should ͞stƌiǀe to deliǀeƌ a ĐalŵiŶg
ďeautǇ͟ (Lacroix, 2021). In using the applications, some of the applications could be considered too

͞ďusǇ͟ oƌ ͞ĐhaotiĐ͟ aŶd could cause the user to instead lose focus on the task at hand, reducing the

chance for muscle memory to occur, causing a decrease in the effectiveness of the application. By

creating a calm and less cluttered environment for the application, it will help provide a different

enough structure for it to be considered valid.

Validity of the Application

After presenting research into the market appeal of an applications similar to the proposal, the

design of the application would provide a unique style that the competitors experienced do not

provide. This allows for a calm learning format, that teachers would be able to easily work into their

teaching schedules. The freedom of the application will also allow for the ͞Montessori Method͟ to

be successfully taught. Unfortunately, due to the time constraints within the project, it would be

improbable to build the application in time for a sustained period of testing. This makes it unable to

see if the application provided an improvement in literacy abilities compared to conventional

methods of teaching. With the lack of multisensory methods of delivery that the Montessori

Methods provide, the application will be useful, however could not be compared fully to the

activities that the ͞Montessori Method͟ suggests. This application could be suitable as a supplement

to conventional teaching, where it could be used as a teaching tool within classes to allow for a more

modern form of learning the alphabet or as a homework tool to allow the students to practice their

alphabet at home. This is also beneficial as if for some reason remote learning was continued, it is a

way of guaranteeing a small level of the same type of teaching that would occur.

In the approach, these conditions need to be followed up, whilst also considering whether a

multisensory form of learning would be possible in the timeframe, or whether given more time, this

method would be able to be achieved.

Conclusion of Research

From the research, the application is indeed unique enough to be further developed in both design

and implementation. This would allow, with prolonged testing outside of the project timeframe,

whether the application would prove to be a useful supplement to the current form of teaching. This

could then be used for those remote learning as well as those who are experiencing in person

teaching. The application must ensure that the user is in a calm environment and is able to have as

much freedom within the confines of the applications as they can. If this is achieved then it could be

considered a sub-goal application of the ͞Montessori Method͟. Additionally, to ensure that the

application is different from other applications, as well as following the ͞Montessori Method͟, it

must make sure that the application would be considered non-cluttered and open ensuring that

their focus would not be drawn to too many other objects that were not relevant to the success of

the muscle memory retention.

12 | P a g e

Approach
After Researching was complete as to whether the idea was a viable solution to the problem, it then

became clear to work out how viable the solution would be to create. The first step was to

investigate mobile development in various coding languages, and came across the most popular

choice for android development, Android Studio. This presented issues, as the technical

specifications for coding in Android Studio are quite high and can cause some computers to

overheat. As the project would primarily be using a low specification computer to code and compile,

a coding platform needed to be found for mobile development that was lightweight and preferably

in a language previously explored (Android Developers, 2021).

Deciding to narrow down the search to coding languages used in previous projects, Python was

chosen over Java due to more experience in the language (Python.org, 2021) (Java SE Development

Kit, 2021). This narrowed choices on coding frameworks significantly as for Android and IOS

Development, there are few applications or frameworks that support Python as the coding language.

Framework Comparison

The first framework was BeeWare (BeeWare.org, 2021), a framework that seemed to be simple for

cross platforms applications, however in practicality it seemed quite complicated. This is what lead

to Kivy (Kivy.org, 2021). This framework was primarily for Android development, with it being able to

run on IOS with some further development. This was fine for development as the application would

be tested on an Android device so running through this framework was achievable.

Kivy vs BeeWare

Researching further into the BeeWare framework, it seemed useful for very generic projects that did

not require a lot of specific details. It also did not allow easily for a custom UI, instead only allowing

for the user to use the native Android or IOS interface. The main appeal of the framework was the

easy conversion to Android for devices on Windows, and as discussed later on in the project, this

proved to be a very useful feature that in retrospect was overlooked (BeeWare.org, 2021). In

comparison, the community projects listed for Kivy seemed like they were built for much more

specific aims and given the nature of the application, it was the choice to make. Kivy, unlike

BeeWare, allows for the creation of custom UIs for the application. This suited the project as it

allowed for a UI more suited for a child to be made as opposed to following the standard look. The

main issue with Kivy in retrospect is the fact that you require Linux to convert the application to

Android, something that was not made very clear with the documentation they provided. As several

devices would be used to code on this project, something that was less intensive on the computer

would be necessary. Looking at the standard requirements that most people work on, Kivy is the

preferred choice, so it would require a dual boot OS to be installed on a device to allow for the

conversion to Android (BeeWare, 2021) (Kivy.org, 2021) (Kivy: Cross-platform Python Framework

for NUI, 2021) (dbader.org, 2021).

13 | P a g e

The Decision

Evaluating the positives and negatives of the two frameworks, Kivy was the preferable choice of

framework, as the custom UI allowed for a greater control over the application allowing the tailoring

of the application to a particular audience (Kivy.org, 2021). It was also the more lightweight

framework in terms of system requirements which gave it the edge in over BeeWare (BeeWare.org,

2021). Now that a framework had been decided, further research was required into the Kivy

framework to decide whether it was a valid form of delivery.

A Further Look into Kivy

Kivy is a python-based Fƌaŵeǁoƌk that ƌuŶs ǁith a ͚Buildeƌ͛ stƌiŶg oƌ file siŵilaƌ to a C““ file in HTML

(HTML Standard, 2021). Kivy can be run with only the python file however to use the full extent of

the application and allow you to fully edit the application easily, the hybrid use of both files is

necessary. The file type unique, called a ͞.Kv͟ file (Kivy.org, 2021). To ensure that the

implementation side of the project would not come under any unnecessary delays, experience in

this form of coding was required using the ͞PoŶg͟ tutoƌial shoǁŶ oŶ the fƌaŵeǁoƌks ǁeďsite (Pong

Game Tutorial — Kivy 2.0.0 documentation, 2021).

In doing so the benefit was shown with not using the ͞.Kv͟ file, as using the python file only

commands are different than the hybrid use, following a similar manner to a library within Python:

͞Tkinter͟ (tkinter — Python interface to Tcl/Tk — Python 3.9.5 documentation, 2021). This was a

useful introduction into the framework, where it allowed for learning in a way that was still familiar.

However, running through the tutorial, the code was centred around the principle of the Builder file.

Certain sections of the custom UI were being omitted, whether due to the simplicity of the tutorial,

or due to the fact that without the Builder file, it could not be achieved. The end of the tutorial

explained how important this hybrid way of coding the file allowed for greater control over the

front-end of the application and how it interacted with the rest of the application (Pong Game

Tutorial — Kivy 2.0.0 documentation, 2021). This required further research of how the builder file

would work. Research began in the documentation site about the Builder file and how it affects

applications, specifically mobile applications. An issue emerged in this research as the framework

can be used for desktop development so notes were made about how to ensure that the application

was tailored to the mobile side of development (Kv language — Kivy 2.0.0 documentation, 2021).

14 | P a g e

Issues and Resolution Within Kivy

One of the two issues required to be researched before Kivy could be chosen was whether the code

could run other libraries explicitly imported. Looking at the Kivy Framework resources, there was no

easy way of importing test images for the project, so research began and a library was found that

allows for the importing and comparing of images called ͞CV2͟ that will be discussed in further

detail later (opencv-python, 2021). Researching into the framework, it was more difficult to compile

the application to Android at the end with external libraries, as each library would have to be written

to the compiler͛s teǆt file to eŶsuƌe iŶĐlusioŶ. However, it was possible to put other libraries into the

code and use them within procedures and functions (Create a package for Android — Kivy 2.0.0

documentation, 2021).

The final issue was whether the framework itself could be used for graphical use, as when drawing

with coding languages, comparisons could be drawn to the mathematical program ͞MATLAB͟. In this

program the system keeps tƌaĐk of the ĐooƌdiŶates aŶd ͞paiŶts͟ between those coordinates

(www.mathworks.com, n.d.). LookiŶg iŶto the fƌaŵeǁoƌk theƌe ǁas iŶdeed a ͞ĐaŶǀas͟ paƌt of the
code that allowed for a similar method to be used and although it was difficult to do, it was possible

to save this canvas for use when necessary (Canvas — Kivy 2.0.0 documentation, 2021). This was

important as if the users wished to see their previous progress with the application in the future,

digital copies of their work would be required.

Framework Packages

Researching the graphical side of Kivy expanded that within the Framework there are several

packages when installing, with the most common installed being the Base, but the other options also

include (Installing Kivy — Kivy 2.0.0 documentation, 2021):

• Media

• Full

• Dev

• Tuio

It was then required to review each package, to conclude if there was a specific package that would

suit the development of the application. Doing so through the process of elimination produced the

result that there was one package that indeed suited the problem.

The ͞Base͟ paĐkage, although ĐoŵŵoŶlǇ iŶstalled, does not allow for audio and video, and due to

the possible use of audio with the application it was eliminated. The ͞Tuio͟ package is only

necessary if you wish to run applications that track multiple real world objects on a touch screen.

͞Media͟ was also disregarded as if I am wanting to develop the extended toolkit, ͞Media͟ only

contains media tools to work with such as methods to view photos and videos, similar to a gallery

application. So given that I will be using graphical and possibly statistical tools as well, ͞Media͟ could

not be used (Installing Kivy — Kivy 2.0.0 documentation, 2021).

This left the ͞Full͟ package of Kivy as the documentation was unclear about what the ͞deǀ͟ ŵode

contained, and from what could be gleaned from the information, seemed to lack the basic functions

that the other packages contained. Even if the development software was a little more bloated with

extra functionality than necessary, it was still within the boundaries set for the system requirements

(Installing Kivy — Kivy 2.0.0 documentation, 2021).

15 | P a g e

Conclusion of Framework Comparison

After researching and coming to the conclusions about these two issues, Kivy was in fact an apt

framework for development of the code due to the ability to allow users to create custom drawings

within the application, as well as allowing the use of external libraries. This framework was also low

in terms of system requirements, making it useful for working on multiple devices, as would occur

during this project.

External Libraries

After comparing the framework, it now came to researching how the application would work. This

led to further research something briefly seen before when looking for external libraries for Kivy, the

library called ͞CV2͟ (opencv-python, 2021). When researching initially into the topic, the library

allows for the comparison of images, and as mentioned in the initial plan, direct comparison of the

shape of the letter was desired. However, in practice this was a much more complicated problem

that was improbable to be completed in the allotted timeframe. Instead, if the canvas, or at least the

saved image of the canvas was converted to the same size as the test data, image matching could be

used, where differences in the entire images are calculated as a score. ͞CV2͟ was able to perform

this resizing of the images adequately, however lacked the capability to truly compare the image, so

instead a library that worked synchronously with ͞CV2͟ called ͞Skimage͟ needed to be imported

(opencv-python, 2021) (scikit-image: Image processing in Python — scikit-image, 2021).

͞Skimage͟ allows for the comparison of two images via different algorithms as long as they are the

same size, so ͞CV2͟ was necessary for the main comparison. This allowed for easy resizing as it

would use an image, such as the test data, as the base dimensions rather than having to specify both

to the same dimensions. This was useful as it meant if one of the images was not a specific size,

there would be no errors occurring. ͞Skimage͟ would then allow you to compare the images using

one or both of two methods, SSIM and MSE, so it came to deciding which method would be used to

compare, or if both would be used (scikit-image: Image processing in Python — scikit-image, 2021).

