

Cardiff University
School of Computer Science and Informatics

CM3203 – Individual Project Initial Plan

Doom-playing AI via Deep

Reinforcement Learning

Supervisor: Dr Frank C Langbein

Author: Hugo Huang

Initial Plan: Doom-playing AI via Deep Reinforcement Learning
1. Project Description

Training artificial intelligence (AI) agents to play games directly from high-dimensional sensory inputs (like

visuals or audio) was widely considered as one of the greatest challenges of reinforcement learning (RL) [6, 7]

until Deep Q-Network (DQN) [6] was proposed. Even more performant variants of DQN, training agents to

play first-person shooter (FPS) games like Doom is a non-trivial task [3] and in this project I will attempt to

create an AI agent that plays Doom via a Deep Q-Learning-based approach. The goal is to utilize VizDoom [2]

and train my AI agents to play most of its provided scenarios (customized maps for RL) at human-level, if

possible, the agent would also be aimed to play the first map of Doom: E1M1 at a close-to-human-level.

Instead of relying directly on high-dimensional sensory inputs, my model would use both the pixels on the

screen and depth buffer information (essentially RGB-D images) as inputs, with the latter provided as input to

compensate for the lack of depth-completion ability. If possible, the agent can also incorporate a variant of

Spatial Propagation Network (SPN) [5] for predicting the depth information using on-screen pixels as input.

The project would be carried out with Python as the main programming language. Python, despite its relatively

poor performance in many cases, is very suitable for fast prototyping. With highly optimized libraries written in

high-performance languages like C++, Fortran and CUDA, it is possible for Python programs to match the

performance level of these languages and utilize specialized hardware such as GPU to accelerate batch

processing jobs. After careful consideration, I decided that these libraries would be suitable for this project:

- PyTorch would be used to construct, compile, and execute the RL model I designed. Both the training

and testing phase of the AI agent would be carried out using it.

- VizDoom would be used to provide the environment for the RL agent to train and test in. More

specifically it would be providing the pixel and depth information required by my RL agent and also be

executing the decisions of the agent.

- Matplotlib or PyEcharts would be used to plot relevant graphs visualizing how error (loss) would

change over time and how that would differ between epochs or different sets of hyper parameters.

Matplotlib would be used during development for its simplicity and PyEcharts would be used for

visualization in the final report.

- NumPy's array data structure would be used to record data during training and provide me with

valuable data, this library is also required by all of the abovementioned libraries.

I am familiar with NumPy, Matplotlib, PyEcharts and have some experience with PyTorch, however, VizDoom is

new to me and may require one or two weeks of learning to use effectively. This project would use the 3.10.9

version of Python as it is the latest version at the time of initial planning that supports PyTorch on Windows

machines.

PyTorch is based on Torch, a Lua-based open-source machine learning (ML) library and is widely used in the

field of ML. It provides quality-of-life features such as automatic differentiation and allows users to customize

ML models freely. I chose it because the actual computations are performed in high-performance languages

like C++ and CUDA utilizing GPU acceleration when available, so it's mostly free of the performance

bottlenecks of Python, only a small communication overhead exist and it's negligible.

VizDoom is a tool based on ZDoom, one of the most popular source-ports of the 1993 genre-defining FPS

game, Doom. ZDoom supports all games running on the id tech 1 game engine but VizDoom is modified to

support Doom for RL research. VizDoom has been cited in over 500 articles and has a good Python interface, it

can provide content of frame buffer (on-screen pixels) and depth buffer (depth information) while being able

to be rendered off-screen. I chose it as it is the best option possible if I want to train an AI agent that plays

Doom.

I think this project would be suitable as my final year project since it has a relatively high difficulty, and the end

goal is not impossible to achieve. It also has a lot of potential for additional features to be implemented if my

progress was better than expected (such as the abovementioned depth prediction extension). I am personally

interested in Doom's speed-running community as well and if the project goes well the speed-running

potential of the AI agent can also be tested. ZDoom being a source-port means that popular speed-run

exploits are mostly patched or close-to-impossible to put off, thus it was quite unpopular within the speed-

run community. However, as shown by DeepMind's hide-and-seek agents [1], AI agents can discover exploits

to the simulation environment they are in (VizDoom in this case) and it's possible that my AI agent would be

able to discover ways to perform exploits for speed-runs.

