
Cardiff University Computer Science

CM3203 Final Report

Implementing a GNU Radio driver for

the FLEX-6400 SDR Transceiver

by

Jonny Slim - C1634544

Supervisor: David Humphries

Client: Derek Kozel

May 2021

Contents

Introduction 1

Brief Summary . 1

Motivation . 4

Background 5

The Wider Context . 5

Sources of Relevant Information . 7

Helpful Background on Amateur Radio and SDRs 9

Approach 11

Architecture . 11

Benefits & Drawbacks . 16

Implementation 18

Authorisation & Authentication . 18

Data Handler . 25

Creating an Audio Stream . 36

GNU Radio . 38

Future Work 43

Evaluation, Results & Testing 46

Testing . 46

ii

iii

Evaluation . 51

Personal Reflection . 56

List of Figures 59

Code Listings 60

Abbreviations 62

Bibliography 63

Introduction

Brief Summary

This project is entitled “Implementing a GNU Radio driver for the FLEX-6400 SDR

Transceiver”. The first step of this report breaks down this title into it’s component parts

and elucidates them. Firstly, GNU Radio is an open-source development toolkit[13], ca-

pable of developing and simulating real-world radio systems. It is a modular flow-based

framework, in which predefined functions and operations are pieced together to develop

specific communication systems. Its infrastructure is written in C++, but the user-created

systems and tools can be written in Python, which is ideally suited for quick prototyping

and adaptable approaches; given the time constraints of the project both these factors

proved beneficial. The project would have required building with C++ if the data rates

involved were high, but streaming from the radio is less than 1 Mb/s (48 kSample/s * 4

bytes/sample * 2 channels): easily processed by Python in real-time.

Figure 1 shows a simple example of how a GNU Radio program is built, where different

Options

Title: Tutorial 1

Output Language: Python

Generate Options: QT GUI

Variable

Id: samp_rate

Value: 32k

out

cmd

freq

Signal Source

Sample Rate: 32k

Waveform: Cosine

Frequency: 1k

Amplitude: 1

Offset: 0

Initial Phase (Radians): 0

outin
Throttle

Sample Rate: 32k
in

QT GUI Time Sink

Number of Points: 1.024k

Sample Rate: 32k

Autoscale: No

Figure 1: A simple GNU Radio program generating a cosine wave.

1

Introduction 2

types of blocks are connected to form the creation and flow of data. The blocks used in

this example are readily available, but GNU Radio also allows the user to create their

own signal processing blocks - known as ’Out Of Tree Modules’. These could be in the

form of new functionality or interfaces to external systems.

The idea of this project is twofold: 1 - to create a standalone component library allowing

access to the FLEX-6400 radio from any Python-based application, and 2 - to create a

FLEX block in GNU Radio which uses this library to provide an interface to the FLEX

radio. This means that, instead of using a Signal Source created by the local machine,

a block module provides data directly from the FLEX radio. It will also be possible to

use the library to directly adjust the radio’s parameters such as tuning frequency and

demodulation type (eg. FM, AM, etc).

A Software Defined Radio is one in which components and calibrations usually defined in

a radio’s hardware are instead implemented with software. Most of the RF signal process-

ing is performed using an API/Driver, allowing for greater flexibility in what channels

and frequencies the radio is listening to, as well as easier modulation of the signal it’s

transmitting. SDRs can be reconfigured "on the fly", essentially completely transforming

its purpose with plug-and-play programs able to run on demand.

Currently, the FLEX-6400 radio comes with an API (Fig. 3), but it is restrictive due to

the fact it is built with the .NET framework. Building a new API with GNU Radio would

enable cross-platform uses of the SDR – such as on embedded devices or Linux systems –

opening many more opportunities to use its potential. Figure 2 shows FLEX’s own User

Interface, which is the standard way for a user to interact with the radio. This was used

intermittently in the project to validate the data being received, but it would be beneficial

to implement some of the visual aspects of it so the Python library has them available

"out the box".

When creating an initial plan[27] for this project, clear goals and objectives were laid out

that are expected to be met in order to call this project a success. They are as follows:

Introduction 3

Figure 2: FlexRadio’s SmartSDR .NET UI

• Discover and Configure FLEX-6400 - Establish a connection with the radio

and modify its settings. This is a fundamental part of the project as all interaction

with a remote FLEX radio is done using network-based links; without completing

this goal it will not be possible to complete the subsequent ones.

• Receive Audio Data - The next stage is requesting Audio Data from the SDR. To

do so requires creating an audio stream on the radio and then receiving the VITA

49 formatted packets over a UDP connection, which is the protocol carrying the

audio payload.

• Receive IQ Data - This is the logical next step after receiving audio data. Receiv-

ing IQ data involves more steps and the translation is more complex but completing

this goal would make the project very useful to others in research or academia. IQ

data represents an accurate capture of the raw radio waves, enabling demodulation

with any mode (permitted by the width of the Slice).

• Transmit Audio and IQ Data - These two goals are extensions to the project

that would be nice to achieve if the time permits. As transmitting on Amateur

Radio frequencies requires a license (by passing an OFCOM exam[20]), this could

Introduction 4

also affect how likely it is I complete these goals.

Motivation

Radio Communications and Amataur Radio have had a very large impact on development

in the modern world. The ability to communicate rapidly across large distances furthers

the speed with which important information can be spread, and in using this technology,

operators discover improved ways of doing this communication.

In the pursuit of knowledge and discovery, amateur radio users have founded new industries[6]

and contributed to the evolution and empowerment of communication in the developing

world[5]. Amateur Radio has time and again come to the aid of first responders during

times of emergency or disaster, like in South Asia[2] or Puerto Rico[11].

The use of Amateur Radio Frequencies is still alive and well, with many applications in

research and academia. Clearly, the addition of available, versatile radio hardware is a

benefit to such projects. The motivation behind this project is to allow non-Windows

users to use a FLEX radio. It would also allow all users to interact with the radio using

a well known Software Radio Modelling Toolkit: GNU Radio is very popular and well

maintained, and the vast number of blocks available mean complex signal processing tasks

can be completed with ease. It’s a significant project because it has an aspect of novelty

to it; this would be the only way for a FLEX radio to be controlled directly from within

the GNU Radio user interface.

Making this project open-source also allows future developers the chance to extend it

beyond what I achieve in these 13 weeks. Just as I have relied on the code and infor-

mation supplied by others before me, it continues the possibility of development on this

project or ones like it. From a personal perspective, SDRs and radio communication was

something I had never encountered before and was quite alien to me, but attempting to

do something new with little experience is a profitable skill to develop and one that would

be relied on in the corporate world.

Background

The Wider Context

The idea of the project deliverable is to act as a translator and communicator between

the two separate entities - GNU Radio and the FLEX-6400. This means that anyone

wanting to use GNU Radio with high performance SDR hardware or who wants to use

the FLEX-6400 on a system other than Windows would find great utility from my project.

Most importantly, it is to provide the fundamental plumbing that would allow others to

extend the project for their own objectives. If the basics of discovery, configuration and

communication are available, a user will be able to do much of the standard radio inter-

action without any significant work. In addition, due to the class and data structures I

employed, building anything more complex would be much quicker than having to start

from scratch. As discussed later, there were many steps in this project where progress

was hindered in trying to fix issues with which there was very little public information

and I had to rely on the contacts of my supervisors to make progress.

Due to the sparse nature of FLEX API documentation, this report could be extremely

informative to anyone attempting to do something similar. I had to comb through a lot

of community posts and organise meetings with FLEX developers throughout my project

to truly understand the FLEX radio and how it communicates. Having accumulated a lot

of that information here, it will not only help someone using my library but also advise

a developer who wanted to create an API in another language or for another Radio Toolkit.

5

Background 6

There are numerous projects currently proposed or in the design phase that could heavily

benefit from this one. The Ham Radio Science Citizen Investigation are creating a “Per-

sonal Space Weather Station”; a multi-instrument system capable of making ground-based

measurements of the space environment. Referring to the architecture for the PSWS[10],

it looks very similar to my project, with a SDR communicating with a Computer. The

radio is obtaining, among others, IQ data which would then be displayed and sent to

a central server. This is very similar to what my library will be doing, with the API

requesting IQ data which can then be presented by GNU Radio. As the author mentions

in the presentation, the PSWS is receive only. Theoretically, the library produced by this

project could therefore be implemented directly into the PSWS.

Another such example is the Weak Signal Propagation Reporter or WSPR network. Ra-

dio Waves in the range of 3-30 MHz propagate around the Earth by bouncing from the

atmosphere and the Earth’s surface[18]. Due to the variance in atmospheric conditions,

the ability of radio waves to reach destinations can vary wildly. WSPR allows people to

see a real-time network of available connections between 2 points on Earth. This project

could be used as another node in the network, receiving and transmitting to other nodes

to establish possible links. Through the use of this project’s API this process could be

automated, therefore constantly updating the WSPR network.

Additionally, an experiment detecting how radio waves are altered when passing through

Earth’s ionosphere during a solar eclipse - conducted by William Lloyd[16] - could also

be another example. Here the author streams IQ data[4] from a different make of SDR,

but it would benefit from the greater transmit ability of the FLEX-6400. It also provides

a nice example of how the FLEX can be plugged straight into an experiment provided it

has the drivers I plan to produce in this project.

Finally, FreeDV[30] is a Digital Voice demodulation service which can run on any HF

radio. It has already been implemented as a GNU Radio block[12] so could be connected

to the FlexSource block produced from this project to demodulate Digital Voice data

received on the FLEX-6400. Digital Voice modes encode speech into a data stream be-

Background 7

fore transmitting it. They are able to provide much better spectral and power efficiency

levels than Analog modes and can often be received and understood (or ’copied’, in radio

communications terminology) at much lower signal levels.

Sources of Relevant Information

A key aspect of the project’s development was to research existing implementations/ap-

plications which made use of the FLEX API. I came across a few instances of people who

had created partial or otherwise restrictive APIs. This GitHub Repo[9] is an implemen-

tation of how to communicate with a FLEX radio using Windows Powershell commands.

I found this very useful in the initial stages, as actually creating the connection with

the radio was much more complex than I had first appreciated. While I couldn’t use

the exact commands the author used, I could see the general process that needed to be

emulated. As you can see from my Initial Plan[27], I expected the authentication and

connection to the radio to be fairly trivial but it proved otherwise. In particular, file

Connect-FlexSmartLink.ps1 was really informative in helping me build the required

flow (Fig. 8).

It revealed the exact URI I needed to visit to authenticate myself, including parameters

required like ‘client_id’ and ‘state’. It also told me that I needed a JSON Web Token

to register my application with the SmartLink Server (this will be discussed in greater

detail in the Implementation section). This Powershell implementation while informative

was far from complete, and not usable by anyone not wanting to use an API employing

Powershell commands.

Another valuable piece of information I drew from was the SmartSDR wiki[7] created by

the FLEX team. While this source isn’t particularly well maintained and may contain

some inaccuracies (the API has been updated since it was created), for the majority it

was a very useful compass when finding what commands I needed to send to achieve an

action and what response I should expect from the radio. For example Figure 3 shows

Background 8

Figure 3: FLEX API wiki on Slice creation

how to request a new Slice (see next section) from the radio.

