

QUANTIFYING THE

DIFFERENT COVID-19

VARIANTS PRESENT IN

WASTEWATER WITHIN

SOUTH WALES

AUTHOR: ARLYN MILES

Supervisor: Dr Bailin Deng

Client: Professor Peter Kille

QUANTIFYING THE DIFFERENT COVID-19 VARIANTS PRESENT IN

WASTEWATER WITHIN SOUTH WALES

ARLYN MILES

MAY 15, 2021

ABSTRACT
Monitoring the detection of SARS-CoV-2 and changes to its circulating strains within

the population is an ongoing challenge key to controlling the global coronavirus

pandemic. Wastewater analysis provides a solution to population-scale monitoring

of the variants present within local communities.

The focus of this report is on the creation of a bioinformatics pipeline and

accompanying CLI tool to identify and display results on the variants of the SARS-

CoV-2 genome present in sequenced wastewater samples.

The result of this project a report showing the allelic frequency of each variant in a

wastewater sample and graphs detailing the coverage of sequenced wastewater

over a SARS-CoV-2 genome. These can be used in further research to quantify the

exact strains circulating within a population and approximate the individuals

infected.

ACKNOWLEDGEMENTS
I would like to thank my supervisor Dr Bailin Deng for his continued support and

guidance throughout this project.

I would also like to thank my client Professor Peter Kille for taking on a mentoring

role introducing me to the field of Bioinformatics and providing me with

learning materials and research data.

Finally, I would like to thank Dr Daniel Pass, Toby Brann, and Elliot Gibbons from the

School of Biosciences for sharing relevant research papers and offering

insight on the scientific interpretation of my results.

TABLE OF CONTENTS
Abstract .. 2

Acknowledgements... 3

1. Introduction .. 7

1.1 Preface .. 7

1.2 Project Aims and Scope ... 8

1.2 Project Limitations and Constraints.. 8

1.3 Intended Audience .. 8

1.5 Document Layout .. 9

2. Background and Literature Review .. 9

2.1 Research references .. 9

2.2 Relevance of wastewater analysis ... 9

2.3 Sequencing Types- Nanopore and Illumina .. 9

2.4 Genetics Background ... 10

3. Specification and Design.. 12

3.1 Brief .. 12

3.2 Deliverables adjusted since initial plan .. 12

3.3 Functional requirements ... 12

3.4 Non-functional requirements .. 14

3.5 Environment setup .. 15

3.6 Pipeline overview .. 16

3.7 Tools chosen ... 17

3.7.1 Downloading data .. 17

3.7.2 Trimming raw reads .. 18

3.7.3 Quality checking data ... 18

3.7.4 Fishing to create SAM ... 19

3.7.5 Assembly / reference sequence-mapping ... 19

3.7.6 Variant Calling .. 19

3.7.7 Variant annotating .. 19

4. Implementation .. 20

4.1 implementation overview .. 20

4.2 Command Line Interface .. 20

4.2.1 Help .. 21

4.2.2 Config ... 22

4.2.3 Run ... 22

4.2.1 Results .. 23

4.3 Trimming ... 25

4.4 Data Quality Assurance .. 26

4.5 2-process.sh .. 27

4.6 Isolation of covid genomes .. 28

4.7 Alignment and Assembly of genomes and Variant Calling 29

4.7.1 Recreating original genome .. 29

4.7.2 De Novo Assembly .. 29

4.7.3 Reference-based alignment .. 31

4.8 Identification of variants .. 32

4.8.1 Samtools variant calling .. 32

4.8.2 GATK Variant calling ... 32

4.8.3 Snippy /SNP-sites variant calling ... 32

4.9 Annotation of variants ... 33

4.9.1 SnpEff ... 33

4.9.2 IVAR ... 33

5. Results and Evaluation .. 34

5.1 Overall Results ... 34

5.2 HTML Report ... 34

5.2.1 Filtered SNPs/variants: ... 34

5.2.2 SNPs on spike protein: .. 35

5.2.3 Coverage summary against reference ... 35

5.2.4 SNP Position and Total Read Depth ... 36

5.3 Other Results .. 37

5.4 Requirements met ... 37

5.3 Testing .. 39

5.3.1 Real data .. 39

5.3.2 Simulated data ... 40

5.3 Evaluation ... 40

6. Future work .. 41

6.1 Statistical Analysis of Strains .. 41

6.2 Pipeline Improvements.. 41

7. Conclusions ... 41

8. Reflection .. 42

Glossary .. 44

List of Abbreviations ... 45

Appendices ... 46

Appendix 1: External Tools/Software Used .. 46

Appendix 2: Data used .. 46

References .. 47

1. INTRODUCTION

1.1 PREFACE

The global coronavirus pandemic has shaken the world, and a year on it is

important to manage and combat the ever-mutating virus strains to ensure

infections rates can be kept low long term, and our current countermeasures

remain effective. Further monitoring will be key in evaluating the role and

importance of current and future mutations (Vilar and Isom 2020).

Screening services currently utilise pharyngeal (throat and nasal) swab samples

which can be costly and ultimately inaccessible for developing nations(Napit et

al. 2021). Therefore, an alternative method of population-wide monitoring of

viral strains would be beneficial in the ongoing management of COVID-19.

Despite being a respiratory disease, COVID-19 genomes are shed in faeces (Pan

et al. 2020), which later reaches wastewater through sewage systems (Medema

et al. 2020). Detection of COVID-19 genomes has been proven to be equally

detectable in faecal matter as it is in throat swab specimens ((Zhang et al. 2020)

informing wastewater analysis as a viable method of SARS-CoV-2 surveillance

(Chavarria-Miró et al. [no date]).

Wastewater samples throughout South Wales collected by researchers at Cardiff

University School of Biosciences were sequenced using Oxford Nanopore

sequencing machine MinION (MinION | Oxford Nanopore Technologies. [no date]). I

have created a pipeline that processes this sequenced RNA data from local

wastewater, identifying and quantifying the different COVID-19 variants present

in the South Wales population.

Identifying COVID-19 variants present within South Wales is important as it

allows us to monitor the spread of novel strains, suĐh as the ͞“outh AfƌiĐaŶ
ǀaƌiaŶt͟ 5Ϭϭ.VϮ. which may increase infectivity or otherwise resist immunisation

efforts.

By quantifying this, it is possible to approximate the exact number of infected

people present in the city with estimates for how many individuals are

associated with each variant of the virus.

1.2 PROJECT AIMS AND SCOPE

The main aims of this project are to process and analyse sequenced wastewater

samples from South Wales in a way that allows for identifying all COVID-19 viral

variants present in the data. These variants can then be compared to the total

reads at that part of the genome to obtain an allelic frequency of each variant.

This information can be used by my client in further research to derive an

estimated quantification of the strains circulating within a population.

This project should be able to produce the above results from raw FASTQ

sequenced wastewater samples and display the results. It is aimed at

bioinformatics researchers so its configuration and usability should reflect that.

The scope of this project involves building a pipeline that can perform quality

checks on the sequenced wastewater data, perform possible corrections on this

data and remove adapters leftover from sequencing, separate Covid genomes

from bacterial and animal DNA, align present Covid genomes to a full Covid

sequence, and finally identifying the variants present in these aligned genomes.

For this project, existing bioinformatics tools that are available freely for

researchers will be utilised as well as self-produced scripts.

1.2 PROJECT LIMITATIONS AND CONSTRAINTS

This project will produce allelic frequencies for the Covid variants present in

wastewater samples. However, to then identify the strains circulating from

these variants and approximate a specific number of individuals infected with

each strain at the time the sample was taken would require a bespoke statistical

framework (Hillary et al. 2021) which is beyond the scope of this project.

Existing tools for bioinformatics research will be used to perform common

operations on the data within my pipeline.

1.3 INTENDED AUDIENCE

The intended audience for this report is the researchers, individuals, and

investigators interested in the distribution of COVID-19 strains within the South

Wales population and the methods by which these can be derived from

sequenced wastewater.

As an interdisciplinary project, this report has been written so that individuals

with either a Computer Science or Bioinformatics background can understand

the language and methods used throughout.

1.5 DOCUMENT LAYOUT
This report is structured in the following way: Section 2 details the necessary

background information on COVID-19, bioinformatics, and the project background

to understand the methods and reasoning used in the implementation of my

solution. Next, section 3 discusses the specifications of the project and design

decisions. Section 4 then covers the implementation of the solution created for this

project, followed by the results of this and an evaluation in section 5. Section 6

addresses the future work arising from this project. Section 7 concludes on the

findings of the project, which is followed by a reflection on the learning process of

the author in Section 8. Finally, the glossary, list of abbreviations, appendices,

references, and bibliography are presented.

2. BACKGROUND AND LITERATURE REVIEW

2.1 RESEARCH REFERENCES
The background knowledge learnt for this project has been obtained from a variety

of sources. My client Professor Peter Kille, Director of Technology and Bio-Initiatives

explained much of the theory to me and provided me with Bioinformatics Masters

course lecture materials. A large number of research papers on Covid-19 and

bioinformatics educated me on the background of this subject. The rest of my

sources which can be found in the Bibliography were software manuals and online

websites.

