
5/14/2021

CM3203 Individual Project
By Kyle Swire-Thompson

Supervisor: Neetesh Saxena

Moderator: Hantao Liu

kyle.swirethompson@gmail.com
CARDIFF UNIVERCITY

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

1 | P a g e
1887995

Acknowledgements

Firstly, I would like to express my profound gratitude to both of my parents to support me throughout
my entire education and enable me to take on a project such as this.

Secondly, I would like to thank my supervisor for all of his hard work supporting this project and
providing me with guidance on how to complete a task as monumental as this.

Finally, I would like to thank all my other friends and family that have supported me throughout my
degree and encouraged my pursuit of computer science.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

2 | P a g e
1887995

DECLARATION OF ORIGINALITY

I declare that this thesis has been composed solely by myself and that it has not been
submitted, in whole or in part, in any previous application for a degree, except where
states otherwise by reference or acknowledgement, the work presented is entirely my
own.

X

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

3 | P a g e
1887995

PROFORMA

I. Candidate number.
A. 1887995

II. The Title of the Project.
A. Cyber-Events Detection in Smart Grid for Situational Awareness

III. The Examination and Year.
A. 2021-CM3203

IV. Word count for the Dissertation.
A. 22808

V. Final line count: Number of lines written by the student in the final version of their software.
A. 1005

VI. Project Originator.
A. Neetesh Saxena

VII. Project Supervisor.
A. Neetesh Saxena

VIII. The original aims of the project.
A. The project's original aims were to develop a cyber event detection capability within
the context of a smart grid power system. This, in turn, would be used to improve the
situational awareness of the system. This was done through the use Of machine learning
algorithms in combination with data mining techniques. After analysis and event detection, a
report on the said event is then produced detailing all relevant knowledge and guidance on
how to proceed. The detection system must be fully customisable to detect better the attacks
they encounter in the real world.

IX. At most 100 words summarising the work completed.
A. The work completed here involves using and improving machine learning algorithm
based classifiers to prevent attacks on smart grid power systems. The tool produced alongside
this paper completes this task.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

4 | P a g e
1887995

TABLE OF CONTENTS
Declaration of originality .. 2

Proforma ... 3

1 Chapter 1: Introduction .. 8

1.1 Introduction .. 8

1.1.1 Introduction to the topic ... 8

1.1.2 Motivation ... 10

1.2 Scope and Context .. 10

1.2.1 The scope .. 10

1.2.2 Context of the problem ... 11

1.3 Problem statement ... 12

1.4 Aims and Objectives .. 12

1.4.1 The Aim ... 12

1.4.2 Objectives .. 13

1.5 Building on previous work .. 13

1.6 Assumptions .. 13

1.7 Report Organisation .. 13

2 Chapter 2: Background .. 14

2.1 Overview ... 14

2.2 Terms .. 14

2.2.1 Machine learning algorithm .. 14

2.2.2 Smart-Grid ... 14

2.2.3 Situational Awareness ... 14

2.2.4 WEKA ... 14

2.2.5 Voting Methodology ... 14

2.2.6 Industrial control systems ... 14

2.2.7 Artificial Intelligence ... 14

2.2.8 Cross-validation ... 15

2.2.9 Supervised data ... 15

2.2.10 Classifiers .. 15

2.3 Related Work .. 15

2.4 Existing tools ... 17

2.4.1 Microsoft Defender for Endpoint .. 17

2.4.2 Chronicle ... 17

2.4.3 SPLUNK .. 18

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

5 | P a g e
1887995

2.5 Data Characteristics .. 19

2.5.1 Purpose of the Binary and three class data sets ... 19

2.5.2 Multi-class data set ... 21

2.5.3 The information gained ranked attributes.. 21

2.6 Describe the attacks .. 24

2.6.1 Remote tripping command injection (Attack) .. 24

2.6.2 Relay setting change (Attack).. 24

2.6.3 Data Injection (Attack) .. 25

2.7 data set scenarios ... 25

2.8 Types of classifiers .. 27

2.8.1 Bayesian .. 27

2.8.2 Functions ... 27

2.8.3 Lazy .. 27

2.8.4 Meta .. 27

2.8.5 Miscellaneous ... 27

2.8.6 Rules .. 27

2.8.7 Tree ... 27

2.9 Summery ... 27

3 Chapter 3: Approach ... 28

3.1 Overview ... 28

3.2 project planning .. 28

3.3 methodologies used .. 28

3.4 requirements specification ... 29

3.4.1 Functional Requirements .. 29

3.4.2 Non-Functional Requirements .. 31

3.5 System design ... 32

3.5.1 System model .. 32

3.6 Summary ... 33

4 Chapter 4: solution idea and implementation .. 34

4.1 Overview ... 34

4.2 Technology Choices... 34

4.2.1 Computer specifications ... 34

4.2.2 Libraries ... 34

4.2.3 Programming language ... 34

4.3 The overall workflow of the idea .. 35

4.4 Overall execution elements .. 37

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

6 | P a g e
1887995

4.4.1 Data access .. 37

4.4.2 Creating and updating an external data file ... 37

4.4.3 Attribute selection procedure... 37

4.4.4 Creation and serialisation of individual classifiers .. 38

(a) Ada boost M1 single classifier enhancer .. 38

4.4.5 Bagging single classifier enhancer .. 38

4.4.6 Blending used as a single classifier enhancer ... 38

4.4.7 Delay based single classifier enhancer .. 38

4.4.8 Blending voting methodology ... 39

4.4.9 Most common based voting methodology ... 39

4.4.10 Weighted voting methodology ... 39

4.4.11 Deserialisation of a classifier ... 39

4.4.12 Individual scenario response .. 39

4.4.13 Changing filename and location ... 39

4.4.14 Retraining of classifiers ... 40

4.5 Tool snapshots .. 40

4.6 Possible classifiers ... 41

4.7 Basic implementation ... 41

4.8 Discussion .. 42

4.8.1 Sparse data .. 42

4.8.2 Discrediting attributes .. 42

4.8.3 Classification selection .. 42

4.8.4 Sensitivity reduction ... 42

4.8.5 Removal of the graphic user interface .. 43

4.8.6 Clustering .. 43

4.9 summary ... 43

5 Results and Evaluation .. 44

5.1 overview .. 44

5.2 dataset and pre-processing... 44

5.2.1 Understanding the data set .. 44

5.2.2 Pre-processing and attribute selection ... 44

5.3 Individual classifier Performance .. 45

5.3.1 Control data group .. 46

5.4 Base classifier improver Performance .. 47

5.4.1 Attribute selection group .. 47

5.4.2 Bootstrap aggregating results ... 48

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

7 | P a g e
1887995

5.4.3 adaptive boosting group ... 49

5.4.4 Delay based single classifier enhancer .. 50

5.4.5 Combination classifier single classifier enhancer ... 51

5.5 Voting methodologies Results .. 52

5.5.1 Most common prediction voting methodology .. 52

5.5.2 Weighted voting methodology ... 53

5.5.3 Blending voting methodology ... 54

5.6 scenario detection results ... 55

5.7 key highlights and takeaways ... 55

5.7.1 Single classifier improvements ... 55

5.7.2 voting methodologies ... 56

5.7.3 Scenario detection .. 56

5.8 evaluation ... 57

5.8.1 Single classifiers evaluation .. 57

5.8.2 Individual classifier improver .. 59

5.8.3 VOTE combination individual classifier improver ... 64

5.8.4 The average performance of individual classifier improvers .. 65

5.8.5 voting methodology evaluation .. 66

5.8.6 attack type evaluation .. 66

5.9 summary ... 67

6 Conclusion and future work .. 68

6.1 Built-in live data capture ... 68

6.2 Integrating more detection methodologies .. 68

6.3 Edge case new scenario classification ... 68

7 Further conclusions ... 69

7.1 Motivation and problem ... 69

7.2 the idea and tool ... 69

7.3 the results and conclusions ... 69

8 Reflections made on learning .. 70

9 Appendices .. 71

9.1 Gantt chart .. 72

Bibliography .. 73

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

8 | P a g e
1887995

1 CHAPTER 1: INTRODUCTION

1.1 INTRODUCTION

1.1.1 Introduction to the topic

With the ever-increasing digitalisation of the modern world, we are becoming more reliant on
computer systems than ever. Whether that be financial transactions, communications or managing
and controlling physical machines, computer systems tend to be at the centre of these. As these
computer systems are critical to everyday tasks, any disruption can have disastrous knock-on effects
for the other systems reliant on them. In recent years, cyber operations have been increasingly utilised
to further political ambitions and globally affect the balance of power. This is typically called
cyberterrorism and involves three basic types of attack, " As a rule, a distinction should be drawn
among three basic attack categories: an attack on the gateway of an organisation, mainly its Internet
sites, through direct attacks, denial of service, or the defacement of websites; an attack on an
organisation's information systems; and finally, the most sophisticated (and complex) category—
attacks on an organisation's core operational systems, for example, industrial control systems ".
(Babak Akhgar, 2014). This paper will attempt to tackle the third and most sophisticated category of
attack, industrial control systems.

Previously the most devastating attacks were only possible by a large organised group with a common
goal, but cyber operations do not follow this rule. While terrorists can and do still make use of this
technology in order to "reach their objectives, create damage, influence policy, and leverage the
disproportional power relation between terrorists and the defending state." (Babak Akhgar, 2013).
cyber operations are open to everyone. "Civilians acting alone or as part of a mass uprising can
leverage widely available hacking tools and techniques to conduct cyber operations. “ (Vacca, 2017).
These crimes cause mass disruption to the community and are estimated to cost $600 billion U.S.
dollars annually or 0.8% of the global GDP (cyber security firm McAfee, the Center for Strategic and
International Studies, 2020). Following this historic spike in cybercrime, a vast and diverse market for
cybersecurity has emerged. This market is expected to reach $248.26 billion U.S. dollars by 2023
(Mlitz, 2018).

There are many critical elements to cybersecurity, but this paper will focus on detecting and
minimising attacks on industrial control systems, specifically a power-based smart grid. In order to
detect and minimise these breaches, this paper will use both data mining techniques and machine
learning algorithms applied to data produced by the smart grids infrastructure. Such a task has four
core elements: data mining and processing, machine learning classification, smart grid and finally
situational awareness. The first and arguably most straightforward in this context is data mining. Data
mining is the process of turning raw data into useful information. This topic encompasses the entire
paper as the overall goal is to take unreadable data and produce useful information. A machine
learning algorithm is used to accomplish this goal. A machine learning algorithm is a prediction
method that uses automated analytical model building and is a branch of Artificial Intelligence. The
use of machine learning algorithms is appropriate here as these algorithms specialise in turning an
overwhelming amount of data with uncomprehending complexity for the human mind and finding
patterns and correlations that otherwise would have been missed. The models that these algorithms
build based on the patterns and correlations can then be used to make predictions on unknown data.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

9 | P a g e
1887995

Attacks do not occur by themselves and must happen on a targeted computer system. A smart grid
was chosen as the target computer system, specifically a power system smart grid. A smart grid is an
electrical network that enables the two-way flow of both data and electricity. It also makes use of
digital communications technology to better detect and react to any changes that may happen within
the smart grid. Smart grids also typically have self-healing capabilities and integrate innovative tools
and technologies to improve the grids’ automation and efficiency. A power systems smart grid aims
to deliver power safely and securely to a paying customer. Detection of attacks will improve the
situational awareness of the smart grid. Situational awareness is the understanding that a person of
authority has of the current state of the computer system they oversee. The greater the situational
awareness, the greater likelihood that the effects of an attack are minimised. Smart grid situational
awareness is provided through a “monitoring system composed of advanced monitoring equipment,
which can be more intuitive and predictable in the control of power grid.” (Dong, et al., 2017).

Attacks inflict damage to their target in many different methods. For instance, a well-researched type
of attack used on electric supply systems is the Aurora attack. According to mark Zeller at the
DistribuTECH Conference in San Diego, California, an Aurora vulnerability attack is “to intentionally
open a breaker and close it out of synchronism to cause damage to connected power system
equipment, such as generators, motors, and transformers. When an out-of-synchronism close is
initiated, the resulting high electrical current and torque translate to stress on the mechanical shaft
of rotating equipment. This stress reduces the life of the rotating equipment and can possibly destroy
it.” (Zeller, 2011).

The first-ever know example of a cyber warfare tool differs from the context slightly as it occurred
against a nuclear power plant instead of a power grid smart system. Never the less the theory behind
the attack is the same, and it is far more dramatic with the stakes of a nuclear meltdown. This example
is called Stuxnet, a malicious computer first discovered in 2010 but thought to have been developed
in the mid-2000s. It is widely accepted that it was developed by the intelligent agencies of both the
United States and Israel under the code name operation Olympic Games. Stuxnet Reportedly has
destroyed numerous central fuses within the Iranian uranium enrichment facility. This damage was
done by exploiting multiple previously unknown windows 0-day vulnerabilities to infect other
computers on the system and spread. The centrifuges themselves were destroyed by the worm, slowly
but surely changing the centrifuge values to the point where it was unstable and caused burnout, thus
reducing the country’s nuclear capabilities. Since being discovered, it faded from the popular
consciousness until around 2016 when a Microsoft security Intelligence Report identified it among the
exploit related malware families detected in the second half of 2015. since then, other groups have
reportedly modified it to target other facilities, including water treatment plants, power plants, and
gas facilities. Stuxnet’s specific goals differed from previous malicious software as, “ Stuxnet wasn't
about industrial espionage: it didn't steal, manipulate, or erase information. Rather, Stuxnet's goal
was to physically destroy a military target-not just metaphorically, but literally.” (Langner, 2011).

This project aims to produce two things. A dissertation of in-depth research which will demonstrate a
thorough investigation of the topic and a machine learning tool that can be applied to a computer
system which will take inputted data and process said data in order to create a report on the current
situation facing the smart grid and overall, will improve the situational awareness of the smart grid.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

10 | P a g e
1887995

1.1.2 Motivation
There are many types of applications where this project would be helpful. A network security project
might need to test the effectiveness and hiding capabilities of certain types of attacks against custom
multi-algorithm machine learning detection methods. Both the tool and accompanying paper would
help a researcher create a prediction methodology using multiple algorithms and test the attacks. The
flexibility of the application is paramount to quickly change in and change out algorithms to produce
the most effective prediction methodology. This project will also easily find the advantages and
disadvantages of each machine learning algorithm against each of the types of attacks inflicted on the
smart grid. Finding out these advantages and disadvantages will allow the researcher to place
algorithms that complement each other together. There are many methods to combining these
predictions, all of which will improve the single classifiers based prediction. The increased level of
accuracy offered in this project will help to inform any users next step when an event has occurred.

1.2 SCOPE AND CONTEXT
To understand why this work is critical, we must first understand the context surrounding smart grids,
cyberattacks and machine learning algorithms. Doing this will give us a greater understanding of any
problems or issues we may face later on in the project. However, these subjects are extensive,
meaning that any attempt to understand the entire subject requires much study and would be far too
cumbersome to produce a credible paper and tool. We overcome this by defining a scope that sets
limits for the extent that the project can reach. If the scope were too broad, then the work would be
far too great to finish, but if it were too small, not enough work would be covered to make this paper
relevant, so a correct balance has to be found between the two.