On the FLEX Radio Community Forum, a really useful thread was made by John Lin-

ford discussing how to make your own API for a FLEX radio. From this he authored a

document called "A FLEX 6000 API Primer"[15] in which he lays out some high level

information on the steps to take in order to build an API to a FLEX radio. Unsurprisingly

this was also very helpful, in particular when it came to translating the UDP data packets

received from the radio. While I only found this document after I’d completed much of

the Discovery and Configuration work, it also helped me validate the steps I’d taken.

As stated previously, reliable and correct information was hard to come by. However, it

should be noted that this API Primer is limited in its scope, and as the name suggests

it only scratches the surface of the capabilities that a potential API might have. For

example, on Page 27, the author writes: “Here be dragons territory” for me includes the

audio and panadapter streaming data. I’ve not even looked at these data streams yet, so

I can offer no advice at all. He continues by saying that his main goal for his API was

to allow finer control of the FLEX SDR using custom hardware, such as a tuner control

Background 9

knob. Audio and IQ data streams are the main goals of this project, so unfortunately

this document could only take me so far.

In summation, no reliable sources which fully describe interfacing with the FLEX radio

exist, but that is another advantage of completing this project. Having combined all the

research necessary to create my library, I was able to make an accurate and trust-worthy

instrument to allow developers and radio-enthusiasts to understand the FLEX radio and

API. In turn this will benefit a wide variety of applications and research projects.

Helpful Background on Amateur Radio and SDRs

When I started this project, I had zero experience in Amateur Radios and the only Digital

Signal Processing I’d learnt was in the second year Scientific Computing module. While

a well-versed software engineer could pick up the nomenclature of Ham and DSP fairly

easily, I thought I should add a brief section on some terms that I will use frequently

throughout this report. Refer to Figure 2 for a visual representation of some of these

terms.

• Amateur Radio - A non-commerical radio service as set by a recognised Govern-

ment Agency (Ofcom in the UK)

• Carrier Wave - A pure continuous radio wave at a fixed frequency, which is then

imposed on with the input signal

• Center Frequency - The frequency a radio is tuned to in order to receive or

transmit a specific signal. The "Bandwidth" of this signal is upper and lower cutoff

frequency points

• Modulation - The way the shape of the carrier wave is changed to encode the data

being transmitted e.g FM being Frequency Modulation [17]

• Panadapter - A 2D graphical representation of the signal amplitude against the

frequency, which plots in real-time to display the received energy in any given period

Background 10

• Propagation - The means or path by which a radio signal travels from a transmit-

ting station to a receiving station

• RX - Shorthand for Receive or Receiver

• Slice - A portion of the radio spectrum to receive, centered at a specific frequency

• Transceiver - A radio that both transmits and receives

• TX - Shorthand for Transmit or Transmitter

• Waterfall - The Fourier Transform of a signal, plotting the time a signal is active

against the frequency

Approach

This project has a strong likelihood of being used - and extended - by a great many

users including researchers, ham radio operators and the project’s client. Given this, I

wanted to ensure that the system was as robust as possible. This is because building

functionality on top of a strong foundation of code is much easier than having to rewrite

many sections in order to integrate changes. The creation of a standard framework, with

my carefully-chosen structure means a future developer will be able to extend it by simply

adding methods. Writing a program in this way is a skill that translates directly into a

professional, industrial environment so will also be beneficial to me personally.

Architecture

With all this in consideration, the architecture of the project is shown in Figure 4, with

captions in red for areas I was responsible for. The FlexModule API communicates with

Figure 4: High-level Diagram of Program Architecture

11

Approach 12

the radio: querying status info and storing appropriate updates, sending commands and

receiving responses, and creating audio streams/slices/pan adapters. This "administra-

tive" communication is sent over a TCP/IP connection. A UDP connection between the

two is also present, where raw data like the audio itself is transferred.

In effect, the FlexModule API I have developed provides a translation service between

the FLEX-6400 and GNU Radio, handling all the data the radio outputs and only pre-

senting the user with what is requested. The FlexSource Block is how the user interacts

with the API. It enables requests for the creation or alteration of radio objects (Slices,

Panadapters etc.), and can then allow for manipulation of the data that is returned from

said objects. In the aforementioned architecture diagram, audio data is passed into three

types of visualisation "sinks" or endpoints (however band-pass filtering or other signal

processing could take place here).

The API uses classes as its underlying structuring, with each class encapsulating and

abstracting all the detail that isn’t necessary on the GNU Radio side. Figure 5 shows a

slightly cut-down Class Diagram of the API, demonstrating my object-based approach.

Lets take FlexModule\Radio.py as an example:

6 class Radio(object):

7 cmdCnt = 0

8 """ Class to create connection with FLEX radio and establish communication channel """

9 def __init__(self , radioData , smartlink):

10 self.ResponseList = {}

11 self.StatusList = []

12 self.AntList = []

13 self.SliceList = [Slice(self , 0, "ANT1", "fm")] # FLEX has a default slice on start

up

14 self.Panafall = Panafall(self , "0x40000000", "0x42000000", 0, 50, 20) # FLEX also has

a default Panafall

15 self.RxAudioStreamer = None

16

Listing 1: Radio.py Class Example

Listing 1 introduces part of Radio.py’s initialisation code; a Radio() object must be created

each time a user wishes to connect to a radio. As this initialisation is defined as part of

a class, we can create multiple Radio() objects and establish connections to multiple

radios simultaneously, with a user sending commands to each separately. This multiple

Approach 13

Figure 5: Pruned Class Diagram of my FlexModule API

instantiation is very advantageous for other classes as well. Looking at line 13 in Listing 1,

we can see that the radio is initialised with a SliceList, already containing a Slice() object.

However, we can create additional slices should we desire, which would be stored in this

list. All this creation can be done separately from the Radio() class, with the exception

that the command needs to be sent to the physical FLEX radio. Therefore we can keep

the Radio class and Radio Object classes detached, so the radio only needs to store the

references to the slices it owns, not all the detailed information about the slice itself.

Listing 2 shows the continuation of this concept. All the relevant variables and methods

for the Slice are stored in this class, and only a reference to the Radio object is needed

for consistency when the Slice is created.

4 class Slice(object):

5 """ A Class to create , remove and alter radio frequency slices """

6 Id_iter = itertools.count() # slice_id needs to be a unique attribute for each slice

7

8 def __init__(self , radio , freq , ant , mode):

9 self.slice_id = next(self.Id_iter)

10 self.radio = radio

11

Approach 14

12 if freq < 0.03:

13 self.RF_frequency = 0.03

14 # log attempt to set below min

15 elif freq > 54.0:

16 self.RF_frequency = 54.0

17 # log attempt to set above max

18 else:

19 self.RF_frequency = freq

20

21 self.rxant = ant

22

23 self.mode = mode.upper ()

24

25

26 def Remove(self):

27 command = "slice r " + str(self.slice_id)

28 self.radio.SendCommand(command)

29

30

31 def Tune(self , freq):

32 if freq < 0.03:

33 self.RF_frequency = 0.03

34 # log attempt to set below min

35 elif freq > 54.0:

36 self.RF_frequency = 54.0

37 # log attempt to set above max

38 else:

39 self.RF_frequency = freq

40

41 command = "slice t " + str(self.slice_id) + " " + str(self.RF_frequency)

42 self.radio.SendCommand(command)

43

Listing 2: Slice.py Class example

The structure of a GNU Radio block has to conform to the standard framework, with slight

variance depending on its type. This GNU Radio document[14] describes the different

types of blocks available, and the corresponding code snippets explain how they must be

built in order to work.

The biggest takeaway is the following, which describes the ratio of number of inputs per

port to number of outputs per port:

• Synchronous Blocks (1:1)

• Decimation Blocks (N:1)

• Interpolation Blocks (1:M)

• Basic (a.k.a. General) Blocks (N:M)

Approach 15

Figure 6: GNU Radio Block Architecture

This means that, for example, a Decimation Block takes more items in than it outputs, by

a ratio of N:1. If you wanted to down-sample a signal, then you would use a Decimation

Block.

Every block inherits from one of these four types, but the signal processing performed in-

side it is pretty limitless. Almost anything achieved in a regular Python script can be run

in a Out-Of-Tree GNU Radio Block. Every GNU Radio block must also have a ‘work()’

function, which is where the actual signal processing takes place. One of the most simple

blocks is the ‘Multiply Const’ block, in which the work function would simply multiply

each input value by a constant number. This would be an example of a synchronous block

as the number of inputs = the number of outputs. Figure 6 shows a ‘Multiply Const’

block in action, where I’m using a variable called "Volume" as the multiplier. This figure

also shows another important aspect of GNU Radio: data type consistency. In the right-

hand portion of the diagram, the red arrows are indicating an error in the flow. This is

occurring because the Signal Source block is outputting complex data, but the Multiply

Const block is expecting data with type float.

Up to this point I have mentioned two types of blocks that aren’t explicitly described in the

Types of Block web-page - Source and Sink - but note this line: "When a sync block has

zero inputs, its called a source. When a sync block has zero outputs, its called a sink"[14].

In summation, My FlexSource block will inherit from a Sync block, and import my

Approach 16

FlexModule Python library. It will then leverage this API to communicate with the

FLEX radio and output the audio/IQ data received, which can then be manipulated in

any way GNU Radio allows. Not only this, but the project will be made into a package,

capable of being installed using Python’s Package Installer ‘pip’.

Benefits & Drawbacks

Using an object-based approach to the project affords me a few advantages when it comes

to the implementation and usability of the software. A non-object orientated approach

would mean that the API would be a long list of commands, functions and subroutines.

In order for there to be interaction between functionality and data, it’s common for these

commands and variables to be accessible from any part of the program. However as the

library grows, allowing any function to modify any piece of data would make the program

very unstable and bugs to be very pervasive.

Instead, using classes means I have control over what data is accessible and modifiable by

the rest of the API. Consequently, the code is more maintainable as it’s easier to identify

the source of errors and bugs tend to be self-contained. Classes also mean an object can

be used in any context, making it a perfect fit for plugging into another program such as

GNU Radio.

From a potential developer’s point of view, this approach also improves the scalability of

the API. A user wanting to extend the API can add classes independently from the rest

of the program without worrying about affecting it. And from a broader point of view,

building my library using Python makes the API more portable as it can be used on a

variety of platforms and systems. Having it as an installable package also means that it

is very easy to access in any Python environment on a local machine.

One notable drawback of my approach is that I’m scripting with Python. Although it

allows faster prototyping and testing (advantageous for a short term project) the high-

level nature of the language means it is inherently slower than others. A library written

Approach 17

in C/C++ would be able to process incoming data much faster which is valuable for a

real-time application such as this.

Implementation

In this section of my report, I would like to expand upon four key areas of my project

that deserve specific attention. Each area had notable time devoted to it, and either

is fundamental in its contribution to the project or presented challenging roadblocks.

Sometimes both.

Authorisation & Authentication

The first key area is the steps required to Authenticate a user and connect to the FLEX

radio. This was the entry point to the project, and in my Initial Plan I expected it to

take three weeks to complete the authentication and setting of radio parameters. I was

partly correct in this estimate; while adjusting radio parameters turned out to be fairly

straight forward, the authentication was much more complicated. This was in part due to

the lack of reliable documentation outlining the steps, so myself and my supervisors had

to pull information from multiple sources and patch together a working flow (Fig. 8).