2.2 RELEVANCE OF WASTEWATER ANALYSIS
Testing for Covid-19 is mostly done on an individual basis, through pharyngeal or

saliva samples. Testing done in this manner is costly so is not easily accessible

globally. Monitoring of Covid-19 through metagenomic (environmental) samples

such as wastewater allows an overview of the infection levels of local communities.

Covid-19 is detectable in faecal matter and ultimately leads to detection in

ǁasteǁateƌ tƌeatŵeŶt plaŶts. ‘eseaƌĐh is ĐuƌƌeŶtlǇ oŶgoiŶg iŶ Caƌdiff UŶiǀeƌsitǇ͛s
School of Bioscience to analyse strains present within local wastewater samples,

mimicking research across the world trying to achieve similar analysis into

population-wide monitoring.

Monitoring of wastewater can enable a sentinel surveillance of SARS-CoV-2

(Chavarria-Miró et al. [no date]) which can lend to an early warning system of

outbreaks within local communities. By comparing variant analysis of wastewater

across a region, the movement of strains can be detected. Tracking variants of

concern is of utmost importance in our continued fight against Covid-19 to ensure

low transmission rates and ensure our treatments remain effective.

2.3 SEQUENCING TYPES- NANOPORE AND ILLUMINA
There are many methods for sequencing biological sequences, from low-throughput

Sanger sequencing to NGS (Next Generation Sequencing) methods Illumina and

Nanopore. The scope of this project involves creating a pipeline that can process

both Illumina and Nanopore generated sequences.

The aim of sequencing is to take a biological sample and produce digital sequences

(often in FASTQ format) that represent each nucleotide base of the DNA/RNA

present. The FASTQ format is a text file of nucleotide bases e.g. (ACGGCTA) with a

quality score stating the sequencing confidence encoded in ASCII for each base. An

alternative data format that may be seen is FASTA format. This is a text file of

nucleotide bases without any quality scores.

Illumina sequencing is a popular NGS technology that involves large sequencing

platforms and can perform sequencing with a high throughput. It typically produces

longer reads, meaning each sequence has a greater length(Sequencing | Key

methods and uses. [no date]). Nanopore is a more recent technology that is also

able to sequence with a high throughput. The Oxford Nanopore MinION is much

more portable than an Illumina platform and can be held in your hand. Nanopore

sequenced data produces shorter reads by measuring the electrical current of

genetic material passing through channel proteins (How it works. [no date]).

Illumina sequenced data produces paired-end reads, one forwards across the DNA

strands, and one backwards. This produces two different sequence files to process

downstream. Data sequenced by Nanopore produces single-end reads in just one

file. This difference between them requires processing Nanopore and Illumina data

differently and software that works with both single and paired-end data must be

used.

As part of the sequencing process, chemically synthesized sequences called adapters

are mixed in with the original genetic sample to accurately sequence the DNA/RNA.

However, these adapters pollute the resulting sequenced data so must be removed,

also known as trimming. These adapters vary depending on if the data was

sequenced with Nanopore or Illumina, therefore it is necessary to find trimming

software that can remove this for both types of data.

2.4 GENETICS BACKGROUND
DNA and RNA are the building blocks of organic life and contain the genetic code for

any organism. A genome refers to the complete set of genetic information that

codes for a particular organism. For example, the SARS-CoV-2 genome is the full set

of RNA that Covid-19 is composed of.

Within individuals of any organism, genetic variation occurs. The genome of any two

organisms of the same species is seldom identical. The slight differences in the

sequences of genetic information are called variants. Variants represent a change in

the original nucleotide base. One type of variant is a single nucleotide polymorphism

(SNP). This is the most common form of genetic diversity and represents a single

ďase sǁap i.e., fƌoŵ a ͞C͟ ŶuĐleotide ďase to a ͞T͟ ďase (Variant Calling part 2

(Galaxy) - Bioinformatics Documentation. [no date]). Insertions and deletions

(indels) are two other types of variants that can occur, where extra bases are

inserted into the code or bases usually present are deleted.

Not all variants will cause a noticeable change in function for that organism. Some

variants will code for the same protein regardless, while some variants will cause a

different amino acid to be produced which can result in a protein that changes the

function of that part of the organism. This is called a mutation and is especially

important to monitor in viruses as their high reproduction rate allows for greater

genetic diversity and therefore fast mutation rates.

For Covid-19, it is important to monitor the SARS-CoV-2 variants circulating within

the population to keep aŶ eǇe oŶ aŶǇ ͚ǀaƌiaŶts of ĐoŶĐeƌŶ͛. These ǀaƌiaŶts of
concern tend to be changes to the genome that result in changes that increase

transmission of the virus or how it could be treated.

For coronavirus, the most important location on the genome to monitor these

variants is on the spike protein. The spike protein allows the virus to enter host cells,

so is directly related to the transmissibility of the virus (Vilar and Isom 2020).

Mutations on the spike protein such as on the South African strain are worrying as

circulations of this strain can increase the spread of the virus (Trevor Bedford on

Tǁitteƌ: ͞“iŶĐe theiƌ ƌeĐogŶitioŶ iŶ the UK, “outh AfƌiĐa aŶd Bƌazil iŶ DeĐ ϮϬϮϬ aŶd
Jan 2021, the variant of concern lineages B.1.1.7, B.1.351 and P.1 have continued to

spread throughout the world with B.1.1.7 so far the most successful of the three.

ϭ/ϭ5 https://t.Đo/‘tVLQP‘UiV͟ / Tǁitteƌ. [Ŷo date]Ϳ.

If the number of variants present in a given sample is compared to the number of

reads (sequenced data) at the same position on the genome, a ratio of variant to

non-variant can be calculated to derive allelic frequencies for each variant. An allele

is a version of a nucleotide base, so allelic frequencies represent how often each

variant occurs in a sample. Retrieving this data from wastewater samples is the

primary aim of this project.

3. SPECIFICATION AND DESIGN

3.1 BRIEF
This project was requested by my client Professor Peter Kille, Director of Technology

and Bio-Initiatives from the Cardiff University School of Biosciences. The desired

outcome was a bioinformatics pipeline that can derive allelic frequencies (the

frequency of a variant at a particular gene) across the SARS-CoV-2 (Covid-19)

genome from sequenced wastewater samples. These allelic frequencies represent

the mutations occurring in the strains circulating within local communities the

wastewater is collected from.

The expected input for this system is raw FASTA format sequenced wastewater. The

expected output is a list of SARS-CoV-2 variants present in the wastewater, and thus

an indication of the variants circulating within the population of the area at the time

the wastewater sample was taken.

The allelic frequencies identified from the sequenced wastewater can then be used

by my client in further research to perform statistical analysis on the exact strains

circulating within local communities.

3.2 DELIVERABLES ADJUSTED SINCE INITIAL PLAN
The plan for this project has changed since the initial planning stage. At the time of

the initial plan, my client Professor Peter Kille had explained the overall results

desired from this project, however, the exact design and implementation required

was not clear at this point. The main reason for this was the large amount of

research necessary into existing solutions, bioinformatics procedures, and the

scientific background before a solution could be designed.

The use of Docker to containerise the project was no longer necessary due to being

able to install all necessary modules onto the Trinity cluster.

No detail was included in the initial plan as to the steps the pipeline would involve or

how it would be created. This was due to the lack of knowledge of a typical

bioinformatics workflow and was designed later in the project after extensive

research.

Originally, I had planned to develop a first iteration of the pipeline, and then test

and evaluate it before developing a second iteration. Instead, the development of

each step of the pipeline had multiple iterations which I evaluated, and the final

pipeline connected each optimised step.

From initial conversations with my client, potential secondary aims for measuring

Covid-19 diversity over time within an area and comparing variants with samples

from the Cardiff University Screening Service were discussed. However, it was later

decided this was beyond the scope of this project.

3.3 FUNCTIONAL REQUIREMENTS
Based on conversations with my client Professor Peter Kille about the data I would

be working on and the analysis results desired from it, I have defined key functional

requirements for the pipeline. These were agreed on by my client and align with the

overall project aims.

3.3.1 Requirement 1

Title: Quality check data and trim raw reads to remove adapters

Description: The raw FASTA wastewater sequences have certain content leftover

fƌoŵ the seƋueŶĐiŶg pƌoĐess Đalled ͞adapteƌs͟ that ŵust ďe ƌeŵoǀed ďefoƌe the
data can be processed. The data must also be quality checked to ensure the read

quality is high enough for the downstream analysis to produce results.

Acceptance criteria:

• Each raw read file must be trimmed to remove any adapter content

or bad quality reads.

• The resulting trimmed read files must be quality checked and only

acceptable data analysed downstream.

• Each quality check will produce a report that can be manually

examined.

3.3.2 Requirement 2

Title: Align sequences to Covid-19 reference

Description: Trimmed sequences that pass the quality checks should be aligned

against a reference FASTA file for the first sequenced Wuhan Covid-19 genome and

sorted into the right order, producing a sorted SAM/BAM (Sequence Alignment Map

format and Binary Alignment Map format) file.

Acceptance Criteria:

• Trimmed sequences are aligned using a reference sequence to create a SAM

file.

• SAM file converted into BAM file for further analysis.

• BAM file is then sorted into the correct order for the reference genome

producing a sorted BAM file.

3.3.3 Requirement 3

Title: Identify variants that differ from the reference

Description: Areas in the mapped sequence that do not match with the reference

genome should be identified, these areas can represent mutations in the sequence.