1.2.1 The scope
Smart grids are typically very interlinked, and as such, one action occurring on one end of the smart
grid may affect a component on the other end. This dependency results in a need to correctly
understand the layout of our specific smart grid and how each component interacts with each other.
This is especially important for understanding what part of the smart grid an attacker is attempting to
infiltrate or affect and how changes in the data affect the real-life smart grid. While we do not need
to understand every aspect of the smart grid, we need to understand how the data we are processing
is gathered and transferred.

Many different cyberattacks can be inflicted upon a smart grid, but we will use attacks that have most
notably been used against smart grids for this project. These attacks include remote trip attacks,
command injections attacks, relay setting change attacks and data injection attacks. No other types of
attack will be considered, although multiple subtypes are belonging to each different attack category.

Finally, we come to machine learning algorithms. This is the most prominent topic covered in this
paper as the whole detection method is based on using multiple machine learning algorithms. As such,
we need to have a thorough understanding of each algorithm's advantages and disadvantages,
including how each algorithm interacts when used in a voting methodology for a final prediction. In
order to create an accurate prediction method to inform the tool, we must understand how each
aspect and type of machine learning algorithm works.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

11 | P a g e
1887995

1.2.2 Context of the problem
Previously these types of attacks would only occur against large infrastructure projects such as nuclear
power plants or other critical high-value targets. However, while these were the first to be attacked,
they were also the first to adopt cutting edge cybersecurity tools and techniques. Even though the
rewards for successfully attacking these targets will be high, the difficulty is ever increasing.
Unfortunately, this has led to hackers typically targeting smaller projects with substantially less
cybersecurity or targeting countries that do not have the same cybersecurity capabilities as other
more wealthy countries.

Attacks that physically damage the smart grid can be devastating to the grids’ correct functionality
and significantly impact any infrastructure or people relying on the smart grid. It Is challenging to
detect when these attacks are happening as hackers have only become better and better at hiding
themselves on computer systems from typical antivirus or anti-ransomware software. A human
looking at the voltage data which is reported from a smart grid will not be able to tell if an attack is
happening even if they know the correct parameters for what the voltage is meant to be, the amount
of data they will be receiving and the number of voltages they will have to monitor will be far too
cumbersome and overwhelming. Hackers may also decide to camouflage how quickly they increase
the voltage by spreading this over a long period such as weeks or even months until the elements are
overused till destruction. Disruption to essential services such as water, electricity and natural gas can
have detrimental effects on the nation's stability. A lack of these essential services erodes trust in the
populist that the government can provide for its citizens.

Attacks do not necessarily have to physically damage the smart grid in order to cause a significant
impact. Suppose an attack was interfering with the signals that the smart grid passes onto the control
room, which will result in energy being diverted to areas that do not need resulting in vast amounts
of money being wasted. Thus is devastating both to the power company as well as the environment
as unnecessary pollution occurs.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

12 | P a g e
1887995

1.3 PROBLEM STATEMENT
In the early days of smart grids, they would typically be protected due to their isolation from any other
network. This means that there was no risk of being attacked since there was no way for anyone from
outside of the grid to gain access. This model for a smart grid, however, is not possible in the modern
day. Nowadays, smart grids real-time sensing and measuring technologies enable the system to
automatically detect and respond to any changes or problems within the grid, thus reducing any
outrages and maintenance requirements. Smart grids like these are essential to prevent outages by
correctly implementing various automation tools and techniques that require less human input or
maintenance.

These smart grids are always critical to whoever relies on them and, as such, are heavily protected
with cybersecurity. However, these cybersecurity tools rely on finding compromise indicators,
whether that be packet analysis, system log entries/files, etc. If an attacker can hide from the tool’s
methods to detect an intruder, no action will be taken against the intruder due to these tools’
automated nature. Even if the attacker starts to damage parts of the smart grid, these cybersecurity
tools will still not detect them as they cannot see what effect the intruder is having on the smart grid.
This is the knowledge gap this paper and tool will be able to fill. Instead of relying on pieces of forensic
data found on the smart grid system, it will instead use the data gathered directly from the smart grid.

Therefore our problem statement is to increase the situational awareness of a smart grid by
monitoring the physical changes on the smart grid for any indicators of compromise or potentially
dangerous situations while providing a report on any incident that occurs. This report will contain
guidance on the correct path going forward to take. Previous literature has attempted to solve this
problem but not to any degree of accuracy that would make it relevant to a real-world context

1.4 AIMS AND OBJECTIVES
To have a clear idea of what we want to accomplish, we first must set an aim and a set of objectives
that we need to complete by the end of this project.

1.4.1 The Aim
Many large-scale smart grid systems will typically have a specialised team of professionals on call to
deal with incidents that may occur, but many medium or small smart grids rely on automated security
tools to do this job for them. This means that they are vulnerable to any attack that these automated
tools do not recognise and cannot stop. Automated cybersecurity tools rely on the attacker leaving
behind or producing forensic data that can then be collected and processed to determine if an attack
occurs. If an attacker can circumvent these automated tools, any smart grid that relies on these tools
is therefore vulnerable. To overcome this, the project aims to create an easy to use tool that uses
machine learning algorithms to detect a hidden attack even when the attacker can hide their presence
from automated cybersecurity tools.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

13 | P a g e
1887995

1.4.2 Objectives
The work that this paper will aim to cover will do the following objectives :

1. Collect giving data about the smart grid and use it to build and train multiple machine learning
classifiers to a high degree of accuracy to perform predictions about the state of this smart
grid from live data inputted by the user.

2. Provide the user with numerous other options for predictions based on the single classifiers’
predictions and produce a report based on those predictions that details all relevant
knowledge about the incident and guidance on how to proceed.

3. The tool with a degree of certainty always tells the difference between the three categories
of events: no events, natural events and attack events. However, this level of precision is not
enough, and the tool must also correctly classify each scenario found in the data correctly.

1.5 BUILDING ON PREVIOUS WORK
Previous work with machine learning algorithms to make predictions about the state of a smart grid
has focused primarily on being able to classify whether an attack is occurring correctly or not. This is
an insufficient level of precision, and for a user wishing to make use of this work, it is not enough. This
project will significantly improve the precision elements of the previous machine learning tools while
using them to create a practical application that can improve an individuals’ situational awareness of
their smart grid.

1.6 ASSUMPTIONS
The business or individuals that use the tool will be familiar with the topics covered, with only some
need to explain technical concepts. The data will be inputted in .ARFF file type and will be of the same
format regardless of the data set, although error checking for this will still occur within the tool. The
tool will not require any security to prevent the attacker from manipulating the tool. The user has fully
downloaded all appropriate libraries, and any required tools are up to date. Any test instant treated
like live data has the same attribute information as the data set each classifier would is trained on.

1.7 REPORT ORGANISATION
In the next chapter, there will be background material about the topics discussed in this section. This
background knowledge is imperative to understand both the solution and the results produced after
that chapter follows a detailed description of the approach and how this paper will overcome the
problems described. After the approach will come a chapter presenting the solution idea and how it
was implemented. A breakdown of all the functionality within the tool is also included. Next follows
the results and evaluation chapter. This part of the paper will detail any results from experimentation
done in conjunction with producing the tool and proving this paper has achieved the goals set out.
Once the results have been presented, they will then be evaluated to provide critical context to the
results and highlight any key elements or takeaways. The Final three research chapters are based
around conclusions of this work and any future work that could make use of this project.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

14 | P a g e
1887995

2 CHAPTER 2: BACKGROUND

2.1 OVERVIEW
In this chapter, both the terms and context needed to understand the project will be explained
thoroughly. This includes any constraints that have used in order to simplify the scope of the project.

2.2 TERMS
Here will be defined some standard terms found in these topics.

2.2.1 Machine learning algorithm
A machine learning algorithm is an algorithm that turns a set of data into a model and uses
this model to make predictions on new data. This prediction technique outperforms other
statistical methods because of the non-linear and complexity of the data set we are using;
machine learning algorithms will always surpass other algorithms in terms of accuracy metrics.

2.2.2 Smart-Grid
A smart grid is a power solution that employs an extensive range of information technology
resources to detect and respond appropriately to any changes in local power usage. The use
of a smart grid will reduce electricity waste and overall energy costs.

2.2.3 Situational Awareness
Situational awareness within this context is how well the user understands what is currently
happening within their smart grid.

2.2.4 WEKA
Weka is a tried and tested open-source machine learning software that can be accessed
through a graphical user interface, standard terminal applications, or a Java API. It is widely
used for teaching, research, and industrial applications, contains a plethora of built-in tools for
standard machine learning tasks, and additionally gives transparent access to well-known
toolboxes such as scikit-learn, R, and Deeplearning4j. (Machine Learning Group at the
University of Waikato., n.d.)

2.2.5 Voting Methodology
A voting methodology is a process that is applied to previous predictions made by single
classifiers to make the overall prediction more accurate.

2.2.6 Industrial control systems
An industrial control system uses control systems and associated measurement and control
instrumentation for industrial process control. These systems cover an extensive range,
including electric power generation, chemical manufacturing, oil refineries, water and waste
treatment. Specifically, in our context, the control system is a smart grid, and the process that
it controls is the generation and distribution of power.

2.2.7 Artificial Intelligence
Artificial Intelligence is the theory and development of computer systems that can perform
tasks typically off-limits to other computer systems due to human intelligence requirements.
There are many examples of these, such as speech recognition, translation between
languages, visual perception and decision-making.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

15 | P a g e
1887995

2.2.8 Cross-validation
Cross-validation is a process we can use to evaluate how well a classifier performs. First, in this
process, the number of folds is defined. In this example, we will use 10. Imagine there were
instances of data on which you wish to perform ten-fold cross-validation. First, These instances
would be divided into ten equal-sized sets. Within each of these ten sets, they are further
divided down into two groups. 90% of each of equal size divisions is used for training, whereas
10% is used for testing. The classifier chosen to be tested is then trained on the training data
and is tested on the test data for the first equal-sized data set. This process is repeated for all
nine other chunks of data, which produces nine more classifiers. The performance from each
of these ten classifiers is then averaged to produce a result.

2.2.9 Supervised data
Supervised data is data in which each instance has been labelled and belongs to a specific
scenario. This label means that any algorithm which uses supervised data knows which
scenario each of the instances within the training data belongs to. The opposite of this is
unsupervised data which can look the same as supervised data but would be missing the last
attribute called the class attribute, which defines the scenarios each of the instances belongs
to.

2.2.10 Classifiers
A classifier is a machine learning algorithm that automatically orders or categorises supervised
data in one or more sets of classes.

2.3 RELATED WORK
This next section will detail previous work done in this field of research and demonstrate how it is
related to this project.

The work that is arguably the most closely related to this topic is entitled machine learning power
system and cyber-attack discrimination and classification of disturbances (Raymond C. Borges Hink
& Mark A. Buckner, 2014). In this work, the authors theorised that the machine learning
algorithms in the open-source Waikato environment for knowledge analysis (WEKA) could
“leverage non-linear complex relationships between power system measurements and be able to
discriminate between malicious, non-malicious, and normal disturbances” (Raymond C. Borges
Hink, 2014). To test this, they used the same data set as the one used in this paper.

When testing this theory, they used ten-fold cross-validation and a 90/10 training test split. They
then applied a series of machine learning algorithms to the data set, including OneR, NNGe,
Random Forests, Naïve Bayes, Support Vector Machines (SVM), JRipper, and Adaboost+JRipper.
In order to judge the accuracy of these algorithms, they recorded metrics including accuracy,
recall, precision, and F measure. Overall the results concluded that JRipper combined with an
aggregated boost, a single classifier enhancer method, had the highest accuracy across all metrics
at approximately 95% correct classification (Raymond C. Borges Hink, 2014). However, upon
closer inspection of the results, a problem arises.

An instance was classed as successfully classified if the classifier could differentiate between
disturbances and attack. The machine-learning algorithm was incapable of classifying specific
faults and attack types. While the research conducted here does explore the classification of the

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

16 | P a g e
1887995

entire data set and does attempt to categorise them, it only does this in the most basic form of
classification and, for our purposes, is not precise enough. It does not explicitly address the
classification of any individual scenarios, such as the specific subtypes of attacks found within the
data set. This project aims to build on this and create a tool that will correctly classify the type of
scenario as shown in previous literature and expand upon it to create a more precise prediction
method.

A critical element to this paper is situational awareness in the context of a smart grid. The paper that
best demonstrated this is Classification of Disturbances and Cyber-Attacks in Power Systems Using
Heterogeneous Time-Synchronized Data as in the words of its author, it “proposes a sequential
pattern mining approach to accurately extract patterns of power-system disturbances and cyber-
attacks from heterogeneous time-synchronised data, including synchrophasor measurements, relay
logs, and network event monitor logs.” (Shengyi Pan, 2015). This paper has a strong focus on the topic
of situational awareness. This paper branches off into using common path mining algorithms to
discover common paths from labelled logs, which will not be covered here, but the common path
mining paper focuses on similar concepts as what this paper is beneficial. The author’s methodology
for producing accurate results is still invaluable, and the paper’s focus on situational awareness both
provide invaluable knowledge.

Another article related to this work is an evaluation of machine learning methods to detect
malicious SCADA communications. This article details a similar approach with many of the same
machine learning algorithms except with the addition of J48. These algorithms are used to read
from remote terminal units in another ICS environment, a gas pipeline system. (Beaver, et al.,
2013). This article included routine operational observations and other observations of similar
attacks to the remote command injection attack, including an illegal process ID attack. This attack
is when a malicious command is sent to a programmable logic control unit in order to change its
performance. This attack also included other types of command injection attacks like
manipulating the setpoint of the pipeline pressure valve and a command injection attack that
dealt primarily in manipulating outgoing commands within the system to phish for relevant
information such as address and function scans. Despite this, the data set structures are not all
that similar. With regular operation numbering at 28,086 and command injection attacks
numbering at 257, only 49 are similar to the remote trip command injection utilised in our work.
The work that we are using has 8737 instances of remote trip command injection attack and 4405
instances of normal operations, a vastly different ratio than in this work. Even though this
difference impacts the comparison, the significant takeaways from this work are still relevant.
This article reiterates the previous findings that both attack and routine operations only
attempting to find the difference between these two categories have a higher classification rate
than if a classifier attempts to classify individual scenarios. In this work, they identified the highest
accuracy classifiers as the nearest neighbour algorithm, specifically NNGe and decision tree
algorithms specifically the random forest algorithm.

Different algorithms will be able to classify different types of attack at different rates. This difference
in ability is shown in the paper analysis of remote trip command injection attacks in industrial control
systems through statistical and machine learning methods. It was concluded that “specific attacks are
classified with higher accuracy through an application of differing ML algorithms and that in this
case, RandomForest is a better classifier for remote tripping command injection attacks than
JRipper+Adaboost.” (Timm, 2018). We can conclude that multiple algorithms should be used to
achieve this high classification level across different attacks types.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

17 | P a g e
1887995

2.4 EXISTING TOOLS
Here will be a description of three popular existing tools and how they use machine learning
algorithms. It is essential to understand what products are already developed and populate the
commercial market to make informed decisions about the tool created alongside this paper.