FLEX Radios use a well known Authentication Service called Auth0. This wasn’t

immediately obvious, but looking at the SmartLink Quick Start Guide[29], on page 7 we

can see a SmartLink Login prompt. Underneath this prompt is a tag saying "Protected

with Auth0", so this was the place to build from. Figure 7 is taken from Auth0’s website[3],

and describes the process to obtain an Auth0 access token (a type of JSON Web Token or

jwt). This flow is exactly what I needed to authenticate myself with FLEX’s SmartLink

server, which holds the records of which radios each user has access to. The only difference

18

Implementation 19

Figure 7: Required flow to Receive an Access Token

is instead of clicking a Login button, the authentication process starts from my FlexSource

GNU Radio block.

We begin our authentication with

token_data = self.get_auth0_tokens(self.HOST_Auth, self.CLIENT_ID,

self.REDIRECT_URI, self.SCOPE_LIST, self.BROWSER)

a function authored by my supervisor David Humphreys, which is emulating the Auth0

Authorization Flow (Listing 3). We start by creating a HTTPS connection to Auth0’s

server, asking for an Authorization Code. The server redirects us to a login page where

we enter the account details associated with our FLEX-6400. To be able to enter the

details, we must open up a browser and type them in manually (lines 81-98 Listing 3).

My supervisors and I tried to get information from the FLEX team about whether there

was a non-browser alternative, but we didn’t receive anything concrete and I didn’t want

to get bogged down at such an early stage. This did cause quite a few problems later in

Implementation 20

the project but I’ll discuss these in a following section.

Once user details have been entered correctly we extract the Authorization Code from the

URI we are redirected to and then, along with our client id and some other information,

this code is used to perform an HTTP request for an Access Token. Once this token has

been received, the Auth0 flow has been completed and we are ready to discover our radio.

52 # Takes a hostname as input , and attempts auth0 authentication using a web browser.

53 # The browser is set to Firefox () currently , but can be any which the Selenium module

supports (e.g. Chrome ()).

54 # The output is None for an unsuccessful login , or the response dictionary for a

successful one.

55 # The token required by smartlink.flexradio.com is stored under the key "id_token ".

56 def get_auth0_tokens(self , host , client_id , redirect_uri , scope_list , browser):

57 """ Author - David Humphreys """

58

59 """ to hide non -harmful error """

60 options = webdriver.ChromeOptions ()

61 options.add_experimental_option(’excludeSwitches ’, [’enable -logging ’])

62 """ """

63 browsers = { ’chrome ’ : webdriver.Chrome(options=options , executable_path=r"C:\ Program

Files\chromedriver_win32\chromedriver.exe")} #,’firefox ’ : webdriver.Firefox(

executable_path=GeckoDriverManager ().install ()) }

64 scope = "%20".join(scope_list)

65 state_len = 16

66 state = "".join(choices(ascii_letters + digits , k = state_len)) # was "

ypfolheqwpezrxdb" when testing

67

68 conn = http.client.HTTPSConnection(host)

69 # print(conn)

70 # Step 1: request an auth0 code

71 # (this seems to return a redirect to a login URL)

72 url1 = "/authorize"

73 payload1 = "response_type=code&client_id=" + client_id + "&redirect_uri=" +

redirect_uri + "&scope=" + scope + "&state=" + state

74 # print(url1 + "?" + payload1)

75 conn.request("GET", url1 + "?" + payload1)

76 response = self.get_response(conn)

77 #print(response)

78

79

80 # Step 2: open a browser , and display the login URL

81 rstr = "Found. Redirecting to "

82 if response.find(rstr) != -1:

83 url2 = response.split(rstr)[1]

84 driver = browsers[browser]

85 url2 = "https ://" + host + url2

86 driver.get(url2)

87 else:

88 print("ERROR: request for authorisation did not return a valid login URL")

89 return

90

91

92 # Step 3: wait for the URL in the browser to change (i.e. the user has entered their

login information , hopefully correctly !),

Implementation 21

93 # and then close the browser

94 response = driver.current_url

95 while(response == url2):

96 sleep(1)

97 response = driver.current_url

98 driver.close ()

99

100

101 # Step 4: attempt to extract the auth0 code from the URL the browser was directed to ,

102 # and use if to request (finally !) the id_token needed to register with smartlink.

flexlib.com

103 rstr = "code="

104 if response.find(rstr) != -1:

105 code = response.split(rstr)[1]

106 url3 = "/frtest.auth0.com/oauth/token"

107 headers3 = { ’content -type’: "application/x-www -form -urlencoded" }

108 payload3 = "response_type=token&client_id=" + client_id + "&redirect_uri=" +

redirect_uri + "&scope=" + scope + "&state=" + state + "&grant_type=

authorization_code&code=" + code

109 conn.request("POST", url3 , payload3 , headers3)

110 response = self.get_response(conn)

111 #print(response)

112 else:

113 print("ERROR: code was not returned during the login attempt; was your login

incorrect?")

114 return

115

116

117 # Step 5: attempt to extract the token data (in particular , id_token) from the auth0

server ’s response

118 rstr = ’"id_token ":"’

119 if response.find(rstr) != -1:

120 response = loads(response)

121 # print("id_token is:", response["id_token"])

122 return response

123 else:

124 print("ERROR: id_token was not returned by the auth0 server")

125 return

126

Listing 3: get_auth0_tokens()

Implementation 22

The next step is to register our application with SmartLink. This allows us to see all

our available radios, and enables direct connection to them. The process is started with

self.radio_list = self.SendRegisterApplicationMessageToServer(

"FlexModule", self.OS, token_data[’id_token’])

where we are using the token we received from Auth0. In this method, we check a TLS

socket to the SmartLink server created in the class initialisation is open, and then send

the "application register" command. We then start receiving data about our account, our

local IP details and importantly, a radio list of all our available radios (Listing 4). This

radio data is stored in a class variable and when we create a Radio() object, we pass the

SmartLink() class as a parameter so that this data is available to us.

134 def SendRegisterApplicationMessageToServer(self , appName , platform , token):

135 command = "application register name=" + appName + " platform=" + platform + " token="

+ token + ’\n’

136 radioData = []

137 if self.wrapped_server_sock.version () != None:

138 # print(self.wrapped_server_sock.version ())

139 print(command)

140 self.wrapped_server_sock.send(command.encode("cp1252"))

141 """ Communicate with SmartLink Server """

142 inputs = [self.wrapped_server_sock]

143 while inputs:

144 readable , writable , exceptional = select.select(inputs , [], [], 2)

145 # pdb.set_trace ()

146

147 for s in readable:

148 data = s.recv (1024).decode("utf -8")

149 print(data)

150 if "radio_name" in data:

151 radioData.append(self.ParseRadios(data))

152 # else:

153 # """ Never gets here as no longer any sockets in readable """

154 # inputs.remove(s)

155 if len(readable) < 1:

156 """ no sockets are readable so must escape loop """

157 inputs.clear ()

158

159 else:

160 print("Socket connection not established")

161

162 return radioData

163

Listing 4: SendRegisterApplicationMessageToServer()

The final step is connecting to our desired radio. As I previously stated, we do so

Implementation 23

by creating a Radio() object with the info of a specific radio. During the initialisation

of this object the function SendConnectMessageToRadio() is called, where we tell the

SmartLink server we intend to connect to radio R on port P (Listing 5). This port will

become our Peer-To-Peer TCP/IP port once the connection has been established.

36 def SendConnectMessageToRadio(self):

37 try:

38 command = "application connect serial=" + self.radioData[’serial ’] + "

hole_punch_port=" + str(self.radioData[’public_upnp_tls_port ’]) + "\n"

39 except TypeError:

40 print("Radio Serial not returned - is radio On?")

41 return

42 print("\nSending connect message: " + command)

43 self.smartlink_sock.send(command.encode("cp1252"))

44 handle_data = self.smartlink_sock.recv (128).decode("cp1252")

45 # print(handle_data)

46 try:

47 handle = handle_data.split(’handle=’)[1]. strip()

48 return handle

49 except IndexError:

50 print("Server Handle not received")

51 return ""

52

Listing 5: SendConnectMessageToRadio()

If all is well, the SmartLink Server replies with a unique session handle. Once this is

received, we create a TCP/IP connection to the radio directly; the IP address and Port

number to connect on are included in the radio data we obtained in the SendRegisterAp-

plicationMessageToServer() step. Finally, we inform the radio that we are communicating

over a Wide Area Network and use the session handle to confirm our identity (Listing 6).

54 def WanValidate(self):

55 command = "wan validate handle=" + self.serverHandle + "\n"

56 print("\nSending Wan Validate command: " + command + "\n")

57 self.SendCommand(command)

58

Listing 6: WanValidate()

At the conclusion of these steps, we have established a Peer-To-Peer connection with

the radio and can begin to send commands and receive responses. This process directly

recreates the functionality described in the SmartLink Quick Start Guide[29] and is the

absolute foundation for my project. With the Authentication and Authorization done, I

could then start building my API and create the functionality required to achieve the rest

Implementation 24

Figure 8: Required flow to Connect to a Radio

of my goals.

Implementation 25

Data Handler

Because of the middle-man characteristic of this library - being the link between the

FLEX-6400 and GNU Radio - having a robust Data Handler was key to the success of

the project. As a consequence, this was another area I spent an extended period of

time on. To reiterate what I have previously mentioned, data from the radio comes in

two forms: TCP/IP data and UDP data. The former contains all information about

command-response, subscription and update messages to and from the FLEX-6400. The

latter is how all RF data is transferred, like audio, IQ, panadapter and waterfall data.

FlexModule\DataHandler.py is how I implemented this middle-man. Listing 7 shows

how data is actually received from the radio:

8 class ReceiveData(threading.Thread):

9 """ Thread to contiually receive tcp data in BG """

10 def __init__(self , radio):

11 threading.Thread.__init__(self , daemon=True)

12 self.radio = radio

13 self.running = True

14 # self.read_socks = []

15

16 def run(self):

17 read_socks = [self.radio.FLEX_Sock , self.radio.DATA_Sock]

18 tcpResponse = ""

19 udpResponse = ""

20 while read_socks:

21 readable , w, e = select.select(read_socks ,[],[] ,0)

22 for s in readable:

23 if s.type == 1: # "SOCK_STREAM"

24 data = s.recv (512).decode("cp1252")

25 tcpResponse += data

26 if data.endswith("\n"):

27 ParseRead(self.radio , tcpResponse.rstrip ())

28 tcpResponse = ""

29 elif s.type == 2: # "SOCK_DGRAM"

30 if self.radio.UdpListening:

31 udpResponse , addr = s.recvfrom (8192)

32 # print(udpResponse)

33 ParseVitaPacket(self.radio , VitaPacket(udpResponse))

34

35 # if not data:

36 # read_socks.remove(s)

37 if not self.running:

38 read_socks.clear()

Listing 7: Receive Thread

As the API will be called from GNU Radio, we can’t be waiting for data to be received

Implementation 26

and parsed, as this would cause the UI to freeze. Therefore the Data Handler must be

threaded and running in the background. We initialise with the Radio() as a parameter to

allow us to update local information about it, as well as ensuring we know which sockets

we will be receiving data from.