These can be SNPs (single nucleotide polymorphisms, a single swap of a nucleotide

e.g. A to T), or insertions/deletions, but also may be sequencing errors. The SNPs

identified must be filtered to eliminate false positives.

Acceptance criteria:

• Variants are identified from each sorted BAM file and this list is exported.

• SNPs are annotated using a GenBank file to describe which mutations

encode for certain proteins and estimate the relevance of SNPs.

• Only variants that pass certain tests for eliminating false positives are

outputted.

3.3.4 Requirement 4

Title: Display relevant results and statistics as a report

Description: Many files and information are generated throughout the pipeline. The

most relevant results from the analysis should be displayed to the user in a HTML

report for ease of viewing.

Acceptance criteria:

• The pipeline should store analysis results in TSV (tab-separated values) files.

• Data from these files should be read, and relevant tables and graphs

created.

• A HTML report file should be generated for each sequence to display the

tables and graphs, and resultant variants identified from the wastewater.

3.4 NON-FUNCTIONAL REQUIREMENTS
My client did not request any specific design requirements outside of the overall

aims of the project. Therefore, the requirements for my project were mostly self-

defined based on the result my client desired.

3.4.1 Requirement 1

Title: User interface intuitive and in line with similar tools

Description: Target demographic for this tool is bioinformatics researchers with high

technical experience, so the interface should feel familiar compared to similar tools

used in bioinformatics.

Acceptance criteria:

• Command-line interface designed with help commands/prompts to explain

the usage of the tool.

• Interface created in-line with similar tools, such as FASTP. E.g. reports

generated in HTML for easy viewing, command-line interface with help

messages

3.4.2 Requirement 2

Title: Ability to reproduce results with different datasets

Description: Sequenced data can come in many forms depending on the lab the data

originated from and the machine the samples were sequenced with. The pipeline

should be adaptable to a variety of input data.

Acceptance criteria:

• The pipeline can produce results with data sequenced by ILLUMINA

machines.

• The pipeline can produce results with data sequenced by NANOPORE

machines.

• The pipeline can produce results with data originating from non-

metagenomic samples e.g., saliva sample from an individual.

3.4.3 Requirement 3

Title: Maximised full potential of computational power available

Description: The environment I have access to has a lot of computational power

available, which is important to fully utilise as the data I will be working with is large

and the computations performed can be complex.

Acceptance criteria:

• Jobs are scheduled onto the Slurm queue and not run on the head node.

• Multithreading is used when possible.

• Software that can be run on multiple CPUs concurrently will do so.

3.4.4 Requirement 4

Title: Computationally efficient, to minimise drain on resources.

Description: The pipeline should be optimised to be computationally efficient to

minimise the time the analysis takes when large and numerous datasets are used as

an input

Acceptance criteria:

• Pipeline code runs efficiently in an order that does not repeat steps

unnecessarily or require excess waiting for previous steps to finish.

• Existing bioinformatics software used is chosen with efficiency in mind and

multiple tools have been tested before deciding on the most efficient.

3.5 ENVIRONMENT SETUP
For this project I had access to the Trinity cluster, a large-memory Slurm cluster for

the School of Biosciences available for staff and post-graduate students (HPC

Services - School of Biosciences. [no date]). This can only be accessed while on the

Cardiff University Virtual Private Network (VPN). The main access point to this

cluster is the iago.bios.cf.ac.uk head node which I access by SSH connection from my

terminal. This is a command-line interfaced Linux environment. On the iago head

node I have access to data storage and can schedule jobs.

There are three storage areas I have access to:

• /mnt/data/GROUP-[gƌoupCode] ;Ƌuota͛d gƌoup stoƌage - keep all important

data here)

• /mnt/scratch (non-Ƌuota͛d epheŵeƌal storage)

• $HOME ;Ƌuota͛d stoƌage, used oŶlǇ foƌ LiŶuǆ aŶd appliĐatioŶ ĐoŶfiguƌatioŶ
files)

There are three queues on the Trinity cluster:

• Defq- For lower resource jobs, up to 64 CPUs and 128GB RAM

• Jumbo- Development jobs

• Mammoth- For large jobs with high RAM requirements

All programs must run as jobs scheduled onto one of these three queues using the

Slurm scheduler. Parameters for the job are set at the top of a bash script and define

the queue and resources to use.

Most of my scripting was done using bash scripts written using nano while on the

Trinity cluster. A Python environment was set up on both iago and my local PC.

Required Python modules for the CLI tool I created can be installed using a

requirements.txt file I generated. Python scripts were first developed on my local

Windows PC and then transferred to iago using WinSCP ;WiŶ“CP :: OffiĐial “ite ::
Free SFTP and FTP client for Windows. [no date])

The pipeline created requires several modules which had been pre-installed on the

Trinity cluster and can be accessed by using [module load] in a bash script. Please

see Appendix 1 for a full list of software packages and libraries used.

3.6 PIPELINE OVERVIEW
My project is composed of Python scripts for the user interface and report

generation, and bash scripts for processing the data and running existing

bioinformatics tools.

FIGURE 1: PIPELINE OVERVIEW DIAGRAM

Each step in this diagram represents a command the user of the pipeline must run in

the terminal. Each stage (grey box) represents sections of code that is run. The

arrows in this diagram represent the result of the previous stage and which stage

occurs next.

The pipeline is run through the covid-ww.py file. This is a CLI tool I have created that

allows you to set up the configuration of the pipeline, run the pipeline, and then

generate a report for viewing the results. Running [python covid-ww.py] will display

the available commands you can run.

Firstly, [python covid-ww.py config] is run. This will walk you through the setup of

the config file interactively and is necessary to prepare the pipeline for the data you

will be using.

Secondly, [python covid-ww.py run] is run. This will schedule the pipeline bash script

1-trim.sh onto the Slurm queue to start trimming and performing quality checks on

the data.

After 1-trim.sh has finished running, 2-process.sh will automatically be scheduled

onto the Slurm queue. This script finishes the processing of the trimmed data

obtained in 1-trim.sh and generates all results such as identifying variants.

Finally, after 2-process.sh has finished running, you will optionally be able to run the

command [python covid-ww.py results]. This Python script analyses the resulting

files from 2-process.sh, creates tables and graphs and generates a HTML report for

each input sample for viewing the results of the pipeline easily.

3.7 TOOLS CHOSEN
There are many existing bioinformatics tools available freely for research. In

choosing the tools most suitable for manipulating my data and producing desirable

results I have tested out many tools that perform similar functions. Decisions on

which tools to use were made with a focus primarily on functional relevance, speed

of performance, and utility.

For each stage of performing operations on my data I have provided a list of

software explored and justifications for tool decisions made. Links to external

software used can be found in Appendix 1.

3.7.1 DOWNLOADING DATA
For testing the pipeline, it was important to have access to a variety of data.

Individual Covid-19 positive saliva samples, sequenced wastewater, data sequenced

by Oxford Nanopore and Illumina etc. An easy way to transfer this data to my

scratch data space on the Trinity cluster was needed.

Methods considered:

• Create a text file of all URLs of sequences to be downloaded. Text file must

be manually created. Bash script will iterate through each URL and

download it using wget.

• Use curl in the terminal to manually download sequences one by one using

the URL found on NCBI, Covid-19 Data Portal, GISAID.

• Using fastqdump from SRAtoolkit (ncbi/sra-tools: SRA Tools. [no date])to

download data from a list/text file of accession IDs (e.g. ERR4971212) with

sem from GNU Parallel (GNU Parallel - GNU Project - Free Software

Foundation. [no date]) to parallelise the downloads across multiple tasks to

decrease time taken.

Decision:

For downloading large datasets, I combined using curl with GNU Parallel. GNU

Parallel allowed me to download multiple files at the same time using

multithreading. Using curl was useful as it displayed the time remaining for the

download and was also quicker than SRAtoolkit͛s fastqdump which took much

longer to download the same datasets and from investigating the source code was

found to be inefficient. This combination meets functional requirement 4 (Title:

Display relevant results and statistics as a report) as it is the most computationally

efficient solution. For one-off sequence downloads I used curl directly.

3.7.2 TRIMMING RAW READS
The data my pipeline takes as an input has adapter content leftover from the

sequencing process that must be removed and may also contain poor quality data

that must be removed. The pƌoĐess of ƌeŵoǀiŶg these is Đalled ͚tƌiŵŵiŶg͛.

Methods considered:

• Fastp (Chen et al. 2018) to trim data. Works with both single and paired end

data, so compatible with Illumina and Nanopore sequenced data.

Automatically produces a HTML report for each trimmed file.

• Trimmomatic (USADELLAB.org - Trimmomatic: A flexible read trimming tool

for Illumina NGS data. [no date]). Also allows for single and paired end data.

Does not generate a report.

Decision:

Fastp was found to be 2-5 times faster than Trimmomatic and generated a report.

Since both tools worked with Illumina and Nanopore sequenced data, I chose Fastp

to perform the trimming of my data in the pipeline. This met the non-functional

requirement 2 (Title: Ability to reproduce results with different datasets), as it

enabled my pipeline to reproduce results with different datasets. It also meets non-

functional requirement 4 (Title: Computationally efficient, to minimise drain on

resources) as it is the most computationally efficient solution.