MSE vs SSIM

MSE

The Mean Squared Error, also known as MSE, or sometimes known in Statistics as Mean Squared

Deviation (MSD) is a calculation to work out the average of the differences squared. It looks at a

pixel in the first image and compares it to the same coordinate pixel from the second image, and

works out the difference as a value, which is then squared. This is then achieved for every pixel in

the images, requiring both images to be the same dimensions. Each squared difference is added to a

total, with a counter running at the same time for the number of pixels compared, or more

commonly the width and height dimensions are multiplied to work out the number of pixels

compared. This squared total is then divided by the number of pixels to gain the Mean Squared

Error, or in comparative terms, how accurate the two images are by working it out from the number

of errors there are instead of working out how similar the images are. A high MSE score would be

inaccurate, and in contrast a low MSE score would then be considered an accurate copy of the

image. This works for what could be considered an average pixel image, as in too low of a quality

image, one pixel wrong can make a huge difference in the MSE. This is less of an issue with higher

quality images where the issue then becomes if there are errors in the image, they are less

noticeable in the value of the MSE as there could be countless more correct pixels. So where

accuracy is absolutely essential, MSE cannot be used for high quality images (Mean Squared Error:

Definition and Example - Statistics How To, 2021).

16 | P a g e

SSIM

The Structural Similarity Index Measure, also known as SSIM, is a way of measuring the similarities

between two images, being an improvement of the Universal Image Quality Index. The SSIM was

developed, due to the authors realising that most image quality assessment techniques rely on

quantifying errors between a reference and a sample image. In essence, rather than looking whether

the images are similar, as most human subjects would try and quantify, they instead would look for

errors and say that how many errors that occur is how similar it is. SSIM instead uses three key

factors from an image to try and work out how similar the image is. Due to the specific natures of

the factors, all the images compared must first be in grayscale as colour can create a huge difference

in two of the factors, however in grayscale a bright green and bright red would appear similar. The

three key factors are as follows (Wang et al, 2005):

• Luminance

• Contrast

• Structure

The algorithm works out the luminance and contrast value and uses that to work out the structure

comparison, and compares the luminance and contrast values individually to form a score between -

1 and 1, where -1 would be considered not a match at all and 1 would be considered a perfect match

(Wang et al, 2005).

Fig. Flow Diagram the original Creators of the SSIM algorithm made. (Wang et al, 2005)

17 | P a g e

Comparing the Two Algorithms

Due to the test data, as well as the user data containing a lot of alpha pixels, the SSIM algorithm is

automatically going to have a high similarity score. However, due to the score being usually to

several decimal points, it allows for accurate decisions as to what would be considered a pass and

what would be considered a failure (Wang et al, 2005).

MSE is typically given to a more variable set of decimal points and would consider a lot of the pixels

similar so again the MSE score would be low, meaning the check would be harder to run. However

due to it using pixel difference, as opposed to the overall difference, it might be more useful but

requires further research.

During research into the comparison of the two algorithms, an article emerged about how MSE can

actually cause issues when SSIM does not, however in specific cases, as disĐussed iŶ ͞Hoǁ-To:

Python Compare Two Images͟. When comparing the same set of data in this article, the score given

for MSE was 0 as expected, and the SSIM giving an accurate score of 1.00 (Rosebrock, 2021).

Fig. Comparing the two original images together. (Rosebrock, 2021)

18 | P a g e

When the test data was then compared against a different grayscale effect on the same image, the

MSE gave a much higher score of 1401, and the SSIM score was reduced to 0.78. Both algorithms

appear to be viable solutions; however, unexpected results occur from the third test (Rosebrock,

2021).

Fig. Comparing the Original and the Contrast adjusted image (Rosebrock,2021)

The second comparing image (the third in total including the test image) was not the same image,

instead having an image placed on top of the original test image before having the greyscale effect

used to the same extent as the test image. The results then proved interesting, although the SSIM

score had gone down, now to 0.69, as the image was different, due to the greyscale effect being the

same, the MSE score had gone down to 1076, saying that this image that, to the eye, was more

unique than the previous test was more accurate despite being clearly wrong. (Rosebrock,2021)

Fig. Comparing the Original and Photoshopped overlay image (Rosebrock,2021)

19 | P a g e

This shows the main issue that arises with MSE is in photoshopping images or to be specific,

superimposing images over the base and giving the same greyscale effect. When imposing an image

on top of the base image that runs a similar colour scheme, there can be an inaccurate depiction of

the accuracy of the image as some of the pixels might match even though from a visual look the

comparison is clearly wrong. This issue does not occur with SSIM and is why it is commonly chosen

over MSE when it comes to image comparison of complex images (Rosebrock,2021). However, due

to the fact that nothing within the data used could skew MSE, such as photoshopping will occur, it is

safe to use either.

Conclusion of Comparison Algorithm

After careful consideration and looking at both the pros and the cons of each form of image

matching, MSE was decided to be the superior algorithm for the project. This is because it allows the

user to accurately figure out the differences in the two images. This is better than working out the

overall composure of the image as a pure black and white image like the ones suggested could cause

issues with SSIM. However, a form of failsafe was required to be in place, to ensure that it would

keep it as accurate as possible. The first form was to make sure that the test data would be the exact

saŵe Đolouƌ as the useƌ͛s data, to eŶsuƌe that that the M“E eƌƌoƌ ǁould Ŷot ďe ďeĐause the Đolouƌ is
different, and instead would foĐus oŶ the useƌ͛s ǁoƌk. FoŶt size is also iŵpoƌtaŶt iŶ this ƌegaƌd, oƌ
rather making sure the user is only able to draw the same pixel width that the test data contains.

Due to MSE checking every pixel for difference, care was needed to make sure that the user can gain

the greatest understanding of how accurate they are being with their submission.

Font

This then raised another issue as the font for the test data would be crucial for the age of the user,

as well as the usability of the application. Using too complex a font would mean it would be difficult

to ensure accuracy on something like a touchscreen. This also would confuse the age range this

application was being designed for, as they would be wanting to practice as simple a character to

guarantee further development to be possible.

Use of the correct size of font was crucial as well, as too small of a font width would make the shape

too difficult to trace accurately for the user. The opposite issue can occur as well, where the font

width could be too large for the screen, turning the shape unclear, causing issues with the user

trying to follow the aim of the application by learning the muscle memory of the shape.

20 | P a g e

Design Documentation

Image Matching Window

The application design process started with the most important part of the application, the image

matching screen itself. The design of the application screen required that there were three

functional requirements elements:

• The painting window itself.

• A button to clear your progress so far in case you have made a mistake.

• A button to submit your drawing to allow for the comparison only when you are ready.

The final button would be needed, as it allows for as many strokes as the person wants before

submitting. After deciding these points to be what would be displayed on the screen, I came up with

the following rough sketch:

Fig. Shows the Initial Sketch for the Application Screen.

This rough guide allowed for a more accurate design to be implemented, allowing for the following

figure:

Fig. Shows the Digital Sketch made from the rough sketch design.

21 | P a g e

Popup Window

After designs for the drawing window was produced, it seemed apt to design some form of popup to

appear allowing for positive reinforcement if the user had got the match correct. This would also act

as a form of consolidation if the user had not managed to match the letter. Consolidation was

chosen to ensure that a positive approach was followed throughout the application.

Deciding how the popup would look for the passing popup, as the failure popup would be quite

similar, the rough sketch for the popup window section was designed:

Fig. This shows the Rough Sketch of the popup window.

After beginning to digitally design the popup window, an issue emerged. The statistical element of

providing the score in the design is not possible with MSE as it is very difficult to display that form pf

data as a percentage. This then gave the option of using the SSIM for the score, however, due to the

issues with SSIM previously discussed, it was decided that instead a positive message could be

shown. This also felt more appropriate for younger ages, as younger aged children would be less

likely to care about how accurate they were, instead wishing for a pass/fail remark instead allowing

them to know how they did. This then led to the following digital designs, a brief positive message

has been included for each popup that changed by the time implementation came around:

Figs. This shows the two Digital designs for the positive and negative popups

22 | P a g e

In terms of the Image Matching Screens, all the UI elements that would be present at the time were

added, and if any rogue elements that would differ from the design document did appear, they

could be added as the designs themselves felt open, and not cluttered.

Title Screen

The user would need a menu to initially greet them, so the Title Screen began to be designed. After

deciding what a user would want when the application first greeted them, the following four

functional requirements were created:

• A Title explaining what the application was called

• A Button to allow them to exit the application

• A Button to adjust any settings they would need to

• A Button to bring them to the drawing screen

After deciding the functional requirements, the following rough sketch was designed:

Fig. This shows the Rough Sketch for the Title Screen

This rough guide allowed the more accurate design to be digitally implemented, allowing the

following figure to be created. While designing the application, it emerged that the application

lacked an actual name, so after consideration was named ͞LetteƌLeaƌŶ͟, as it ďƌiŶgs aĐƌoss a general

understanding of what the application does:

23 | P a g e

Fig. This shows the Digital Design I had for the Title Screen

Letter Screen

After designing the previous screens, the user would need some way to decide which letter they

wanted to trace before it would come to the actual tracing.

Deciding that a ͞ŵidǁaǇ͟ sĐƌeeŶ with no other purpose present would allow the issue to be solved,

there was no need for any other functional requirements other than the 26 buttons the user would

want to press. Consideration did occur about using a dropdown menu to allow the user to choose,

but instead just clicking the correct button provides a smoother user experience. This led the

following rough sketch:

Fig. This shows the sketch about how all 26 letters would appear

24 | P a g e

Reviewing the rough guide, the screen contained too many buttons and could just make it hard to

make a clear choice. Knowing this, it then allowed for refining to produce the following digital

sketch:

Fig. This Shows the Digital Design for the Letter Screen

This brought up the idea about using a scrolling function for the Letter Screen, something discussed

further in the implementation section.

Conclusion of Approach

Since all the screens had now been digitally designed, a clear path emerged for implementation. The

application was indeed viable to create from a theory standpoint and it was now time to begin

implementation. Although attempts were made to limit all the research to before coding began on

the application, research into specific documentations within the Kivy Framework occurred during

coding, something I did not consider before the implementation started. Although it did not prove to

be an issue during coding, if a similar project was to be conducted again, deeper consideration in the

design stage would be taken, as later on there is discussion about having to adjust the code at times

due to a lack of research the framework specific widgets needed (Kivy.org, 2021).

25 | P a g e

Implementation
The first step in the implementation process was to decide which sections of the code would be

prioritised and which would be worked on at a later date. Due to the complexity of the matching

process, the backend took the highest precedence, followed by the frontend. In retrospect, this flow

of work was the right step to take, as many difficulties were encountered relating to the backend of

the code.

The order in which the screens were implemented was also determined at this stage, as in the

design step it was decided that multiple screens would allow for a more user-friendly application

experience. Doing so provided the following steps:

1. Backend of Main Drawing Screen

2. Frontend of Main Drawing Screen

3. Backend of Letter Screen

4. Frontend of Letter Screen

5. Backend of Title Screen

6. Frontend of Title Screen

Focusing on the backend allowed a ledge to work from when focusing on the frontend that had

already begun with the design documents. By having that jumping off point in the frontend it meant

that a positive start with the implementation section was apparent. The Frontend of the Main

Drawing Screen was worked on next as it would enable a ͞pƌototǇpe͟ of soƌts, alloǁiŶg foƌ

subsequent progress to be easily monitored, and allowing the application to naturally expand from

the completed screen.