Once the thread is running, I use a Python module called ‘select’[23], which performs

non-blocking polls of all the sockets in the 3 lists provided (Line 21). As this is a receive-

only thread, I have no need providing write or exception sockets. Returned is a list of all

sockets with data available to be read.

If the data received is from a Stream Socket (TCP/IP), I concatenate the data until I

receive a newline character. This is as a consequence of some of the subscription updates

being very long, and we want to keep them as one message. Once that check is passed,

we then send the full message along with the radio it came from to a parsing function

and reset the message buffer.

If we have just received data from a Datagram Socket (UDP), we receive all the data at

once, but also hand it to a parsing function with it’s corresponding radio. This is accept-

able because I know the max sizes of the UDP packets I’ll be receiving and can guarantee

they will be less than 8192 bytes. Each packet received on the Datagram Socket is us-

ing the VITA 49 packet format, so accordingly I load it into a VitaPacket() class before

handing it to the parser (I will elaborate on the VITA 49 format shortly).

Continuing with TCP/IP messages, an if/else statement switches on the received message

depending on its type (Listing 8). As discussed on the Flex SmartSDR Wiki[7], there are

five types of message received from the radio. “R” response messages are received from

the radio in response to a command sent by the user. All commands will have a response

message generated in return. These response messages are very important to confirm

action on the radio intended by a client does in fact take place, and that no errors occur.

In order to know which response is for which command, it’s up to the user (my API) to

increment a command sequence number every time one is sent, as this is then mirrored

Implementation 27

by the radio.

The next type is a “S” Status Message, an unsolicited alert informing the client every

time a radio setting is changed. There are a few types of radio objects that produce these

messages, and the client must subscribe to each one in order to receive them. A FLEX

radio can be connected to and controlled by multiple users, so these status messages allow

people to know when the radio has been modified, and update their local settings accord-

ingly. However, I found these status messages very useful also, as they could be used as

another confirmation that changes I made were indeed completed by the radio.

Thirdly, “M” Messages are emitted by the radio when notable administrative actions occur

on the radio. These can be used for logging as they contain severity warnings, however

the only one I’ve received thus far is to confirm that my IP has connected to the radio.

“V” Version and “H” Handle messages describe the protocol version in use and the client

connection handle respectively. Even though these are detailed individually by the wiki[7],

I’ve only ever seen these two message types sent by the radio in the same message (i.e.

without a ‘\n’ separating them).

42 def ParseRead(radio , string):

43 # print(string)

44 read_type = string [0]

45 if read_type == "R":

46 print(string)

47 ParseResponse(radio , string)

48 elif read_type == "S":

49 ParseStatus(radio , string)

50 elif read_type == "M":

51 ParseMessage(radio , string)

52 elif read_type == "H":

53 ParseHandle(radio , string)

54 elif read_type == "V":

55 ParseVersion(radio , string)

56 else:

57 print("Unknown response from radio: " + radio.radioData["serial"])

58

Listing 8: Switching on Message Type

In order to better understand my Data Handler, lets take a deeper look at how it addresses

response and status messages, as these are the two most valuable. As eluded to before,

“R” messages come in the form:

Implementation 28

R<seq_number>|<hex_response>|<message>[|Debug output]

where

• <seq_number> = consecutive count echoed from client

• <hex_response> = 32-bit Hexadecimal number detailing success or failure of the

command

• <message> = response value(s) for parsing

• <Debug output> = optional debug text output

The first steps of parsing a radio response then, are splitting the message into these

partitions. Every command I send from my API is stored in a dictionary, so I can take

the sequence number in the response to find the exact command sent (Listing 9 line 71).

60 def ParseResponse(radio , string):

61 try:

62 (response_code , hex_code , rec_msg) = string.split(’|’)

63 except ValueError:

64 print("Error - Incomplete reply")

65 return

66

67 response_code = int(response_code [1:])

68 hex_code = int(hex_code , 16)

69 # rec_msg = rec_msg.strip()

70 try:

71 sent_msg = radio.ResponseList[response_code]

72 except ValueError:

73 print(’Unexpected reply’)

74 ...

Listing 9: Parse Response segment

We can then use the corresponding command sent to decide exactly what to do with the

response. For example, if the Response Code is 0 and the command was "stream remove"

then we know we can safely delete the stream stored locally. As of the time of submis-

sion, I had only handled responses for commands that were necessary to progressing the

project; a small fraction of those listed in the SmartSDR wiki. Due to the modular,

class-based design I chose for the library, other commands could be easily handled by the

addition of other handlers (classes), and of calls to their methods within ParseResponse().

Implementation 29

“S” Status Messages are emitted from the radio when settings for radio objects are altered.

In order to receive these status messages, the user has to subscribe to them by sending

a command “sub ...” and the desired object[8]. Some examples of possible subscribe-able

objects are Slices, Panadapters, Audio Streams, etc. They come in the form:

S<handle>|<message>

where

• <handle> = the handle of the client that triggered the update

• <message> = status message for parsing

171 def ParseStatus(radio , string):

172 try:

173 (radio_handle , rec_msg) = string.split(’|’)

174 except ValueError:

175 print("Error - Invalid status message")

176 return

177

178 if rec_msg.startswith("slice"):

179 if "removed" in rec_msg:

180 return

181 split_msg = rec_msg.split(sep=’ ’, maxsplit =2)

182 s_id = int(split_msg [1])

183 slice_info = dict(param.split("=") for param in split_msg [2]. split(" "))

184

185 """ handler errors here if radio creates slice without us knowing about it e.g. when

Panadapter is created """

186 try:

187 radio.GetSlice(s_id)

188 except IndexError:

189 return

190

191 for key , value in slice_info.items():

192 # check to see if class attribute exists

193 try:

194 val_type = type(getattr(radio.GetSlice(s_id), key))

195 except AttributeError:

196 # I haven’t implemented this variable , i didn’t require it at this point and

wanted to keep class uncluttered

197 continue

198

199 # if class attribute is numerical , we want to keep it numerical

200 if val_type is float or val_type is int:

201 setattr(radio.GetSlice(s_id), key , float(value))

202 else:

203 setattr(radio.GetSlice(s_id), key , value)

204 ...

Listing 10: Parse Status segment

Implementation 30

Figure 9: Slice Creation and Modification

Again, we start by splitting the status message into these two parts. As “S” messages are

sent regardless of interaction by the client, we don’t have a matching list to pull from like

“R” messages. However each status update starts with the radio object it is describing

so we can branch the message according to this. Theoretically, the radio only wants to

update us on the settings that have changed, but it groups multiple settings together,

meaning if one setting is altered the whole group is included in the status message.

Figure 9 shows an example status message (with the handle already removed), which is

essentially a long string of key, value pairs. For each radio object I handle the update

slightly differently, but one commonality is that from this string I create a dictionary

containing all the pairs received (Listing 10 line 183). In this dictionary will be far more

information than I need or will need, and to keep my Classes uncluttered I didn’t create

variables for all keys in the status message. However, I wanted a succinct way of updating

the class variables I do have, and I think I came up with an elegant solution.

Listing 10 lines 191-203 show that for each key in the dictionary, I try and find the

data type for its corresponding value with ‘getattr()’. If the Class has a variable matching

Implementation 31

that key name, it returns the data type and I can continue. If not, an ‘AttributeError’

is caught and I go onto the next key, knowing that I haven’t implemented it in my class.

Thereafter I use ‘setattr()’ to update the class variable, ensuring to keep it numerical if

it was before.

This solution was highly successful, as it meant my Data Handler could pass a status

update no matter which groups were included in the message or what class variables I

had implemented. I had previously used multiple try, except clauses to check if a particular

key was in the message and then see if it could be updated, but I knew this would get

very ungainly as the program grows. Instead, in just a few lines I created a very robust

system that can expand or contract at the wishes of the designer.

Implementation 32

Figure 10: VITA 49 Packet Format [15]

Returning back to data received on the Datagram Socket, let’s begin by looking at the

format it comes in. The UDP data is packaged into VITA 49 packets, a common standard

for SDR communication. The API Primer[15] was a great resource to understand the

packet format, especially pages 24 and 25 (the author like me found that information

online about the VITA format is “sparse”). The packet is in two sections: Header and

Payload. The payload is variable size depending on what is being sent and contains the

raw data. The packet size is stored in the header, along with a packet count and class

identifier. There are other fields in the header too (Fig. 10), but we only require the fields

in orange (and the payload obviously).

Once the UDP packet has been loaded in a VitaPacket() class, we can parse it.

265 def ParseVitaPacket(radio , packet):

266 Id = int.from_bytes(packet.class_id , byteorder=’big’) & int(’FFFF’ ,16) # all but the

last 2 bytes are the same

267 ValidatePacketCount(Id , packet.pkt_count)

268 if Id == int(’FFFF’ ,16):

269 # DISCOVERY Packet

270 pass

271 elif Id == int(’8003’ ,16):

272 # FFT Packet

273 if radio.Panafall:

274 pan_data = ParsePanadapterPacket(packet , radio.Panafall.x_pixels , radio.Panafall.

y_pixels)

275 radio.Panafall.PanBuffer.put_nowait(pan_data)

276 elif Id == int(’8004’ ,16):

277 # WATERFALL Packet:

278 if radio.Panafall:

279 ParseWaterfallPacket(packet)

280 elif Id == int(’8005’ ,16):

281 # OPUS AUDIO Packet

282 if radio.RxAudioStreamer:

283 opusData = ParseOpusPacket(packet)

284 radio.RxAudioStreamer.outBuffer.put_nowait(opusData)

285 elif Id == int(’3E3’ ,16):

Implementation 33

286 # IF NARROW Packet

287 if radio.RxAudioStreamer:

288 ParseIfNarrowPacket(packet , radio.RxAudioStreamer.outBuffer)

289

Listing 11: Parse VITA Packets

Listing 11 shows how this parsing is achieved, switching on the class id which represents

the type of data received. So far I’ve only addressed FFT, Waterfall, OPUS encoded

audio and raw audio, but this structure allows new VITA packets to be added with ease.

The parsing of the specific packets is all done in a similar way, so let us consider one in

more detail. The Pan Adapter plot as seen in the official SmartSDR UI (fig. 2) can be

plotted by a client too, as the FLEX-6400 sends the required data to do so. As a FLEX

community post[21] describes, the data is essentially just an array of Amplitude values

the width of your Panafall() object, so it’s fairly trivial to get this data and plot it.

366 def ParsePanadapterPacket(packet , x, y):

367 pan_data = []

368 index = 0

369

370 StartBin_index , NumBins , BinSize , TotalBinsInFrame , FrameIndex , PacketCount = unpack(">

HHHHLL", packet.payload[index:index +16])

371 # Packet_Count could be used to error check , but we already have an error check for all

VITA packet types

372 index += 16

373

374 for i in iter_unpack(">H", packet.payload[index:index+TotalBinsInFrame *2]):

375 pan_data.append(y - i[0]) # invert y axis as FLEX graphs differently

376

377 return pan_data

378

Listing 12: Parsing a PanAdapter Packet

Data received over the UDP socket is in the form of a bytestring, and so I used a very

efficacious Python module ‘struct’ which manipulates such strings. Line 370 in Listing 12

shows how I unpack the start of an FFT packet, which holds information about the

PanAdapter being displayed. The argument ">HHHHLL" says that we’re expecting

four unsigned shorts and two unsigned longs all big-endian in the first 16 bytes of data

(see python struct documentation[25] for more detail). Then lines 374-375 show how I

iteratively unpack the rest of the packet to obtain the actual Pan Adapter data. Struct

methods ‘unpack()’ and ‘iter_unpack()’ both always return tuples, so I must index the

Implementation 34

Figure 11: Panadapter Plot from FlexModule library

result to obtain just the integer value. This data then needs to be inverted as I believe

FLEX do their FFT plot from the top right not bottom left. This unpacking or iterative

unpacking is the basis of how I handle the UDP data, and I think it’s a neat and concise

way of doing it. Figure 11 shows an example plot of the Panadapter data being received

from the FLEX-6400. This data is actually plotted live, updating in real-time. Each

peak represents a received signal in the spectrum, with the largest peak being an Upper

Side-Band transmission. The axis labels are currently indicating the number of pixels of

the display, but it wouldn’t be too difficult to change this to the frequency and decibel

values, as these are currently stored as variables in the Panadapter class. It would require

scaling the array of values received however, and I didn’t have time to implement this

before the submission date.