3.7.3 QUALITY CHECKING DATA
The data the pipeline receives as input must be checked to ensure it is of high

enough quality for the downstream analysis to produce accurate results. If the data

is not of sufficient quality, it should not be processed further.

Methods considered:

• FastQC (Babraham Bioinformatics - FastQC A Quality Control tool for High

Throughput Sequence Data. [no date]) quality checks the data and produces

a html report.

• MultiQC (Ewels et al. 2016) summarises the output of existing quality check

reports and generates an overall report.

Decision:

• I decided to use both FastQC and MultiQC to produce a fuller picture of the

quality of the data across multiple samples. This meets my functional

requirement 4 as I can display relevant results and statistics as a report.

3.7.4 FISHING TO CREATE SAM
The sequenced wastewater data contains DNA and RNA from many other organisms

such as bacteria and other viruses. It is necessary to extract the Covid-19 RNA from

this large sample and line up the extracted RNA to a template Covid-19 genome.

This will produce a Sequence Alignment Map (SAM) file.

Decision:

• BBMap was chosen as Macpacbio is forgiving for allowing mismatches in

alignment, which is important as wastewater data tends to have low

coverage of the target genome.

3.7.5 ASSEMBLY / REFERENCE SEQUENCE-MAPPING
Methods considered:

• De Novo Assembly with SPAdes

• MetaSPAdes for metagenomic data

• Mapping/Aligning sequence to a reference genome with samtools.

Decision:

Reference alignment using a reference sequence with samtools was

computationally the fastest solution addressing non-functional requirement 4 (Title:

Computationally efficient, to minimise drain on resources).

3.7.6 VARIANT CALLING
Methods considered:

• GATK’s HaplotypeCaller. This did not work well with wastewater sequenced

data; it did not produce suitable results so was not included in the final

iteration of the pipeline.

• Samtools mpileup produced variant files quickly and integrated well with

other tools and operations.

• Snippy pipeline created utilising tools snippy and snp-sites to perform

variant calling and generation of a phylogenetic tree.

Decision:

Samtools mpileup was sufficient for the identification of variants, Snippy pipeline

was unnecessary as generating the phylogenetic tree between samples would not

be relevant for wastewater data containing many variants from multiple strains.

3.7.7 VARIANT ANNOTATING
Methods considered:

• SnpEff- No Covid-19 database existed for this tool, upon building a database

from GenBank files the tool did not produce accurate results.

• Ivar- Annotates the variants using the GenBank feature format file

downloaded from NCBI. Produced results as a detailed TSV file.

Decision:

Ivar was chosen as the only tool that produced successful annotations of the Covid-

19 variants identified.

4. IMPLEMENTATION

4.1 IMPLEMENTATION OVERVIEW
The implementation created for this project is a bioinformatics pipeline composed of

bash scripts and freely available external tools (listed in appendix 1). The user

interface for the configuration, running, and viewing results of this pipeline is

handled by a Python command-line interface. There are four main script files,

however, this represents only a small fraction of the code created for determining

the final steps of the pipeline. The final four scripts:

1. covid-ww.py

This is the command-line interface for the program. All interaction with the

pipeline should be done by running the commands in this script.

2. report.py

This file reads the output files generated by the running of the pipeline and

generates a HTML report with graphs and tables of the data for each

sample.

3. 1-trim.sh

This is the first step of the pipeline which trims the inputted data and

generates a report on the result of the removal of adapter and poor-quality

content.

4. 2-process.sh

This is the Ŷeǆt step of the pipeliŶe ǁhiĐh aligŶs the ͚tƌiŵŵed͛ ƌeads ǁith a
reference Covid-19 genome to create a sequence alignment map (SAM) file

which is used to identify variants and provide an analysis of the wastewater

data.

4.2 COMMAND LINE INTERFACE

User interaction with the pipeline is done entirely with the covid-ww.py Python

command line interface (CLI). A command line interface was chosen to meet non-

functional requirement 1 (Title: User interface intuitive and in line with similar tools).

Many bioinformatics tools operate with a command line interface, so this was

developed in line and with inspiration from existing tools such as FastQC, fastp,

MultiQC, and Samtools.

FIGURE 2: COMMAND LINE INTERFACE

The command line interface also meets functional requirement 4 (Title: Display

relevant results and statistics as a report) through the results command, which

creates tables and graphs from the data outputted from the pipeline and generates

a HTML report to display them.

The CLI was created using the Python package Click(Welcome to Click — Click

Documentation (8.0.x). [no date]) as it provided the benefit of automatically

generating help pages with familiar appearances to existing bioinformatics tools.

There are four commands available: help, config, run, results.

4.2.1 HELP
This is an automatically generated help command run using [python covid-ww.py –
help]. This provides a list of the other three commands that can be run using this

tool. This message will also be displayed if running the CLI without a command.

FIGURE 3: HELP COMMAND

4.2.2 CONFIG
This command is run using [python covid-ww.py config]. The purpose of this

command is to interactively create a config.txt file needed to run the pipeline. It will

prompt the user to set up the correct directories, name the project, specify the

sequencing type and the naming conventions of input data.

FIGURE 4: CONFIG COMMAND

User input will be saved and sanitised to ensure spacing mistakes will not interfere

with the running of the pipeline. After running this command, a config.txt will be

written to the same directory as the pipeline scripts which will be used in the

pipeline.

4.2.3 RUN
This command is run using [python covid-ww.py run] and is responsible for running

the pipeline. It is necessary to have set up the config.txt file first, so the user will be

prompted for whether they have run the config command prior. If yes, the first

pipeline script 1-trim.sh will be scheduled using sbatch onto the Slurm queue.

1-trim.sh must be scheduled using sbatch to prevent running the pipeline on the

head node and utilise the computational power available on the Trinity cluster. The

first script is scheduled onto the ͚jumbo͛ queue as it is a significant sized job that

requires a laƌgeƌ aŵouŶt of ‘AM thaŶ the ͚defƋ͛ ďut is Ŷot taxing enough for the

͚ŵaŵŵoth͛ Ƌueue. After the first job is finished, it will automatically schedule the

next job 2-process.sh afterwards.

4.2.1 RESULTS
This command is run using [python covid-ww.py run]. It takes in the results from

running the pipeline from the previous command and creates tables and graphs

from this data. A HTML report is then generated for each sample the pipeline was

run with which displays a list of filtered variants, highlights relevant mutations on

the spike protein, visualises the coverage depth per variant and throughout the

genome.

Upon running the run command through covid-ww.py, the run_reports() function is

called from reports.py.

FIGURE 5: RUN_REPORTS()

First, the directory in which the pipeline results files are stored is retrieved from the

first line of the config.txt file. Each file in this directory is then iterated over to find

the name of each sample inputted. For each sample results were generated for, the

generate_report() function is run, to create a separate report for every sample.

For every sample the generate_report() function runs for, it will retrieve data from

TSV (tab separated values) files and store them in DataFrames using the Python

library Pandas (pandas - Python Data Analysis Library. [no date]). Three files are

stored this way- a list of the variants, a summary of the general coverage of the

covid genome, and the depth of coverage per position on the genome.

FIGURE 6: GENERATE_REPORT() – IMPORTING DATA

The Python library Plotly is then used for the creation of interactive graphs from the

data (Plotly Python Graphing Library | Python | Plotly. [no date]). The DataFrames

are adapted into tables with the most relevant columns selected, and graphs with

correct axes labelled. These are then converted to HTML code and classes replaced

with Bootstrap styled classes.

FIGURE 7: GENERATE_REPORT() - CREATING GRAPH

After all graphs and tables have been created and converted into HTML code, a

HTML string combines HTML code and the generated figures and is written to a

HTML file for the sample. This process is repeated for every data sample the pipeline

has run for.

FIGURE 8: GENERATE_REPORT() - WRITING TO HTML

4.3 TRIMMING
The input data for the pipeline is raw sequenced wastewater data. This data has not

been priorly treated to examine the quality or remove artefacts. As part of the

sequencing process, chemically synthesized sequences called adapters are mixed in

with the original genetic sample to accurately sequence the DNA/RNA. However,

these adapters pollute the resulting sequenced data so must be removed, also

known as trimming. Adapter trimming is a prerequisite step for analysing sequenced

data. Additionally, the raw sequenced data has not been checked for any areas that

are too poor quality to process further in the downstream analysis. Poor quality

underneath a certain threshold should also be removed during this trimming stage.

During the development of the pipeline, I investigated two tools (listed in appendix

1) to perform the trimming of the adapters and poor-quality data. The first tool I

used was Trimmomatic.

FIGURE 9: OLD_TRIM.SH USING TRIMMOMATIC

I first experimenting by trimming Covid-19 positive saliva Illumina sequenced

samples downloaded from the NCBI (The National Center for Biotechnology

Information) database. I found this software to be effective for paired end Illumina

data using the PE parameter as well as with single end Nanopore data.

However, after investigating another tool called fastp, I switched to fastp after

discovering it was 2-5 times faster than Trimmomatic (Chen et al. 2018) to adhere to

my non-functional requirement 4 (Title: Computationally efficient, to minimise drain

on resources).

It was time consuming to manually list the samples to trim in a list, so I created a

script to iterate through every file in a given directory, retrieve the base name

without the file extension, and then trim each file and rename the output trimmed

files accordingly.