2. Aims and Objectives

- Train a Deep Q-Learning-based RL model that controls the movement and rotation of the AI agent.

o The model should learn to rotate the player such that the crosshair at the center of the screen

should always be close to the nearest enemy unit in the horizontal direction (Doom ignores the

vertical (y-axis) position when calculating if a bullet hits an object).

▪ Risk: learning to rotate towards the nearest enemy may result in the model being

unable to learn to move correctly towards health items/armor items/exits.

▪ Mitigation: careful fine tuning of hyperparameters and longer training times may help.

o The model should learn to move the player such that the player is likely to approach health

items and armor items when the health is not full.

▪ Risk: learning to approach health/armor items instead of finding covers may cause the

player to get shot by enemies and die in earlier epochs of training, therefore providing

negative rewards and encourages the model to not approach these items.

▪ Mitigation: it may be helpful to only incentivize the model to approach these items in

later epochs of training stage when the player is less likely to die when approaching

these items.

o [Optional] The model should learn to move the player to explore the map in a greedy-search

style and find the exit eventually.

▪ Risk: the model may not converge with respect to this goal as it may not have enough

depth to simulate a non-linear function for maze navigation using only RGB-D input.

▪ Mitigation: increasing the depth of the model and using a GPU with more on-board

video memory to train the deeper model would mitigate this issue.

o [Optional] The model could learn to open doors that open without a key if there is time to

investigate this possibility.

▪ Risk: this objective is trivial on its own, the only issue is that only relatively complex

maps would have doors to open and the model may not be able to navigate through

those maps while staying alive. A mitigation for this problem is the mitigations of other

objectives' risks combined.

o [Optional] The model could learn to speed-run through maps of relatively high complexity if

there is time to investigate this possibility.

▪ Risk: there may not be time to investigate into achieving this objective, no mitigation.

- Train a Deep Q-Learning-based RL model that controls the firing of equipped weapons.

o The model should learn to fire the equipped weapons when an enemy approaches the

crosshair in the horizontal direction.

▪ Risk: the agent may lose bullets on purpose if the firing action has a high reward.

▪ Mitigation: give negative rewards when bullets are wasted.

o The model should learn to predict the movement of enemies on screen with the RGB-D input.

▪ Risk: the model may not converge with respect to this goal as it may not have enough

depth to predict the movement of enemies on screen.

▪ Mitigation: either the mitigation mentioned for a similar risk, or instead configure

VizDoom to label enemies' pixels on screen and use the RGB-D information to learn to

predict the motion vector for every "enemy pixel" on screen.

o The model should try to shoot exploding barrels when one of them is near the crosshair and is

far away from the player.

▪ Risk: in earlier epochs of the training stage the player may die multiple times to an

exploding barrel close to it, and thus encouraging it to not shoot at the exploding

barrels.

▪ Mitigation: it may be helpful to only incentivize the model to approach these items in

later epochs of training stage when the player is less likely to fire randomly and hitting

the exploding barrels when the model does not mean to.

- Apply the two RL models to more complex scenarios where both models are tested.

o Risk: the models may not work well with each other, for example if the shooting model was

trained with random or no movement, it may overfit and perform poorly with the moving

model controlling the movement and rotation.

o Mitigation: the shooting model should be trained with the walking model making decisions for

movement and rotation.

- [Optional] Apply the two RL models to a proportion of the first map of the actual Doom game.

o Risk: the moving model may not be able to navigate through the complex map

o Mitigation: improve the design of the moving model

o Risk: the shooting model may not perform well in areas with little training experience in since

the further into the map the less training is received.

o Mitigation: train the model with play sessions that have the starting position randomized.

- [Optional] Train a SPN-based model that predicts depth information with only on-screen pixels as

input for its inference stage, the training stage can use sparse spatial point clouds with the depth

information provided by VizDoom.

o Risk: this may be time-consuming, and is an ambitious project on its own, might be outside of

the scope of this project.

o Mitigation: it would only be attempted if I am more than 2 weeks ahead of the schedule, and I

have co-authored a paper in similar area so my colleagues may be of help when I'm stuck.

3. Feasibility

There exist two issues that may affect the feasibility of this project:

1. [Unlikely, high severity] A more powerful GPU with more video memory may be required as I only

have an RTX 2070 mobile with 8GB of video memory, which is barely enough for this project.

2. [Likely, low severity] VizDoom, PyTorch or Python 3.10.9 may have compatibility issues with my

Windows 11 operating system. Some components of Anaconda (the Python distribution I'm using)

have shown compatibility issues already, so the risk is not non-existent.