Implementation 35

I also handle the waterfall data sent from the FLEX radio, but at the time of submission

it wasn’t working as well as I would like. This will be amended in time for the VIVA but

I couldn’t include a screenshot in this report.

My ultimate goal for this data handler was to allow GNU Radio to very accurately

describe the radio’s system, without discrepancies between the two. I believe I successfully

achieved that, due in part to the way new objects on the local side are created. For

example, when my API sends a "slice create..." command, it could create a Slice() object

locally at the same time. However, if the message was dropped or the radio failed in

creating it, there would be a divergence between the number of slices on the radio and

the number of slices stored locally. To avoid this, the Data Handler only creates a Slice()

when it receives a "good" slice-create response back from the radio (Listing 13). Looking

at Figure 9, we can see Command 7 requesting the creation of a Slice, and our API only

doing so locally once we receive Response 7 with no errors. This still brings up the issue

of what happens if this response message is dropped, but I believe it’s better to not know

that a slice is available than not know a slice is unavailable.

75 if "slice c" in sent_msg:

76 if hex_code != 0:

77 # log error

78 pass

79 else:

80 slice_data = dict(param.split("=") for param in sent_msg.split(" ")[2:])

81 newSlice = Slice(radio , float(slice_data["freq"]), slice_data["ant"], slice_data["

mode"])

82 radio.SliceList.append(newSlice)

83

Listing 13: Consistent Slice Creation

Implementation 36

Creating an Audio Stream

Receiving Audio Data was a big milestone for my project, and while not as time-consuming

as the previous two key areas it is worth discussing in this section. In order to have audio

streaming from the FLEX radio, there are a few prerequisites that must be done. Firstly,

the UDP channel must be connected and open. Secondly a Slice must be present and

subscribed to. With these conditions met, a user can send the command to request a

Remote Audio Stream:

82 def CreateAudioStream(self , isCompressed):

83 command = "stream create type=remote_audio_rx compression="

84 if isCompressed:

85 command += "opus"

86 else:

87 command += "none"

88 self.SendCommand(command)

89

Listing 14: Requesting a Remote Audio Stream

Here we have the option to either receive raw uncompressed data or opus encoded data.

Opus is an audio coding format that is quite common in real-time applications such as

radio due to its low latency[1]. As the data is received over the UDP port, both types are

packaged into a VITA 49 packet. I did not get around to decoding opus audio as I didn’t

have time to decode it myself. The library could however easily be extended to include

opus decoding by using a Python library already available[28].

The next step is to unpack the received packets. This is performed by the Data Handler

as discussed in the previous section, but just for further clarification Listing 15 shows how

its done.

298 def ParseIfNarrowPacket(packet , buffer):

299 switch = True

300 for flt in iter_unpack("!f", packet.payload): # take every 4 bytes and cast to float

301 # FLEX sends 2 channels of same audio stream - I’m only saving 1 channel

302 if switch:

303 buffer.put_nowait(flt [0]) # iter_unpack returns tuple of 1 item

304 # else:

305 # do something here if 2nd channel required

306 switch = not switch

307

Listing 15: Parsing an Audio Packet

Implementation 37

Again, I use the ‘struct.iter_unpack()’ method to iteratively take a four byte float in

the bytestring. This is then stored in the RxRemoteAudioStream’s buffer. The radio

actually sends each float value twice. While I haven’t confirmed the reasoning behind

this - again information online is fairly limited - I believe this is because it’s sending two

channels of data at a time. The radio allows for two Remote Audio streams to be active

simultaneously, so if I had another one running this second value would be for the second

stream. I have only implemented the option for one stream in my API at this time, but

the switch condition in ParseIfNarrowPacket() allows for simple modification to save

the second stream.

Looking at the RxRemoteAudioStream() class (Listing 16), you can see I implemented

the buffer data structure as a Queue(). This structure is thread-safe and adding a member

to it is an O(1) operation meaning it won’t slow the Data Handler.

5 class RxRemoteAudioStream(object):

6 """ class for a RX Remote Audio Stream """

7

8 def __init__(self , radio , stream_id , isCompressed):

9 # super(RXRemoteAudioStream , self).__init__ ()

10 self.radio = radio

11 self.stream_id = stream_id

12 self.isCompressed = isCompressed

13 self.outBuffer = Queue ()

14

Listing 16: RxRemoteAudioStream Class

Implementation 38

GNU Radio

As discussed in the Approach chapter, an Out-Of-Tree GNU Radio block must conform to

the standard block structure in order to run. Apart from that, we have a lot of flexibility

in the code we can use inside it. From Listing 17 you can see that I’m importing my

FlexModule API and instantiating SmartLink() and Radio() classes, which is connecting

to the FLEX-6400.

23 import numpy

24 from gnuradio import gr

25 from FlexModule.SmartLink import SmartLink

26 from FlexModule.Radio import Radio

27 from time import sleep

28 import FlexModule.DataHandler

29

30 class FlexSource(gr.sync_block):

31 """

32 Source block for FLEX radio connection , streaming audio data

33 """

34 def __init__(self , serial):

35 gr.sync_block.__init__(self ,

36 name="FlexSource",

37 in_sig=None ,

38 out_sig =[numpy.float32 ,])

39 self.serial = serial

40

41 self.smartLink = SmartLink ()

42 if len(self.smartLink.radio_list) < 1:

43 return

44 self.radioInfo = self.smartLink.GetRadioFromAvailable (self.serial)

45 self.flexRadio = Radio(self.radioInfo , self.smartLink)

46

47 if self.flexRadio.serverHandle:

48 receiveThread = FlexModule.DataHandler.ReceiveData(self.flexRadio)

49 receiveThread.start()

50

51 self.flexRadio.UpdateAntList ()

52 self.flexRadio.SendCommand(’sub slice all’)

53 self.flexRadio.SendCommand("sub pan all")

54

55 self.flexRadio.CreateAudioStream(False)

56

57 """ should find a nicer way of doing this """

58 for _ in range (5):

59 if not self.flexRadio.RxAudioStreamer:

60 sleep (1)

61 self.flexRadio.OpenUDPConnection ()

62 else:

63 # raise exception in GR interface

64 return

Listing 17: Defintion of FlexSource Block

Implementation 39

In lines 35-39, the block itself is initialised, inheriting from the standard Sync type. How-

ever, I set in_sig to None, making it fundamentally of type Source.

I check to see if a connection to the radio is actually established by verifying it has

obtained the session handle from the SmartLink server. If that is the case, I can create

a ReceiveData() thread and do the preliminary updating to make sure the local Radio()

object is mirroring the state of the actual FLEX-6400. Finally, we can create an audio

stream, the parameters of which are defined in the block itself (Listing 20).

Listing 18 lays out the ‘work()’ function. For my FlexSource block, the work function

pulls the data from the RxRemoteAudioStream queue and appends it to a list. Once it

has either pulled all the data or filled its own buffer, it then converts the list to a numpy

array, as this is what GNU Radio expects. The reason I append to a temporary list in-

stead of straight into a numpy array is because an appended value simply extends a list.

Numpy arrays have fixed length, so every append would create a new array; this would

be very inefficient on memory.

67 def work(self , input_items , output_items):

68 out = output_items [0]

69 # if self.flexRadio.RxAudioStreamer.isCompressed:

70 # do Opus decompression

71

72 """ Queue () implementation """

73 out_len = min(len(output_items [0]), self.flexRadio.RxAudioStreamer.outBuffer.qsize ())

74 # print(out_len , end=" ")

75 if out_len == 0:

76 return 0

77

78 temp = []

79 for i in range(out_len):

80 temp.append(self.flexRadio.RxAudioStreamer.outBuffer.get_nowait ())

81 out[: out_len] = numpy.array(temp)

82

83 return out_len

Listing 18: FlexSource Work Function

Implementation 40

Below I have some more API calls in local methods, to tune the Slice object from

where the Audio Stream is capturing data. A user could also change the demodulation

mode or the antenna.

86 def setFreq(self , newFreq):

87 self.flexRadio.GetSlice (0).Tune(newFreq)

88

89 def setMode(self , newMode):

90 self.flexRadio.GetSlice (0).Set(mode=newMode)

91

92 def setAnt(self , newAnt):

93 self.flexRadio.GetSlice (0).Set(ant=newAnt)

Listing 19: Example FlexModule API calls

To actually generate the block on the UI, GNU Radio uses .yml files to describe the

number of I/Os, the I/O data types and their parameters. Listing 20 shows how Figure 12

is represented in yml. Note that the callback list is how these parameters are updated by

the user, which then subsequently makes the API calls to update the remote SDR.

5 templates:

6 imports: import gnu_flex

7 make: gnu_flex.FlexSource(${serial })

8 callbacks:

9 - setFreq(${freq})

10 - setMode(${mode})

11 - setAntenna(${ant})

12

13 # Make one ’parameters ’ list entry for every parameter you want settable from the GUI.

14 # Keys include:

15 # * id (makes the value accessible as \$keyname , e.g. in the make entry)

16 # * label (label shown in the GUI)

17 # * dtype (e.g. int , float , complex , byte , short , xxx_vector , ...)

18 parameters:

19 - id: serial

20 label: Serial Number

21 dtype: string

22 - id: freq

23 label: Slice Frequency

24 dtype: float

25 - id: mode

26 label: Slice Demod Mode

27 dtype: string

28 - id: ant

29 label: Slice Antenna

30 dtype: string

Listing 20: gnu_flex_()FlexSource.block.yml

Implementation 41

Figure 12: FlexSource Block in GNU Radio

Finally, Listing 21 shows how the input/output boxes are defined. Again, referring to

Figure 12 we can see that it only has an output, of type float (which is what the colour

orange represents). This is reflected in the aforementioned listing, as it has no inputs

defined - the section has been commented out - and the outputs exactly represent the

block pictured.

32 # Make one ’inputs ’ list entry per input and one ’outputs ’ list entry per output.

33 # Keys include:

34 # * label (an identifier for the GUI)

35 # * domain (optional - stream or message. Default is stream)

36 # * dtype (e.g. int , float , complex , byte , short , xxx_vector , ...)

37 # * vlen (optional - data stream vector length. Default is 1)

38 # * optional (optional - set to 1 for optional inputs. Default is 0)

39 # inputs:

40 # - label: ...

41 # domain: ...

42 # dtype: ...