FIGURE 10: 1-TRIM.SH DIAGRAM

The final trimming script receives a source of variables from the variables.txt file

which specifies the desired output directory names. The variables.txt file will further

source variables from the config.txt file generated by the covid-ww.py CLI tool

including the working directory and directory of the input data.

FIGURE 11: FINAL TRIMMING SCRIPT 2-TRIM.SH USING FASTP

Depending on the machine used to sequence the input fastq data, the fastp

command was run with different parameters. For Illumina sequenced data, fastp

was ran in paired end mode taking in a forward read and backward read (often

labelled appended with _1 and _2 respectively) as an input. For Nanopore

sequenced data only one read is taken as an input.

The output of this script is a diƌeĐtoƌǇ of tƌiŵŵed fastƋ files laďelled ǁith ͞_tƌiŵ͟
appended to the original sample name. This directory will be in the location

specified in the config.txt and variables.txt configuration files.

4.4 DATA QUALITY ASSURANCE
The data inputted into the pipeline comes in FASTQ format. FASTQ is a text format

used for storing biological sequences, in this case sequenced DNA and RNA

extracted from wastewater. It stores both the nucleotide bases e.g. (ACCGTGA) and

a quality score for how confident the sequencing is for each base encoding with an

ASCII character e.g. (f!**55C).

FIGURE 12: FASTQ FILE FORMAT

Quality checking the FASTQ files involves analysing the quality scores of the data and

producing a report on the overall quality of each file. This is important as poorly

sequenced data will not produce a useful downstream analysis.

The tools I have utilised to perform quality checks on the data is FastQC and

MultiQC. FastQC quality checks individual FASTQ files and produces a HTML report

on the results. MultiQC will find existing reports created by FastQC and generate an

overall report with summary statistics.

FIGURE 13: 3-FASTQC.SH - QUALITY CHECK

If a sample is inputted to the pipeline with a subpar quality score, it is wise to

disregard some or all of the results and cease further downstream analysis.

Reports generated are written to the directory specified within the project folder

created during configuration, and into report folders named within the variables.txt

source file.

4.5 2-PROCESS.SH
The rest of the pipeline steps detailed after this included in the final iteration of the

pipeline are run from the 2-process.sh file.

FIGURE 14: 2-PROCESS.SH DIAGRAM

Here each rectangle represents a process being done to the data, with the arrows

representing the output of each process and the next process that occurs with the

outputted data.

4.6 ISOLATION OF COVID GENOMES

The nature of wastewater samples results in these samples containing genetic

information from many different organisms. As this project looks only to identify

variants from SARS-CoV-2, the genetic information originating from the virus must

be extracted from the rest of the sequence, ĐoŵŵoŶlǇ ƌefeƌƌed to as ͚fishiŶg͛.

To extract the data belonging to the Covid-19 genome, a reference also known as

bait file must be used as a template to align the reads to. Sequences that map to a

known Covid genome can be identified as belonging to the Covid genome.

To map the trimmed FASTQ sequences to a Covid reference, the tool BBMap (see

appendix 1) was used. It is capable of aligning reads sequenced with both Illumina

and Nanopore machines. For each set of paired or single ended trimmed reads in

the trimming directory, BBMap ǁill aligŶ the seƋueŶĐe to a speĐified ͚ďait͛ ƌefeƌence

file. 16 threads were used simultaneously to meet non-functional requirement 3

(Title: Maximised full potential of computational power available).

The reference file used in the pipeline was the first sequenced Covid sample Wuhan-

Hu-1 NCBI reference NC_045512.2 downloaded from NCBI (Appendix 2).

A SAM (Sequence alignment map) file is created for each sample, containing only

sequences belonging to SARS-CoV-2. This SAM file is then processed further into a

BAM (Binary alignment map) file, the encoded version of a SAM file. This BAM file

can be processed faster than a SAM file, so meets non-functional requirement 4

(Title: Computationally efficient, to minimise drain on resources).

Samtools is used to convert the SAM file to a BAM file and extract a FASTQ file. This

file ĐoŶtaiŶs the eǆtƌaĐted ͚fished͛ out Coǀid-19 sequences only.

FIGURE 15: PROCESS SAM FILE TO OTHER FORMATS

4.7 ALIGNMENT AND ASSEMBLY OF GENOMES AND VARIANT

CALLING

4.7.1 RECREATING ORIGINAL GENOME
The sequenced wastewater data is unsorted, and it is not clear which sequences

correspond to each part of the genome. There are two main methods for recreating

the original genome(s): De novo sequence assembly, and reference-based

mapping/alignment.

During the development of the pipeline, I created scripts to carry out both methods

using numerous tools. I compared these methods to discover the ideal solution for

the final pipeline.

4.7.2 DE NOVO ASSEMBLY
In De novo sequence assembly, you assume no prior knowledge of the original

genome(s) in the sample that you are attempting to assemble. Instead, the aim is to

recreate the original genome sequence through joining together overlapping

sequenced reads.

The first script created to experiment with the assembly of the Covid genome was

SPAdes (appendix 1).

FIGURE 16: ASSEMBLING GENOME WITH SPADES

This utilises the FASTQ file containing the already extracted Covid-19 sequences, and

then attempts to assemble them into a genome blindly. The output of this script will

be a directory per assembled sequence that contains all the output files. Two

important output files are the contigs and scaffolds FASTA format file. FASTA format

represents the nucleotide bases of the sequences like FASTQ except without the

confidence quality scores for each base.

FIGURE 17: CONTIGS.FASTA

Contigs.fasta stores every contig from the original sequence. A contig is a large

fragment of subsequent DNA from a sequence. The tool SPAdes is used to join these

overlapping contigs together with the goal of completing the original genome.

Scaffolds.fasta contains the resulting scaffolds sequence, composed of the contigs

joined together into an assembled sequence.

There are two techniques used by SPAdes for joining contigs into scaffolds. First by

examining read pairs and estimating the size of the gap separating contigs. Secondly

by examining the assembly graph: e.g., if two contigs are separated by a complex

tandem repeat, that cannot be resolved exactly, contigs are joined into the scaffold

with a fixed gap size of 100 nucleotide base pairs (Bankevich et al. 2012).

SPAdes assembly successfully met the project aim for assembling an original

genome, however, was deemed insufficient for the final iteration of the pipeline. It

is completed using a greedy algorithm, which is a resource intensive process and

takes a long time.

In addition to this, typical assemblers do not produce good results with

metagenomic samples (genetic material obtained from the environment, e.g.,

wastewater) due to the lower read count and coverage across the genome than

standard samples from individuals such as pharyngeal swab samples.

Specific metagenomic assemblers were investigated for completing the assembly of

the Covid-19 genome. Software dedicated to assembly metagenomic samples

accounts for low read count and lower coverage. The tool metaSPAdes (Nurk et al.

2017)was tested and considered for the pipeline, however ultimately the better

decision to meet non-functional requirement 4 (Title: Computationally efficient, to

minimise drain on resources) was to implement reference-based alignment for

retrieving the genome instead.

4.7.3 REFERENCE-BASED ALIGNMENT
An alternative method of recreating the original genome from a mixed and unsorted

set of sequences is mapping/aligning the sequences to a previously assembled

reference genome, in this case the first sequenced SARS-CoV-2 Wuhan strain in

FASTA format.

Every read from the sequence is aligned against the reference sequence and placed

at the most likely position in the genome. The reference file must first be indexed to

create a lookup table using samtools enabling faster comparisons between the input

sequence and reference file. One complication to this method is variants naturally

occur throughout a genome so the sequence will never line up perfectly with the

reference file.

FIGURE 18: SORT BAM FILE AND EXTRACT CONSENSUS

A consensus sequence is the calculated order of the most frequent nucleotide bases

found at each location in the sequence alignment. This is extracted from the BAM

file and sorted into the correct order for the Covid reference genome.

Samtools mpileup (See appendix 1) command is used to create a TSV (tab separated

values) file containing all the sequenced reads at a single genomic position. The

wastewater contains many sets of incomplete Covid genomes, so the identical parts

of the genome are piled up onto the same position. This is a prerequisite step to

calling variants present.

Reference-based mapping was implemented in the final pipeline as it produces more

fitting results for the aim of identifying variants, as well as being more

computationally efficient than De Novo assembly therefore meeting non-functional

requirement 4 (Title: Computationally efficient, to minimise drain on resources).

4.8 IDENTIFICATION OF VARIANTS
The primary aim of this project is to identify the SARS-CoV-2 variants present in

wastewater samples. Variants are naturally occurring modifications in the genetic

code for an organism (genome). If a nucleotide base at position 3007 of the genome

is usuallǇ a ͞T͟ ďut ǁas iŶstead fouŶd to ďe a ͞C͟ ďase, this Ŷeǁ ͞C͟ ďase is said to
be a variant. Variants come in many forms and sometimes may or may not have a

resulting effect on the resulting protein and therefore function. This is important for

tracking viral mutations that may affect the transmissivity of Covid-19 and for

identifying viral strains.