Backend of Main Drawing Screen

Starting with the backend, this element could then be split into several sub projects that needed to

be finished before this section would be completed. The sub projects were as follows:

• Allowing the User to draw.

• Allowing the User to clear their progress.

• Allowing the User to submit their progress.

• Importing the Images.

• Using MSE to compare the Images.

• Deciding how accurate would be considered accurate.

• Making sure no data was saved.

• Getting the Application ready for the next set of drawing.

From this list there were important points that needed to be considered as they were integral to the

functional requirements, and additional points that would allow for a more enjoyable application

experience.

Following a review of the list, three of the sub projects were of primary and equal importance:

͞AlloǁiŶg the Useƌ to Dƌaǁ͟, ͞AlloǁiŶg the Useƌ to “uďŵit theiƌ pƌogƌess͟ aŶd ͞Using MSE to

Đoŵpaƌe the iŵages͟. This conclusion was reached as these were the three key sub projects that

were integral to the achievement of allowing the user to draw with their finger and receiving

feedback regarding accuracy.

26 | P a g e

Allowing the User to Draw

Looking into the Kivy framework, the canvas widget allowed for drawing where it would mark the

application as a list of points, with colour objects being assigned to it. It also provided the capability

to speĐifǇ ǁhiĐh seĐtioŶ of the ͞ĐaŶǀas͟ to ďe saǀed within some leniency. Instead of allowing you to

decide which specific dimensions would be saved, it would work in a similar manner to an image

editiŶg pƌogƌaŵ, ǁheƌe Ǉou Đould Đhoose speĐifiĐ ͞laǇeƌs͟ to saǀe (Canvas — Kivy 2.0.0

documentation, 2021)(Kivy.org, 2021).

Attempting to implement the canvas code, an issue emerged. In the tutorials followed to understand

the coding language, they explained how to set up screens to implement the code they were

teaching. Realising a screen had yet to be set up for the application, focus was drawn to getting a

blank screen to appear, so then it could be populated with the rest of the code.

Fig. The basic code in the python file to allow for an application to run.

This highlighted a dilemma that needed to be faced. Kivy as a framework allows for the use of a

Builder string, as explained in the Approach, to allow for a greater control over the UI. However, this

string can be implemented in two ways, either as a string within the python file, or instead as a

sepaƌate ͞.Kv͟ file, ǁhiĐh is theŶ iŵpoƌted ǁheŶ Ǉou ďuild the appliĐatioŶ.

In terms of use, the two methods act identically, but each have their own benefits. Researching into

the method indicated it is slightly more efficient to use the builder string instead of the file, however

that benefit is small enough that it could be considered negligible. The ͞.Kv͟ file appears to have no

immediate apparent benefit, however the research established that many users of the framework

used the file as it allowed them to clearly separate between the Frontend of the program (the .Kv

file) and the Backend of the program (the python file). As the implementation process worked in a

similar manner, mainly working on the backend first, it was decided that this would also ensure that

clarity between the backend and frontend would be clear (Builder — Kivy 2.0.0 documentation,

2021) (Kivy: Cross-platform Python Framework for NUI, 2021).

27 | P a g e

To ensure a screen was able to appear the ͞.Kv͟ file was created to allow for the Frontend as well as

the application to run, this then allowed for the painter to be created successfully.

Fig. This is showing the basic drawing code and how drawing the lines works.

To create the lines, the code had to run two Kivy specific functions (Input management — Kivy 2.0.0

documentation, 2021):

• on_touch_down

• on_touch_move

These specific commands allow the application to register any touchscreen actions, as well as

allowing for the tracking of the implement on the touchscreen when it is moved. These commands

are also very useful as they work with mouse clicks and movement when the click is being held,

allowing to easily test the application without having to compile it every time, a feature in retrospect

was incredibly useful due to the issues with compiling the application (Input management — Kivy

2.0.0 documentation, 2021).

Allowing the User to Submit their Progress

Now that the application has the ability to draw, the first point was achieved, allowing for

progression oŶto the Ŷeǆt poiŶt of the thƌee: ͞AlloǁiŶg the Useƌ to “uďŵit theiƌ Pƌogƌess͟. This

point seemed very simple to implement, simply storing the image as a readable format. However, in

actual practice was more complicated than it first appears.

As the way the framework stores the drawing canvas, ͞CV2͟; the library to resize the images to

ensure they were the same dimensions, would not accept the vectors, instead producing errors,

explaining in the terminal that it was not an accepted format. Due to the fact that ͞CV2͟ would only

accept images for resizing, research began into methods that would allow for saving the canvas such

as the ŵethod ͞eǆpoƌt_to_pŶg͟. This approach would allow the saving of the image under a name,

which could then be read by ͞CV2͟. This code was implemented iŶto a fuŶĐtioŶ Đalled ͞saǀe_ĐaŶǀas͟
as the self-documentation would allow for easy understanding in case any other developer wished

to work further on the code. This presented the issue of what to name the file, to avoid confusion

with any other file currently present. It was decided that due to the speed of the process between

saving the file and CV2 reading the file, the current date time would work well as a way of making

sure it was always the right file, as well as setting up the code ready for the future work of

implementing a way that users could see their previous progress (opencv-python, 2021) (Widget

class — Kivy 2.0.0 documentation, 2021).

28 | P a g e

Fig. This code allows for the canvas to be successfully read by ͞CVϮ͟.

 ͞AlloǁiŶg the Useƌ to “uďŵit theiƌ Pƌogƌess͟ ǁas now successfully completed. This would now

enable progression onto the fiŶal poiŶt: ͞UsiŶg M“E to Đoŵpaƌe the iŵages͟.

Using MSE to compare the Images.

As discussed in the Approach, ͞Skimage͟ was used to compare the images, as it worked dynamically

with ͞CV2͟ to allow for the easy reading and comparing of the images. From the metrics library

within ͞Skimage͟, ͞ŵeaŶ_sƋuaƌed_eƌƌoƌ͟ was imported allowing for comparison of the images.

However, another set of issues emerged: there was no test data present to compare it to, and if it

was present, the images had to be the same dimensions to allow for correct comparison with

͞mean_squared_error͟ within ͞Skimage͟. Research began into whether not having to resize the

image was possible with only negative results appearing (opencv-python, 2021) (scikit-image: Image

processing in Python — scikit-image, 2021).

The test data was required to be created to enable comparison. Using a GNU based image creation

tool (GIMP), research was started iŶto foŶts that seeŵed Đlose to easǇ haŶdǁƌitiŶg. ͞LesliesHaŶd͟, a
free font type that seemed to emulate the way that teachers would write letters for primary school

children presented an ideal font for teaching how to draw (LesliesHand Font · 1001 Fonts, 2021).

Using GIMP, the test data was created using ͞LesliesHand͟ font. When using the font, it became

apparent that the font itself was very easy to read, whilst not feeling mechanical, a font that would

be useful within the frontend of the application as well. This would also mean that the user would

get to experience words written in the same font, possibly increasing the retention of how the

letters should look (GIMP, 2021) (LesliesHand Font · 1001 Fonts, 2021).

Now that the test data had been created, it became apparent to import the correct test image, but

as that was part of a completely different screen, for a temporary solution the code would import

the ͞A͟ test data, just so that if theƌe ǁeƌe aŶǇ issues ǁith the iŵpoƌtiŶg aŶd ƌesiziŶg it would be

noticed, as well as if any MSE errors occurred.

The initial plan was to resize the useƌ͛s images in relation to the test data, however when running

the code later on, it became clear that the resizing was not fully working, so instead the solution

involved mapping them both to 1000 pixels by 1000 pixels, to reflect the dimensions of the test data.

Although it seemed redundant to resize the test data to the dimensions it already was, planning for

future work as well as guaranteeing they were the same size would be essential in doing this. The

MSE worked despite a large error score being present. However, for now the code was fully working,

so to follow the idea of a prototype it was important that the page was fully completed in terms of

backend and frontend before confronting this issue.

29 | P a g e

Final Points of Drawing Backend

At this stage of implementation all three of the major points were now complete, allowing for the

decision of the next most important part of the program. Some points had been completed in the

pƌeǀious seĐtioŶs suĐh as ͞IŵpoƌtiŶg the Iŵages͟. The remaining points were as follows:

• Making Sure no Data was Saved.

• Getting the Application ready for the next use

Making Sure no Data was Saved

Deciding it was logical to address these points in that order, as due to the Ethical Use submission,

making sure no data was saved was vitally important to ensure that the application was still within

the bounds the committee had set. Through research, it came to fruition that the ͞os͟ library in

Python works well within the Kivy framework. Therefore, it was a simple job of importing the image

saved, then as soon as it was imported, to delete the copy as it would no longer be needed. In the

future, the data needed to be saved instead, due to another use such as User progress, it was a

simple measure of removing this line of code, so due to the simplicity and efficiency of the line, the

͞os͟ libarary remove file code was implemented (os — Miscellaneous operating system interfaces —

Python 3.9.5 documentation, 2021).

This now ensured that no data was saved, as the rest of the data such as the colour of the lines etc

would be automatically deleted when the application ceased to run. This meant the point of

͞MakiŶg “uƌe Ŷo Data ǁas “aǀed͟ ǁas Đoŵplete.

Getting the Application ready for the next use

When saving the data, the canvas that was being saved came up with an issue, it would not be

removed when the save command was ran, causing an issue if you ever wanted to use the

application again without restarting the application. This caused a natural flow into the frontend of

the design as the design documents showed that a clear button had yet to be implemented.

Although requiring the user to manually clear their drawings would be one solution to the matter,

this did not seem a user-friendly solution. It was important to ensure that saving the canvas also

cleared the drawings as well, so that a new submission could be run.

Research into potential solutions highlighted the ͞ĐaŶǀas.Đleaƌ͟ ĐoŵŵaŶd, ǁhiĐh ǁould ǁipe all of
the elements related to the drawing. While initially this code was implemented successfully, in both

the clear button, as well as the save command; this caused some issues later on requiring the use of

the ͞laǇeƌiŶg͟ side of the ĐaŶǀas to solǀe this issue that ǁill be discussed later on. However, for now,

the method implemented worked with the application. This step concluded the Backend of the

Drawing Window and the next major point could be implemented: ͞FƌoŶteŶd of the DƌaǁiŶg
WiŶdoǁ͟ (Canvas — Kivy 2.0.0 documentation, 2021).

30 | P a g e

Frontend of the Drawing Window

Following the backend, as well as viewing the design documents, identification of the elements of

the front end that were needed were produced:

• Drawing Window

• Clear Button

• Save Button

• Background Image

As the drawing window had already been completed, it was now necessary to implement the other

elements. As discussed before it was decided that the Background Image would not be implemented

yet, instead wanting to have one of the other screens present first before working with it, as it would

allow the passing of the data required for the background image to successfully appear. This left the

two button elements needed to be implemented.

Save Button

As the most important part of the application was the submission and comparing the two images,

the most important button for the user would be the save and submit button. Implementing this

was quite simple, as Kivy allows you to run commands or functions depending on your need, on the

Button element. To implement in the Builder file meant to follow the path in the application to the

͞save_canvas͟ function to allow the button to run that code.

Fig. This shows the Save Button code within the ͞.Kv͟ File.

Having the button run successfully allowed the code to work the same as typing the function into

the terminal. This meant the Save button was complete, allowing progression onto the next

element.