2.4.1 Microsoft Defender for Endpoint
A very well known cybersecurity tool that uses machine learning is the Windows Defender advanced
threat protection from Microsoft. “Microsoft Defender for Endpoint is a holistic, cloud-delivered
endpoint security solution that includes risk-based vulnerability management and assessment, attack
surface reduction, behavioural based and cloud-powered next-generation protection, endpoint
detection and response (EDR), automatic investigation and remediation, and managed hunting
services. ” (microsoft, 2021). This quote means that this application uses cloud-based AI and multiple
clusters of machine learning algorithms to spot threats.

2.4.2 Chronicle
Chronicle is a cybersecurity company that branched off from Google's parent company Alphabet. Its
first designed a product that analyses large amounts of security data like internal network traffic or
suspected malware files, and a machine learning algorithm condenses them into more easily digestible
insights into the network.

Figure 1. screenshot of Microsoft Defender for Endpoint

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

18 | P a g e
1887995

2.4.3 SPLUNK
This tool has various applications covering a range of areas such as IT operations, analytics and
cybersecurity. This software was designed to be used as an automated breach investigator, malware
defender, and identifying a client's digital weak points. They make use of machine learning algorithms
to detect threats so they can be quickly eliminated.

.

Figure 2. Screenshot from Splunk

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

19 | P a g e
1887995

2.5 DATA CHARACTERISTICS
In order to train and test the attack detection model, example data is required. Such example data
must cover many possible scenarios that may occur within a smart grid so all functionality of the
detection model can be tested. In doing research, a power system attack data set published by the
Mississippi State University and Oakland Ridge National Laboratory in 2014 was found. These data
sets were produced in collaboration with Justin Beaver and Raymond Borge of Oakland Ridge National
Laboratory. The raw data logs were provided to Justin by the MSU team, and the Oakland Ridge
National Laboratory team formatted these logs into appropriate data sets.

The data they produced contains three sub-datasets; binary, three class and multi-class data sets.
Upon investigating the differences between these three, the only change between them is the amount
of detail describing what type of scenario each instance of data belongs to. The least detailed is the
binary data set which only distinguishes between an attack event and routine operations. The three-
class data set improves this by distinguishing between attacks, a naturally occurring event such as line
maintenance or standard electrical faults and no events. Finally, the most detailed is the multi-class
data set. Its marker attribute distinguishes between individual scenarios and not just the type of
scenario the instance belongs to, for example, the same attack occurring multiple times but being
executed on different intelligent electronic drivers. For these reasons and the fact that the.ARFF
format that the multi-class data set is provided in easily integrates with the machine learning code
library; this paper will use this specific data set.

2.5.1 Purpose of the Binary and three class data sets
As previously stated, this paper will be using the multi-class data set. The other two data sets are
typically used when less accuracy is required in the specific scenario that needs to be predicted and
instead either between two different types in the binary data set three different types in the three-
class data set. Many other papers use these three very similar but subtly different data sets to test
how increasing the number of scenarios possible for each instance decreases the overall accuracy of
the prediction models.

As shown by the paper, ‘Machine learning for power system disturbance and cyber-attack
discrimination’ (Raymond C. Borges Hink, 2014), when using the same classifiers but testing across the
three different types of data sets, it was found that the accuracy of each classifier decreases when the
dataset each classifier is trained on has more possible scenarios. The results for each of these three
experiments is shown in the three figures below.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

20 | P a g e
1887995

Figure 3. Multiclass Accuracy over Fifteen Datasets (Raymond C. Borges Hink & Mark A.
Buckner, 2014)

Figure 4. Three-class accuracy over Fifteen Datasets (Raymond C. Borges Hink & Mark A.
Buckner, 2014)

Figure 5. Binary classification accuracy over Fifteen Datasets (Raymond C. Borges Hink & Mark A.
Buckner, 2014)

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

21 | P a g e
1887995

2.5.2 Multi-class data set
The data set is made up of 15 different .ARFF files with 37 power system event scenarios in each. The
37 scenarios are then divided into eight natural events, one no event and 28 attack events. As
previously stated, this power system attack data set was produced by Mississippi State University and
Oakland Ridge National Laboratory on the 15th of April 2014.

2.5.3 The information gained ranked attributes
Not all attributes are created equal. Some attributes provide more significant amounts of information
in terms of predicting the scenario than others. This measurement is known as information gained,
and within the WEKA code library, there is functionality to produce a ranked list of attributes based
on how much information they provide to a classifier. Using ten-fold cross-validation, each attribute
was tested to gain an average metric of information gained. The results are showing in the diagram
below.

From these results, it is approximated that about 50% of the 128 attributes provided in the data set
produce approximately 96% of the learning value to a classifier. The results can be broken down into
approximate clusters. The first cluster is made of the four attributes that produce the highest results.
These attributes were the apparent impedance measurement for each relay and ranged between 4.87
and 4.911. The next cluster of results is the voltage phase angles, current phase angles and
voltage/current magnitude, ranging between 2 and approximately 3. After this, there is a significant
drop in the information gained by each of the attributes. After this drop, there is a precipitous decline
which eventually reaches 0 for the last 54 attributes. For these 54 attributes as they give no
information to the classifiers, just a hindrance in terms of both processing power required to analyse
them and the detrimental effect comprehensively they have on correct predictions.

Figure 6. Attributes ranked by info. gained

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

22 | P a g e
1887995

2.5.3.1 Power system framework configuration
The figure in this section shows the power system framework configuration used in the data set to
produce these scenarios. In this diagram, the power generators are labelled G1 and G2. The R1
through to R4 components are called intelligent electronic devices or IED’S; these can switch the
Breakers on or off. The corresponding Breakers are labelled BR1 through BR4. There are also have two
lines in the grid. The first line spans from breaker one (BR1) to break it to (BR2), and the second line
spans from the third breaker (BR3) to breaker four (BR4). Each IED automatically controls an individual
breaker; for instance, R1 controls BR1, R2 controls BR2 and so on accordingly. The IED’S use a distance
protection scheme that will trip the breaker if a fault is detected, whether that be a valid or fake fault,
since they have no internal validation method to detect the differences. Any operators on this smart
grid will manually issue commands to the IED’S to manually trip the breakers if needed. The manual
override is used when performing maintenance on lines or other system components.

Figure 7. the power system framework configuration used in generating the scenarios (Mississippi State
University and Oak Ridge National Laboratory, 2014)

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

23 | P a g e
1887995

2.5.3.2 Technical Description

As previously stated, the data was drawn from 15 data sets, which included thousands of individual
instances of measurements throughout the power system for each type of event listed. They were
then randomly sampled at 1% to reduce the size and evaluate a small sample size effectiveness. From
this, we can see an average of 294 no event instances, 3711 attacking stairs and finally 1221 natural
events instances. The data file in total contains 78,963,019 bytes divided up into 15 separate .ARFF
files. The open-source data will be using is classed as scientific data. There are 37 separate scenarios
within the data set. Scenarios 1-6, 13 and 14 are natural event scenarios. Scenario 7-12, 15-30 and 35-
40 Attack event scenarios and make up the vast majority of the data set scenarios. Finally, scenario 41
is classed as a no event scenario. Scenarios 31 to 34 do not exist within the data set.

2.5.3.3 Non-Attack Scenarios
Within the data set, three distinct scenario types can be classed as non-attack scenarios.

2.5.3.3.1 Short circuit fault (Natural Event)
a. This is a short in the power line that can occur in various locations along the line; the

percentage range indicates the location.
b. Six scenarios fall under this type.
c. Faults in these scenarios can either occur on line one or line two.
d. Three of the scenarios are dedicated to each line.
e. Faults range from 10% to 19%, 20% to 79% and 80% to 90% on both lines.

2.5.3.3.2 Line maintenance (Natural Event)
f. One or more relays are disabled on a specific line to do maintenance for that line.
g. This can occur on either line one or line two and only contains two separate scenarios.

2.5.3.3.3 Normal operation load changes (No Event)
h. This scenario describes the regular and expected load changes within the smart grid

and can be considered the standard operating data.

Table 1. THREE-CLASS CLASSIFICATION GROUP (Mississippi State University and Oak Ridge National Laboratory,
2014)

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

24 | P a g e
1887995

2.5.3.4 Feature Description
There are a total of 128 features for each of the instances of data. There are 29 types of measurements
from each phasor measurement unit (PMU), with a total of four of these measurement units in our
smart grid. Phasor measurement unit or synchroniser is the primary method used to collect all data,
and it is responsible for 116 PMU measurement columns in total, making up the majority of the data’s
features. The remaining 12 features are used for control panel logs, snort alerts and relay logs of the
four PMU/relay. Finally, the last column is used as a marker and defines which scenario each of the
instances relates to. This information would not be available in a realistic context and instead would
be replaced by a question mark. The application will recognise this question mark and will know the
instance is live data. Data used to train the classifiers will contain this information as the classifiers will
need this to build an accurate model of the data set.

2.6 DESCRIBE THE ATTACKS
The other three types of scenarios available for us to test are all different attack events. Each attack
scenario type may be divided into subtypes; these subtypes will all follow the same method as their
over-arcing attack type but typically differ by performing the same attack on multiple components of
the smart grid at the same time or Increasing the complexity of the attack compared to the previous
attack subtype.

2.6.1 Remote tripping command injection (Attack)
a. This is an attack that sends a command to a relay which causes a breaker to open. It

can only be done once an attacker has penetrated outside defences. (Mississippi State
University and Oak Ridge National Laboratory, 2014).

b. This scenario is then subdivided into two types of attack. These being command
injection against a single relay or command Injection against two relays.

c. There is a command injection scenario for each of the single relays creating four in
total for the command injection against a single relay attack subtype.

d. There is also a command injection scenario against relay one and relay two co-
occurring and a command injection against relay three and relay four in another
scenario for a total of two scenarios for this attack subtype.

2.6.2 Relay setting change (Attack)
e. Relays are configured with a distance protection scheme, and the attacker changes

the setting to disable the relay function such that the relay will not trip for a valid fault
or a valid command. (Mississippi State University and Oak Ridge National Laboratory,
2014).

f. This attack type is divided into three separate subtypes: disabling relay function
against a single relay disabled and fault, disabling relay function against two relays
disabled and fault, and finally disabling relay function against two relays disabled as
well as line maintenance.

g. This attack type is the largest out of all three attack types.
h. Within the first subtype of this attack, there will be a fault on one of the two lines

within the network and one of the relays being disabled and showing a fault; this is
repeated against different areas of the line and different relays being disabled.

i. This is again repeated but disabling two relays instead of 1.
j. Finally, the last subtype describes standard line maintenance, as well as two relays,

being disabled.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

25 | P a g e
1887995

2.6.3 Data Injection (Attack)
k. Here we imitate a valid fault by changing values to parameters such as current,

voltage, sequence components etc. This attack aims to blind the operator and causes
a blackout. (Mississippi State University and Oak Ridge National Laboratory, 2014).

l. This type of attack scenario attempts to mask itself by mirroring natural fault events
on line one and line two and including a trip command to attack the system.

2.7 DATA SET SCENARIOS
From the three main groups, the dataset is broken down into 37 separate scenarios. This is further
explained in the table below.

Table 2. Data set Scenarios Breakdown Table

Scenario
Number

Description Type

1 Fault from 10-19% on Line 1

Natural

2 Fault from 20-79% on Line 1

Natural

3 Fault from 80-90% on Line 1

Natural

4 Fault from 10-19% on Line 2

Natural

5 Fault from 20-79% on Line 2

Natural

6 Fault from 80-90% on Line 2

Natural

7 Fault from 10-19% on Line 1 w/ tripping command – data injection

Attack

8 Fault from 20-79% on Line 1 w/ tripping command – data injection

Attack

9 Fault from 80-90% on Line 1 w/ tripping command – data injection

Attack

10 Fault from 10-19% on Line 2 w/ tripping command – data injection

Attack

11 Fault from 20-79% on Line 2 w/ tripping command – data injection

Attack

12 Fault from 80-90% on Line 2 w/ tripping command – data injection

Attack

13 Line 1 maintenance

Natural

14 Line 2 maintenance

Natural

15 Remote Tripping Command Injection to R1

Attack

16 Remote Tripping Command Injection to R2 Attack

17 Remote Tripping Command Injection to R3

Attack

18 Remote Tripping Command Injection to R4 Attack

19 Remote Tripping Command Injection to R1 and R2 Attack

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

26 | P a g e
1887995

20 Remote Tripping Command Injection to R3 and R4

Attack

21 Fault from 10-19% on Line 1 with R1 disabled and fault – relay setting change

Attack

22 Fault from 20-90% on Line 1 with R1 disabled and fault – relay setting change

Attack

23 Fault from 10-49% on Line 1 with R2 disabled and fault – relay setting change

Attack

24 Fault from 50-79% on Line 1 with R2 disabled and fault – relay setting change

Attack

25 Fault from 80-90% on Line 1 with R2 disabled and fault – relay setting change

Attack

26 Fault from 10-19% on Line 2 with R3 disabled and fault – relay setting change

Attack

27 Fault from 20-49% on Line 2 with R3 disabled and fault – relay setting change

Attack

28 Fault from 50-90% on Line 2 with R3 disabled and fault – relay setting change

Attack

29 Fault from 10-79% on Line 2 with R4 disabled and fault – relay setting change

Attack

30 Fault from 80-90% on Line 2 with R4 disabled and fault – relay setting change

Attack

31 Scenario Number Not Used

None

32 Scenario Number Not Used

None

33 Scenario Number Not Used

None

34 Scenario Number Not Used

None

35 Fault from 10-49% on Line 1 with R1 and R2 disabled and fault – relay setting change

Attack

36 Fault from 10-49% on Line 1 with R1 and R2 disabled and fault – relay setting change

Attack

37 Fault from 10-49% on Line 1 with R1 and R2 disabled and fault – relay setting change

Attack

38 Fault from 10-49% on Line 1 with R1 and R2 disabled and fault – relay setting change

Attack

39 Fault from 10-49% on Line 1 with R1 and R2 disabled and fault – relay setting change

Attack

40 L1 maintenance with R1 and R2 disabled – relay setting change

Attack

41 Normal operational load changes

Natural

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

27 | P a g e
1887995

2.8 TYPES OF CLASSIFIERS
Available through the machine learning library, there are many different classification algorithm
groups. It is essential to have a basic understanding of the different types of classifier so when the
specific classifiers that will be used later emerge, patterns between the types of classifiers that are
successful will be more apparent.

2.8.1 Bayesian
This type of classifier uses the Bayes theorem in some capacity. This theorem is used
to predict class values by probabilities.

2.8.2 Functions
These classifiers can be written as an equation and estimate a function.

2.8.3 Lazy
These store training instances and work occurs during classification.

2.8.4 Meta
Meta classifiers allow us to combine multiple algorithms, which may, in turn, convert
them into more powerful learners.