4.8.1 SAMTOOLS VARIANT CALLING
The process of identifying variants from an aligned sequence is called variant calling.

This requires a sequence mapped to the genome through either assembly or

sequence-mapping described in the prior step. A sorted BAM file by the tool

Samtools is taken as input with the reads lined up to each position in the Covid-19

genome. This is used by BCFtools (see Appendix 1) to call the variants by identifying

the differences between reads in the same position on the genome.

FIGURE 19: VARIANT CALLING WITH SAMTOOLS AND BCFTOOLS

4.8.2 GATK VARIANT CALLING
Another software investigated for calling variants was GATK. This was not

compatible with the sorted BAM files produced with the wastewater data so was

not included in the final pipeline.

FIGURE 20: VARIANT CALLING WITH GATK

4.8.3 SNIPPY /SNP-SITES VARIANT CALLING
I also created a pipeline for calling variants using the tools Snippy and snp-sites.

The first step of the script finds sections of data that align with the reference file and

͚sŶips͛ them using Snippy. A core genome alignment is then generated using the

Covid-19 Wuhan reference from NCBI. This then generates a variant alignment for

each sample, which is used to generate a phylogenetic tree using FastTreeMP (see

Appendix 1) for a visual representation of how closely related each virus sample is to

each other.

Phylogenetic trees are redundant for wastewater samples as no single strain or set

of variants is present in the data. There are many samples from many individuals

within the wastewater sequences so any phylogenetic trees drawn would be taking

an average of every strain present.

FIGURE 21: VARIANT CALLING WITH SNIPPY

4.9 ANNOTATION OF VARIANTS
To make the identified variant information more useful, it is possible to annotate

these variants with the resulting proteins they encode for and predict the resulting

function a mutation might have.

4.9.1 SNPEFF
SnpEff ran from a Java file making it a slower solution than Ivar. There was no pre-

existing database for the SARS-CoV-2 genome annotations, so I built this using the

GenBank annotation files located on the NCBI website. Despite building a database

for the annotations, the tool did not produce successful annotations on my data.

4.9.2 IVAR
Ivar takes the piped result of the variants called using samtools mpileup and

annotates them using the covid.gff (feature format file of the annotated Covid-19

proteins) downloaded from GenBank. This produces a TSV file that is later read in

the report.py script and generates a HTML table.

FIGURE 22: IVAR ANNOTATING VARIANTS

Ivar is used in the final iteration of the pipeline in 2-process.sh to identify and label

the variants within wastewater and suggest possible effects the variants have on the

resultant mutations.

5. RESULTS AND EVALUATION

5.1 OVERALL RESULTS
The project was successful in achieving its primary aim in identifying and displaying

the variants present in the wastewater. The pipeline successfully processed the

input data of varying formats and produced reports displaying the relevant

information.

5.2 HTML REPORT
After running the pipeline, you can generate a HTML report of relevant tables and

graphs using the CLI tool. Each sample the pipeline is run for will generate a report

which can be opened in the browser offline. This is the primary method for viewing

the results and includes interactive graphs. The following results were obtained from

running the pipeline on Illumina sequenced UK wastewater data (See appendix 2).

5.2.1 FILTERED SNPS/VARIANTS:

FIGURE 23: FILTERED VARIANTS

This table represents all the variants present in the wastewater sample that pass all

checks for eliminating false positives. The ͞PO“͟ ĐoluŵŶ states the positioŶ iŶ the
geŶoŵe the ǀaƌiaŶt oĐĐuƌs iŶ. ͞‘EF͟ aŶd ͞ALT͟ state the oƌigiŶal base that is

expected, and the variant base(s) that replace it, respectively. ͞ALT_F‘EQ͟ is the
allele frequency of the variant proportional to non-variant alleles found in the

sample sequence. 0.1 would represent 1 variant allele found at this location for

every 9 non-variant alleles. This is the most important result as it completes the

overarching project aim for quantifying the variants from wastewater samples.

The ͞GFF_FEATU‘E͟ ĐoluŵŶ is aŶ aŶŶotatioŶ of ǁhiĐh paƌt of the Coǀid-19 genome

this base position eŶĐodes foƌ. ͞PVAL͟ is a ƋualitǇ sĐoƌe iŶdiĐatiŶg the ĐoŶfideŶĐe of
the variant calling.

For a fuller picture of these results with more columns, you may view the

[sample_name]_variants.tsv file located in the /covid-ww/[project_name]/results

folder.

FIGURE 24: IVAR OUTPUT TSV ANNOTATED VARIANTS

The meanings of each column can be found on the Ivar manual (iVar: Manual. [no

date]).

5.2.2 SNPS ON SPIKE PROTEIN:
The second table is a list of variants that specifically occur on the spike protein of the

SARS-CoV-2 genome. Mutations that occur on the spike protein can be responsible

for increased transmissivity of the virus, so variants that occur within this location

are of special interest for monitoring.

FIGURE 25: VARIANTS LOCATED ON THE SPIKE PROTEIN

REF_AA states the original amino acid that is encoded for by the reference base at

this position. ALT_AA states the alternate amino acid that is encoded for by the

variant base at this position. If these are different, it means the variant encodes for a

different protein that may have a different function i.e., increase transmissivity.

5.2.3 COVERAGE SUMMARY AGAINST REFERENCE

FIGURE 26: COVERAGE STATISTICS FOR SAMPLE AGAINST REFERENCE

This table provides information about the general coverage of the sample across the

SARS-CoV-2 genome. In this example, 78% of the genome is covered, so 22% of the

genome positions do not have reads that align with those positions. The Covid

genome is roughly 29,000 bases loŶg diĐtated ďǇ the ͞staƌtpos͟ aŶd ͟eŶdpos͟.
͞Nuŵƌeads͟ ƌepƌeseŶts the total Ŷuŵďeƌ of ďases iŶ the aligŶed seƋueŶĐe.

5.2.4 SNP POSITION AND TOTAL READ DEPTH

FIGURE 27: READ DEPTH FOR EACH VARIANT

This graph displays each variant against the other reads at the same position in the

genome. From this graph, you can interpret which variants are more common.

Variants present in the genome with a higher total read depth may indicate higher

confidence of this variant being prevalent in the community the wastewater was

sampled from.

Coverage graph:

FIGURE 28: COVERAGE GRAPH FOR EACH POSITION IN THE COVID GENOME

This coverage graph represents which parts of the Covid-19 genome have been

sequenced the most. Coverage is never even as wastewater contains many

contaminants that may degrade the RNA and dilute the samples, and the sequencing

process may amplify certain sections of RNA more than others. From this graph, it is

visible that there is low coverage across the location for the spike protein, between

22k and 25k bases. This may be the reason only 1 variant present on the spike

protein has been identified from the wastewater. The quality of the data across that

section of the genome may not have been high enough to accurately identify

variants due to low coverage.

5.3 OTHER RESULTS
Only key results are included in the HTML report, there are many other files

generated by the pipeline that can be examined for a more thorough understanding

of the results.

On creation of the project through the CLI tool, a directory is created with the

specified project name. All files created are stored inside subdirectories in this

folder, default configuration structures them as following:

FIGURE 29- OUTPUT DIRECTORY STRUCTURE

Each rectangle represents a directory, arrows indicate hierarchy, and text outside a

shape represents files present inside a directory.

5.4 REQUIREMENTS MET
For a full description of each requirement please refer back to section 3.3.3 and

3.3.4. All functional and non-functional requirements have been met.

5.4.1 Functional Requirements

1 Title: Quality check data and trim raw reads to remove adapters

Acceptance criteria:

• Each raw read file must be trimmed to remove any adapter content or

bad quality reads.

• Resulting trimmed read files must be quality checked and only acceptable

data analysed downstream.

• Each quality check will produce a report that can be manually examined.

PASS- Data is trimmed during the running of the pipeline and outputted to

/trimmed directory in FASTQ.gz format. Reports are created and outputted to

/reports in HTML format.

2 Title: Align sequences to Covid-19 reference

Acceptance Criteria:

• Trimmed sequences are aligned using a reference sequence to create a

SAM file.

• SAM file converted into BAM file for further analysis.

• BAM file is then sorted into the correct order for the reference genome

producing a sorted BAM file.

PASS- Sequences are aligned using samtools and SAM, BAM, and sorted BAM files

are outputted to /assembled directory.

3 Title: Identify variants that differ from reference

Acceptance criteria:

• Variants are identified from each sorted BAM file and this list is exported.

• SNPs are annotated using a GenBank file to describe which mutations

encode for certain proteins and estimate relevance of SNPs.

• Only variants that pass certain tests for eliminating false positives are

outputted.

PASS- Variants are called using samtools and BCFtools. These variants are then

annotated using iVar and exported as a TSV to the /variants directory. Variants

exported have a column for if they pass the quality checks to remove false

positives or not, only those that pass are displayed in the final reports generated.

4 Title: Display relevant results and statistics as a report

Acceptance criteria:

• Pipeline should store analysis results in TSV (tab separated values) files.

• Data from these files should be read, and relevant tables and graphs

created.

• A HTML report file should be generated for each sequence to display the

tables and graphs, and resultant variants identified from the wastewater.

PASS- Coverage, variants, and summary information is saved as TSV files in the

/variants directory. The reports.py script reads these files, creates tables and

graphs, then generates a HTML report for each sample.

5.4.2 Non-functional requirements

1 Title: User interface intuitive and in line with similar tools

Acceptance criteria:

• Command line interface designed with help commands/prompts to

explain the usage of the tool.