Clear Button

The clear button as previously discussed, was simple to implement. It worked in a similar manner to

the save button, but instead of running a function it ran a command specifically targeted at the

canvas. Once it was implemented, an issue arose where all three elements (the canvas, the save

button and the clear button) were all trying to present themselves on the middle of the screen,

ŵeaŶiŶg Ǉou Đould oŶlǇ aĐĐess ǁhat ǁas ďuilt last as it had the highest ͞oƌdeƌ͟ pƌioƌitǇ.

Solving the Order Issue

It was decided that now was the time to try and match the design documents in terms of the UI

design for the screen. Through research, it became clear that KiǀǇ has a Ŷuŵďeƌ of ͞laǇouts͟ able to

be manipulated. The ͞BoǆLaǇout͟ alloǁs placement of elements vertically, similar to the design

document layout, and was determined that this was the most appropriate solution and

implemented it. This solution, however, came with an issue (Box Layout — Kivy 2.0.0

documentation, 2021).

31 | P a g e

Due to the application not showing whether it was indeed accurate at the current time as the popup

window had not been implemented yet, a temporary set of code was in place that would output the

MSE score into the terminal, so monitoring on the success of any test drawings could be achieved.

When the box layout vertically was used, the MSE error score had significantly increased, more so

than previous uses with the application. Something was going drastically wrong with the image

saving. Commenting out the image deletion code showed the issue, the canvas was no longer saving

itself as a square image, causing major issues when then it was being resized as the useƌ͛s image

ǁould ďe ͞sƋuished͟ aŶd ͞stƌetĐhed͟ to foƌŵ the ƌight size. Identifying a choice of two options; the

application could attempt to crop the image back to being a Square before it was then resized to the

correct dimensions, or a way could be found to have the buttons present where the drawing canvas

would be the correct dimensions to save as a square.

Cropping

The method first explored was to crop the image as it was the more likely option to guarantee it

looking like the design documents, and within the use of ͞CV2͟, it seemed straightforward to crop

the image. In practice, although the framework had the capacity for the cropping of the image with

the ͞CV2͟ library, it certainly was resistant to the use of cropping and would either produce errors

due to the cropping being out of the bounds of the image, despite the boundaries being set clearly

within the bounds according to the documentation of ͞CV2͟. Even if the boundaries were within the

bounds that the framework would accept, it would instead crop the image incorrectly. After

experimenting with a variety of different boundaries for cropping, it became clear to ensure that the

rest of the application worked within the framework, instead of focusing on trying to ensure the

cropping was correct, a method of fixing the issue not involving the cropping was still available

(opencv-python, 2021).

Knowing that time management was key to this project, it was important to focus on getting the

application to work. With more time in the future work, the cropping issue could be fixed and ensure

that the UI reflected the design document, but for now ensuring the comparing was correct was the

most important aspect.

Layout Trial and Error

Experimenting with various layouts using a trial and error to attempt to find a way to have the

buttons present whilst still having the canvas as a square. Initially, ͞BoǆLaǇout͟ was dismissed as in

its vertical orientation, it had caused the issue trying to be resolved. However, after exhausting

various other layouts options, the horizontal orientation of ͞BoxLayout͟ was trialled. This variation

gave the closest to a square image, just slightly too small on the width. After realising that the

number of pixels that were being cut off from the canvas were the width of the buttons combined,

the button size was adjusted until the MSE score was within the previous bounds (Box Layout — Kivy

2.0.0 documentation, 2021).

32 | P a g e

UI Completed

This approach resulted in the following design and with some adjustments later on, it was an

acceptable prototype UI.

Fig. This shows the initial prototype UI (Note, Microsoft Word effects have been used on the image

to ensure clarity of the borders of the image)

With the Frontend of the Drawing Page completed, the next main point within the implementation

could be coded: ͞Backend of the Letter “ĐƌeeŶ͟.

Backend and Frontend of the Letter Screen

After creating the prototype of the main letter screen , what was missing from the current code was

the ͞BaĐkgƌouŶd Iŵage͟. As stated ďefoƌe, uŶtil a Ŷeǁ sĐƌeeŶ ǁas Đƌeated it was not going to be

implemented, as the user should be able to choose which template they would run the drawing

with. In the desigŶ doĐuŵeŶts this ǁas seeŶ as a ͞Letteƌ “ĐƌeeŶ͟ ǁheƌe the user would choose the

letter, causing that letter to occur as the background image, as well as comparing the correct

background image to the input. This would be important as it would allow the application to test a

variety of data, as well as allow the user to trace the letter, the main part of the ͞Montessori

Method͟ being implemented.

Implementation began by creating a new screen, which caused an issue to emerge. With one

window applications, as had been taught in the Kivy tutorials, when transferring to a new screen it

would be a similar process to the Python library ͞Tkinter͟; where the window would be destroyed

first before the next window was created. This did not seem like a very mobile friendly approach, as

typically one of the defining features of a smooth experience on mobile applications would be

seamless transitions. To create a smooth experience for the users, it was necessary to find an

alternative to the current form of transitions. After researching solutions, a succinct answer was

found, although it did Đause soŵe iŶitial eƌƌoƌs: ͞“ĐƌeeŶ MaŶageƌ͟ (Screen Manager — Kivy 2.0.0

documentation, 2021).

33 | P a g e

Screen Manager

͞“ĐƌeeŶ MaŶageƌ͟ is a ǁidget ǁithiŶ the KiǀǇ fƌaŵeǁoƌk, that eǆĐlusiǀelǇ takes ĐoŶtƌol of the
management of multiple screens within a project. Rather than causing each screen to be removed

before the next appears, this widget preloads all of the screens that the current screen can access,

and provides a seamless transition to the next screen, where it then repeats the process. This makes

the application seem a lot smoother, and provides a fluid experience, exactly what the project

required (Screen Manager — Kivy 2.0.0 documentation, 2021).

It was necessary to edit the ĐuƌƌeŶt sĐƌeeŶ Đode to ŵatĐh the foƌŵat of the ͞“ĐƌeeŶMaŶageƌ͟, ǁhiĐh
initially caused unexpected errors within the save and clear buttons, where they would just crash the

application if they were pressed. After reviewing the cause of the errors, due to the parent now

ďeiŶg the ͞“ĐƌeeŶMaŶageƌ͟, the pathiŶg foƌ eaĐh ďuttoŶ͛s ĐoŵŵaŶds had to ďe alteƌed to ƌeaĐh the
correct destination. Now that the issues with those had been solved and the application seemed to

run successfully with only a single screen (Screen Manager — Kivy 2.0.0 documentation, 2021).

The Letter Window

The next stage was to work on the new screen, and due to the practice and bug fixing that

converting the iŶitial sĐƌeeŶ to ͞“ĐƌeeŶMaŶageƌ͟ Đaused, it ǁas siŵple to implement a new screen

that was within the management. After doing so it was important to consider what the Letter Screen

was actually doing, and how to achieve this. After consideration, it was identified that the following

steps for the backend were required, that did mix with the frontend slightly:

• Each Button gives the correct Letter to the Drawing Screen.

• The correct Background Image appears.

• You could easily access all of the buttons.

After review, this would involve the front end as well, it would be more complex than the previous

screen, and would instead require a hybrid form of coding, where both the backend and frontend

would be developed simultaneously.

When creating all 26 buttons, labelling them A-Z so that the user could know which button went to

which section, the same issue that appeared within the Drawing Screen occurred; all the buttons

were in the middle. Research began into the other layouts, as it was clear that with 26 buttons a

͞BoxLayout͟ would not be the solution this time. ͞GridLayout͟, a form of layout that allowed you to

define how many columns and/or rows you would want, with the capability to align them like a

table, in whatever order you specified. This did solve the issue to an extent, however, as the

application was trying to fit all 26 boxes into the application window size, they were all small

dimensions. A typical workaround that mobile applications, as well as desktop applications use is to

allow the user to scroll through their options, allowing the boxes to be big enough to be defined and

easy to read as they decide their choice. Researching into a similar workaround within Kivy, the

official Kivy Discord, a real time chat program allowed you to chat with moderators about any issues

you were facing using their framework. As it was unprofessional to ask for assistance writing the

code, enquiring the support section regarding scrolling with your application, they pointed towards

the offiĐial KiǀǇ doĐuŵeŶtatioŶ foƌ a ǁidget ǁithiŶ laǇouts Đalled ͞“ĐƌollVieǁ͟ (Box Layout — Kivy

2.0.0 documentation, 2021) (ScrollView — Kivy 2.0.0 documentation, 2021) (Discord | Your Place to

Talk and Hang Out, 2021).

34 | P a g e

ScrollView

This widget allows the developer to define the bounding box to determine where to cut off, and

then allows the user to scroll within that boundary to outside the boundary, the solution that the

project required. Initially implementing this widget did not lead to any noticeable difference, as the

buttons were still trying to be the smallest size they could be. Defining specific button heights

guaranteed them to be the right size and fixed that issue. The application now had 26 buttons that

allowed the user to scroll through and press the button they wished to use. These buttons, however,

had no functionality so it was now time to implement the backend of the design to allow for the

buttons to successfully pass to the next screen (ScrollView — Kivy 2.0.0 documentation, 2021).

Backend of the Buttons

The next step was to then enable the buttons to perform multiple commands. The initial research

into Kivy, within the tutorials they had buttons achieve multiple commands through two methods.

They either called a function that had function calls nested within the function, or they simply had

͞oŶ_pƌess͟ ĐoŵŵaŶds listed oŶ the saŵe ďuttoŶ, ǁhere it would execute all of the commands at

the same time. Ensuring to not over clutter the code with nested function calls, the decision was

made to use the latter method and began by implementing the code that would be the easiest to

implement; getting each of the buttons to transition to the Drawing Screen. This did prove to be a

success, as the ͞“ĐƌeeŶMaŶageƌ͟ Đode perfectly worked first time, as long as the right specification

of the right ID was given.

Fig. This shows the Button Code to transition between screens.

After implementing this code into the other buttons, an issue arose. No research had occurred to

understand how variables functioned within the Builder file of the code. The reason why this

became an issue was to get a background image to appear on the Drawing Screen, the source had to

be specified, and typically in Python, if you were wanting that to be a variable, you would simply

define it and edit it as you wished. However, running through the code in the Builder file, it was not

the same styling as Python so instead research into how variables worked within Kivy͛s Buildeƌ file

was required.

Variables ǁithin Kiǀy’s Builder File

Researching into how variables worked within the Kivy builder file, it seemed to be easy enough

when working with one screen, and only slightly more complicated when working with

͞“ĐƌeeŶMaŶageƌ͟. It was necessary to define the variable as a certain Property within the App

function, allowing it to function similar to a global variable, where you then defined it as a property,

suĐh as ͞“tƌiŶgPƌopeƌtǇ͟ iŶ the Đase of the iŵage path. This then allows you to access the variable

within the Builder file, allowing you to edit them within the file as well, as you simply define them

within a command similar to how you define python variables (Properties — Kivy 2.0.0

documentation, 2021).

35 | P a g e

Background Image

Now that the research into the variables was completed, it became necessary to implement two of

the variables, as the path for the background image would need defined, but also the search code of

the right test image when it came to the comparison would need to be defined. It did occur to me

that the same variable could be implemented for both, however the decision to use two ensured

that no confusion could occur, to ensure that the exact correct information was being passed to the

code.