2.8.5 Miscellaneous
This group is a catch-all group for any classifiers which do not fit into any other groups.

2.8.6 Rules
These classifiers generate a list of rules used to interpret which classification the new
data best fit.

2.8.7 Tree
This group of classifiers makes use of decision trees based on route attributes and leaf
nodes.

2.9 SUMMERY
Throughout this section, the different elements involved in this project have been detailed. This topic
is extensive, but a limit had to be applied in terms of scope as not to be overwhelmed with the amount
of work that needs to be done and still being able to do that work in enough detail to make a significant
contribution. This background knowledge enables us to understand better the topic and the pre-
existing solutions that surround it. With this understanding going forward, this project can focus its
efforts on areas relevant to both the research aspect of this project and the application development
element.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

28 | P a g e
1887995

3 CHAPTER 3: APPROACH

3.1 OVERVIEW
This section will be used to cover the project planning and methodologies that have been used to
develop the tool. The functional and non-functional requirements identified to be critical to the
project's success or failure will be listed and explained. In addition to this, there will also be an
explanation of the tool’s intended function using diagrams.

3.2 PROJECT PLANNING
During this project’s planning and research phase, an initial plan to lay out the path and rough
timetable for how this project should go was developed. However, the timetable has changed since
developing the tool, and the paper writes up—first, a proof of concept tool to verify that it was
possible to complete all the requirements was developed. Upon completion, it was found that all the
requirements, both functional and non-functional, would be completed in the time frame.

3.3 METHODOLOGIES USED
To structure how a project like this should be implemented, a methodology must establish the
implementation cycles used. This section will explore the methodologies that were considered to use
to develop the tool.

When considering which methodology to use, there are some aspects to the project that must be
considered. The overarching characteristic of the project when it comes to the development process
is that the number of developers for this tool is minimal. It is challenging to get regular and informed
feedback on the tool without detailing every element of the project and the context involved as no
one besides the development team is as heavily involved in the development process. Working on this
project also means that no customer or target audience will frequently request changes or
enhancements to the requirements or solution. This limitation does limit the amount of feedback from
the target audience that can be gained. Clear and defined requirements will be laid out, all of which
need to be achieved, but the method to achieving this has not necessarily been strictly defined yet,
Meaning that the overall solution to the problem can change as development proceeds. The final key
aspect that will be used to select the development methodology is the level of experience of the
development team in the various aspects of the project.

After considering many different software development methodologies, three were further
considered; Scrum, Kanban, and Waterfall.

Scrum was the initial methodology considered as it has previously used in other projects and was
found to have worked to excellent effect. This methodology implements the same foundational beliefs
and philosophies as an agile approach. This methodology heavily involves the use of teams and
collaborations. Due to this reliance on a group, this methodology was discarded. Despite its intuitive
approach that breaks down more significant problems into minor, more manageable problems, which
are then distributed out, the heavy reliance on collaboration would not be possible for this project.

The second methodology considered was Kanban. It is typically used in projects that maintain and
upgrade an already produced product by performing minor tweaks and analysing whether these small
adjustments help the projects’ overall functionality or hinder it. This methodology was not chosen as
it requires a minimum cost of delays to perform and analyse these minor tweaks, which is not possible

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

29 | P a g e
1887995

within this projects’ context. As the tool is built from scratch, there is no original project to build upon,
Which would cause methodology to struggle, particularly at the beginning of the project.

Finally, we come to the methodology chosen to use when developing the project, Waterfall. This
methodology uses strictly defined phases that must be completed to move on to the next phase. These
phases include requirement analysis, design, implementation, testing and deployment. This
methodology requires the requirements to be laid out very clearly, with the bare minimum of changes
made once the project has started. This methodology does not require a defined process to develop
the end product as the requirements have been defined and strictly kept to. This method gives a lot
more control within the development process, which would cause significant delays if there was a
large team working on this project. Despite the freedom given in the development process, this could
lead to an underdeveloped product or a significantly delayed one. The strictly defined phases and
deadlines set mean that there will always be constant incremental progress towards the optimal
solution and will have a functional and practical tool long before the deadline requires one.

3.4 REQUIREMENTS SPECIFICATION
The requirement specification is the basis for this entire project. It helps to lay out a framework that
will be followed throughout the development process. It helps to provide crucial information that is
necessary to fulfil the task we have set out to. Functional requirements are requirements that must
be completed in order for the tool to complete its most basic functionality. Non-functional
requirements help to enhance these abilities and improve the tool, so it is more user friendly.

3.4.1 Functional Requirements

Requirement 1: Read a .ARFF file from a specified folder.

This file is the only input of data that the tool will receive. Therefore, it is essential for this tool. A .
ARFF file type will be used as it can be created without any additional classes besides the one already
provided by WEKA. It can be quickly analysed using other tools to gain valuable information about the
data that can then use to inform choices in the development process. The file is to be fetched from a
specific folder so that any external capture tool that the user may use to collect the System data to
place in a file will only have to place the completed file in that folder to input it into the tool.

Requirement 2: Error check captured data.

As previously stated, the data captured from the file is essential and must be checked to ensure that
the data is not redundant, repeated, and is in the correct format. This will take the form of ensuring
the file came from the correct location and is in the correct format to be processed.

Requirement 3: Filter unnecessary attributes.

Some attributes within the data do not provide any information to the classifiers. Therefore they are
useless for our purposes. Removing them ensures that we are not processing extra information that
is not needed and has no impact on the prediction. The benefits of doing this increase exponentially
as we process larger quantities of data. This will ensure a speedy prediction in real-time.

Requirement 4: Analysis and Detection of short circuit faults.

When a file is located and passes error checking, the selected machine learning algorithm that the
user would like to use must search for signs of a short circuit fault and flag the relevant information.
As this type of fault is not an attack, no extra action must be taken

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

30 | P a g e
1887995

Requirement 5: Analyse and Detection of line maintenance.

When a file is located and passes error checking, the selected machine learning algorithm that the
user wants to use must search for signs of line maintenance and check if the user expects said
maintenance. If not, the tool must decide whether the line maintenance is an attack on the system
using the cover of line maintenance to camouflage the attack.

Requirement 6: Analyse and Detection of relay setting change attacks.

When a file is located and passes error checking, the selected machine learning algorithm that the
user would like to use must search for signs of a relay setting change attack on this system. If found,
the relevant information and context must be flagged.

Requirement 7: Analyse and Detection of data injection attacks.

When a file is located and passes error checking, the selected machine learning algorithm that the
user wants to use must search for signs of a data injection attack on this system. If found, the relevant
information and context must be flagged.

Requirement 8: Analyse and Detection of remote trip command injection attacks.

When a file is located and passes error checking, the selected machine learning algorithm that the
user wants to use must search for signs of a remote trip command injection attack on this system. If
found, the relevant information and context must be flagged.

Requirement 9: Analyse and Detection of single or multiple attacks.

Typically, an attacker will use multiple methods to cause malicious damage to a system; thus, multiple
attacks will likely co-occur on the system, which will be reflected in the data. The tool should
simultaneously identify any attacks on the system and then inform the user about which attacks have
been detected.

Requirement 10: Continuous monitoring for new data.

The tool must continuously check folders for new data while it is running on the system as it is
imperative that as soon as the data of the system is collected and formatted, it is being processed and
analysed.

Requirement 11: Creating voting methodologies.

The tool must take predictions made by single classifiers and combine them using different methods
to produce a more accurate result. There must be multiple different methods to this in order to give
the user a large variety.

Requirement 12: Saving and Loading of classifiers.

Classifiers take up a large amount of memory, and in order to prevent the application from crashing
once an application has been built, they need to be saved to an external source. Doing this frees up
memory and will help to speed up the overall process of the application. These classifiers will then
need to be loaded back into the application so they can be used to make predictions.

Requirement 13: Allow the user to select an overall prediction method.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

31 | P a g e
1887995

To make a definitive decision about the scenario currently occurring within the smart grid. The
application must pick one prediction to go with. This functionality will allow the user to select which
method they feel will produce the best results to inform the application, making the appropriate
responses.

Different classifiers may be more beneficial in specific contexts than others, and as such, the user must
have the ability to select and use whichever classifier they choose to get the best results. Providing
this wide variety will give the user plenty of options to customise the tool for their specific needs.

Requirement 14: Provide essential information and context about the attack.

The user will require all critical information and context about the attack to decide how to proceed.
They are likely to be the systems admin so that they will be knowledgeable about the different
elements of the smart grid, and as such, we can show them precise data about the attack and in great
detail, although this does need to be balanced and measured as the amount of data we could give
them would be overwhelming.

Requirement 15: Provide recommended actions on how to proceed.

Depending on which attack or attacks have been detected within the data, the tool should display
some recommended countermeasures to prevent this type of attack or attacks from occurring again.

3.4.2 Non-Functional Requirements
Requirement 16: Ease of implementation/deployment.

The tool must easily be deployed and set up as deviating from this will only detur potential users from
using the tool. Once the tool has been produced, it must be published as an executable file as most
users will be familiar with this file type.

Requirement 17: Information is displayed in an orderly manner.

In the same way that too many options can be overwhelming for the user, the same can also be said
about having too much information. When information is presented to the user, whether that be
information about the data or the tool’s status, the information presented must be clear, concise, and
ordered so that it is easily digestible by the reader.

Requirement 18: Start processing new data as soon as it becomes available.

It is critical that when the data becomes available, it is immediately inputted into the tool as this would
be the most up to date data and best reflects the current situation happening within the grid so in
order to understand what is happening within the smart grid at present this data needs to be
processed.

Requirement 19: Each new data set must be processed promptly.

Similarly to the previous requirement, all data must be processed quickly to pass the relevant
information on to the user. Any delay between the data being captured and the final report being
produced increases the likelihood that an attack will damage the smart grid.

Requirement 20: Completely processed and analysed data must be changed all moved to prevent
duplicate analysis. Processing and analysing data multiple times will decrease the accuracy of the
classifiers as they will have been exposed to more instances of a particular type than what has
occurred. This will be achieved by moving the file from the input folder to a processed folder and
changing the name

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

32 | P a g e
1887995

3.5 SYSTEM DESIGN
This section of the paper provides a better understanding of the inner workings of both the smart grid
and the tool itself. There will be a diagram describing the standard operation of the smart grid without
the tool.

3.5.1 System model
A system model is a process-orientated representation the emphasise is the flow of information
between its different modules and can easily demonstrate how this information influences the smart
grid’s operations. Using this model will allow us to understand how processes interact and what
operations these processes perform but are abstracted to make them more comprehensible. In our
system model, there are two main actors: the operator and malicious hackers. The operator actor’s
actions will change depending on Whether the tool is currently running on their system, and as such,
it is necessary to demonstrate the impact that our tool will have on the system by using two separate
system model diagrams. This also allows us to go into greater detail and understand the context that
our tool operates in.

3.5.1.1 Standard operation of the smart grid without the tool

Figure 8. Smart Grid System Breakdown

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

33 | P a g e
1887995

 As shown in the diagram, a hacker will try to access the smart grid system through critical weakness
points such as a back door at the intelligent electronic driver/power generators or try to gain access
through the substation switch, both known vulnerabilities. The other actor, the operator or systems
admin, will operate within the control room and work from the control panel element. The control
panel element will give them access and control over the entire smart grid system. Within this current
version of the smart grid, the element responsible for the security of the smart grid and subsequently
the detection of any attacks is the snort element. This element will make use of packet sniffers that
monitor network traffic in real-time and check each packet closely to detect any dangerous or
suspicious data within the packet. While this is the main element responsible for the security, it is not
the only part of the smart grid that does this. On the control panel PC, there will be Proprietary
software responsible for detecting ransomware, Malware, fishing, man in the middle attacks, denial
of service attacks, SQL Injection, zero-day exploits and DNS tunnelling, among the other standard
security available within the operating system, such as windows, they would use Windows Defender.

Information will first be gathered from the power generators via intelligent electronic devices, which
will feed this information to the smart substation grid. There is also a breaker for each intelligent
electronic device if they needed to be switched on-off. Once this information has been gathered, it is
fed through the primary domain controller responsible for security within this specific local domain.
Once it has cleared, this data is fed into the hub and distributed to the systems log to keep an accurate
record and passed to the other primary domain controller on the smart grid. Once the information
has cleared, the open primary domain controller passes it on to the control panel, where the systems
admin operator can view and make decisions based on the data. Any operator can manually issue
commands to the intelligent electronic driver to manually trip the breakers if they choose. These
commands are fed back into the hub that passes it onto the substation switch and is passed along to
the relevant elements within the smart grid’s power generation section.

The intelligent electronic drivers will use a distance protection scheme that automatically trips the
breaker upon detecting a fault, whether they are valid or fake since they do not have any internal
validation method to detect the difference. These manual overrides and commands are typically used
when performing maintenance on the lines or any other components that require it.

3.5.1.2 Standard operation of the smart grid with the tool
Within the smart grid, the tool will operate within the control room on a personal computer. This tool
will run in the background of this PC to not interrupt the standard operating procedure of the control
room. Data for the tool will be gathered by an external source supplied by the user. Typically these
two will go unnoticed most days as scheduled maintenance is performed and no events happen. The
only time a user should notice the tool is when an unexpected event occurs. The user will view the
tool from the personal computer and interact to change settings from there. The produced reports
will also be displayed within the tool to access them from the personal computer.

3.6 SUMMARY
The project plan was presented using a Gantt chart to easily visualise the different elements of the
project that would have to be completed and at what time they needed to be completed. This can be
found in the appendix. The methodology that has been chosen to use allows the freedom to
continuously change the plan for the project as new challenges arise. Thus the plan needed to be
adapted to reflect these challenges better. This freedom has been invaluable as it means that there
are no limitations in this thinking. As the requirements for this project were firmly defined at the start,
one can make these changes as long as the requirements are met in the final product.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

34 | P a g e
1887995

4 CHAPTER 4: SOLUTION IDEA AND IMPLEMENTATION

4.1 OVERVIEW
In this section, the platform used to develop the tool and the specifications will be mentioned. A
general overview will be included about how the tool works, including the different features and
functionality included in the tool. While also utilising diagrams to help visualise the workflow of the
idea and the process of the tool, including snapshots of the tool to demonstrate these theoretical
points. This section will discuss the issues faced while developing the tool, and a satisfactory solution
to the problems encountered was found.

4.2 TECHNOLOGY CHOICES

4.2.1 Computer specifications
This project was developed from a personal computer, an HP zed one entry tower G5 using the
windows operating system. There are 16 gigabytes of installed physical memory, ten of which was
assigned to the Java heap pile when running the application. The processor is an I7-9700 CPU with
eight cores. The architecture is 64 bit. There is also have a GPU on the machine, which can be used to
help with calculations.

4.2.2 Libraries
In order to have access to data mining tools and machine learning algorithms, one needs to be able to
access them through a library. The library chosen for this is the Waikato Environment for Knowledge
Analysis (Weka), developed at the University of Waikato, New Zealand. The library itself contains a
collection of both visualisation and the actual algorithms themselves used for data analysis and
predictive modelling, both of which have been a big part of this project. The library is written in JAVA
.the latest release is currently 3. 9.5, released on the 21st of December 2020. Once all the libraries
have been downloaded, they can easily be accessed through the Java API available on the WEKA
website.