43 # vlen: ...

44 # optional: ...

45

46 outputs:

47 - label: audio

48 domain: stream

49 dtype: float

50 vlen: 1

51 optional: 0

Listing 21: FlexSource I/O’s

Implementation 42

Figure 13: Audio Data Visualised on GNU Radio

Figure 13 shows the combined results of all these key areas. Audio data is obtained

from the FLEX-6400 from my FlexSource GNU Radio block. This data is then passed

into 3 visualisation sinks (the three shown in Fig. 4).

Future Work

While I believe I made some good ground in the project and delivering a working prototype

is satisfying, I am slightly disappointed in what is left to do. Given a few more weeks I

know I could have enabled effective IQ data streaming from the FLEX-6400 and into GNU

Radio. I also would have liked to at least attempted transmitting audio, even though I

stated in my initial plan this would be bonus work.

I know the process required to request an IQ stream from the radio. A Panadapter is

needed - which I have implemented successfully - and then these three commands get IQ

data streaming over the UDP port:

• sub daxiq all

• stream create daxiq=1

• dax iq set 1 pan=<pan_id>

Then I just need to parse the data being received over the Datagram Socket, but with

the structure of my Data Handler and Vita() class this would be trivial.

Transmitting audio would have been slightly more complicated, but if I upload an

audio file I can iteratively pack it into a bytestring. Then I package it into a VITA

49 packet by making a simple method in the Vita() class and it would be ready to be

transmitted. The only thing left to do would be to make a TX equivalent of my RxRe-

moteAudioStream in the Radio class and instruct the FLEX radio I will be transmitting it.

So while I was unable to complete these goals, the functionality is either there or only a

43

Future Work 44

few extra steps away from being possible. However, these goals are not the only things I

would add to my library if given the time. While I think the API is stable and robust, I

still think there are areas which could be improved to make it more extendable.

Firstly, I would like to remove some of the strain from the Data Handler. In its cur-

rent state it handles all traffic from the radio: TCP/IP and UDP data. It performs well

with the subset of radio objects I’ve implemented so far, but as more are added I know

packets will start to be dropped while it parses the old ones. The more packets accepted

mean the more packets that need to be parsed and hence a backlog is more likely to occur.

To alleviate this issue I would do two things: 1 - split the handler in two so each socket

has a dedicated parser, and 2 - introduce asynchronous tasks[22] so that the ‘Receive-

Data()’ thread (Listing 7) can be solely committed to receiving data from the sockets.

These asynchronous tasks would then do all the actual parsing of the packets in a separate

thread which ends once the function calls finish. I believe these two updates to the Data

Handler would make it much more reliable and elastic; it could handle implementations

with few packets types enabled or many.

Next, I would like to find a way of allowing user authentication without using a

browser. I will highlight the issues I had using browser authentication in the Evaluation

section, but finding an alternative would be much more flexible and avoid many of the

problems I had moving my library from Windows to Linux. I wanted to make the API as

cross-platform as possible, and this was the biggest hindrance. Along with this I’d like to

try and implement another type of Auth0 access called a refresh token[4], which means a

user can stay authenticated longer than just the run-time of the program. Consequently,

they don’t have to login every time and the library thereby becomes much more user

friendly.

Finally, I want to implement a functional and effective logging system, to give real-time

feedback on a user’s interaction with the API. As you can see in the ‘ParseResponse()’

function I’ve left spaces to report errors that are returned from incorrect commands.

Future Work 45

Unfortunately I didn’t have time to properly address this area while I was trying to

meet the main goals of the project, but I know this should be met if I want to ensure

the maintainability and usability of the library. I would also like to make this logging

coalesce with GNU Radio, so that alert boxes are generated on the UI. This prompts the

user to address their error and helps them understand what is wrong, which is better

than making them look in a text file. This extension could get complicated but I think it

would be worth attempting.

Evaluation, Results & Testing

Testing

Throughout my project, I included tests and validation checks to increase the stability

and fault tolerance of the API. These tests could be to recognise if an error had occurred,

recover from an error or gracefully exit from an error if the API cannot progress fur-

ther. These checks were also very useful during development to identify where and why

the program was failing, a fundamental way to increase the speed of the project’s progress.

I will first discuss some tests embedded in the code itself, which provide feedback on

the state of the API or the communication it is parsing. Beginning with FlexModule\

SmartLink.py, the function get_auth0_tokens() has a number of verification tests in it

to ensure the process is completed correctly. Referring to Listing 3, the first test is on line

82. Here we make sure that the URL returned from connecting to Auth0 contains the

string “Found. Redirecting to ”. If this is not the case, the necessary redirection shown

as Step 3 in Figure7 has not been achieved. Then on line 104, we verify we have indeed

received an authorization code from Auth0 by checking “code=” is present in the URL.

As the Auth0 code is required to be exchanged for the JWT, if this steps fails we cannot

proceed. Finally, we test to see we do indeed get a token in return on line 119. Without

the token we cannot authenticate ourselves with the SmartLink server and therefore we

will not be able to see our available radios, so this step being successful is imperative to

the program.

46

Evaluation, Results & Testing 47

Continuing in SmartLink.py, a test is also performed in SendRegisterApplicationMes-

sageToServer(). Line 137 in Listing 4 shows how I confirm the TLS connection to the

SmartLink is still present. As I establish the connection in the initialisation of the class,

there could be some time before the token data is actually sent to the server. This is due

to the user having to enter their details in the browser. To keep the connection alive, I

created a thread to periodically ping the Server. If this pinging fails or the connection

breaks, the socket will not be live and therefore not have a version type to return. The

benefit of these tests in SmartLink.py is I can see exactly at what stage the authentica-

tion has failed. This allows me diagnose very quickly what may be the problem and focus

my efforts.

The next stage of tests take place in FlexModule\Radio.py. During the process of telling

the SmartLink server we intend to connect to our chosen radio (SendConnectMessage-

ToRadio(), lines 37-41 of Listing 5 verify that we did indeed receive the corresponding

data from the server. This data confirms that the radio is available and active; if not it’s

probably switched off or we have entered a serial number not matching one of our radios.

If this step fails, we would be telling SmartLink to try and communicate with a radio

that we don’t own or isn’t on. We wouldn’t receive an error message from SmartLink if

we attempted this, so this test is very important to get verification that we can indeed

connect to the specified radio.

Another test is performed in the same function, shown in lines 46 to 51. Here the

program verifies a handle is returned from SmartLink by trying to split the message to

obtain it. If this is not possible, it would mean that the connect message we sent failed

and we can not establish a Peer-To-Peer link to the radio. If that’s the case, the method

returns an empty string - essentially a boolean False in Python. This prevents the API

from trying to create the physical link to the radio but allows a developer to handle an

empty string as they’d like. Once again, these two stages of tests in Radio.py allow me

to quickly determine the success or failure in connecting directly to the radio and why it

Evaluation, Results & Testing 48

may or may not have occurred.

The last group of tests present in the API are found in FlexModule\DataHandler.py.

These tests are validating the data received from the radio is correct and doesn’t contain

errors. As before I’ll go through the functions individually, discussing the tests involved

are what the advantages are of having them implemented. First looking at ParseRead(),

a simple test is performed to ensure the data TCP/IP received conforms to the format

specified in the SmartSDR wiki[7]. This allows me to confirm the data received from the

radio isn’t garbage and it’s being decoding correctly.

Further validation is performed in ParseResponse() and ParseStatus(). In both cases,

the received message is verified that it further matches the expected format again taken

from their respective wiki pages. These necessary tests as it’s important all responses

and status updates are handled by the API. If they are being received incompletely or

the radio isn’t sending them correctly, effective control of the radio and proper reflection

of its status in the API can’t be achieved. I previously mentioned it in the Future Work

section, but another test performed in ParseResponse() is on the hex code contained in

the message. This code is how the API can identify if a command was accepted by the

radio or not. While I haven’t implemented individual actions for each response, the test

will allow me to add logging or error handling in the future, which is an essential part of

any good program.

The final test performed by the API I will discuss is how it verifies the packets being

received over UDP. As I detailed in the Implementation chapter, the VITA packet format

contains a 4-bit packet count (Fig 10). This count increments from 0 to 15 and overflows

to 0 again. Each packet type has it’s own packet count, meaning we can keep track of the

counts for only the VITA packets we have implemented.

380 def ValidatePacketCount(pkt_id , pkt_cnt):

381 Error = False

382 if pkt_cnt == 0:

383 prev_cnt = 15

384 else: prev_cnt = pkt_cnt - 1

385

Evaluation, Results & Testing 49

386 if pkt_id == int(’8003’ ,16):

387 try:

388 if ValidatePacketCount.fftCount != prev_cnt:

389 Error = True

390 except AttributeError:

391 # not been intialised yet , will be below

392 pass

393 ValidatePacketCount.fftCount = pkt_cnt

394 elif pkt_id == int(’8004’ ,16):

395 try:

396 if ValidatePacketCount.wtrflCount != prev_cnt:

397 Error = True

398 except AttributeError:

399 pass

400 ValidatePacketCount.wtrflCount = pkt_cnt

401 elif pkt_id == int(’8005’ ,16):

402 try:

403 if ValidatePacketCount.opusCount != prev_cnt:

404 Error = True

405 except AttributeError:

406 pass

407 ValidatePacketCount.opusCount = pkt_cnt

408 elif pkt_id == int(’3E3’ ,16):

409 try:

410 if ValidatePacketCount.ifNCount != prev_cnt:

411 Error = True

412 except AttributeError:

413 pass

414 ValidatePacketCount.ifNCount = pkt_cnt

415 # Add more packet types when required

416

417 if Error:

418 print("Packet Dropped:" + str(pkt_id))

Listing 22: VITA 49 test function ValidatePacketCount()

Listing 22 is how the API does this, with static variables for each packet type. The count

for the most recently received packet is passed in as a parameter, and then the previous

count is calculated. If the stored packet count is not the same as this calculated number,

we must have dropped a packet and an Error is thrown.

This method allowed me to see how efficient my Data Handler was and whether it

could contend with all the data the radio was transmitting. I found that even my slow

laptop could have almost all the data without dropping packets and it proved to me that

my approach was more than satisfactory.

I also performed regular testing on my API throughout development. This involved

Evaluation, Results & Testing 50

Figure 14: Testing the Subscription Handling in the terminal

testing the commands sent were performing the correct actions, subscriptions and status

updates were updating the API settings and that the UDP data was valid. One such test

is shown here.

The above Figure displays the subscription handling in effect. As Listing 1 line 13

shows, a Radio() object is intialised with a Slice already present. This Slice is given default

values: a frequency of 0 MHz (which is saved as 0.03 MHz) and a demodulation mode of

FM. As Figure 14 indicates, once the slice radio object is subscribed to, the slice stored

locally on the API is updated to reflect the slice on the radio: the frequency becomes

14.1 MHz and the mode becomes USB; all done without user input. This an example of

the testing I carried out during development. I performed lots of these tests to verify my

data handling was correct and functioning.

Evaluation, Results & Testing 51

Evaluation

When looking at the goals I laid out at the start of my project, it is unfortunately true

that I didn’t manage to achieve them all in the allotted time. I was disappointed that this

was the case, but I don’t feel it was through a lack of effort or capability. Rather, I believe

I hit too many roadblocks which took too long to unravel than what a 13 week project

allows for. I will discuss these roadblocks shortly, but first we should take an empirical

evaluation of the results of my project.