• Interface created in-line with similar tools, such as FASTP. E.g. reports

generated in HTML for easy viewing, command line interface with help

messages

PASS- All pipeline configuration, running, and displaying results can be executed

through the CLI tool. The interface is created using the Python click library so is

standardised and inspiration has been taken from tools such as FASTP and

MultiQC.

2 Title: Ability to reproduce results with different datasets

Acceptance criteria:

• Pipeline can produce results with data sequenced by ILLUMINA machines.

• Pipeline can produce results with data sequenced by NANOPORE

machines.

• Pipeline can produce results with data originating from non-metagenomic

samples e.g., saliva sample from an individual.

PASS- Pipeline has been tested successfully with ILLUMINA and NANOPORE

sequenced data and produced results. Pipeline also tested and obtains results

with non-metagenomic samples.

3 Title: Maximised full potential of computational power available

Acceptance criteria:

• Jobs are scheduled onto the Slurm queue and not run on the head node.

• Multithreading is used when possible.

• Software that can be ran on multiple CPUs concurrently will do so.

PASS- Software has been specifically chosen which allows for multiple CPUs to be

utilised at once and all jobs take advantage of the computational power of the

Trinity cluster by being schedule on the jumbo and mammoth queues.

4 Title: Computationally efficient, to minimise drain on resources.

Acceptance criteria:

• Pipeline code runs efficiently in an order that does not repeat steps

unnecessarily or require excess waiting for previous steps to finish.

• Existing bioinformatics software used is chosen with efficiency in mind

and multiple tools have been tested before deciding on the most efficient.

PASS- Multiple iterations of each stage of the pipeline were tested before

finalising each stage to ensure the software and scripts created were the most

efficient solution. The pipeline code does not hang waiting for previous steps.

5.3 TESTING
For testing the accuracy of my results, I chose two main methods- using real data

obtained from the European Nucleotide Archive (ENA) and using simulated

wastewater data.

5.3.1 REAL DATA
There is a wealth of online databases providing free access to raw Covid-19

sequences in FASTQ format. Throughout the project, data from NCBI, EBI, and

GISAID (three open-access databases of genomic data) has been tested through

various stages of the pipeline. Data sequenced by both Illumina and Nanopore

sequencing machines has been tested by the pipeline, with successful results

produced for both.

For testing the correct calling of variants, I chose a set of wastewater FASTQ files

from EBI (See Appendix 2) and compared the results I obtained from my pipeline

with the results of the research paper examining those samples found (Hillary et al.

2021). By comparing my results, I was able to determine my pipeline was successful

in accurately calling the SNPs (variants) from those wastewater samples.

5.3.2 SIMULATED DATA
There are several existing tools for generating simulated biological sequences,

however few for generating the wide mix of genomes present in wastewater.

The first software I considered was ARTIllumina, a commonly used tool for

generating simulated reads recommended by my client. However, this was not ideal

for generating data that mimicked metagenomic samples like wastewater. The first

metagenomic read simulation software I considered was MetaSim (Richter et al.

2008). After reading its paper this seemed like a promising solution, however, the

link to access the software was no longer available.

I chose InSilicoSeq (Gourlé et al. 2019)to perform the simulation of wastewater data

as it was able to combine samples from multiple genomes as well as generate

variations of one set genome. I installed this tool in my local environment and

downloaded bacteria and virus genomes to mix into the generated wastewater

sample. I created a multi FASTA file with 10 bacteria genomes, 4 virus genomes, and

1 SARS-CoV-2 genome, then created a coverage.txt file listing the desired coverage

of each genome in my resultant simulated wastewater data.

After attempting to use my pipeline on this simulated data, false-positive SNPs were

generated. I continually adjusted the variant calling filter until these would not show

up using simulated data but would show up for real data.

5.3 EVALUATION
Overall, the primary aim of the project to identify and quantify the variants present

in wastewater samples was successfully met. All functional and non-functional

requirements were passed, however, some original aims decided in the initial report

had since been reconsidered due to a revaluation of the scope of the project (See

Section 3.2 for deliverables adjusted from the initial plan).

I have a moderate degree of confidence in my results as these have been verified

against real data and simulated data. To improve my confidence in my results I

would like to produce simulated data for specific mixes of Covid-19 strains to test

the exact proportions of variants identified by my pipeline.

The usability of the pipeline is high due to the CLI tool created that can configure,

run, and display results. But this is only usable in the working environment of the

Trinity Cluster currently and would be difficult to port to other environments

without creating a Docker image. With more time I would have liked to have

published the pipeline as a fully contained Docker image with installation

instructions.

The pipeline performs full analysis on 5 samples in under 15 minutes on the jumbo

queue of the Trinity cluster, which is a good speed for the amount of computation

required by the software used. The tools I have developed would struggle to run on

a local PC environment due to a reduced amount of RAM and CPUs.

My client was pleased with my presented results and finished pipeline, and it met

his main expectation of quantifying the variants present in the wastewater. Further

aims to quantify the individuals infected with given strains was not met, as this was

decided after the initial plan to be outside the scope of the project. The possibility of

quantitative strain identification is discussed further in section 6. Future work.

6. FUTURE WORK
The analysis of SARS-CoV-2 in wastewater is an ongoing project with research

carried out by the Cardiff University School of Biosciences and other researchers

around the world. I currently plan to continue my work with my client, Professor

Peter Kille, over the summer and provide insight from a computer science

perspective for the ongoing tracking of strains within South Wales.

6.1 STATISTICAL ANALYSIS OF STRAINS
The results of this pipeline include the allelic frequency of each variant, meaning a

proportion of the Covid-positive population who had each variant can be derived.

Each Coronavirus strain has multiple variants that result in different protein

mutations, so it is difficult to assign viral lineages to wastewater samples as the

variants come from many individuals.

However, if a rough model of the proportions of each strain circulating at the time

the sample was taken is known, it would be possible to use combinatorial

mathematics to calculate the frequencies of each strain in a population and

therefore approximate the number of individuals infected with a given strain.

6.2 PIPELINE IMPROVEMENTS
With more time the I would have liked to allow my pipeline to have greater

configuration by allowing the ƌefeƌeŶĐe ͚ďait͛ file to ďe ĐhaŶged, aŶd the steps of the
pipeline to be modified depending on the operations the user wants to perform.

The packaging of the software into an easily installable Docker container would also

be beneficial for distribution of the project to researchers globally that are not

working on the Trinity cluster.

7. CONCLUSIONS
The aim of this project was to develop a pipeline to quantify the variants of SARS-

CoV-2 present in sequenced wastewater samples. This pipeline has been developed

to operate via a CLI tool that accepts multiple FASTQ sequences in single or paired-

end format.

The result of the pipeline generates a HTML report detailing the variants present in

the sample, suggests the relevance of each variant, and provides statistics on the

coverage of the data over the SARS-CoV-2 genome. Output files with more details

are also created in a nested project directory.

Monitoring of viral RNA in wastewater has the potential to enable an early warning

system of viral outbreaks within local communities as the wastewater represents the

local population. The identification and quantification of variants present in

wastewater obtained in this pipeline can also enable the tracking of variants of

concern across time and locations.

The results of this project could also be analysed with combinatorial mathematics to

establish community ratios of circulating viral strains and approximate the number

of infected individuals per strain.

In conclusion, the project produced successful results which carry a high degree of

importance for the ongoing management of the coronavirus pandemic.

8. REFLECTION
Undertaking the project has been a great first experience in the field of

Bioinformatics, and I have learnt a great deal of technical and theoretical knowledge

from this interdisciplinary project.

It was initially overwhelming to begin a project with an unfamiliar working

environment, interacting with a cluster intended for researchers through a solely

command-line interface. While also having to learn the background knowledge from

just an A-Level Biology background.

The highly technical nature of the project required a lot of research into my working

environment, bioinformatics, and Biological background to sufficiently understand

the meaning of my work and to interpret my results. The field of bioinformatics is

littered with acronyms, abbreviations, and technical terms which took a lot of

research and time to become familiar with their meaning.

Thankfully, I was grateful to have access to resources for Bioinformatics Masters

students, with lecture recordings and slides shared with me by my client. I was also

lucky to have my client Professor Peter Kille take on a mentoring role for me who

taught me the basics of bioinformatics workflows and how to get started on the

Trinity cluster environment.

The vast majority of my time working on this project has been research-based. The

project required a lot of background knowledge and research so as a result, I found

my time was often consumed by this significantly more than the coding aspect.

On reflection, this severely limited and reduced the time I could dedicate to my

individual code for the project. I would have liked to experiment with developing my

own tools for manipulating the data formats had I had more time. I would have also

liked to create a better-automated testing system for the pipeline to both verify the

results and measure the computational efficiency. I wish I could have made a greater

focus on fully utilising the computational power of the cluster by finding the ideal

way to multithread and maximise CPUs and RAM across jobs.

If I could do things differently, I would have attempted to narrow down the focus

and scope of my project to maximise a small part of the pipeline instead of a large

part of it. However, I am grateful for the wider knowledge I have gained from

creating the full project.

I believe this has opened the door for me to continue research in this field and I am

hoping to take this forward by continuing to work with my client over the summer.