Adding the Builder File commands were simple, and with an adjustment to the ͞CV2͟ code to allow

for the new variable to define which image was being loaded, the ͞Letter Screen͟ was now

implemented, where pressing a button would load the correct image onto the canvas. However, the

issue was that the command that saved the image, now saved the test data image alongside the user

data. Unsure of how to continue, the Kivy support network said that issues had occurred, as I was

making the canvas itself have the image as its background, instead the solution was to have them as

two separate objects but linked. When enquiring further, ͞‘elatiǀeLaǇout͟ was suggested.

Researching into this, it allows the user to have multiple objects within a widget linked to always

move to the same place, so if one is adjusted, the other is adjusted in the same manner. Reviewing

this showed that this was the correct solution. It was implemented, setting the source to edit a new

image as opposed to the Painter. This then solved the saving problem and the ͞Letteƌ “ĐƌeeŶ͟ ǁas
implemented (Relative Layout — Kivy 2.0.0 documentation, 2021).

Fig. This shows the Letter Screen UI (Note, Microsoft Word effects have been used on the image to

ensure clarity of the borders of the image)

36 | P a g e

Backend and Frontend of the Title Screen

This left the ͞Title Screen͟, which was renamed to the ͞Menu Screen͟ in the code. Similar to the

approach with the ͞Letter Screen͟, development of the backend of the code was initially prioritised

before implementing the frontend of the code. However, due to the nature of the Title Screen it

would again have to be a hybrid form of coding as the UI would take precedence, with the backend

only being a small part of the code.

Following the design documentation, the ͞Title “ĐƌeeŶ͟ ǁould ďe populated ǁith the following:

• The Main Title of the Application

• A Draw Button that would take you to the Letter Screen

• A Settings Button

• A Button to quit the application

Reviewing the implementation, the users had no settings thus far to adjust. If a multisensory

approach was to be followed, as discussed in the Background, then a mute button could be

implemented for the auditory sections of the program. As this implementation would not occur

during this project timeframe, and no other settings were required, this button was omitted from

the implementation process.

Implementing the buttons was relatively simple, as they followed the same command structure as

the Letter Screen. However, an issue arose when working with the Label. Reviewing the command to

set it to scale to the right width, the code was implemented however noticed no difference. Unsure

of how to proceed, the Kivy Support line was enquired into to rule out the possibility of a simple

mistake. They were unsure about the cause of the error when presented it but suggested a solution

to simply change the font size until the correct solution could be researched into. Implementing this

did fix the issue, although it meant the application was no longer scalable as previously hoped. Given

the issues with the canvas previously mentioned, a temporary solution was acceptable until more

time could be spent on the project after the timeframe. Since this was the final screen, the

application was technically complete in terms of the backend for the design documents for the main

screens.

Something noticed when running through the application to check for bugs in the code was that

there was no way to go back in the application, only being able to go forward instead. This

navigational UI was important to the project so a decision was made to implement this at the end.

As previously discussed there was one part of the application left until the end of implementation

that still needed to be coded, the Popup Window.

The Popup Window and Accuracy

 Research began into the Popup windows, and surprisingly there was very little documentation on

creating a popup within the Builder File, instead the documentation showed that users should

mainly work within the Python file to create the Popup. This suited the idea for the popup code, as it

was necessary to perform logic checks using the MSE score within the ͞save_canvas͟ procedure to

ensure that the correct Popup appeared.

37 | P a g e

Implementing the popup, the popup itself contained front end code to change the content of the

elements within the Builder File. To ensure the content was tailored to the application, a Pass and

Fail element within the file was created, allowing for populating the element with the correct

phrasing, as proposed in the Approach. After implementing and setting the MSE score logic check to

a value that considered ͞aĐĐuƌate͟ fƌoŵ tƌialling, an odd issue arose ǁithiŶ the Đode. If a ͞C͟ was

drawn ǁithiŶ the ͞A͟ sĐƌeeŶ, it ǁas ĐoŶsideƌed to haǀe less eƌƌoƌs thaŶ the ͞A͟ dƌaǁiŶgs. This ǁas
obviously incorrect, so it became apparent something within the code was going wrong. Reviewing

the saved files (Test and User), they appeared correct so either the MSE equation itself was incorrect

in the ͞Skimage͟ library or the program was not reading the files correctly. Displaying the files when

they were imported showed a black screen. This eventually allowed for the development of a

solution to the issue.

When using ͞CV2͟, the user specifies the type of import for the code, where it can be imported as a

greyscale image (the default option), or with other methods. Unfortunately, when importing as a

greyscale image, alpha pixels (also known as transparent pixels) such as the ones present in both the

images would be treated as black, and this was an issue with the test data. Due to it being a black

font, the entire image was considered a black square, and so was causing an issue in the comparison.

Now the error was understood, a method was implemented to import via CV2 where it allows for

alpha pixels to be present, so changing the import command solved this issue (opencv-python,

2021).

This caused further reflection about the MSE score, as the user was still submitting a green drawing.

This could cause issues for the MSE score and cause it to be higher than it should be, meaning the

aĐĐuƌaĐǇ ǁould Ŷot ďe solelǇ ďased oŶ the useƌ͛s aĐĐuƌaĐǇ iŶ theiƌ dƌaǁiŶg as intended.

Reviewing how to change the colour of the canvas drawings before the image is saved, the canvas

drawings split into two sections, the line points that turn into vector objects, and the colour objects

assigned to each point. Reviewing this an editable form of this colour object needed to be created

and in the code to change the colour to black, the same colour as the test data.

Reviewing the property variables again, ͞ListProperty͟, a property that allows you to work similar to

a Python list, within Kivy specific widgets like the canvas could be used to ensure this change. The

code was implemented with the ͞on_touch_down͟ function as this would save each line colour,

rather than unnecessarily appending the list with colour data every time movement was detected. It

then consisted of a ͞for loop͟ for the list, changing each of the colour objects to black which then

achieves the result of saving a black image of the user data (Properties — Kivy 2.0.0 documentation,

2021).

Now that the MSE score was fully working and was solely based on the accuracy of the user, it was

necessary to establish the ͞if͟ stateŵeŶts aĐĐuƌaĐǇ. By experimenting with the application numerous

times with the different letters, an MSE score of 1300 was decided, as it allowed the user to still get

the same shape, whilst being slightly off with the transposition (E.g. being the right shape but slightly

to the left). This accuracy threshold also meant that if the user drew a different letter instead of the

correct letter, it would be considered a pass. If a ͞C͟ ǁƌitteŶ oŶ the ͞A͟ screen, the MSE score be a

couple of thousand, certainly nowhere near the 1300 score. This made it possible to implement an

͞if else͟ stateŵeŶt ƌuŶŶiŶg ǁith the positiǀe aŶd Ŷegatiǀe popups, alloǁiŶg foƌ the aĐĐuƌate popups
to appear.

38 | P a g e

UI Work

Now that the Popup Window was set up successfully, it was time to work on some simple buttons

within the ͞Drawing Screen͟ and the ͞Letter Screen͟. Implementation began with a small button

that allows the user to easily return to the previous screen by using the same code structure used

within the Letter and Title Screen. This vastly improved the navigation of the application and gave

the user a lot more freedom within the application, allowing them to go back if they had made a

mistake regarding the letter they had chosen, helping improve the goals that the ͞Montessori

Method͟ had provided.

A pure white background screen did not provide an attractive or professional look for the

application, and so trial and erroring multiple colours began to create the ͞CoŶtƌolled EŶǀiƌoŶŵeŶt͟
that the Montessori Method specifies. It concluded on shades of grey, as it evokes professionalism

as well as a calm atmosphere. The colour of the line was to be a halfway point between mid and

bright green, as the colour is commonly associated with positivity and good outcomes, which might

improve the appeal of using the application. The use of a brighter colour also helps gain attention to

what the user is doing, as they trace the letter it draws attention to the tracing, focusing the user on

the task.

The Main Title used a faded blue again to evoke a calm environment. Consideration was given into

using a brighter colour to help gain the users attention, however decided against it as the main

stipulation in the controlled environment was having a calm form.

The final part of the UI to change was to change the font of the application. This required revisiting

every element implemented and changing the ͞FoŶt FaŵilǇ͟ to ͞LesliesHaŶd͟ as it was locally saved

within the files (LesliesHand Font · 1001 Fonts, 2021).

Conclusion of Implementation

Now that the Application was successfully implemented, it was time to begin self-testing and to

assess the results afterwards from the ethics approved User Testing. First though, compilation of the

program had to be completed.

Now the application was ready to compile, a dual boot OS with Ubuntu as the secondary boot

alongside Windows as the primary OS was installed. The application was compiled using the library

that Kivy recommended: ͞Buildozeƌ͟. It was necessary to list every library required for the

application to compile, as well as specifying the application name, icon, and the files to be included

in the compiling process. After doing so the compilation of the program began, and a concerning

issue occurred. The PC cooling fans began to accelerate at a rapid rate, and the entire PC began to

severely overheat, to a greater extent than experienced previously. This was a thought that had

been dismissed previously as there could be an increased load on the PC for compiling. However,

graphical glitches began to appear on the screen and near the PC fan vents the casing became too

hot to touch. Fearing irreparable damage to the computer was being cause, attempts to stop the

compilation process by exiting the terminal were undertaken. However, it would not cancel, so a

force shutdown was evoked to let the device cool down (Create a package for Android — Kivy 2.0.0

documentation, 2021).

As a result of the impact of the compilation process, It was decided to stop the compilation process

into a mobile application, as it would still work as a desktop application to test for usability if a

touchscreen laptop was used. Given more time and resources after the project timeframe, it would

be possible to convert it into a mobile application then, when the UI is more akin to a mobile screen.

39 | P a g e

Results and Evaluation

Research Methods

During the implementation phase submission of the ethical approval forms to the Computer Science

Ethical Committee (SREC) had been achieved. Originally, plans to run a short length of testing with

the correct age group were expected, to allow for a brief grasp of whether the application could

have its use within the School environment. This was not possible unfortunately, due to the COVID-

19 restrictions at the time. Schools were struggling to keep in person teaching safe for their teachers

and students, and so all the schools contacted to run the tests were reluctant in giving permission as

it would ďe aŶ uŶkŶoǁŶ eleŵeŶt ĐoŵiŶg iŶto theiƌ ͞Buďďle͟.

Some schools also raised concerns, as they did not want their users to be the first users to test the

application. Instead, they wanted research and groups to have already tried and given their opinion

on the application first before allowing for their children to test the applications for the actual

benefits.

As it was looking highly unlikely to test the efficacy of the application with the correct age group, it

was necessary to change the age group targeted during the testing period. By checking the usability

of the application within a more mature age group (Above 18s), the concerns the schools raised that

the application was untested could be addressed and establish whether the testing user considered

the application appropriate for testing with younger ages, or whether they did not think it was

appropriate for the proposed age range.

This change meant resubmitting the ethical approval application with this new aim in mind. The

questionnaire was adjusted, as it originally assessed whether the application was showing literacy

improvement, instead of checking the usability of the application. Literacy improvement questions

were still included, as the aim of the application is to show these kinds of results. This would help

the consideration as to whether the application was worth a prolonged test afterwards. If the testing

users reflected that the application had a negative impact on their abilities then that would require a

large amount of redesigning of the application, as this outcome would be contrary to the

application͛s aims.

