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Initial Plan: Doom-playing AI via Deep Reinforcement Learning 
1. Project Description 

Training artificial intelligence (AI) agents to play games directly from high-dimensional sensory inputs (like 

visuals or audio) was widely considered as one of the greatest challenges of reinforcement learning (RL) [6, 7] 

until Deep Q-Network (DQN) [6] was proposed. Even more performant variants of DQN, training agents to 

play first-person shooter (FPS) games like Doom is a non-trivial task [3] and in this project I will attempt to 

create an AI agent that plays Doom via a Deep Q-Learning-based approach. The goal is to utilize VizDoom [2] 

and train my AI agents to play most of its provided scenarios (customized maps for RL) at human-level, if 

possible, the agent would also be aimed to play the first map of Doom: E1M1 at a close-to-human-level. 

Instead of relying directly on high-dimensional sensory inputs, my model would use both the pixels on the 

screen and depth buffer information (essentially RGB-D images) as inputs, with the latter provided as input to 

compensate for the lack of depth-completion ability. If possible, the agent can also incorporate a variant of 

Spatial Propagation Network (SPN) [5] for predicting the depth information using on-screen pixels as input. 

The project would be carried out with Python as the main programming language. Python, despite its relatively 

poor performance in many cases, is very suitable for fast prototyping. With highly optimized libraries written in 

high-performance languages like C++, Fortran and CUDA, it is possible for Python programs to match the 

performance level of these languages and utilize specialized hardware such as GPU to accelerate batch 

processing jobs. After careful consideration, I decided that these libraries would be suitable for this project: 

- PyTorch would be used to construct, compile, and execute the RL model I designed. Both the training 

and testing phase of the AI agent would be carried out using it. 

- VizDoom would be used to provide the environment for the RL agent to train and test in. More 

specifically it would be providing the pixel and depth information required by my RL agent and also be 

executing the decisions of the agent. 

- Matplotlib or PyEcharts would be used to plot relevant graphs visualizing how error (loss) would 

change over time and how that would differ between epochs or different sets of hyper parameters. 

Matplotlib would be used during development for its simplicity and PyEcharts would be used for 

visualization in the final report. 

- NumPy's array data structure would be used to record data during training and provide me with 

valuable data, this library is also required by all of the abovementioned libraries. 

I am familiar with NumPy, Matplotlib, PyEcharts and have some experience with PyTorch, however, VizDoom is 

new to me and may require one or two weeks of learning to use effectively. This project would use the 3.10.9 

version of Python as it is the latest version at the time of initial planning that supports PyTorch on Windows 

machines. 

PyTorch is based on Torch, a Lua-based open-source machine learning (ML) library and is widely used in the 

field of ML. It provides quality-of-life features such as automatic differentiation and allows users to customize 

ML models freely. I chose it because the actual computations are performed in high-performance languages 

like C++ and CUDA utilizing GPU acceleration when available, so it's mostly free of the performance 

bottlenecks of Python, only a small communication overhead exist and it's negligible. 

VizDoom is a tool based on ZDoom, one of the most popular source-ports of the 1993 genre-defining FPS 

game, Doom. ZDoom supports all games running on the id tech 1 game engine but VizDoom is modified to 

support Doom for RL research. VizDoom has been cited in over 500 articles and has a good Python interface, it 

can provide content of frame buffer (on-screen pixels) and depth buffer (depth information) while being able 

to be rendered off-screen. I chose it as it is the best option possible if I want to train an AI agent that plays 

Doom. 



I think this project would be suitable as my final year project since it has a relatively high difficulty, and the end 

goal is not impossible to achieve. It also has a lot of potential for additional features to be implemented if my 

progress was better than expected (such as the abovementioned depth prediction extension). I am personally 

interested in Doom's speed-running community as well and if the project goes well the speed-running 

potential of the AI agent can also be tested. ZDoom being a source-port means that popular speed-run 

exploits are mostly patched or close-to-impossible to put off, thus it was quite unpopular within the speed-

run community. However, as shown by DeepMind's hide-and-seek agents [1], AI agents can discover exploits 

to the simulation environment they are in (VizDoom in this case) and it's possible that my AI agent would be 

able to discover ways to perform exploits for speed-runs. 

2. Aims and Objectives 

- Train a Deep Q-Learning-based RL model that controls the movement and rotation of the AI agent. 

o The model should learn to rotate the player such that the crosshair at the center of the screen 

should always be close to the nearest enemy unit in the horizontal direction (Doom ignores the 

vertical (y-axis) position when calculating if a bullet hits an object). 

▪ Risk: learning to rotate towards the nearest enemy may result in the model being 

unable to learn to move correctly towards health items/armor items/exits. 

▪ Mitigation: careful fine tuning of hyperparameters and longer training times may help. 

o The model should learn to move the player such that the player is likely to approach health 

items and armor items when the health is not full. 

▪ Risk: learning to approach health/armor items instead of finding covers may cause the 

player to get shot by enemies and die in earlier epochs of training, therefore providing 

negative rewards and encourages the model to not approach these items. 

▪ Mitigation: it may be helpful to only incentivize the model to approach these items in 

later epochs of training stage when the player is less likely to die when approaching 

these items. 

o [Optional] The model should learn to move the player to explore the map in a greedy-search 

style and find the exit eventually. 