GLOSSARY
• Pharyngeal – Relating to the swabs commonly taken at Covid

screenings from the throat at nasal cavity.

• FASTA- File format for biological sequences

• SARS-CoV-2- Covid-19, coronavirus

• K-mer: Short stretch of sequence

• Contigs: big fragments of DNA from sequences

• N50: contig in the middle of contigs lined up by size, the medium

sized fragment.

• Variant – a change in the usual genetic code for a species

• Strain- a named classified variation on a virus often with multiple

variants present that result in mutations

LIST OF ABBREVIATIONS
• NCBI - The National Center for Biotechnology Information. Hosts an

online database including sequenced Covid-19 positive data.

• ENA- European Nucleotide Archive. Another online database with

Covid-19 sequences available in FASTQ format.

• SAM- Sequence Alignment Map file

• BAM- Binary Alignment Map file. The binary equivalent of a SAM

file.

• RNA- Ribonucleic acid

• DNA- Deoxyribonucleic acid

• VCF- Variant call format, designed for SNPs and short INDELs

• BCF- binary variant call format, is the binary version of VCF.

APPENDICES

APPENDIX 1: EXTERNAL TOOLS/SOFTWARE USED

• GNU Parallel https://www.gnu.org/software/parallel/

• SRAtoolkit https://github.com/ncbi/sra-tools

• Fastp https://github.com/OpenGene/fastp

• FastQC

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

• Trimmomatic http://www.usadellab.org/cms/?page=trimmomatic

• MultiQC https://multiqc.info/

• InSilicoSeq https://insilicoseq.readthedocs.io/en/latest/index.html

• BCFTools https://github.com/samtools/bcftools

• SnpEff https://pcingola.github.io/SnpEff/

• FastTreeMP http://www.microbesonline.org/fasttree/

Python requirements:

• click==7.1.2 https://click.palletsprojects.com/en/8.0.x/

• Pandas https://pandas.pydata.org/

• colorama==0.4.4

• pyfiglet==0.8.post1

• termcolor==1.1.0

• Plotly https://plotly.com/python/

• scipy

• chart_studio

• IPython

• matplotlib

APPENDIX 2: DATA USED
Covid Wuhan-Hu-1 reference file

https://www.ncbi.nlm.nih.gov/nuccore/1798174254

Illumina UK wastewater dataset

https://www.ebi.ac.uk/ena/browser/view/PRJEB42191

GenBank Annotated SARS-CoV-2 Genome

https://www.ncbi.nlm.nih.gov/nuccore/1798174254

https://www.gnu.org/software/parallel/
https://github.com/ncbi/sra-tools
https://github.com/OpenGene/fastp
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.usadellab.org/cms/?page=trimmomatic
https://multiqc.info/
https://insilicoseq.readthedocs.io/en/latest/index.html
https://github.com/samtools/bcftools
https://pcingola.github.io/SnpEff/
http://www.microbesonline.org/fasttree/
https://click.palletsprojects.com/en/8.0.x/
https://pandas.pydata.org/
https://plotly.com/python/
https://www.ncbi.nlm.nih.gov/nuccore/1798174254
https://www.ebi.ac.uk/ena/browser/view/PRJEB42191
https://www.ncbi.nlm.nih.gov/nuccore/1798174254

REFERENCES
Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput

Sequence Data. [no date]. Available at:

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ [Accessed: 27 May

2021].

Bankevich, A. et al. 2012. SPAdes: A new genome assembly algorithm and its

applications to single-cell sequencing. Journal of Computational Biology 19(5), pp.

455–477. doi: 10.1089/cmb.2012.0021.

Chavarria-Miró, G. et al. [no date]. Sentinel surveillance of SARS-CoV-2 in

wastewater anticipates the occurrence of COVID-19 cases Running Title: Sentinel

surveillance of SARS-CoV-2 in wastewater. Available at:

https://doi.org/10.1101/2020.06.13.20129627 [Accessed: 7 May 2021].

Chen, S. et al. 2018. Fastp: An ultra-fast all-in-one FASTQ preprocessor. In:

Bioinformatics. Oxford University Press, pp. i884–i890. Available at:

/pmc/articles/PMC6129281/ [Accessed: 27 May 2021].

Ewels, P. et al. 2016. MultiQC: Summarize analysis results for multiple tools and

samples in a single report. Bioinformatics 32(19), pp. 3047–3048. doi:

10.1093/bioinformatics/btw354.

GNU Parallel - GNU Project - Free Software Foundation. [no date]. Available at:

https://www.gnu.org/software/parallel/ [Accessed: 27 May 2021].

Gourlé, H. et al. 2019. Simulating Illumina metagenomic data with InSilicoSeq.

Bioinformatics 35(3), pp. 521–522. doi: 10.1093/bioinformatics/bty630.

Hillary, L.S. et al. 2021. Monitoring SARS-CoV-2 in municipal wastewater to evaluate

the success of lockdown measures for controlling COVID-19 in the UK. Water

Research , p. 117214. doi: 10.1016/j.watres.2021.117214.

How it works. [no date]. Available at: https://nanoporetech.com/how-it-works

[Accessed: 28 May 2021].

HPC Services - School of Biosciences. [no date]. Available at:

http://hpc.bios.cf.ac.uk/trinity-hpc/ [Accessed: 26 May 2021].

iVar: Manual. [no date]. Available at: https://andersen-

lab.github.io/ivar/html/manualpage.html [Accessed: 28 May 2021].

Medema, G. et al. 2020. Presence of SARS-Coronavirus-2 in sewage. medRxiv , p.

2020.03.29.20045880. Available at: https://doi.org/10.1101/2020.03.29.20045880

[Accessed: 7 May 2021].

MinION | Oxford Nanopore Technologies. [no date]. Available at:

https://nanoporetech.com/products/minion [Accessed: 9 May 2021].

Napit, R. et al. 2021. Rapid genomic surveillance of SARS-CoV-2 in a dense urban

community using 1 environmental (sewage) samples Genomic environmental

surveillance of SARS-CoV-2 using sewage samples. medRxiv , p.

2021.03.29.21254053. Available at: https://doi.org/10.1101/2021.03.29.21254053

[Accessed: 9 May 2021].

ncbi/sra-tools: SRA Tools. [no date]. Available at: https://github.com/ncbi/sra-tools

[Accessed: 27 May 2021].

Nurk, S. et al. 2017. MetaSPAdes: A new versatile metagenomic assembler. Genome

Research 27(5), pp. 824–834. Available at: /pmc/articles/PMC5411777/ [Accessed:

28 May 2021].

Pan, Y. et al. 2020. Viral load of SARS-CoV-2 in clinical samples. The Lancet Infectious

Diseases 20(4), pp. 411–412. Available at: https://doi.org/ [Accessed: 7 May 2021].

pandas - Python Data Analysis Library. [no date]. Available at:

https://pandas.pydata.org/ [Accessed: 27 May 2021].

Plotly Python Graphing Library | Python | Plotly. [no date]. Available at:

https://plotly.com/python/ [Accessed: 27 May 2021].

Sequencing | Key methods and uses. [no date]. Available at:

https://emea.illumina.com/techniques/sequencing.html [Accessed: 28 May 2021].

Tƌeǀoƌ Bedfoƌd oŶ Tǁitteƌ: ͞“iŶĐe theiƌ ƌeĐogŶitioŶ iŶ the UK, “outh AfƌiĐa aŶd Bƌazil
in Dec 2020 and Jan 2021, the variant of concern lineages B.1.1.7, B.1.351 and P.1

have continued to spread throughout the world with B.1.1.7 so far the most

suĐĐessful of the thƌee. ϭ/ϭ5 https://t.Đo/‘tVLQP‘UiV͟ / Tǁitteƌ. [Ŷo date].
Available at: https://twitter.com/trvrb/status/1382365894106509319/photo/1

[Accessed: 7 May 2021].

USADELLAB.org - Trimmomatic: A flexible read trimming tool for Illumina NGS data.

[no date]. Available at: http://www.usadellab.org/cms/?page=trimmomatic

[Accessed: 27 May 2021].

Variant Calling part 2 (Galaxy) - Bioinformatics Documentation. [no date]. Available

at:

https://www.melbournebioinformatics.org.au/tutorials/tutorials/var_detect_advan

ced/var_detect_advanced/ [Accessed: 18 May 2021].

Vilar, S. and Isom, D.G. 2020. One year of SARS-CoV-2: How much has the virus

changed? bioRxiv , p. 2020.12.16.423071. Available at:

https://doi.org/10.1101/2020.12.16.423071 [Accessed: 10 May 2021].

Welcome to Click — Click Documentation (8.0.x). [no date]. Available at:

https://click.palletsprojects.com/en/8.0.x/ [Accessed: 27 May 2021].

WiŶ“CP :: OffiĐial “ite :: Fƌee “FTP aŶd FTP ĐlieŶt foƌ WiŶdoǁs. [Ŷo date]. Aǀailaďle
at: https://winscp.net/eng/index.php [Accessed: 26 May 2021].

Zhang, J.C. et al. 2020. Fecal specimen diagnosis 2019 novel coronavirus–infected

pneumonia. Journal of Medical Virology 92(6), pp. 680–682. Available at:

https://onlinelibrary.wiley.com/doi/full/10.1002/jmv.25742 [Accessed: 7 May 2021].