To allow for graphical data to be produced, a series of rating questions was used, where 1 was

considered the most negative response and 10 was considered the most positive. This allows for the

viewing each useƌ͛s data aŶoŶǇŵouslǇ aŶd develops into measuring the correlation within the data

sets to see if the application was indeed a success. In the questionnaire, a set of Agree or Disagree

statements were included to find out their opinions. By using this data, it can be collated and used to

find out general opinions of the group rather than focusing on each individual user response. This

allows for the extrapolation of what a larger group would consider to be the general opinion. The

questionnaire was completed with an open-ended question, allowing the user to accurately

represent their experience. It was decided to ask what they wanted specifically to improve in the

application as it would allow for improvements in the application before running a prolonged test on

the age range the application was made for.

40 | P a g e

There were a total of 15 participants in the sample. This is less than would be considered ideal

however due to COVID-19, people were less willing to come try out the project in person in case of

transference of the disease. This is still a substantial enough group to make suggestions and work

out preliminary solutions. However, any claims cannot be brought forward as a much bigger user set

would be required to use the application first. The group themselves were composed of a mix of

university and non-university educated adults from the age range of 20-30, as this mix allowed for

the gauging in usability of the program from the adult perspective.

Graphical Data from the Questionnaires

To ensure anonymity, the Users positions for the graphical data was randomised for each graph, e.g.

User 1 for Graph 1 may not be the same User 1 in Graph 2.

The first two questions from the questionnaire were related to each other, allowing the user to self-

reflect on their handwriting skills before the application compared to how it was after using the

application:

Fig. This shows how the Users rate themselves in terms of Legibility before and after the application.

Despite the application being aimed for those of a younger age, some of those who were out of the

age range of the application self-reflected on showing improvement after using the application

which raises two points:

- Could the applications age scope be extended to involve a more varied age range instead of

just Early Years?

- This shows extreme promise for the thought of an extended test with Early Years education.

If adults have a chance to improve their literacy ability, when they were not the targeted age group,

then it shows a positive base for then testing with younger years who are more susceptible to

adaptation and change.

1

2

3

4

5

6

7

8

9

10

User

1

User

2

User

3

User

4

User

5

User

6

User

7

User

8

User

9

User

10

User

11

User

12

User

13

User

14

User

15

User Literacy Self Reflection

Score Before Application Use Score After Application Use

41 | P a g e

The next question was to consider the useƌ͛s eǆpeƌieŶĐe regarding how easy the application was to

use, whether they came into any difficulties as it is important to ensure an easy-to-use UI when

thinking about Early Years users.

Fig. This shoǁs the Useƌ͛s sĐoƌes oŶ the ease of use ǁith the appliĐatioŶ.

Fƌoŵ the useƌ͛s sĐoƌes it shows a positive result from the ease of use, with max or very high scores

giǀeŶ fƌoŵ the useƌ͛s testiŶg peƌiod. This is positiǀe oŶ the appliĐatioŶ as a ǀeƌǇ easǇ to use
application will be highly beneficial for Early Years.

The next question the questionnaire asked was how Inviting the application was. If the application

was not very friendly for the user to use, then they would be less likely to return to the application

after using it once. Given the aim to use it as a teaching tool for an extended period of time, this

question contained vital data.

Fig. This shoǁs the Useƌ͛s sĐoƌe ďased oŶ hoǁ happǇ theǇ ǁeƌe to use the appliĐatioŶ.

The graph outlines a mixed response from the testing users. As none of the results provide a

maximum score, the comments will be reviewed at the end to understand why such varied scores

were given and if possible, to work out a solution to improve these scores.

1

2

3

4

5

6

7

8

9

10

User

1

User

2

User

3

User

4

User

5

User

6

User

7

User

8

User

9

User

10

User

11

User

12

User

13

User

14

User

15

Ease of Use

1

2

3

4

5

6

7

8

9

10

User

1

User

2

User

3

User

4

User

5

User

6

User

7

User

8

User

9

User

10

User

11

User

12

User

13

User

14

User

15

Inviting Nature of the Application

42 | P a g e

The next questions were all agree/disagree statements, so by collating the data and find the sum of

agree vs disagree, a more in depth review aďout the useƌ͛s opiŶioŶs as a foĐus gƌoup can be

obtained to make slightly more general statements.

Fig. This shoǁs the Useƌ͛s responses to the Agree and Disagree Statements

The first question asked whether the User understood the Purpose of the application. It shows a

positive result from the users, showing that when it comes to using the application, it is quite easy to

understand what you need to do and how to progress. This demonstrates a positive experience with

the UI as well as the backend. As there were no negative responses, participants did not raise any

issues relation to the context of this question that require to be addressed. This question is a key

question from the agree/disagree statements, as an application where you do not understand the

purpose of it is confusing and prevents the aim of the application from being seen.

The second question asked was whether they understood how to use the application. This directly

checks the efficacy of the UI as well as providing a general opinion on the applications purpose as

well. Understanding how to use the application allows the user to achieve the aim of the application

and received a positive response from user, with no negative responses present.

The third question asked about the suitability of the application foƌ ͞uŶdeƌ ϭϭs͟. ‘atheƌ thaŶ
specifying the exact age range, a general age range that the application was aimed at was proposed,

as this type of application may still be useful for ages older than Early Years. This may provide a basis

for potential continuation and expansion of this project to reach a larger age range. The response

fƌoŵ the useƌ͛s ǁas agaiŶ very positive, as if they believe it is suitable for that age range, it provides

a good base for trying to reach a conclusion as to whether this application is beneficial for Early

Years education and can help mitigate some of the apprehension that schools have expressed about

the sustained testing period.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Purpose of Application How to Use Suitability for Age range Confidence in Literacy

Agree/Disagree Statements

Agree Disagree

43 | P a g e

The final questioŶ ǁas ǁhetheƌ the useƌ͛s felt ŵoƌe ĐoŶfideŶt iŶ theiƌ liteƌaĐǇ aďilities afteƌ usiŶg the
application. Knowing this would be useful as it would a definitive response as to whether the

applications scope could be extended to involve older ages. Looking at the responses, it seems to be

a slightly positive response, meaning that the scope should certainly be considered in the future, but

is not a definitive answer for the question. It also provides a good basis for the hypothesis as if adults

are feeling more confident in their abilities, then children might do after using the application as

well.

Notes from the Questionnaires

This section considers the validity of the free-text comments from the end of the questionnaire. Due

to the nature of the application. The users could have experienced issues with certain areas of the

application that are required be that format for other reasons. If this is the case, then decisions must

be made between keeping the application towards this objective or modifying the application to

better suit the user feedback.

One common improvement suggested was an improvement on the colouring of the UI. One user

stated, ͞Could ďe ŵoƌe ǀisuallǇ eŶgagiŶg͟, aŶd otheƌ useƌs oŶ theiƌ ƋuestioŶŶaiƌe haǀe stated the
same or very similar comments suĐh as ͞Could look a ďit ŶiĐeƌ͟. The improvement is valid, and some

change is necessary to make it more visually appealing especially when it comes to younger ages.

However, care must be taken with regards to the visual style. Too many colours could become too

distƌaĐtiŶg, aŶd Ŷot ďe ĐoŶsideƌed a ͞CoŶtƌolled EŶǀiƌoŶŵeŶt͟ within the Montessori Method.

Further research into what colours are more vibrant, but still considered calm is a good avenue of

research to improve on the application. Something along the blue range would allow for a more

colourful application that would appeal more to Early Years. According to a psychological report on

how colour affects College Students, the blue Đolouƌ ƌaŶge ͞eŶĐouƌages iŶtelleĐtual aĐtiǀitǇ, ƌeasoŶ,
aŶd logiĐal thought͟ (Kurt et Osueke,2014 p. 4) which proves beneficial for the application as the

aiŵ is to iŵpƌoǀe theiƌ skills iŶ liteƌaĐǇ. The ƌepoƌt also ŵeŶtioŶed that it is a ͞soothiŶg, Đalŵing

Đoloƌ͟ (Kurt et Ouseke,2014 p. 4) which is exactly what is necessary to not distract the user in

achieving their improvement (Kurt et Osueke,2014).

AŶotheƌ poiŶt a useƌ ďƌought up ǁas ͞PƌoǀidiŶg the optioŶ to haǀe diffeƌeŶt dƌaǁiŶg Đolouƌs͟ as it

would help those with learning disabilities. This is an improvement to add, as the Montessori

method is commonly used in conjunction with those with learning disabilities. A palette button on

the drawing screen could be implemented, in the top right of the application to ensure difference

between the drawing submission buttons and the navigation buttons. It would shoǁ ͞“plats͟ of
paint in different colours when expanded for the user to decide exactly which colour they want to

draw in. Due to the way the code has been implemented to turn the useƌ͛s submission black, this

would not prove an issue in that sense either.

A poiŶt a useƌ added to the ƋuestioŶŶaiƌe ǁas ͞Moƌe Visual ‘eǁaƌds e.g. PoiŶts oƌ “ouŶds͟.
Although points are a form of positive reinforcement, it could cause competitiveness, which could be

seen as negative. In terms of the sound, as mentioned previously in the Background, the

͞MoŶtessoƌi Method͟ uses a ŵultiseŶsoƌǇ foƌŵ of leaƌŶiŶg so sounds should play a key part in the

program so this part of the point is valid and should be added into the future work section.

44 | P a g e

Evaluation

In conclusion, through this evaluation overall the program was a success in the testing section. There

are some issues within the testing process, however the results have allowed for the gauging of the

chance for success of the application with the correct age range. The sample users were not the age

range I had wished, however the results given from the users provided results that should be

researched further, whether from the literacy-based improvement of adults, or from the

psychological point of view of their self-reflections of their literacy ability.

The questions asked were appropriate to develop an understanding of the usability within the

application. The first set of questions allowed for a unique opportunity to know whether the scope

of the project could be extended, as well as providing a small insight into the success of the

application within the age range desired. As the feedback was positive, with some users expressing

they have had self-reflected improvement; it demonstrates that the application can produce

improvements in legibility and learning. The testing questions show a clear sign of a positive

improvement on literary abilities and provide a positive hypothesis for younger ages as well.

Future Work
Regarding the state of the current application, the most pressing form of future work would be to

turn the desktop version of the application into a mobile platform application. When trying to

convert the application to the mobile platform on a dual boot OS, it began to severely overheat the

computer, and so to mitigate the risk of damage and corruption to both the hardware and the data

inside the computer I had to cancel compiling and shut down the computer. The system

requirements for it to be compiled would require the computer to not contain the dual boot of the

Linux OS, instead ensuring Linux has full access to the system resources. This would bring the

application to the point of completion within the plan of approach.

Testing did produce comments about the UI that suggest improvement is required. After discussing

in the Testing section, the adaptation of the UI is important. Switching from a grey styling to a bluer

colour palette will allow for a better user experience with the application, as well as still providing a

calm experience throughout (Kurt,2014).

One point raised during testing relates to a consideration mentioned in the Background. Due to the

time limitations within the project, the kinaesthetic form of learning was chosen from the

͞Montessori Method͟, with no form of multiseŶsoƌǇ leaƌŶiŶg that ǁas pƌeseŶt foƌ the ͞“aŶdpapeƌ
Letteƌs͟ aĐtiǀitǇ that the application was based on. Involving auditory stimuli such as a voice saying

͞A͟ ǁheŶ the ͞A͟ letteƌ appeaƌs ǁould pƌoǀide the ŵultiseŶsoƌǇ leaƌŶiŶg iŶ a foƌŵat ŵoƌe like the

͞Montessori Method͟, allowing the application to possibly being used in conjunction with the

method, as opposed to what the application current was, a teaching tool to generally improve

writing (Sandpaper Letters - Refresh Your Presentations - Montessori Services, 2021).