4.2.3 Programming language

4.2.3.1 JAVA VS Python
The WEKA Java API, as the name would suggest, is coded in Java, and as such, this language is needed
to access the library. However, upon investigating, Python would work better for this application. This
is where the Python WEKA wrapper package steps in. This package makes it easy to run the algorithms
and other functions from within Python 3. It offers access to the WEKA API using wrappers around JNI
calls using a downloaded Java bridge package. This type of application requires much experimentation,
mainly revolving around selecting algorithms and options for the classifiers, and Python is easier to
use and easier to read. Both of these languages are object-orientated, but Java uses static types,
whereas Python uses dynamic. For these reasons, Python will be used as the programming language
for the tool.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

35 | P a g e
1887995

4.3 THE OVERALL WORKFLOW OF THE IDEA

When the user starts the tool, it first gathers all the training data available inside the import file. Once
this data has been gathered and checked, it is saved to the all data .arff file. This enables classifiers to
be trained on the entire data set at once rather than incrementally train then, which would take
significantly longer as one would be training the same classifiers on the same data as each file is added
to the old data file that is used to build the classifiers. At this stage, an attribute selection is performed
on the data using a genetic search for these search algorithm and consistency subset evaluation for
the evaluator. Doing this allows the data to reflect the class attribute better and significantly improves
the accuracy of some classifiers.

Next, this filtered data is used to train each of the classifiers that the user wishes to use. Once each of
the classifiers has been created using the filtered data, it is then serialised to a file outside of the
application. This reduces the memory that the application uses significantly. Once the classifiers have
been trained, they will then be used for predictions. Data is imported from the new data file and is
then split between training data and live data. Training data has an integer in its class attribute as we
have predefined which scenario this instant belongs to, whereas live data will have a question mark
in its place detailing to us that the scenario is unknown.

If the data is training, data predictions are performed on it and then it is passed to be added to the all
data file to be used in updating the classifiers at the end of the test phase. However, if the data is live,
predictions are performed using the individual classifiers and all other prediction methodologies.
These prediction methodologies use the predictions from the classifier to make a judgement on what
they believe is likely to be the correct prediction. The user preferences are then checked to see which
prediction methodology they would like to use as the overall prediction. Upon receiving this
prediction, the tool will then warn the user appropriately and supply relevant advice.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

36 | P a g e
1887995

Figure 9. OVERALL WORKFLOW OF THE IDEA

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

37 | P a g e
1887995

4.4 OVERALL EXECUTION ELEMENTS

4.4.1 Data access
Within the execution, there are two times when the application would need to fetch data. The first of
these occurs when the user starts up the programme. The application will first fetch all the file names
found within the import file directory. The individual file names are then iterated through, and using
a separate function, the data associated with that filename is imported into the application but not
before the file is checked for overall size, if it can be successfully imported and if the attributes are
matching. Once a file has been successfully imported, it is used to create the old data file or update
the all data file if it currently exists; this will be explained in a separate section. The WEKA function
used to import the files is called the ARFF loader.

4.4.2 Creating and updating an external data file
If a piece of data needs to be written to a file, this can be done using a few functions. The first is to
create a data file. We use the saver function called ARFF saver and save it using a predetermined
name. This specific function found within this part of the library is save_file(). If a file needs to be
updated, however, then this is a bit more involved. First, the current data file is fetched and is
combined with the data to be used in the update. Next, the old file is removed, and a new file is created
with the same name but with the combined data sets.

4.4.3 Attribute selection procedure
Attribute selection is the first stage in the application that uses machine learning algorithms. The
purpose of attribute selection is to find a particular combination of the 127 available attributes that
best reflects the scenario the individual instance belongs to. This process uses two machine learning
algorithms; one is used as a search algorithm and the other as an evaluation. When the search
algorithm finds a subset, it is passed to the evaluation algorithm, which evaluates how well the subset
reflects the class attribute. Focused on how well the subset reflects the class attribute because this is
an excellent indicator of how well the classifiers will process the data. The better the subset of
attributes reflects the class attribute, the greater the likelihood of prediction is. Reducing the number
of attributes that have to be processed every time the classifier needs to evaluate a new piece of data
or when an initial classifier is built will result in significantly less computing power being used and the
overall performance of the tool improving including the number of correct predictions when testing
new data. The easiest way to think about attribute selection is that it reduces the noise of the data
set, thus making patterns easier to find.

When the training data is first imported into our application before the classifiers are trained, the
attributes selection is performed on the data set. The recommended filter is then applied to the data
before a classifier is built on it. This filter is also applied to any test or live data that is fed into the
application. During the development stage of the tool, each combination of evaluator was tested and
search algorithm to discover which produced the best result. The best combination found was
consistency subset evaluation for the evaluator and genetic search for the search algorithm. Then
worked on parameter optimisation to ensure that regardless of the amount of data they were fed,
they would produce the best possible combination of attributes.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

38 | P a g e
1887995

4.4.4 Creation and serialisation of individual classifiers
When a classifier is created in the application first, the class name and data used to build the classifier
are passed to create a classification function. This function takes the class name and builds a full
classpath to the library that contains the classification algorithm. The classifier is then built using the
passed data and then returned to wherever it was called. Once this classifier has been created, it is
then serialised using a temporary file in a temporary directory; the class name is used as the temporary
file name. This is achieved to save memory as holding multiple fully trained classifiers would require
an excessive amount of memory. Using this method means that only one fully trained classifier is in
memory at one time.

(a) Ada boost M1 single classifier enhancer
Ada Boost EM1 is short for Adapted Boosting. It is a statistical classification meta-algorithm used by
other weak learner algorithms to improve performance. It uses the weak learner’s output and
combines it into a weighted sum representing the final overall boosted classifier. The boosting
algorithm has to be weak to see significant improvement; otherwise, there is a minimal improvement.
This meta-algorithm is placed after the creation of individual classifiers in order to boost them and
improve performance. The only negative impact of using this is that it significantly increases the time
taken to create a classifier. It achieves this improvement by taking the base classifier trained on the
training data set and creating a second classifier behind it to focus on any instances in the training
data set that the first classifier incorrectly classified. This process continues to add classifiers until a
specific limit is reached, whether that be the number of classifiers allowed or accuracy.

4.4.5 Bagging single classifier enhancer
Bagging is also known as bootstrap aggregating, is an ensemble method that creates multiple unique
separate samples of the training data set we use and creates a classifier for each sample. The
predictions that these classifiers then produce is then combined to form an overall prediction for the
bootstrap aggregated classifier. This technique gives better predictions for some classifiers as each
sample of the training data set is unique and gives the classifier trained only on it a different
perspective on the data set and subsequently the problem. These individual predictions can then be
combined to produce a single prediction that is, in some instances, more accurate. Unfortunately, this
single classifier enhancer also significantly increases the creation time of a classifier, particularly when
it comes to sizeable initial training data sets.

4.4.6 Blending used as a single classifier enhancer
Blending is when multiple different algorithms are prepared on the same training data set, and a meta
classifier is prepared that learns how to take the predictions of each of the classifiers and make a more
accurate prediction on unseen data. This blending is also known as WEKA's built-in voting
methodology. However, it will be used as a voting methodology and as a single classifier enhancer.
This process is done as some classifiers see improvements when using bootstraps aggregating and
adaptive boosting. Using this voting system will combine two meta classifiers made up of the same
base classifier trained on the same data set.

4.4.7 Delay based single classifier enhancer
This single classifier enhancer takes the previous predictions that the classifier has made up to a
certain number and returns the most common value found. First, an individual classifier classifies a
test instance. This prediction is then added to a previous prediction list. The most common prediction
found in this list is then returned as the new prediction. Once a certain number of predictions are
within the prediction list, then the oldest prediction still in the list is removed.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

39 | P a g e
1887995

This voting methodology uses the context of this data, which is that any data that needs to be tested
is produced in real-time from the smart grid and as such will be in order, so scenarios are unlikely to
change after every instance instead after a group of 50 to 200.

4.4.8 Blending voting methodology
It has been previously explained how blending, also known as stacking, works. This technique will also
be applied to the predictions of all the classifiers into one single meta classifier. Classifiers as used in
this all have to be trained on the same data.

4.4.9 Most common based voting methodology
This is the most simple voting methodology been created in this project. This voting methodology
takes each of the predictions from the individual classifiers, and whichever scenario appears the most
in the list of predictions is returned as this voting methodologies prediction.

4.4.10 Weighted voting methodology
This voting methodology works in very much the same way as the most common voting methodology,
except the individual predictions from the classifiers is duplicated based on the user input. If a user
trusts a particular classifier more, they can weigh this classifier two times, three times, four times ETC.
More than the other classifiers. This can also be used to rank the classifiers ranging from one to the
number of classifiers available. If the prediction is weighted twice more than another prediction, this
means that the more trusted classifier's prediction is added twice to the prediction list. Once the -
weighting has been applied, the most common scenario in the prediction list is returned as the
prediction.

4.4.11 Deserialisation of a classifier
Deserialisation is the process of fetching a classification model from the disc, which the application
has previously saved the classification model. This moves it into memory, where it can then be used
to make predictions. This is done by a simple get function that retrieves the data associated with the
given filename.

4.4.12 Individual scenario response
The individual scenario response dictates how the application should respond to a predicted scenario.
This means supplying the user with appropriate data and advice about the incident promptly. The
individual scenario response will report the type of attack and where it is occurring. This will then
supply advice that the user should follow to mitigate any potential attacks. This prediction response
will compare any new prediction with the previous prediction, and if they match, then the prediction
is confirmed if they do not; however, then the new prediction is stored, and the next instance is
processed. Once the new instance has been processed, its prediction is then compared to the previous
prediction and the prediction before that; if the new prediction matches either one of the previous
predictions, this becomes the new prediction, and the application will respond to whichever scenario
has been predicted. If none of the three predictions matched, then the application will stay with its
first prediction until any new prediction matches the prediction that came before it. This is to prevent
sudden changes within the data from having two drastic impacts on the prediction accuracy.

4.4.13 Changing filename and location
Changing the filename and location occurs twice in the application. When training data has been
inputted into the system, and the classifiers have been trained on said data, the data set files then
moved to a separate processed data directory, and the checked is appended to the first part of the
filename. This process also occurs with any data placed into the new data file. Its location is changed
to the process data directory and tested in front of the data filename.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

40 | P a g e
1887995

4.4.14 Retraining of classifiers
Unfortunately, most of the classifiers being used cannot be trained on or updated with new training
data; instead, what has to happen is an entirely new classifier is built with all the previous training
data and the new training data you wish to update the classifiers with appended to the end of that
data set. In the application, this is done by appending new training data instances to the all data file,
the file used to initially train the classifiers initially, and then once the end of the testing has occurred,
all classifiers are updated using all data files. Once the classifiers have been updated, they are then
are realised out of memory to save space.

4.5 TOOL SNAPSHOTS

Below is the startup screen for when the user initially starts the tool

Figure 10. tool screenshot showing start up

Figure 11. Break down off scenario response for scenarios 36 and 1-6.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

41 | P a g e
1887995

4.6 POSSIBLE CLASSIFIERS
Through WEKA, numerous machine learning algorithms could be used. These classifiers come from
many different types. The list of classifiers tested include:

IB1 ,IBk, J48, PART, RandomForest,KStar, lmt.LogisticBase, ft.LogisticBase,JRip, DecisionTable,VFI, RandomTree, LADTree,
NNge, ClassificationViaClustering, DecisionStump, ConjunctiveRule, REPTree, ZeroR, HyperPipes, LibLINEAR , OneR

As there is such an extensive list, it will need to be cut down to an appropriate and manageable
amount. The classifiers that will be chosen will produce the best results based on initial testing.

4.7 BASIC IMPLEMENTATION
The basic implementation of using a classifier to produce predictions based on previous data is as
follows. First, the data needs to be imported from an external source; this can be done using built-in
features from either Python or WEKA. Once this data has been gathered, It must then be filtered using
attribute selection as previously described. A classifier is then created from the extensive list stored
in the library. The filtered data is then used to build the classifier. A trained classifier is obtained to
make predictions on either individual instances or multiple instances within a data set. These
predictions can then be passed to a separate script, which generates a report and advice based on the
predicted scenario. This report is then passed on to the user to inform their decisions about the smart
grid.

Figure 12. Results from the low-level classifier evaluation

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

42 | P a g e
1887995

4.8 DISCUSSION

4.8.1 Sparse data
Sparse data is when the vast majority of entries for an individual attribute ah 0 (zero), and the attribute
is therefore sparsely populated with non zero data. This data is useless to machine learning algorithms
and can hinder the result. When investigating our data, only the last few attributes would be classed
as sparsely populated and therefore should be removed. The implementation of the attribute
selection algorithms means that these attributes will always be removed upon evaluation by the
attribute selection function. This means we do not need to influence any extra functionality to
overcome this.

4.8.2 Discrediting attributes
Discretetising attributes transform numeric attributes to nominal, meaning that all possible values
that the attribute could be are predetermined. One would want to do this as some classification
algorithms cannot handle numeric classes or produce a better result. Doing this will produce a more
comprehensible model, such as a more straightforward decision tree. This, unfortunately, cannot be
applied to data as there is far too much of it to do this process. The amount of computing power
required to do this would be impractical, and the classifiers would have to be retrained every time a
new possible value is discovered. This would also be impossible to do with our testing functionality as
we do not know what variables will be produced when gathering the information from the smart grid,
and therefore we cannot predetermine those possible values.

4.8.3 Classification selection
Initially, all possible classifiers were considered. The first step in this selection process was to remove
all classifiers that could not process the data due to their inability to handle numeric attributes or
multi-value nominal classes, or multi-valued nominal attributes. Some classifiers were removed due
to their inability to process the data set within a reasonable amount of time. Due to the nature of this
tool, any classifier used needs to be able to produce an accurate result within a reasonable time frame
as not to create a undo delay between the data being recorded and the results being published. Any
classifiers that can process the data would be passed on to be tested.

4.8.4 Sensitivity reduction
What was found while testing the application was that it would very quickly change between scenarios
based on its prediction, which is not necessarily realistic to how the data would be coming in. natural
variation within data would sometimes cause the predictions to change for a couple of instances but
then change back to normal. For instant, the predictions from a classifier could look like this while
experiencing one of these episodes :

1 1 1 21 24 23 1 1 1 1

Once the sensitivity reduction functionality has processed these results. the predictions that will be
produced look like the following:

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

43 | P a g e
1887995

1 1 1 1 1 1 1 1 1 1

This type of sensitivity reduction does need to be correctly balanced with the probability that an attack
may be occurring and may only happen for a few short instances. If the prediction changes and then
held at a constant level in the application, then the prediction produced by the application will change
to reflect the results correctly. This is done speedily to not negatively impact the timely response that
the application is meant to have.

4.8.5 Removal of the graphic user interface
When developing this tool, it was discovered that an individual classifier used up a significant amount
of memory when trained on the majority of data and employing all improvement techniques.
Simultaneously, using multiple classifiers, even when serialised and deserialized as appropriate, would
require excessive memory, especially when running all improvements and all tool functionality, most
notably the graphic user interface. With this considered, it was decided to remove the graphic user
interface from the project to minimise the amount of memory the application uses. The resources
available to this application must be prioritised appropriately to produce the most accurate result
within a reasonable time frame. The application must also run in the background of the control panel
personal computer held in the smart grid's control room. The application should not hinder the
performance of this personal computer in any way, as any diminishment in the performance of this
computer could cascade out and affect the rest of the smart grid. With this considered, there is now
a need to minimise the number of inputs required as they will be done through the command input
window.