A solution to both issues is to utilize Supercomputing Wales (SCW) or our university's Linux lab, I have already

created my account for SCW successfully and is currently preparing to apply for my project. Issue 2 can also be

detected by extensive testing and mitigated with a new Python 3.6 (more stable) virtual environment or a

second operating system. Some basic tests have been carried out and no compatibility issue has surfaced on

my machine so far, but Windows 11's automatic update feature may introduce new bugs.

4. Work Plan

I have already finished setting up the environment for this project, both PyTorch and VizDoom have been

tested on my machine. For week 2 and 3 I plan to design a simple Convolutional Neural Network (CNN) [4] for

the "moving model" of my RL agent, with enough depth it should be able to control the movement of player

character well at least in simpler scenarios like "basic". Scenarios like "health gathering" can be used to train

the moving model to collect health items and any scenario can be used to train the model to rotate toward

nearby enemies. I plan to modify the moving model and train it into the "shooting model" in week 4, then it

would be tested with moving model for 1-2 weeks. I would spend at least 4 weeks (5-8) modifying my models

and changing their designs, I may use the easter holiday for it if the performance is poor. The training of the

partially finalized models and fine-tuning of hyper parameters would start from week 7 or week 8 depending

on progress and this would continue into week 11. I plan to start writing the final report in week 7, but in the

first few weeks I would write only a little bit of the report due to the models still not finalized. I can edit the

obsolete part of the report as more progress are made and by week 12 the fine-tuning would have ended so I

have plenty of time to update the improvements. I have agreed with my supervisor to meet online every

Tuesday at 12pm and I would typically work from Thursday to Sunday for this project.

5. References

1. Baker, B. et al. (2020) Emergent tool use from multi-agent Autocurricula, arXiv.org. Available at:

https://arxiv.org/abs/1909.07528.

2. Kempka, M. et al. 澻濅濃濄6澼 瀡V濼瀍濷瀂瀂瀀濍 濔 濷瀂瀂瀀-based AI research platform for Visual Reinforcement

L濸濴瀅瀁濼瀁濺,瀢 濅濃濄6 I濘濘濘 濖瀂瀁濹濸瀅濸瀁濶濸 瀂瀁 濖瀂瀀瀃瀈瀇濴瀇濼瀂瀁濴濿 I瀁瀇濸濿濿濼濺濸瀁濶濸 濴瀁濷 濚濴瀀濸瀆 澻濖I濚澼 [P瀅濸瀃瀅濼瀁瀇]. 濔瀉濴濼濿濴濵濿濸
at: https://doi.org/10.1109/cig.2016.7860433.

3. Lample, G. and Chaplot, D.S. (2017澼 瀡P濿濴瀌濼瀁濺 濙PS 濺濴瀀濸瀆 瀊濼瀇濻 濷濸濸瀃 瀅濸濼瀁濹瀂瀅濶濸瀀濸瀁瀇 濿濸濴瀅瀁濼瀁濺,瀢
Proceedings of the AAAI Conference on Artificial Intelligence, 31(1). Available at:

https://doi.org/10.1609/aaai.v31i1.10827.

4. L濸濖瀈瀁, Y. 濸瀇 濴濿. 澻濄濌濋濌澼 瀡濕濴濶濾瀃瀅瀂瀃濴濺濴瀇濼瀂瀁 濴瀃瀃濿濼濸濷 瀇瀂 濻濴瀁濷瀊瀅濼瀇瀇濸瀁 瀍濼瀃 濶瀂濷濸 瀅濸濶瀂濺瀁濼瀇濼瀂瀁,瀢 N濸瀈瀅濴濿
Computation, 1(4), pp. 541–551. Available at: https://doi.org/10.1162/neco.1989.1.4.541.

5. Merced, S.L.U.C. et al. (2017) Learning affinity via spatial propagation networks: Proceedings of the 31st

International Conference on Neural Information Processing Systems, Guide Proceedings. Available at:

https://dl.acm.org/doi/10.5555/3294771.3294916.

6. Mnih, V. et al. (2013) Playing Atari with deep reinforcement learning, arXiv.org. Available at:

https://arxiv.org/abs/1312.5602.

7. Mnih, V. et al. (2015) Human-level control through deep reinforcement learning, Nature News. Nature

Publishing Group. Available at: https://www.nature.com/articles/nature14236.