The first point of improvement after this would be to increase the number of letters that the user

can attempt to learn. The first set of data to be added would be the lower-case form of the letters

already present, as making sure they have a full grasp of one alphabet before moving onto different

forms would be key. This would also require some research into the importance of differentiating

the Capital ͞I͟ fƌoŵ a loǁeƌĐase ͞L͟, ŵaŶǇ otheƌ letteƌs ĐaŶ ďe ĐoŶfused ǁith eaĐh otheƌ regarding

the lower case. A cleaƌ distiŶĐtioŶ ďetǁeeŶ loǁeƌĐase ͞G͟, loǁeƌĐase ͞Q͟ aŶd loǁeƌĐase ͞P͟ ǁould
be required.

45 | P a g e

This would be important to do, as making sure that the application is easy to understand for all ages

is important. It might also require a reworking of the MSE accuracy to ensure that the application

itself can work out the differences between the shapes.

The number of letters could also be increased to include other languages, with each letter having the

metadata of which language it can appear in. If the user wants to learn Russian, they could choose

the language in the settings and the only letters that would appear would be the Russian characters.

This could either be done by editing the metadata and searching through all the data for those

specific snippets of data, or instead they could be sorted by folder, with duplicate characters being

pƌeseŶt suĐh as ͞a͟ appeaƌiŶg iŶ ŵultiple foldeƌs as it is ĐoŶtaiŶed iŶ ŵultiple laŶguages. This ǁould
certainly be less efficient as you would have a large amount of redundancy in the number of images,

however further research would be required into implanting and reading the metadata in the

images, or whether another form of recognising the letters would be necessary. Integrating multiple

languages would give the application a wider scope, not only in age, as users from a vast variety of

ages appreciate learning languages from step one, and applications like Duolingo lack the ability to

learn how to write the characters, instead focusing on words and grammar, which has its own

benefits (Duolingo - The world's best way to learn a language, 2021).

If you wish to learn a language fluently, learning how to write each character is also vastly important

(particularly for character-based languages, such as Japanese) as auditory and kinaesthetic retention

is different. Having language options would also be important for the scope of the project as

currently the whole of the application is in English. For those who cannot understand English, it will

be difficult for them to navigate the menus and use the application. Even though the UI has been

tailored to be as intuitive as possible with as little complex language as possible as well, it is still

going to be difficult for those who do not speak the language to fully understand what would be

happening, and especially if some of the other features in the future work are implemented. Having

the buttons to change language would be a useful feature to help increase the reach of the

application as well as making it easier for people who are using the application as a way of learning

English as a second language to navigate the menu.

In certain circumstances the labels on the buttons provided can be changed, however it would limit

the creativity in the button design. Using images for the buttons instead of the native UI would help

appeal more to younger ages if they were colourful and unique but would limit how I was able to

affect the labelling in the buttons. Further research would be required into whether a hybrid use of

both features could work. This would be a very important piece of the future work, as it allows for a

greater appeal to other countries. Giving people the chance to allow themselves to learn about

other languages is crucial for a greater understanding between cultures and allows applications that

further impress on this teaching such as Babbel or Duolingo to create a more fluid way of digital

learning. Even though it was not the original intention, the application could be developed to

complement these language learning applications to create a fluid transition from a certain level of

learning to the next, allowing users to progress like how school years gradually increase the difficulty

of learning as to not overwhelm (Duolingo - The world's best way to learn a language, 2021) (GmbH,

2021) (Text and Badida, 2021).

46 | P a g e

Having different levels of difficulty to ensure a learning progression for the user is another aspect of

potential future work. This could be achieved in one of two ways, with positives and negatives

effects for each suggestion that inevitably would help the development of the user if either way

were chosen.

Before addressing the potential options considered, the idea of simply requiring a lower MSE score

to cause a pass to trigger was dismissed. In relation to furthering the difficulty, it is not a user

satisfying method of increasing difficulty, as the user will not be able to notice any difference on the

front end of the application. Changing the applications process, such as the methods I am about to

discuss, will also enhance user interest as something different will be happening within the

application, rather than replicating the same task leading to monotony.

The first option ǁould ďe to deĐƌease the foŶt size, aŶd haǀe ŵultiple ͞leǀels͟ of foŶt size, alloǁiŶg
the user to attempt to make their lettering more and more accurate and closer to how a pen size

would look. The pixel width would decrease, and the dimensions of the letter would decrease

slightly as well, to allow for the integration into working with pens. This could prove beneficial

especially in primary schools as users would get used to having to make smaller movements, like

how they become used to it in the classroom. This approach comes with some drawbacks; as the size

decreases, it might become too difficult for the user to accurately trace the letter with their finger or

touch screen tool if they are using for example a tablet pen. This does seem like it would increase

the difficulty but affecting the size of the letter could cause it to be too dextrously challenging for

anyone to accurately map it with say a finger, which is the entire point of the research into the

͞Montessori Method͟, allowing users to learn the shape of the letter with their finger as a way of

learning how to write the letter themselves. Having a letter too difficult for anyone to map

accurately with their finger would cause the user to be disheartened or even frustrated as it could be

impossible for the MSE score to be low enough to consider the attempt a pass (Pickering, 1992).

The other form of increasing the difficulty would be to change the font style. Rather than it being the

standard test data, you could instead display and compare with a new font that would be considered

more complex or elaborate. This comes with several benefits, as it would allow the user not only to

feel a sense of a difficulty curve, it would also allow the user to experience writing in multiple fonts,

as typical human writing is an amalgamation of multiple fonts, allowing the user to start to gain this

understanding and figure out which font suits them the best. This also allows the user to snap their

concentration and enjoyment of the application back, as running the same test over and over can

cause the monotony to become apparent and the user might stop using the application or even

delete the application. The research also indicated that younger ages have some of the shortest

attention span, so making sure that the application does not become too monotonous is essential to

keep use of the application active (Balance, 2021).

47 | P a g e

This method however does come with some drawbacks, as the more complex fonts could experience

the same issues as the previous method, when using the same large font size, the user might not be

able to differentiate some of the details of the different font, and it could end up looking like a blob,

so a reduction in the font width might be necessary. This raises the same issue as before, where

changing the font size could cause the application to simply become too difficult to use, instead

causing the user to leave due to frustration instead of boredom. The other issue is the font itself

could be too complex to learn. As younger ages could be using the application or those with learning

difficulties, it is vital that even at harder difficulties, it does not confuse the user or cause any

pƌeǀious pƌogƌess to ƌeǀeƌt, so leaƌŶiŶg a ŵoƌe Đoŵpleǆ ͞G͟ that is a completely different shape to

the previous ͞G͟ that they had been learning the entire time could cause the useƌ͛s previous

knowledge of the letter to deteriorate, as well as possibly seeming like the new letter they are

learning to be a letter from another language instead of the same letter. Mitigating that would be

essential in making the difficulty change is allowing the user to stay with the application instead of

instead finding themselves more confused after using the application.

Comparing the two methods, in the future plans for the application, changing the font itself is the

way forward, as it will prevent the attention span of the user to deteriorate. However, in doing so a

hybrid version of the two must be put in place, where making sure that the letter is still recognisable

is key, so as the difficulty change the font, the pixel width of the letter might decrease to ensure

clarity within the letter. Further research should be undertaken to ensure that the fonts chosen are

still recognisable as the letters themselves. Test groups of various ages should be put in place to

ŵatĐh the ĐoƌƌeĐt ͞paiƌ͟ fƌoŵ ǀaƌious foŶts of the saŵe letteƌ, as ǁell as soŵe diffeƌeŶt letteƌs iŶ
fonts that seem similar to ensure that they are not chosen. These focus groups would allow for the

correct choice in the fonts, to ensure a natural and fluid progression of knowledge within the

application.

48 | P a g e

Conclusions
Overall, the analysis of the project was more focused on testing the usability of the project instead

of whether the application can provide support for teaching Early Years Education. This deviation is

acceptable though as it provides a good basis for a study to be conducted afterwards around the

point of providing support. This project allows for a solid base of information and does have some

positiǀe Đlaiŵs aďout the appliĐatioŶ. Due to the iŶĐƌease iŶ soŵe useƌ͛s liteƌaĐǇ aďilitǇ ǁith the use
of the application, it provides some results that require future discussion.

The testing itself has proved interesting as it gives a positive recommendation from the user base to

use the application with the correct age range. It also lends itself to the hypothesis that the

application could be used for the age range outside of the one specified in the report, possibly

allowing for anyone to use the application if they feel like they need to improve their legibility when

it comes to writing on paper, something that will become more key as face-to-face interactions will

be becoming more and more common.

From the testing it is apparent that the application is an overall success. Taking into consideration

the comments that the users made is key, and in the future work the improvements considered to

the application are discussed to ensure that the comments are fixed for future versions of the

applications.

Due to the positive results given, especially to the usability, the testing of the application in its

current state is a positive experience. Also, due to the data gathered there would be a positive

experience from prolonged testing with the correct age range.

The Future work of the application will give the application a needed edge in the use within teaching

and will allow the application to become a true success as a teaching tool if a prolonged test is

carried out. It could then provide some large-scale appeal to other countries if the language future

work is continued, and multiple languages are implemented.

49 | P a g e

Reflection on Learning

Skills

Undertaking this project, leading to the creation of this report, has enabled me to develop a number

of key skills.

From the Background and Approach sections, I improved on my ability with referencing, as both

sections required research into Research Papers and coding documentation, but also provided the

opportunity to learn how internet articles are referenced in the Cardiff Harvard style; something I

had not attempted before.

In relation to the above point, I also improved my ability in researching topics not relating to

Computer Science. Due to the nature of the project, I had to look into psychology and education-

based papers, which followed a very different format than I was used to. Doing so allowed me to

improve my skills in looking for specific citations that I needed, and also in looking for the context for

the citations to ensure I was using them in the right place for the right reason.

The Approach and Implementation allowed me to have a much better grasp on the creation of large-

scale projects. Until now I had never undertaken a project involving this much time and work. This

allowed me to figure out how I needed to structure the project, improving my time management as

well as my critical thinking relating to managing projects.

Due to the limited timeframe, it was necessary to think critically about what exactly the user would

need and decide to remove sections that I did not think were necessary. This improved my

independent work skill, as well as improving my ability to take a step backing when looking at these

kinds of projects rather than being narrow minded about what I wanted in the project.

I learned skills in how to present a case to the ethics committee to ensure that my testing could go

ahead. This is important as you need to make sure that any form of testing with other users is

ethically approved to ensure that you are not taking advantage of anyone.

I improved my skills of writing user testing formatted questionnaires, ensuring that the right

information would be taken from the user whilst still guaranteeing anonymity. As I had never had to

phrase any questions so carefully in the past, it was a new and exciting experience to learn.

A skill I improved on as well was my pragmatism. Due to the nature of the report, a very practical

approach was required to ensure that the project would be completed in both the theory side as

well as the application itself.

In Implementation, I improved on my skill of prioritisation. As the project involved multiple

Functional requirements, it was important to prioritise and decide which requirement should be

completed first, and which parts of the application themselves should be completed, something I

improved on from my Initial Plan.