The first goal I wanted to accomplish was to Discover and Configure the FLEX-6400

radio. I achieved this goal, but the project started on the wrong foot as it took me a lot

longer than I expected to establish the connection to the radio. Nevertheless, my API

allows a user to authenticate themselves with the SmartLink server and then connect to

their desired radio. Once connected, they can then send general administrative commands

to configure the SDR’s settings remotely.

The second goal was to be able to receive Audio data from the FLEX-6400. This was

also achieved: a user can create an Audio Stream on the radio which then sends data

to my API over UDP. This was a big milestone for the project, as it requires a lot of

functionality in the API to be present. I was very happy with the architecture of the

library and the quality of it meant when it came to creating the audio stream it was

straight forward. So even though again I took longer on this stage than i would have

liked, I completed this goal.

The third and last goal that I expected myself to complete in the 13 weeks was receiving

IQ data from the radio. This was where time ran out on me. As I mentioned in the Future

Work chapter, I was unable to accomplish this goal but I know given a week or two more

I could have done. The functionality is present in my API to request and accept an IQ

stream, I just wasn’t able to put it together and test it. It’s disappointing that I couldn’t

meet this goal.

Evaluation, Results & Testing 52

I also discussed additional goals in my Initial Report should I finish the expected ones.

As I ran out of time, I also couldn’t attempt transmitting Audio or IQ data. While I can’t

consider not achieving these goals a failure, I think it would have been really beneficial

to the library and very interesting to discuss in the report if I had the time to attempt

transmission of data.

However there were other achievements to come out of this project that should be men-

tioned. The creation of my library in general is a great accomplishment as it is something

that had not been done before but will be useful immediately. This report itself is also

a nice result of the project, as it’s an amalgamation of a lot of research from different

sources. It’s a detailed and accurate manual in how remote communication with a FLEX

must be established and performed, which will be of great utility to many developers and

operators, be they professionals or enthusiast.

This project could be characterised by Hemingway’s Law of Motion, where he describes

bankruptcy as something that happens slowly, and then all at once. I felt this occurred

quite cyclically during the project development, where I would have a week or 2 of no

progress at all and then a few days of sudden rapid expansion.

I will next discuss aspects of the project that caused these stalls in progress. I have

already mentioned the delay at the start of the project due to difficulties in completing

the authentication and discovery of the radio. There were multiple issues in this task, but

they all stemmed from a lack of clear documentation in how to authorize and authenticate

oneself with the SmartLink server. Although the auth0 flow[3] informed me on the steps

required, it couldn’t help me in knowing what site I needed to visit and what to do once I’d

got the token. The latter was the most troublesome because documentation became even

sparser, and when the right steps were eventually realised, it came about through days of

trial-and-error. For example, when creating the TLS socket directly to the radio, the SSL

context must be customized so that it does not require certificate verification[19]. If this

Evaluation, Results & Testing 53

was not done, the socket connection would be established and the command WanValidate

would be delivered, but the Peer-To-Peer connection would not be accepted. As far as

I’ve seen, nowhere details that this SSL context modification must be done in order for

the connection to be completed successfully.

Not only that, but this connection and WAN validation must be performed immedi-

ately after the SmartLink server sends you the session handle. I lost a few days trying to

figure out why I wasn’t successfully connecting to the radio with what I believed to be a

valid handle. Again, nowhere in any FlexRadio documentation says how long the handle

is valid for until it must be sent to the radio. The reason for my issue was I was creating

the TLS socket after receiving this handle, by which time it had expired before i could

send the actual “wan validate handle=<handle>” message.

19 context = ssl.create_default_context ()

20 context.check_hostname = False

21 context.verify_mode = ssl.CERT_NONE

22 self.sock = socket.socket(socket.AF_INET , socket.SOCK_STREAM)

23 self.FLEX_Sock = ssl.wrap_socket(self.sock) # socket to comms with the FLEX radio

24 self.DATA_Sock = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)

25 self.UdpListening = False

26

27 self.clientHandle = ""

28 self.serverHandle = self.SendConnectMessageToRadio ()

29 if self.serverHandle:

30 self.FLEX_Sock.connect ((self.radioData[’public_ip ’], int(self.radioData[’

public_upnp_tls_port ’])))

31 # print(self.FLEX_Sock.getpeername ())

32 self.WanValidate ()

33 self.SendCommand("client gui")

Listing 23: Excerpt from Radio.py initialisation code

Note lines 19-23 of Listing 23 which show how I create all the socket instances first before

I connect to them. Then, once I receive the session handle from the server (line 28),

I immediately connect and call the WanValidate() function. Receiving the handle and

then creating the socket instance after seemed to be just time-consuming enough to allow

the handle to expire.

These issues with Authentication and Discovery really impeded my progress for the

first weeks of the project, and solutions online were few and far between. It took a lot of

work and communication between myself and my supervisor to remedy the problems and

Evaluation, Results & Testing 54

eventually complete the authentication, but with only 13 weeks assigned setbacks such as

this right at the start of the project have real impact.

Another notable problem I had was hanging or disconnecting sockets during run-time.

Often, when I came to receive data from the TCP/IP (TLS) socket, I could take all the

data available but then the socket would hang, completely locking the API. I was using

the standard “socket.recv(bytes)” method to accept messages, but for some reason the

socket would sit trying to read more data even when none was available. I tried to make

the socket disconnect once it had received the data but obviously this would mean I’d

have to reconnect every time I wanted to receive data and would lead to lost packets. I

also tried putting the TLS socket into blocking mode, so it would timeout after so many

seconds of not receiving data. This did fix the problem, but I wasn’t satisfied with the

solution because being in blocking mode would freeze the whole API while it tried to

receive data. As the API expands, this would obviously become more and more of an

issue. After a week or so of troubles with this hanging socket problem, the client found

the ‘select’ Python module, which can poll the sockets and try to see if data is available

to be received without actually accepting it (Listing 7 line 21).

In the Implementation chapter, I talked about Response messages, and how the first

part of them contains the sequence number. This sequence number is echoed from the

command sent from the user, relying on you incrementing it for every new command you

send. However, at first I misunderstood the SmartSDR wiki documentation and thought

the sequence number was unique for each individual command: i.e. a “slice create” com-

mand had a sequence number of 21, a “slice remove” command had a sequence number

of 22 and so on. This misinterpretation led to some strange behaviour from the radio,

as it would accept a command if the sequence number had jumped ahead, but if I sent a

repeated command I would get unexpected error messages in return. It wasn’t until I went

through the code with my supervisor in one of our weekly meetings that we realised my

Evaluation, Results & Testing 55

mistake. This not only slowed down the progress during the Discovery and Configuration

phase, but also meant I had to significantly alter my data handler. Beforehand, I believed

I could take the sequence number in the Response message and determine directly what

message it was responding to, from a simple message-type dictionary lookup. However,

in reality the same command would have a different sequence number each time it was

sent, and therefore I had to keep track of exactly what messages I was sending in order

to know what the response was pertaining to.

One of the most significant issues I had during this project was an adverse result of

using browser authentication in the Discovery and Configuration phase. The machine

I used to build this project is a laptop with a Windows OS. However, building custom

GNU Radio blocks requires Linux, as it uses ‘cmake’ commands (although I should men-

tion GNU Radio have a Windows implementation in the pipelines). Due to COVID-19,

I couldn’t use the Linux Lab machines available in the ComSci building, and so had to

use a Windows Subsystem for Linux (or WSL) installed from the Microsoft Store. This

presented many problems, the first of which being WSL doesn’t natively provide the abil-

ity to allow the use of UI’s, like a browser or the GNU Radio interface. This problem

could be solved by installing a program called XServer, but my WSL still wouldn’t allow

me to pull up a browser. This meant I had no way to enter my login details and the

API couldn’t run. This caused a substantial delay in progress, while I spent weeks trying

to configure my WSL and it’s chromedriver settings. This was really frustrating for me

as it meant I couldn’t focus on Software Development and building GNU Radio blocks,

instead spending a lot of time playing around with the kernel settings on my WSL which

was never the aim of this project. Eventually, I had to admit defeat and instead build a

separate script which simply obtains the Auth0 token and saves it to a text file. I could

run this script on Windows and then in the WSL start my API, which picks up the token

in order to gain authorisation to the SmartLink server.

Evaluation, Results & Testing 56

The problems with the WSL didn’t end there though. Once I was finally getting the

API running in the Linux environment, I went on to start building my FlexSource block

in GNU Radio. However, when I started using the API calls, I was getting an error that

I’d never seen up to that point. Specifically, on the first use of a TLS socket (Listing 5

line 43), I would get a “SSLEOFERROR”. According to Python’s ssl documentation[24],

an end of file error is raised when the connection is terminated abruptly. Not much to

go on, and any other information online was even more obscure or unhelpful. Even more

frustrating was the fact that the client - who has a normal Linux OS - could run the code

without issue. The SSLEOFERROR seems to occur randomly, and I haven’t been able

to fix it at this time. However, I’m confident it is due to compatibility issues with WSL

and GNU Radio and the actual code is correct.

Personal Reflection

When reflecting on what I’ve achieved in these 13 weeks, I am happy with what was

completed. Although I’d like to have gotten further - I met two of the three expected

goals - I also created an API that’s ready to be implemented in other projects and a way

to use it in GNU Radio. I believe I managed the project well and was under control

throughout. To keep track of the project, I created a weekly blog on WordPress[26],

which allowed me to see how I was progressing and what stages were taking too long to

complete. It was also invaluable when it came to writing this report, as I could see the

clear path the project took; it’s easy to forget what was done in the first few weeks of the

project.

To ensure the integrity of the code I was writing, I used version control continually

through the project. Admittedly, this was something I had not had much experience

in prior to this module, but in doing so I have become much more confident in it. For

example, during some of our review meetings, myself my supervisor and the client would

look through some of my code to see areas that could be improved or might cause issues

Evaluation, Results & Testing 57

further down the line. The client then updated the software with his suggestions and

pushed to the git repository. However there would be occasions where I had made more

changes to my own local branch before the meeting. Pushing these changes, wouldn’t be

immediately possible as the remote and local branches had become out of sync and the

remote was ahead. To fix this problem, I had to stash my own commit, and interactively

rebase my branch to be the same as the remote master. I could then retrieve my stashed

commit and push it as normal. This would not be an uncommon problem in industry,

as many more people would be working on an application and each would be using their

own branch. It is therefore easy to see how branches can become out of sync and would

need commands such as I described to realign them. Version control is fundamental in

professional practices so I will be much better prepared when I enter the corporate world.

I also believe the communication and collaboration with my supervisor and the client

was strong throughout the project. We held a meeting every week to discuss the progress

being made and to try and resolve issues I may be having. We also had more formal

"Review" meetings according to the dates laid out in my Initial Plan [27], where we took

a broader assessment of the project and re-evaluated the goals. These review meetings

were very beneficial as they reaffirmed to me that I was making suitable progress and the

setbacks were indeed valid and unavoidable. It was great to have Derek Kozel involved as

he provided real clarity when it came to working with GNU Radio. They always tried to

be available as much as possible and were very responsive to all the questions I had; I don’t

think the project would have been nearly as successful if I had had busier supervisors.