4.8.6 Clustering
Associators and clusters are two other methods to use machine learning algorithms to create
predictions on data. Clustering is an unsupervised machine learning task. This means it does not take
the class attribute used to define what scenario the instance belongs to into account when processing
the data. It involves automatic discovering natural grouping within the data. Clustering algorithms only
interpret the data and find where it naturally groups together according to its attribute values. These
different clusters would be used to represent different types of scenarios. It was chosen not to use
clustering in the project as it would not produce an accurate enough prediction from the given data.
It is better at finding large patterns in large amounts of data as opposed to specific scenarios within
data.

4.9 SUMMARY
In this section, the different elements of the tool have been explained alongside how it will be
integrated into the tool. From the information in this section, one should have a good idea of the
different aspects of this project and how this paper will achieve these goals.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

44 | P a g e
1887995

5 RESULTS AND EVALUATION

5.1 OVERVIEW

5.2 DATASET AND PRE-PROCESSING
Having a thorough understanding of the data set that we will use to test and evaluate all the different
elements of this project is very important. This understanding will enable us to understand better and
judge the classifiers' performance and understand any downfalls that may appear. Here will be
highlighted the relevant elements of the dataset to the results and evaluation in this section.

5.2.1 Understanding the data set
The data set is made up of 37 different unique scenarios. These 37 unique scenarios are then
subdivided into three separate sections: natural event scenarios, no event scenarios and attack event
scenarios. These separate different scenario types (excluding no event scenarios) are then subdivided
into subtypes.

Natural events are split into two different subtypes of scenarios. The first type of natural event is a
single line to ground fault. This occurs on a transmission line when one conductor drops to the ground
or accidentally comes in contact with a neutral conductor. These types of faults may occur on power
systems due to not actual events such as high-speed wind, a falling tree damaging the line or even
lightning. The next type of natural event is line maintenance. Line maintenance occurs when
scheduled, and planned maintenance must occur to keep it in working order. This event will produce
some faults but is to be expected by the user.

Attack event scenarios are split into three main subtypes. The 1st is a relay setting change; this occurs
when the attacker changes the setting distance of a protection scheme on the relay to no longer trip
for any valid fault or command. The second of these attacks is a remote trip command injection. This
occurs when an attacker sends commands to a relay which causes the Breakers to open. The final type
of attack is a data injection. Data injection occurs when an attacker deliberately changes the value
such as current oh voltage to imitate correct faults, with the goal being too blind an operator and
cause a blackout. This is the type of attack that we have to be most aware of, as it directly interferes
with the data we rely on.

5.2.2 Pre-processing and attribute selection
As previously stated, the data set will go through some pre-processing and attribute selection to
determine the best possible combination of attributes to yield the best results. Attribute selection
occurs on the initial training data set and will change based on the data given to the algorithms for
training. This is so the best possible result is always reached. If the attributes were to stay the same
awesome fixed philtre were to be applied, which produces the best attribute combination when using
all the data sets available, it would perform poorly when classifiers are only trained on a small number
of datasets due to the attributes selected not correctly reflecting the patterns found within the data.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

45 | P a g e
1887995

5.3 INDIVIDUAL CLASSIFIER PERFORMANCE
Some of the classifiers were unable to build and process the dates or were rejected for other reasons.
The reasons for rejection are shown in the pie chart below.

The vast majority of classifiers well remove due to their lack of ability to process a relatively small
amount of data in a reasonable time. This failure means that they would not be practical for our
application. The cut off time was 10 minutes to process 5000 instances of data with an 80 % to 20%
training test split

Figure 13. Breakdown of Errors raised from classifiers

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

46 | P a g e
1887995

5.3.1 Control data group

This experiment involved using the base classifiers without any modifications to make predictions on
a data set that contains no attribute selection. This is the baseline of data, so anything done to the
classifiers or data sets needs to improve upon these results. Individual classifier success is based on
how many correct predictions they make, which is the core element of this paper. First, the individual
classifiers without any attribute selection, parameter optimisation or subsequent improvements from
applying meta classifications will be tested. This group of data will be known as the control group.
Then this will be compared to the data produced after applying each improvement method. As shown
in the data, two classification algorithms performed exceptionally well: the LMT logic base and the FT
logic base. The LMT logic base scored 95.948%, and the FT logic base being the highest scoring
classifier at 96.226%, following five classifiers achieved above 80% classification. These five classifiers
are KStar, PART, random forest, IBk and IB1. Apart from these seven classifiers, only two others
managed to achieve above 40%. The decision table achieved just over 70% at 70.479%, and Jrip
achieved 72.481%. The 13 other classifiers all failed to achieve classification correctly.

Figure 14. control classifiers Percentage Correct average

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

47 | P a g e
1887995

5.4 BASE CLASSIFIER IMPROVER PERFORMANCE
One of the first steps of this project was to select which based classifiers to using the final application.
In order to investigate this, all of the possible classifiers were built and using 10-fold cross-validation.
Each classifier improvement methodology was evaluated against each data set, and The results were
averaged and shown below. Each subsection displays each of the base classifier improvements'
results.

5.4.1 Attribute selection group
This experiment involved applying only the attribute selection to the data set and nothing to the
classifier. This attribute selection should help focus the classifiers efforts and create a clearer picture
for the base classifier to create a model based on. Some classifiers have internal functionality that
performs a similar task, so little to no effect may be seen on some classifiers. After extensive
experimentation evaluating different combinations of evaluation and search algorithms, it was
concluded that the combination of Consistency Subset Eval for the evaluation algorithm and the
genetic search for the search algorithm produced the best results across all the classifiers. As such,
this will be the combination of algorithms that are used in this experiment. Each classifier will be
compared against each other based on the average percentage correct when evaluating each using
ten-fold cross-validation.

In the results shown above, there is a clear distinction between two groups of classifiers. The first
group includes very popular classifiers such as decision stump, lad tree, and RPE tree, performing very
poorly when attempting to classify a data set that has had attribute selection performed on it. The
two most successful classifiers are IBK and IB1, which classify instances at a success rate of 88.362%.
Four other classifiers managed to achieve above 80% classification. These classifiers include J48, which
achieved 81.929% classification, KStar, which achieved 81.54897% classification; the PART algorithm
achieved 82.671% classification. Finally, the random forest classifier managed to achieve 83.0112%
correct classification. Beyond these previously mentioned classifiers, there were four that managed
to achieve high levels of classification. The logistic base classifiers managed to achieve 79%, followed
by JRIP, which achieved just over 70% at 71.299%. The classifier that performed the worst but still
managed to classify with some certainty is the decision table that did not quite manage to achieve
70%, but an edge case could be added to this group. The decision table managed to achieve 69.886%
correct classification.

Figure 15. classification Percentage correct avg. w/ att. Selection using ConsistencySubsetEval & GeneticSearch

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

48 | P a g e
1887995

5.4.2 Bootstrap aggregating results
This experiment involved applying only the bootstrap aggregation to the base classifier and recording
the average percentage correct produced by each base classifier.

As shown in the figure above, eight classifiers perform well while using bootstrap aggregation. The
best performing classifier was the LMT logistic base, which correctly classified 95.993% of the time.
The next classifier to perform well belongs to the same family and is the FT logistics base which also
scored above 95% and recorded correct results of 95.436%. These two classifiers are clustered
together as the two best performing classifiers. After a small gap in performance at approximately
85% comes the next cluster of classifiers. There are four classifiers within this cluster of performance,
and they are the IBK and IB1 classifiers, both managing to score 85.704%. Also in this group is the
random forest classifier which also managed to classify at 85%, precisely 85.474%. The final classifier
in this group is the lower bound of this group and has a 1% drop in performance than the other
classifiers. This is the KStar classifier that manages to achieve 83.792% correct classification. The only
other classifier to perform moderately well in this group is the JRIP classifier which, while failing to
achieve 70% classification, does get close with 68.813%. There are two other clusters of classifier
results, but these do not perform well with bootstrap aggregation, and all failed to achieve above 40%
classification. The only classifier to get closed is the VFI classifier, which manages to achieve 38.667%
classification. Notably missing from the results is the PART classifier. When testing this classifier, it
required over 25 gigabytes of memory to perform classification on one data set and, as such, is
impractical for our purposes, so it has been left out of the results.

Figure 16. Bootstrap aggregating average results

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

49 | P a g e
1887995

5.4.3 adaptive boosting group
This experiment involved only applying the adaptive boost to the base classifier and recording the
average percentage correct produced by each base classifier.

Within the data, seven classifiers managed to achieve above 80% correct classification. The best
classifier among these was the LMT logistic base, which correctly classified 93.584% of the time. This
is the only classifier that managed to score above 90%. The classifier that came second is the FT logistic
base, which achieved 89.065% correct classification. The subsequent five classifiers all managed to
score between 82.97% and 85.807. These five classifiers include decision table, IB1, IBK, JRIP and
random forest. There is then a sharp decline in performance before Kstar is reached as it managed to
achieve 67.081% correct classification. This is the final classifier to manage to score above 40%.
Notably, the PART classifier is missing from this test, too, as it was to memory intensive to complete
the experiment.

Figure 17. adaptive boosting correct classification average

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

50 | P a g e
1887995

5.4.4 Delay based single classifier enhancer
The Delay based single classifier enhancer is challenging to test. The nature of the methodology
requires test data to be in the order of collection so that a realistic stream of data can be processed.
If the data received by this methodology is randomized, there is no pattern to the data, and therefore,
no benefit can be gained from making predictions based on previous results. The problem occurs when
trying to get this test data. In order to get this test data, we would need to split the data set used at
some point to create the test and training data sets to use. If we split the training and test data sets
before randomization, then the patterns and correlations that the machine learning algorithms
required to make accurate predictions are lost. The randomisation process helps to preserve these
patterns and correlations, so removing some instances to test against the classifiers does not affect
the classification results as heavily. With a fully randomised data set, the delay prediction voting
methodology is next to useless. When performing the most common voting methodology experiment,
the delay prediction voting methodology was tested alongside it with a randomized data set from the
start. The most common voting methodology scored 93.944% correct classification, whereas the delay
prediction voting methodology only managed to score 9.306% correct classification even though it
was receiving its predictions from the most common voting methodology. The problem of missing
correlations and patterns does not occur if the data set is randomized, as randomization preserves all
the patterns that the classifiers rely on, so any splitting done to the data set does not significantly
affect the performance of the classifiers. There is likely to be a significant difference in the results
between classifiers that perform well and classifiers that perform poorly. As such, both types need to
be tested. In order to test the delay prediction voting methodology on classifiers that performed
poorly, The last 20% of the data was taken from the data set to use as a test data set. The remaining
80% would then be used to train the classifier and was randomized, whereas the test data set is not.
This does mean that the base classifiers will perform worse than if they were tested on a data set that
was randomized from the start, but for this experiment, we are testing the effect that the delay voting
method has on poor performing base classifiers predictions and how well it either improves or hinders
the results. The percentage of improvement the delay prediction voting methodology produced is
shown below.

Figure 18. Delay based single classifier enhancer

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

51 | P a g e
1887995

When looking at the results from this experiment, every single classifier that this method was applied
to improved or stayed the same compared to its control result. The most improved classifier was the
decision table classifier which showed 100% improvement. Three managed to show 37.5%
improvement compared to their control result, those classifiers being J48, IBK, and IB1. The only two
other classifiers to show improvements were the random forest classifier and the Kstar classifier,
which managed to show 25% improvement. Also included in the experiment was the most common
and most common results, plus a double delay. From these results, we can see that with the delay
applied, the most common prediction methodology managed to improve by 37.5% and when a double
delay was applied improved that result by a further 18.182%.

5.4.5 Combination classifier single classifier enhancer
This experiment involves combining two different META-classifiers of the same type of base classifier,
but one uses bootstrap aggregation, and the other uses adaptive boosting.

As shown in the figure above, seven classifiers performed above 80% correct classification while using
the vote. The best performing classification algorithm was the LMT logistic base that scored 96.179%
correct classification, and the FT logic base managed to score 96.123% correct classification; these
were by far the two frontrunners in this experiment. All other classifiers that manage to predict above
70% scored 83% and 86%. Only two other classifiers managed to perform moderately well, with KStar
scoring 68.202% correct classification, pushing it just under the 70% threshold and random tree
scoring under 60% at 59.529% correct classification. Every other classifier failed to achieve a 40%
correct classification.

Figure 19. Combination classifier single classifier enhancer results

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

52 | P a g e
1887995

5.5 VOTING METHODOLOGIES RESULTS
This section shows how well each of the voting methodologies improves on the predictions made by
these single classifiers. Like in the previous section, these voting methodologies will be judged on how
many correct predictions they make. They will be tested on the same data sets, and the classifiers will
be trained on the same data. In order to pass on predictions to the voting methodologies, which will
enable them to produce the best results, the classifiers we pick to use must achieve a high level of
classification as such is essential to decide at what percentage correct classification should the
threshold for inclusion into this group be. An argument could be made that any classifier that achieves
above 51% should be included in the group as it will be correct most of the time, and as such, its vote
for what the scenario is may have some weight. Well, this argument may have some merit on the
surface when diving deeper into which instances are correctly classified. This argument falls apart. If
you were to take the instances that a classifier that achieves around 50% correct classification got
correct and compare them to the instances that other better-performing classifiers got correct, then
you would see that the high-level classifier would have correctly classified most or all of the instances
correctly classified by the medium level classifier. With this being considered, any classifier that
achieves above 70% correct classification was included in the voting methodologies test.

5.5.1 Most common prediction voting methodology

The most common voting methodology managed to perform better than a large majority of the base
classifiers. The only two classifiers to perform better were both types of logistic base classifiers. Both
logistic base classifiers managed to classify correctly 94.830% of the time, whereas the most common
voting methodology performed just under 1% worse at 93.944% correct classification. The other
classifiers all performed under 89% correct classification but over 82% correct classification.

Figure 20. Most common prediction voting methodology results

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

53 | P a g e
1887995

5.5.2 Weighted voting methodology
the weighted voting methodology requires external input in order to be effective. For this voting
methodology to produce the correct results, the weights of the individual classifier predictions must
be defined beforehand. In order to test this, the weights well assigned based on the control results for
each classifier. In order to produce a weight for each of the classifiers, they were placed in order based
on the results from the control experiment. To carry out this experiment, weight was applied to each
prediction from a base classifier and was used to produce a weighted prediction. The results and
weights of this experiment are shown below.

Table 3. classifier weight table

Classifier Weight
J48 1
RandomForest 6
IMTLogisticBase 8
KStar 4
ibk 7
FTLogisticBase 8
ib1 7
DecisionTable 2
JRIP 3
PART 5

When looking at how well the weighted prediction voting methodology performed, we can see that it
managed to achieve the joint highest correct classification rate at 94.763%. This weighted prediction
correct classification level is the same as both of the logistic base classification algorithms.