50 | P a g e

Challenges

I faced several challenges during the project. Due to COVID-19 I was unable to have as many testers

as I wished to have during the testing period however I think that I overcame this issue with my

phrasing of the questionnaire to ensure that the participants information was as useful as could be.

Another challenged I faced was in trying to initially get schools onboard for the testing with under

18s. This was unfortunately refused due to COVID-19 concerns, so I overcame that issue by instead

testing the usability of the application with adults to ensure that I could find out whether my

application was successful, even if to a lesser extent than before.

The final Main issue I faced was that the application itself was not able to easily compile into Android

to allow for the easy deployment and testing. This was an issue I had to overcome to allow for

testing and I think the adaptability and initiative skills I possessed showed, instead allowing it to be

run on a touchscreen laptop to ensure the closest comparison with a tablet/phone for the testing is

an apt adaptation.

Work with Supervisor

As I had not discussed how many meetings I would have with my supervisor in my initial plan, I

decided to have an in-person discussion at the beginning of the project with him about how often

we should meet. We decided to meet when certain milestones had been made as I preferred a more

independent stance on the implementation side of the coding. Due to unforeseen circumstances, I

was unable to meet as often as I had hoped, however I believe that I gained as much information as I

could during each meeting to make up for it.

51 | P a g e

Appendices

52 | P a g e

53 | P a g e

54 | P a g e

55 | P a g e

56 | P a g e

57 | P a g e

58 | P a g e

59 | P a g e

60 | P a g e

61 | P a g e

62 | P a g e

63 | P a g e

64 | P a g e

65 | P a g e

66 | P a g e

67 | P a g e

68 | P a g e

References

BBC News. 2020. Zoom sees sales boom amid pandemic. [online] Available at:

<https://www.bbc.co.uk/news/business-52884782> [Accessed 24 May 2021].

Lillard, A. and Else-Quest, N., 2006. The early years: Evaluating Montessori

education. Science, 313(5795), pp.1893-1894.

Gruenberg, S., 1912. What is the Montessori Method?. Scientific American, 106(25), pp.564-565.

Pickering, J.S., 1992. Successful applications of Montessori methods with children at risk for learning

disabilities. Annals of Dyslexia, 42(1), pp.90-109.

Reading Rockets. 2021. Clues to Dyslexia in Early Childhood. [online] Available at:

<https://www.readingrockets.org/article/clues-dyslexia-early-childhood> [Accessed 25 May 2021].

Lillard, A.S., 2013. Playful learning and Montessori education. NAMTA Journal, 38(2), pp.137-174.

Montessoriservices.com. 2021. Sandpaper Letters - Refresh Your Presentations - Montessori Services.

[online] Available at: <https://www.montessoriservices.com/ideas-insights/sandpaper-letters-

refresh-your-

presentations#:~:text=The%20Sandpaper%20Letters%20are%20one,writing%20comes%20first%

2C%20then%20reading.> [Accessed 26 May 2021].

GitHub. 2021. BeeWare. [online] Available at: <https://github.com/beeware> [Accessed 27 May

2021].

dbader.org. 2021. Using Python for Mobile Development: Kivy vs BeeWare – dbader.org. [online]

Available at: <https://dbader.org/blog/python-mobile-development-kivy-vs-beeware> [Accessed 25

May 2021].

Kivy.org. 2021. Kivy: Cross-platform Python Framework for NUI. [online] Available at:

<https://kivy.org/?place=forum%2Fkivy-

users&hidesubject=true&hideforumtitle=true&showsearch=true&showpopout=true&parenturl=

http%3A%2F%2Fkivy.org%2F%23#gallery> [Accessed 27 May 2021].

Html.spec.whatwg.org. 2021. HTML Standard. [online] Available at:

<https://html.spec.whatwg.org/> [Accessed 25 May 2021].

Kivy.org. 2021. Installing Kivy — Kivy 2.0.0 documentation. [online] Available at:

<https://kivy.org/doc/stable/gettingstarted/installation.html> [Accessed 25 May 2021].

Rosebrock, A., (n.d.). How-To: Python Compare Two Images - PyImageSearch. [online]

PyImageSearch. Available at: <https://www.pyimagesearch.com/2014/09/15/python-compare-two-

images/#:~:text=The%20SSIM%20method%20is%20clearly,but%20the%20results%20are%20dramati

c.> [Accessed 24 May 2021].

Wang, Z., Bovik, A.C., Sheikh, H.R. and Simoncelli, E.P., 2004. Image quality assessment: from error

visibility to structural similarity. IEEE transactions on image processing, 13(4), pp.600-612.

Play.google.com. (n.d.). Montessori Preschool. [online] Available at:

<https://play.google.com/store/apps/details?id=com.edokicademy.montessoriacademy&hl=en_GB

&gl=US> [Accessed 24 May 2021].

69 | P a g e

(n.d.). Northwest Montessori Preschool. [online] Available at:

<https://www.nwmontessori.vic.edu.au/apps/> [Accessed 24 May 2021].

Mobile Montessori. (n.d.). Mobile Montessori. [online] Available at:

<https://www.mobilemontessori.org/> [Accessed 24 May 2021].

Ltd, E., (n.d.). 6 Best Montessori Apps For Kids - Download Now | Educational App Store. [online]

Educational App Store. Available at: <https://www.educationalappstore.com/best-apps/best-

montessori-apps-for-kids> [Accessed 24 May 2021].

Lacroix, J., (n.d.). The Prepared Environment: Six Principles. [online] Kingsley.org. Available at:

<https://www.kingsley.org/blog/the-prepared-environment-six-principles> [Accessed 24 May 2021].

Kivy.org. (n.d.). Kivy: Cross-platform Python Framework for NUI. [online] Available at:

<https://kivy.org/#home> [Accessed 24 May 2021].

Beeware.org. (n.d.). Write once. Deploy everywhere.— BeeWare. [online] Available at:

<https://beeware.org/> [Accessed 24 May 2021].

Kivy.org. (n.d.). Pong Game Tutorial — Kivy 2.0.0 documentation. [online] Available at:

<https://kivy.org/doc/stable/tutorials/pong.html> [Accessed 24 May 2021].

Docs.python.org. (n.d.). tkinter — Python interface to Tcl/Tk — Python 3.9.5 documentation. [online]

Available at: <https://docs.python.org/3/library/tkinter.html> [Accessed 24 May 2021].

Kivy.org. (n.d.). Kv language — Kivy 2.0.0 documentation. [online] Available at:

<https://kivy.org/doc/stable/guide/lang.html> [Accessed 24 May 2021].

PyPI. 2021. opencv-python. [online] Available at: <https://pypi.org/project/opencv-python/>

[Accessed 25 May 2021].

www.mathworks.com. (n.d.). Draw Shapes and Lines - MATLAB & Simulink. [online] Available at:

https://www.mathworks.com/help/vision/ug/draw-shapes-and-lines.html [Accessed 24 May 2021].

Android Developers. 2021. Download Android Studio and SDK tools | Android Developers. [online]

Available at: <https://developer.android.com/studio> [Accessed 25 May 2021].

Python.org. 2021. Welcome to Python.org. [online] Available at: <https://www.python.org/>

[Accessed 25 May 2021].

Oracle.com. 2021. Java SE Development Kit. [online] Available at:

<https://www.oracle.com/uk/java/technologies/javase/javase-jdk8-downloads.html> [Accessed 25

May 2021].

kivy.org. (n.d.). Canvas — Kivy 2.0.0 documentation. [online] Available at:

https://kivy.org/doc/stable/api-kivy.graphics.instructions.html [Accessed 24 May 2021].

70 | P a g e

Kurt, S. and Osueke, K.K., 2014. The effects of color on the moods of college students. SAGE

Open, 4(1), p.2158244014525423.

Scikit-image.org. 2021. scikit-image: Image processing in Python — scikit-image. [online] Available

at: <https://scikit-image.org/> [Accessed 25 May 2021].

Statistics How To. 2021. Mean Squared Error: Definition and Example - Statistics How To. [online]

Available at: <https://www.statisticshowto.com/probability-and-statistics/statistics-

definitions/mean-squared-error/> [Accessed 25 May 2021].

1001 Fonts. 2021. LesliesHand Font · 1001 Fonts. [online] Available at:

<https://www.1001fonts.com/leslieshand-font.html> [Accessed 25 May 2021].

GIMP. 2021. GIMP. [online] Available at: <https://www.gimp.org/> [Accessed 25 May 2021].

Kivy.org. 2021. Input management — Kivy 2.0.0 documentation. [online] Available at:

<https://kivy.org/doc/stable/guide/inputs.html> [Accessed 25 May 2021].

Kivy.org. 2021. Widget class — Kivy 2.0.0 documentation. [online] Available at:

<https://kivy.org/doc/stable/api-kivy.uix.widget.html> [Accessed 25 May 2021].

Docs.python.org. 2021. os — Miscellaneous operating system interfaces — Python 3.9.5

documentation. [online] Available at: <https://docs.python.org/3/library/os.html> [Accessed 26 May

2021].

Kivy.org. 2021. Box Layout — Kivy 2.0.0 documentation. [online] Available at:

<https://kivy.org/doc/stable/api-kivy.uix.boxlayout.html> [Accessed 26 May 2021].

Kivy.org. 2021. Screen Manager — Kivy 2.0.0 documentation. [online] Available at:

<https://kivy.org/doc/stable/api-kivy.uix.screenmanager.html> [Accessed 26 May 2021].

Kivy.org. 2021. ScrollView — Kivy 2.0.0 documentation. [online] Available at:

<https://kivy.org/doc/stable/api-kivy.uix.scrollview.html> [Accessed 26 May 2021].

Discord. 2021. Discord | Your Place to Talk and Hang Out. [online] Available at:

<https://discord.com/> [Accessed 26 May 2021].

Kivy.org. 2021. Properties — Kivy 2.0.0 documentation. [online] Available at:

<https://kivy.org/doc/stable/api-kivy.properties.html> [Accessed 26 May 2021].

Kivy.org. 2021. Relative Layout — Kivy 2.0.0 documentation. [online] Available at:

<https://kivy.org/doc/stable/api-kivy.uix.relativelayout.html> [Accessed 26 May 2021].

Kivy.org. 2021. Create a package for Android — Kivy 2.0.0 documentation. [online] Available at:

<https://kivy.org/doc/stable/guide/packaging-android.html> [Accessed 26 May 2021].

Duolingo. 2021. Duolingo - The world's best way to learn a language. [online] Available at:

<https://www.duolingo.com/> [Accessed 26 May 2021].

GmbH, B., 2021. Learn Spanish, French and Other Languages Online | Babbel. [online]

Uk.babbel.com. Available at: <https://uk.babbel.com/> [Accessed 26 May 2021].

71 | P a g e

Balance, B., 2021. Normal Attention Span Expectations By Age. [online] Brainbalancecenters.com.

Available at: <https://www.brainbalancecenters.com/blog/normal-attention-span-expectations-by-

age> [Accessed 26 May 2021].

Kivy.org. 2021. Builder — Kivy 2.0.0 documentation. [online] Available at:

<https://kivy.org/doc/stable/api-kivy.lang.builder.html> [Accessed 27 May 2021].

Text, K. and Badida, P., 2021. Kivy Update Dynamic Label Text. [online] Stack Overflow. Available at:

<https://stackoverflow.com/questions/43877241/kivy-update-dynamic-label-text> [Accessed 27

May 2021].