I’d also like to thank David Humphreys for his help in writing the function to access the

Auth0 token, because as I’ve stated throughout this report this was a very challenging

step to begin the project with.

I believe I would have had a stronger start if I could have begun from a local link

to the radio. Instead, at the time of submission I still haven’t seen the FLEX-6400 in

person. Due to COVID-19 restrictions, I had to do all work on it remotely. While I know

every project this year will have been affected by COVID, I feel projects involving hard-

Evaluation, Results & Testing 58

ware such as mine are more deeply so because you don’t get that physical interaction you

otherwise would have. I also feel I was slightly hampered by the quality of the resources

I had at my disposal: my laptop is over 5 years old and very slow. I would have wanted

to work more in the university and make use of the better machines they had available.

Cardiff did allow remote access to them via virtual machines, but installing the software

I required was very difficult and I didn’t have the flexibility in time to properly do this.

From a personal perspective, I gained so much from doing this project. Having come

in with no knowledge of Amateur Radio and RF Communication, I have learnt not only

the background of how this communication works but also how to create a way to interface

with a Software Defined Radio. These are two things that will only be beneficial to me

in the future. Given the extent of the problems I had and the sparsity of information I

had to assist me, I believe the end product surpassed what could be expected. There will

always being issues when creating software but how you handle them is what can make

or break a project and I felt I did so more than adequately. In addition to developing

my skills in software development by actually writing the library, I also gained invaluable

skills in having to pick something up from scratch and learn about the system. It’s very

common in a professional environment like consulting to be given a new system and have

to improve or develop it, with only some documentation and technical specifications to

help you. I have no doubt that the experiences I’ve had doing this project will translate

directly into my future work practices.

List of Figures

1 Example GNU Radio code flow . 1

2 FlexRadio’s SmartSDR .NET UI . 3

3 Example FLEX API wiki entry . 8

4 Project Architecture . 11

5 FlexModule API Class Diagram . 13

6 GNU Radio Block Description . 15

7 Auth0 Authorization Code Flow . 19

8 Complete Authentication Flow . 24

9 Example Log of Radio Command-Responses 30

10 VITA 49 Packet Format . 32

11 Panadapter Plot from FlexModule library 34

12 FlexSource Block in GNU Radio . 41

13 Audio Data Visualised on GNU Radio . 42

14 Testing the Subscription Handling in the terminal 50

59

Listings

1 Radio.py Class Example . 12

2 Slice.py Class example . 13

3 get_auth0_tokens() . 20

4 SendRegisterApplicationMessageToServer() 22

5 SendConnectMessageToRadio() . 23

6 WanValidate() . 23

7 Receive Thread . 25

8 Switching on Message Type . 27

9 Parse Response segment . 28

10 Parse Status segment . 29

11 Parse VITA Packets . 32

12 Parsing a PanAdapter Packet . 33

13 Consistent Slice Creation . 35

14 Requesting a Remote Audio Stream . 36

15 Parsing an Audio Packet . 36

16 RxRemoteAudioStream Class . 37

17 Defintion of FlexSource Block . 38

18 FlexSource Work Function . 39

19 Example FlexModule API calls . 40

20 gnu_flex_()FlexSource.block.yml . 40

21 FlexSource I/O’s . 41

60

Chapter 61

22 VITA 49 test function ValidatePacketCount() 48

23 Excerpt from Radio.py initialisation code 53

Abbreviations

API Application Programming Interface

JWT JSON Web Token

SDR Software Defined Radio

SSL Secure Sockets Layer

TCP/IP Transmission Control Protocol/Internet Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

62

Bibliography

[1] Opus (audio format). URL

https://en.wikipedia.org/wiki/Opus_(audio_format).

[2] ARRL.org. Amateur radio saved lives in south asia. 2005. URL

https://web.archive.org/web/20050101021716/http:

//www.arrl.org/news/stories/2004/12/29/100/?nc=1.

[3] Auth0. Authorization Code Flow documentation, . URL

https://auth0.com/docs/flows/authorization-code-flow.

[4] Auth0. Refresh Tokens documentation, . URL

https://auth0.com/docs/tokens/refresh-tokens.

[5] A. Bazlur-Rahman. Role of amateur radio in development communication of

bangladesh. 2012.

[6] P. R. Brown. The influence of amateur radio on the development of the commercial

market for quartz piezoelectric resonators in the united states. URL

http://www.bliley.net/XTAL/Industry-Hams.html.

[7] FlexRadio. Smartsdr tcp/ip api, . URL

http://wiki.flexradio.com/index.php?title=SmartSDR_TCP/IP_API.

[8] FlexRadio. Smartsdr tcp/ip subscription docs, . URL

http://wiki.flexradio.com/index.php?title=TCP/IP_sub.

63

https://en.wikipedia.org/wiki/Opus_(audio_format)
https://web.archive.org/web/20050101021716/http://www.arrl.org/news/stories/2004/12/29/100/?nc=1
https://web.archive.org/web/20050101021716/http://www.arrl.org/news/stories/2004/12/29/100/?nc=1
https://auth0.com/docs/flows/authorization-code-flow
https://auth0.com/docs/tokens/refresh-tokens
http://www.bliley.net/XTAL/Industry-Hams.html
http://wiki.flexradio.com/index.php?title=SmartSDR_TCP/IP_API
http://wiki.flexradio.com/index.php?title=TCP/IP_sub

Chapter 64

[9] R. Foust. Powershell module for flexradio. URL

https://github.com/rfoust/FlexModule.

[10] N. Frissel et al. Hamsci distributed array of small instruments personal space

weather station: Architecure and current status. Technical report, 2020. URL

https://hamsci.org/basic-project/personal-space-weather-station.

[11] S. Gamboa. Puerto rico amateur radio operators are playing key role in puerto rico.

2017. URL https://www.nbcnews.com/news/latino/

puerto-rico-amateur-radio-operators-are-playing-key-role-puerto-n805426.

[12] GNU Radio. Freedv demodulator block, . URL

https://wiki.gnuradio.org/index.php/FreeDV_demodulator.

[13] GNU Radio. Gnu radio wiki, . URL

https://wiki.gnuradio.org/index.php/Main_Page.

[14] GNU Radio. Types Of Blocks, . URL

https://wiki.gnuradio.org/index.php/Types_of_Blocks.

[15] J. Linford. FlexRadio 6000 SmartSDR - The Application Programming Interface, A

Primer, 1.002 edition.

[16] W. C. Lloyd. Ionospheric sounding during a total solar eclipse. Master’s thesis,

2019. URL https://vtechworks.lib.vt.edu/handle/10919/89951.

[17] J. Noordhof. How does modulation work? Tait Academy, . URL

https://www.taitradioacademy.com/topic/how-does-modulation-work-1-1/.

[18] J. Noordhof. What is propagation? Tait Academy, . URL

https://www.taitradioacademy.com/topic/what-is-propagation-1/.

[19] Norton Security. What is an ssl certificate. URL https://uk.norton.com/

https://github.com/rfoust/FlexModule
https://hamsci.org/basic-project/personal-space-weather-station
https://www.nbcnews.com/news/latino/puerto-rico-amateur-radio-operators-are-playing-key-role-puerto-n805426
https://www.nbcnews.com/news/latino/puerto-rico-amateur-radio-operators-are-playing-key-role-puerto-n805426
https://wiki.gnuradio.org/index.php/FreeDV_demodulator
https://wiki.gnuradio.org/index.php/Main_Page
https://wiki.gnuradio.org/index.php/Types_of_Blocks
https://vtechworks.lib.vt.edu/handle/10919/89951
https://www.taitradioacademy.com/topic/how-does-modulation-work-1-1/
https://www.taitradioacademy.com/topic/what-is-propagation-1/
https://uk.norton.com/internetsecurity-how-to-ssl-certificates-what-consumers-need-to-know.html
https://uk.norton.com/internetsecurity-how-to-ssl-certificates-what-consumers-need-to-know.html
https://uk.norton.com/internetsecurity-how-to-ssl-certificates-what-consumers-need-to-know.html

Chapter 65

internetsecurity-how-to-ssl-certificates-what-consumers-need-to-know.

html.

[20] Ofcom. Amateur Radio Guidance: How to become an radio amateur on the UK,

2019. URL https://www.ofcom.org.uk/__data/assets/pdf_file/0026/109547/

guidance-become-radio-amateur.pdf.

[21] S. Phillips. Generating a pan adapter and waterfall display. URL

https://community.flexradio.com/discussion/6683599/

generating-a-pan-adaptor-and-waterfall-display.

[22] Python Software Foundation. Coroutines and Tasks documentation, . URL

https://docs.python.org/3/library/asyncio-task.html.

[23] Python Software Foundation. select documentation, . URL

https://docs.python.org/3/library/select.html.

[24] Python Software Foundation. ssl documentation, . URL

https://docs.python.org/3/library/ssl.html.

[25] Python Software Foundation. struct documentation, . URL

https://docs.python.org/3/library/struct.html.

[26] J. Slim. Implementing a gnu radio drive for the flex-6400. 2021. URL

https://flexandgnuradio.wordpress.com/2021/02/22/

implementing-a-gnu-radio-driver-for-the-flex-6400/.

[27] J. Slim. Initial plan: Implement a gnu radio driver for the flex-6400 sdr transceiver.

2021.

[28] Svartalf. opuslib gitrepo. URL

https://github.com/orion-labs/opuslib/blob/master/tests/decoder.py.

https://uk.norton.com/internetsecurity-how-to-ssl-certificates-what-consumers-need-to-know.html
https://uk.norton.com/internetsecurity-how-to-ssl-certificates-what-consumers-need-to-know.html
https://uk.norton.com/internetsecurity-how-to-ssl-certificates-what-consumers-need-to-know.html
https://uk.norton.com/internetsecurity-how-to-ssl-certificates-what-consumers-need-to-know.html
https://www.ofcom.org.uk/__data/assets/pdf_file/0026/109547/guidance-become-radio-amateur.pdf
https://www.ofcom.org.uk/__data/assets/pdf_file/0026/109547/guidance-become-radio-amateur.pdf
https://community.flexradio.com/discussion/6683599/generating-a-pan-adaptor-and-waterfall-display
https://community.flexradio.com/discussion/6683599/generating-a-pan-adaptor-and-waterfall-display
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/select.html
https://docs.python.org/3/library/ssl.html
https://docs.python.org/3/library/struct.html
https://flexandgnuradio.wordpress.com/2021/02/22/implementing-a-gnu-radio-driver-for-the-flex-6400/
https://flexandgnuradio.wordpress.com/2021/02/22/implementing-a-gnu-radio-driver-for-the-flex-6400/
https://github.com/orion-labs/opuslib/blob/master/tests/decoder.py

Chapter 66

[29] E. Wachsmann and E. Gonzalez. SmartLink Quick Start Guide for SmartSDR for

Windows, 1.4 edition. URL https://www.flexradio.com/documentation/

smartlink-quick-start-guide-for-smartsdr-pdf/.

[30] D. Whitten and D. Rowe. Freedv: Open source amateur digital voice. URL

https://freedv.org/.

https://www.flexradio.com/documentation/smartlink-quick-start-guide-for-smartsdr-pdf/
https://www.flexradio.com/documentation/smartlink-quick-start-guide-for-smartsdr-pdf/
https://freedv.org/