Figure 21. weighted voting methodology average results

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

54 | P a g e
1887995

5.5.3 Blending voting methodology
In order to test the effectiveness of the blending voting methodology, firstly based classifier is that it
will use need to be defined. For this, each of the classifiers needs to be trained on the same data. This
means that the three classifiers that would make use of attribute selection cannot if we wish to include
them in this voting methodology. So in order to carry out this experiment, all of the ten classifiers
chosen to test all the voting methodologies were trained on data that did not have attribute selection
applied to and were then added to the blending meta classifier. This blended meta classifier was then
tested to produce a correct classification rate. In the figure below, the results are displayed. The single
based classifiers that could use attribute selection did make use of attribute selection to produce their
results. The most common voting methodology is also included to provide context for the blending
voting methodology result.

The blending voting methodology managed to produce a correct classification rate of 94.291%. This
result is a 0.38% increase from the most common prediction methodology result. The blending voting
methodology did not produce the best classification rate. Both of the logistic base classifiers
performed better, with an average of 0.19% difference between the blending voting methodology and
the logistic base classifiers.

Figure 22. blending voting methodology average result

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

55 | P a g e
1887995

5.6 SCENARIO DETECTION RESULTS
In this evaluation section, each of the individual scenarios and types of attack they belong to will be
evaluated against how often the individual prediction algorithms detect them. For this experiment, if
a classifier failed to classify an instance correctly, then the correct scenario value was recorded. This
means that any instances that failed to be classified would be recorded. As it is always recorded if a
classifier fails to classify the instance. the results will also reflect how well each of the scenarios
performed across all classifications. When conducting this experiment, a critical element that must be
noted is the frequencies of the scenarios in the original data set. To ensure that the results of this
experiment can be trusted, the results were adjusted to accurately reflect the frequency at which each
scenario appeared in the original data set. Scenarios 31 to 34 should be ignored in the data as these
scenarios are nonexistent in the data set.

 As shown in the data above, the classifiers failed to classify accurately five types of scenarios. The
scenario that was predicted the least was scenario 12. This scenario is an attack-type scenario that
simultaneously uses a trip command data injection with an SLG fault replay at 80%-90% on line two.
However, this result seems to be a bit of an anomaly as it is the only result where the rest of the
scenarios in that type of scenario are detected very often. The scenario that was predicted least often
next is scenario 18. Like scenario 12, scenario 18 two is an attack-type, precisely a remote trip
command injection against relay 4. Notably, the following two scenarios detected the least both are
disabling relay functions against either a single or double relay, and both include a fault. The following
least detected scenario is scenario 3. Snow yeah three is the first non-attack type to be undetected at
a significant rate. Scenario three is an SLG fault from 80 to 90% online one.

5.7 KEY HIGHLIGHTS AND TAKEAWAYS
This section will go over crucial highlights when creating these evaluations and detail any takeaways
from these results.

5.7.1 Single classifier improvements
A key element to mention when thinking about the single classifier improvement methodologies is
that two methodologies can be applied regardless of whatever other methodology is already acting
on the classifier. The attribute selection improvement methodology and the delay-based prediction

Figure 23. frequency of detection

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

56 | P a g e
1887995

improvement methodology can be added to a single base classifier while other single classifier
improvement methodologies act on the classifier. This means that any classifier that sees any
improvement with these two methods should always have these methods to impact the single
classifier positively.

The delay-based prediction method consistently returned a positive impact on any classifier applied
to bar two classifiers of the same family. This improvement methodology showed significantly better
results with base classifiers that performed poorly in the control test. From this, we can conclude that
classifiers that show less correct classification have far more variance in their predictions than
consistently getting a prediction wrong. This means that as opposed to consistently getting scenario 7
mixed up with scenario 13, they get scenario seven mixed up with a few different scenarios.

Across all of the improvement methodology, the family of logistic base classifiers was consistently the
highest performing. The next to best-performing classifiers were the IB classifiers. These high-
performing classifiers often get the same result and show very little difference in the instances they
classified correctly.

5.7.2 voting methodologies
The best performing voting methodology was the weighted voting methodology, with weights being
applied by order in the control experiment—the correct classification percentage produced by this
voting methodology matched up precisely with two of the base classifiers. The voting methodology
which came second is the blended voting methodology with no attribute selection applied and
blending all ten of the classification algorithms used to test the voting methodology. These two verses
methodologies managed to fluctuate above and below the results for the base classifiers, so they are
not intrinsically linked to them. The worst performing voting methodology was the most common
voting methodology, which still performed better than the single classifiers bar the front running two
logistic base classifiers.

5.7.3 Scenario detection
as previously mentioned, there are four clusters of scenarios whose detection rate is significantly
lower than the other scenarios and one outlying scenario whose detection rate is significantly lower
than every other scenario. When looking at the patterns for the clusters of scenarios with low
detection rates, typically, a family of scenarios will perform poorly. Then a couple of unique
characteristics found within those families will create a scenario that is the worst performing out of
all of the scenarios in the family. Upon further inspection, common patterns can be found amongst
these characteristics. These characteristics are listed below in the table. In order to produce these
results, the six worst-performing scenarios will be recorded as well as their characteristics.

Table 4. attack characteristics

characteristics Count
Fault from 80-90% 3
relay disabled & fault 3
Fault from 10-49% 2
Command Injection to R4 1
tripping command 1

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

57 | P a g e
1887995

5.8 EVALUATION

5.8.1 Single classifiers evaluation
Table 5. CONTROL Percentage Correct average

classifier CONTROL Percentage Correct average
Classification Via Clustering 8.53565171
Conjunctive Rule 10.2716174
Decision Stump 10.22848282
Decision Table 70.47949084

ft Logistic Base 96.22587015
Hyper Pipes 21.0498755
IB1 85.66941195
IBk 85.66941195
J48 35.42578777
Jrip 72.48050764
Kstar 83.58494328
LADTree 22.96650718
Lib LINEAR 10.85170485

lmt Logistic Base 95.94802631
Nnge 24.58453575
OneR 2.432015324
PART 83.09390818
Random Forest 85.53405739
Random Tree 24.42142602
REP Tree 7.892782659
VFI 38.29078731
ZeroR 7.770055399

Looking at the table above, any of the highlighted green results indicate that this classifier achieved
correct classification at a high enough rate that it can be used in other prediction methodologies as a
reliable source of data. This group included nine classifiers. After these nine classifiers, there is then a
wide gap in performance before two classifiers are reached. These classifiers have been highlighted
as orange as they show the potential to achieve high levels of classification if the correct single
classifier enhancers are added but do not show a high enough correct classification percentage to be
included in the first group. The final and most prominent group is the classifiers that failed to achieve
confidence in their classifications. This included eleven classifiers, and unless they show surprise
improvement from the individual classifier, they will be excluded from further experimentation.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

58 | P a g e
1887995

5.8.1.1 Classifier type evaluation

A clear trend emerges when looking at the types of classifiers that perform well in the control
experiment. Three types of classifiers can perform well within this context: rules, trees, and lazy
classifiers. This success does not guarantee that each classifier performs well, just that it belongs to a
family that can perform well. All three of the tested lazy classifiers performed exceptionally well, all
achieving over 80% correct classification. The best performing classifiers belong to the tree family of
classifiers achieving a high of 85.7%. However, 5 of the tree type classifiers failed to achieve 40%
correct classification proving that success in this context is not based on classifier type. When looking
at the rules type classifiers, three perform well, with only one achieving above 80% but all three
achieving above 70%. The classification types that performed poorly word the function types, meta
types and Misc types. These failed to reach 40%, with the functions and meta classifier failing to
classify above 11% correctly. These results are shown in the bar chart below.

Figure 24. Classifier type evaluation

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

59 | P a g e
1887995

5.8.2 Individual classifier improver

5.8.2.1 attribute selection

In the figure above, the percentage of improvement attribute selection for each classifier's
improvement is plotted against the classifier's performance. In the results, we can see that attribute
selection for classifiers helped improve their classification rate for some classifiers. The most
successful of these is the J48 classifier. Attribute selection applied to this classifier managed to
improve from the control results 131.629%. This statistical improvement alone is why J48 is now an
extremely reliable classifier Managing to achieve 81.929% correct classification. Attribute selection
did not help all classifiers it was applied to. Both of the logistic base classifiers showed a 17.651%
reduction in correct classification when using attribute selection. The most successful classifiers did
show some improvement with attribute selection, but this was only small at 3.143% but did mean that
they could achieve 88.36 2% classification but as this short and the time is taken to process the data
set, it is worth applying to every classifier that shows any improvement with it.

Figure 25. attribute selection improment

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

60 | P a g e
1887995

5.8.2.2 Bootstrap aggregating

When comparing the results from the control experiment against the bootstrap aggregation
experiment, only three base classifiers see any significant improvement when using bootstrap
aggregation. The best of these is the LADTree classifier which sees a 28% increase in performance over
its control results, leaving the classifier with a total of 29.453% correct classification. The next classifier
that shows the most improvement is the hyper pipes classifier, which shows an improvement of 24.7%
from its control results. The only other classifier to see significant improvement is the RPE tree, which
only saw 11% improvement, meaning that it was left with 8.784% correct classification. It is noticeable
as the only classifier where the amount of improvement exceeds the percentage of correct
classification. For the vast majority of the classified as tested, this does not improve and, for some,
hinders the results, most notably the JRIP classifier. The decision table classifier is the best performing
classifier that manages is to make any use of bootstrap aggregation. It is already a relatively good
classifier, but with the bootstrap aggregation increasing its previous results by 5.9%, it manages to
increase the correct classification for the base classifier to 74.64%, which manages to push it past the
70% threshold. The highest performing classifiers, such as both logistic bases and both types of IB
classifiers, see no improvement with bootstrap aggregation, and there is only some very minor
variance in the results due to shuffling the data before each test. Bootstrap aggregation should,
therefore, only be applied to the decision table as it was the only classifier that showed significant
improvement while using bootstrap aggregation and managed to achieve above 70% classification.

Figure 26. Bootstrap aggregating improvment

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

61 | P a g e
1887995

5.8.2.3 Adaptive boosting

As shown in the figure above, only two classifiers manage to perform well while using adaptive
boosting. The most successful of these is the JRIP classifier. This classifier managed to improve its
control result by 16.144%, meaning that it could classify successfully 84.182% of the time. The other
successful classifier that makes use of adaptive boosting is the decision table algorithm. The decision
table classifier managed to improve more than JRIP and improved its control result by 17.724 %,
meaning that it could classify at 82.972%. Only two other classifiers managed to improve adaptive
boosting, but this improvement was not enough to make them useful in this context. Those classifiers
being hyper pipes which managed to improve on its control result by 12.357%, bringing it to a total of
23.651% correct clarification, and the NNGE managed to show the most improvement out of any
classifier with 27.833% improvement meaning that its final correct classification percentage was
31.427% correct classification. Notably, some classifiers that usually score well when using adaptive
boosting scored significantly lower than expected due to natural variance in randomization. The worst
affected of all of these was J48, which experienced a 62.771% reduction in performance from its
control result. The KStar classifier performed poorly with this single classifier enhancer and found a
performance drop of 19.745%, leaving it on 67.081% correct classification. With all this being
considered, adaptive boosting should be applied to the decision table, and JRIP classifiers only as both
showed significant improvement when using adaptive boosting and achieved high classification levels.

Figure 27. Adaptive boosting improvment

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

62 | P a g e
1887995

5.8.2.4 Delay based single classifier enhancer

Figure 28. Delay based improvement

In the figure above, the effect of the delay-based single classifier on each classifier is displayed. We
can see that for most classifiers, the delay based single classifier enhancer improves the results by 6%
or more. The classifier to show the best improvement when using this enhancer is JRIP, which
experienced a 25.186% increase in performance. Another classifier that performed exceptionally well
is the decision table classifier, which improved its control score by 24.026%. Notably, both of these
classifiers were the two worst-performing classifiers out of the group in the control experiment. When
looking at the classifiers that did not perform well, the two prominent examples are both logistic base
classifiers. Both of these were negatively affected by the delay based single classifier enhancer and
experienced over 1% drop in performance, with the LMT logistic base experiencing a decline in the
performance of 1.235% and ft logistic base experiencing a 1.311% drop in performance. Every other
classifier experience between 6.5% and 10% improvement compared to their control scores. The
conclusion we can draw from this evidence is that the delay-based single classifier enhancer is very
likely to help a classifier improve its performance. The worst performing classifier originally is the
better performing delay-based single classifier enhancer. However, there does reach a threshold
where this becomes false.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

63 | P a g e
1887995

When Looking at the improvement results from the delay prediction methodology experiment on
the poor performing classifiers, a conclusion can be drawn that if classifiers are not performing well
in their base classifications, then a delay will significantly improve their results. The most improving
classifier did show 100% improvement. However, this result is only so significant because the original
classifier performed poorly in its classification that any addition to its correct classifications, no
matter how small, significantly impacted the improvement measurement. It is sensible to say that
this delay methodology will improve the results between 25 and 37.5% for moderately poor-
performing classification algorithms. The most exciting results from this experiment come from the
most common prediction methodology and the double delay. This double delay managed to improve
on a previous delay by a significant margin. This shows the potential that increasing the number of
delays or folds may significantly improve the results.

Figure 29. delay prediction methodology with poor performing classifiers

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

64 | P a g e
1887995

5.8.3 VOTE combination individual classifier improver

The figure above shows the classifier rate when the vote combination individual classifier improver
was applied. The vast majority of classifiers found some improvement with this method; the most
successful was the random tree algorithm, which improved by 143.759%. This leaves the classifier
10% short of the 70% threshold but could reach the threshold with some other improvements. Other
classifiers that saw great success when using this is the decision table classifier. This classifier
managed to improve by 18.649% compared to its control result, which means that it could classify
correctly 83.623% of the time, significantly improving from a relatively high result that just made it
past the threshold to a very high-level classifier. The best performing classifiers did not make any use
of this methodology, however. Both of the logistic base classifiers and both IB classifiers failed to
show any significant improvement with this method applied. The creation time for these classifiers,
especially the logistic base classifiers, was detrimentally affected by this improved method. Some
classifiers were significantly negatively affected by this, most notably the J48 classifier, which found
a 62.426% reduction in classification ability, meaning that it was left on 13.311% correct
classification. Another classifier that was significantly affected was the case star classifier which
found a reduction in prediction ability by 18.404%, meaning that it just missed out on the 70%
threshold at a correct classification rate of 68.202%. There seems to be a correlation between the
classifieds that performed well in this experiment and the classifiers that performed well when using
adaptive boosting and bootstrap aggregation. This correlation can be seen in the decision table and
JRIP. Although JRIP is negatively affected by bootstrap aggregation, these strong results from
adaptive boosting make up for this.

Figure 30. VOTE combination individual classifier improver results

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

65 | P a g e
1887995

5.8.4 The average performance of individual classifier improvers
In order to gain a good idea of how each of the improvement methodologies has affected the
classifiers. Suppose we sum up the percentage classified correctly for all classifiers per experiment and
find the average. Comparing the averages of each of these experiments will determine if the individual
classifier improves positively or negatively affects the classifiers.

Looking at the figure above, we can see that the most successful individual classifier improvement
methodology was using VOTE. Overall the vote improvement methodology managed to improve each
classifiers classification rate by 4.347%. Only one other improvement methodology managed to show
any significant signs of improvement, and that is the bagging single classify improver. This classification
method managed to nearly reach 2% improvement but stopped short at 1.836% improvement.
Notably, the aggregated boosting improvement methodology had an overall negative effect on the
classification ability of the algorithms. Overall this improvement method negatively impacted the
classification rate by 1.769%. Attribute selection did improve the classification rate but was the worst
performing out of all the improvement methods that did not negatively impact the classification rate.
Attribute selection managed to improve the classification rate by 0.682%.

Figure 31. Average improvment by method

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

66 | P a g e
1887995

5.8.5 voting methodology evaluation

5.8.5.1 Most common voting methodology
In the most common voting methodology experiment, this voting methodology did not perform
better than all of the base classify. One family of classifiers managed to outperform this voting
methodology, which means that it is not more accurate than using a base classifier for the tool in its
current state. However, upon further inspection of the scenarios and individual instances correctly
classified by the most common voting, the scenarios classified correctly were far more spread out.
This means that using the most common voting methodology will help ensure an even spread of the
possibility of prediction amongst all scenarios. The slight drop in performance, which is less than 1%
that comes with using the voting methodology, is worth the trade-off to ensure that specific
scenarios that the best performing classifiers may not predict are still classified often.

5.8.5.2 Weighted voting methodology
In the weighted voting methodology experiment, the weighted methodology correct classification
average was the same as the average produced by two base classifiers. The conclusion drawn from
this is that these classifiers are too heavily weighted in the voting methodology. The classification
levels were recorded across the entire experiment to investigate this further, and the weighted
prediction correct classification level rises above. It falls below both of these Class A fires. From this,
we can prove that these classifiers are not too highly weighted. The classification level for the
weighted prediction would have been pinned to whatever value is produced by the logistic base
classifiers. Much like the most common voting methodology, the correctly classified scenarios were
far more spread out in the data than the two logistic base classifiers.

5.8.5.3 Blending voting methodology
The blending voting methodology does rely on the single base classifiers. Unfortunately, these single
base classifiers cannot have the optimal modifications applied to them to produce the best result on
their own. This is due to the requirements of the multi classifier combine available through the
machine learning library. When viewing the stream of results produced by the experiment, the
blending voting methodology classification rate was the highest out of all the results. This means
that the blending voting methodology can be the best performing voting methodology if the correct
parameters and classifiers are found. This classifier considers all the other classifiers predictions
before making a decision. It can adapt and “think” more than the other voting methodology that
follows fixed rules, which gives it an edge at both low-level training and high-level training compared
to the other methodologies.

5.8.6 attack type evaluation
When evaluating the frequency of detection by scenario and which characteristics make an event
harder to detect, it is vital to understand the outliers in the dates are. Scenario 3 is not an attack
scenario and should be relatively easy to detect this however is not reflected in the data as it is the
5th list detectable scenario full stop looking at the characteristics of scenario three, we can see that
it is an SLG fault occurring on line one at 80 to 90%. Taking this characteristic and comparing it
against the other scenarios that performed well in being undetected, the SLG fault typically appears
in all of them. We can conclude that if an SLG fault is included in the scenario, this severely hinders a
classification algorithms' ability to classify that instance correctly. The least detectable scenario is
scenario 12. This scenario does include the fault characteristic previously described. Upon closer
inspection of the specific fault found in this scenario, it ranges from 80 to 90% online. Taking this 80
to 90% fault and comparing it to all the other attack subtypes, we can see that when an 80-90% fault
occurs, a decrease in the detectability occurs. The severity of this effect depends on which line the

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

67 | P a g e
1887995

fault occurs. Looking at line one, there is only a minor decrease in detectability from the scenario,
but when this same fault is applied to the line to a significant decrease in detectability occurs. These
characteristics of an SLG fault occurring at 80-90% on line 2 typically mean that a scenario is less
detectable than other scenarios in its family. Other characteristics do help to decrease the scenarios
detectability. These are the characteristics typically are applied to the relays found in the smart grid.
These functions include acts such as disabling relays or performing command injection against
relays.

5.9 SUMMARY
From the single base classifiers, we improved upon their control classifications to produce better
results for every classifier. This means that using the methods described. Any based classifier can be
improved a pond. The varying effectiveness of each improvement method based on either how much
data the classifiers have been exposed to or how well they perform shows that each of the different
methods has different effectiveness at specific ranges of instances.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

68 | P a g e
1887995

6 CONCLUSION AND FUTURE WORK

6.1 BUILT-IN LIVE DATA CAPTURE
The current tool that has been built only takes pre-recorded data captured from this smart grid
imported by the user. This data capture method is not practical as it requires constant user input to
keep the tool up today with data from the smart grid. Improving upon this would genuinely make the
application that can be left to run in the background.

This improvement will be made by creating a separate script with access to the data recording
elements of the smart grid and can take that data and transform it into a.ARFF file type and ensure
that it is of the correct format. This data can then be used by the current tool to make predictions
about the current state of the smart grid.

6.2 INTEGRATING MORE DETECTION METHODOLOGIES
Denial of service attacks is a severe type of attack that the grid may experience, which we have not
prepared. Denial of service attacks is becoming increasingly prevalent due to the relatively low level
of skill it takes to perform one and the mass devastation it can cause. These types of attacks can be
especially devastating to a smart grid network. One of the significant speed bumps in denial of service
detection is that it is challenging to differentiate between legitimate network traffic and malicious
network traffic. For instance, if a smart grid word 2 regulates the energy distribution within a city
based on the energy distribution of these different areas. However, if legitimate data that the smart
grid requires to make these decisions is discarded in detecting a denial of service attack, significant
amounts of energy and money will be wasted as the smart grid cannot effectively communicate with
the different areas of the city.

This new detection methodology would need to perform log analysis, response size analysis, mismatch
in port analysis, large packet dumping alongside other compromise indicators to create a processable
data set. This data set can then be analyzed using our machine learning algorithms to detect any
possible behaviours associated with denial of service attacks.

6.3 EDGE CASE NEW SCENARIO CLASSIFICATION
Within the data set, there are a set amount of 35 unique scenarios. This limitation, unfortunately,
limits the number of scenarios the application can process to 35. A significant improvement on the
tool could be made by creating functionality that when an unknown string of instances is inputted,
that does not match any specific scenario but is classed as valid pieces of data, then this functionality
would create a new scenario based on this data. The previous data can then be analyzed to see if any
other instances match this new scenario, which can then be associated with it.

This functionality would use clustering to find the outliers and any potentially new scenarios within
the data. This edge case classification would allow the tool to adapt to any new attacks that may be
launched against the smart grid that it has not previously been trained on.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

69 | P a g e
1887995

7 FURTHER CONCLUSIONS

7.1 MOTIVATION AND PROBLEM
In this project, it was concluded that smart grids particularly vulnerable to cyber-attacks which can
lead to significant disruption in the operations of the smart grid. These attacks can affect the
communication between the different devices on the smart grid leading to interruptions in data
transfer and corruption of data. These attacks' knock-on effects can have disastrous implications, such
as localised blackouts in a targeted area. The problem with the research done in this field is that the
classifications and responses from these tools are not precise enough to allow the user to make
informed decisions about the smart grid. Different types of attacks require different responses, and
as such, this needs to be reflected in the classifications.

As such, the tool we created demonstrates the collection and analysis of smart grid data to build
multiple machine learning classifiers to make informed predictions about the current state of the
smart grid. The accurate and appropriate advice given to the user by the application will be invaluable
in the prevention and Minimisation of attacks. The application achieves this by taking training data on
which each instance belongs to a scenario and training itself on it. Each different type of classifier does
this in a slightly different way as previously described but using whatever methodology it uses, and it
will take the new data and evaluate which classification at best fits into.

7.2 THE IDEA AND TOOL
The idea behind creating this tool was that it was able to provide correct scenario-type predictions on
live data to help improve the user's situational awareness of their smart grid. Other tools did offer
this, but the accuracy they provided is Paul and does not provide enough information to the user. A
Python-based tool using a machine learning library was developed in order to be able to read the data
from the smart grid and analyse the data in order to predict whether an attack is occurring. There are
six attacks subtypes available to test our system those are SG fault replay, command injection against
a single relay, command injection against two relays, disabling relay function against a single relay and
fault, disabling relay function against two relays and a fault, and finally disabling relay function against
two relays as well as line maintenance. These types of attacks provide a large variety to test against
our tool and as they are widespread in real-life scenarios so provided good real-world comparison.

7.3 THE RESULTS AND CONCLUSIONS
Looking at the results from this paper against the results from the background material provided, the
background material claims to produce a more accurate result more often. The reason behind this is
twofold. The previous paper exclusively relies on single base classifiers, which means that specific
scenarios are classified more often than other scenarios, creating a significant drop in performance
when specific scenarios occurring within the data, meaning that for the purposes described in this
paper, a more spread out approach is better. The data set used in the background material has three
different scenarios, whereas the data set used in testing this tool has 35 different possible unique
scenarios. The margins for error and the impact that those errors cause felt far more significantly in
the results of this paper. If a classifier word to not know which classification to place an unknown
instance into, in the previous literature, if the classifier were to guess, there would be a 33 point 3%
chance of producing a correct classification, whereas in this paper, since the amount of scenarios has
significantly increased there is only a 2.8% chance of randomly selecting the correct classification.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

70 | P a g e
1887995

8 REFLECTIONS MADE ON LEARNING

During this project's development process, I expanded my technical knowledge and skill into many
different aspects of computer science. When I was considering a project to do, I knew that I would
want it related to three possible areas forensics, cybersecurity and artificial intelligence, as these were
areas that I have had an extensive interest in for a few years now. The first time reading about this
project, I did not know anything about smart grids and only had a basic understanding of the principles
of machine learning algorithms. Investigating this project and the different aspects has helped
broaden my horizons, and through meetings with my supervisor and reading various research papers,
I have been able to focus this learning into a helpful paper that you have hopefully read through.

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

71 | P a g e
1887995

9 APPENDICES
Figure 1. screenshot of Microsoft Defender for Endpoint

Figure 2. Screenshot from Splunk

Figure 3. Multiclass Accuracy over Fifteen Datasets (Raymond C. Borges Hink & Mark A. Buckner, 2014)

Figure 4. Three-class accuracy over Fifteen Datasets (Raymond C. Borges Hink & Mark A. Buckner, 2014)

Figure 5. Binary classification accuracy over Fifteen Datasets (Raymond C. Borges Hink & Mark A. Buckner, 2014)

Figure 6. Attributes ranked by info. gained

Figure 7. the power system framework configuration used in generating the scenarios (Mississippi State University and Oak
Ridge National Laboratory, 2014)

Figure 8. Smart Grid System Breakdown

Figure 9. OVERALL WORKFLOW OF THE IDEA

Figure 10. tool screenshot showing start up

Figure 11. Break down off scenario response for scenarios 36 and 1-6.

Figure 12. Results from the low-level classifier evaluation

Figure 13. Breakdown of Errors raised from classifiers

Figure 14. control classifiers Percentage Correct average

Figure 15. classification Percentage correct avg. w/ att. Selection using ConsistencySubsetEval & GeneticSearch

Figure 16. Bootstrap aggregating average results

Figure 17. adaptive boosting correct classification average

Figure 18. Delay based single classifier enhancer

Figure 19. Combination classifier single classifier enhancer results

Figure 20. Most common prediction voting methodology results

Figure 21. weighted voting methodology average results

Figure 22. blending voting methodology average result

Figure 23. frequency of detection

Figure 24. Classifier type evaluation

Figure 25. attribute selection improvement

Figure 26. Bootstrap aggregating improvement

Figure 27. Adaptive boosting improvement

Figure 28. Delay based improvement

Figure 29. delay prediction methodology with poor performing classifiers

Figure 30. VOTE combination individual classifier improver results

Figure 31. Average improvement by method

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

72 | P a g e
1887995

9.1 GANTT CHART

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

73 | P a g e
1887995

BIBLIOGRAPHY
Babak Akhgar, A. S. a. F. B., 2014. Cyber Crime and Cyber Terrorism Investigator's Handbook. s.l.,
Elsevier Inc..

Babak Akhgar, S. Y., 2013. Strategic Intelligence Management; National Security Imperatives and
Information and Communications Technologies. s.l., Elsevier Inc..

Beaver, J. M., Borges-Hink, R. C. & Buckner, M. A., 2013. An Evaluation of Machine Learning Methods
to Detect Malicious SCADA Communications. Miami, IEEE.

cyber security firm McAfee, the Center for Strategic and International Studies, 2020. Economic
Impact of Cybercrime - No Slowing Down, s.l.: McAfee .

D. Aha, D. K., 1991. Instance-based learning algorithms. Machine Learning, Volume 6, pp. 37-66.

D. Aha, D. K., 1991. Instance-based learning algorithms. Machine Learning, Volume 6, pp. 37-66.

Dong, Z. et al., 2017. Review and application of situation awareness key technologies for smart grid.
Beijing, China, IEEE.

Langner, R., 2011. Stuxnet: Dissecting a Cyberwarfare Weapon, s.l.: IEEE.

Machine Learning Group at the University of Waikato., n.d. WEKA: The workbench for machine
learning. [Online]
Available at: https://www.cs.waikato.ac.nz/ml/weka/index.html
[Accessed 06 05 2021].

microsoft, 2021. Microsoft Defender for Endpoint. [Online]
Available at: https://www.microsoft.com/en-gb/microsoft-365/security/endpoint-defender?ocid=cx-
blog-mmpc
[Accessed 19 05 2021].

Mississippi State University and Oak Ridge National Laboratory, 2014. Power System Attack
Datasets, s.l.: s.n.

Mlitz, K., 2018. Cybersecurity market revenues worldwide 2017-2023, s.l.: statista.

Raymond C. Borges Hink, J. M. B. M. A. B. T. M. U. A. S. P., 2014. Machine learning for power system
disturbance and cyber-attack discrimination. 7th International Symposium on Resilient Control
Systems (ISRCS).

Raymond C. Borges Hink, J. M. B. & Mark A. Buckner, T. M. U. A. S. P., 2014. Machine learning for
power system disturbance and cyber-attack discrimination. Denver, CO, USA, IEEE.

Raymond C. Borges Hink, J. M. B. M. U. A. S. P., 2014. Machine Learning for Power System
Disturbance and, s.l.: IEEE.

Shengyi Pan, T. M. ,. U. A., 2015 . Classification of Disturbances and Cyber-Attacks in Power Systems
Using Heterogeneous Time-Synchronized Data, s.l.: IEEE.

Timm, C., 2018. Analysis of Remote Tripping Command Injection Attacks in Industrial Control Systems
Through Statistical and Machine Learning Methods, s.l.: STARS..

Vacca, J. R., 2017. Computer and Information Security Handbook. s.l., Elsevier Inc..

K y l e S w i r e - T h o m p s o n 2 0 2 1 - C M 3 2 0 3

74 | P a g e
1887995

Zeller, M., 2011. Common Questions and Answers. San Diego, Schweitzer Engineering Laboratories,
Inc..