▪ Risk: the model may not converge with respect to this goal as it may not have enough 

depth to simulate a non-linear function for maze navigation using only RGB-D input. 

▪ Mitigation: increasing the depth of the model and using a GPU with more on-board 

video memory to train the deeper model would mitigate this issue. 

o [Optional] The model could learn to open doors that open without a key if there is time to 

investigate this possibility. 

▪ Risk: this objective is trivial on its own, the only issue is that only relatively complex 

maps would have doors to open and the model may not be able to navigate through 

those maps while staying alive. A mitigation for this problem is the mitigations of other 

objectives' risks combined. 

o [Optional] The model could learn to speed-run through maps of relatively high complexity if 

there is time to investigate this possibility. 

▪ Risk: there may not be time to investigate into achieving this objective, no mitigation. 

- Train a Deep Q-Learning-based RL model that controls the firing of equipped weapons. 

o The model should learn to fire the equipped weapons when an enemy approaches the 

crosshair in the horizontal direction. 

▪ Risk: the agent may lose bullets on purpose if the firing action has a high reward. 

▪ Mitigation: give negative rewards when bullets are wasted. 

o The model should learn to predict the movement of enemies on screen with the RGB-D input. 



▪ Risk: the model may not converge with respect to this goal as it may not have enough 

depth to predict the movement of enemies on screen. 

▪ Mitigation: either the mitigation mentioned for a similar risk, or instead configure 

VizDoom to label enemies' pixels on screen and use the RGB-D information to learn to 

predict the motion vector for every "enemy pixel" on screen. 

o The model should try to shoot exploding barrels when one of them is near the crosshair and is 

far away from the player. 

▪ Risk: in earlier epochs of the training stage the player may die multiple times to an 

exploding barrel close to it, and thus encouraging it to not shoot at the exploding 

barrels. 

▪ Mitigation: it may be helpful to only incentivize the model to approach these items in 

later epochs of training stage when the player is less likely to fire randomly and hitting 

the exploding barrels when the model does not mean to. 

- Apply the two RL models to more complex scenarios where both models are tested. 

o Risk: the models may not work well with each other, for example if the shooting model was 

trained with random or no movement, it may overfit and perform poorly with the moving 

model controlling the movement and rotation. 

o Mitigation: the shooting model should be trained with the walking model making decisions for 

movement and rotation. 

- [Optional] Apply the two RL models to a proportion of the first map of the actual Doom game. 

o Risk: the moving model may not be able to navigate through the complex map 

o Mitigation: improve the design of the moving model 

o Risk: the shooting model may not perform well in areas with little training experience in since 

the further into the map the less training is received. 

o Mitigation: train the model with play sessions that have the starting position randomized.  

- [Optional] Train a SPN-based model that predicts depth information with only on-screen pixels as 

input for its inference stage, the training stage can use sparse spatial point clouds with the depth 

information provided by VizDoom. 

o Risk: this may be time-consuming, and is an ambitious project on its own, might be outside of 

the scope of this project. 

o Mitigation: it would only be attempted if I am more than 2 weeks ahead of the schedule, and I 

have co-authored a paper in similar area so my colleagues may be of help when I'm stuck. 

3. Feasibility 

There exist two issues that may affect the feasibility of this project: 

1. [Unlikely, high severity] A more powerful GPU with more video memory may be required as I only 

have an RTX 2070 mobile with 8GB of video memory, which is barely enough for this project. 

2. [Likely, low severity] VizDoom, PyTorch or Python 3.10.9 may have compatibility issues with my 

Windows 11 operating system. Some components of Anaconda (the Python distribution I'm using) 

have shown compatibility issues already, so the risk is not non-existent. 

A solution to both issues is to utilize Supercomputing Wales (SCW) or our university's Linux lab, I have already 

created my account for SCW successfully and is currently preparing to apply for my project. Issue 2 can also be 

detected by extensive testing and mitigated with a new Python 3.6 (more stable) virtual environment or a 

second operating system. Some basic tests have been carried out and no compatibility issue has surfaced on 

my machine so far, but Windows 11's automatic update feature may introduce new bugs. 



4. Work Plan  

 

I have already finished setting up the environment for this project, both PyTorch and VizDoom have been 

tested on my machine. For week 2 and 3 I plan to design a simple Convolutional Neural Network (CNN) [4] for 

the "moving model" of my RL agent, with enough depth it should be able to control the movement of player 

character well at least in simpler scenarios like "basic". Scenarios like "health gathering" can be used to train 

the moving model to collect health items and any scenario can be used to train the model to rotate toward 

nearby enemies. I plan to modify the moving model and train it into the "shooting model" in week 4, then it 

would be tested with moving model for 1-2 weeks. I would spend at least 4 weeks (5-8) modifying my models 

and changing their designs, I may use the easter holiday for it if the performance is poor. The training of the 

partially finalized models and fine-tuning of hyper parameters would start from week 7 or week 8 depending 

on progress and this would continue into week 11. I plan to start writing the final report in week 7, but in the 

first few weeks I would write only a little bit of the report due to the models still not finalized. I can edit the 

obsolete part of the report as more progress are made and by week 12 the fine-tuning would have ended so I 

have plenty of time to update the improvements. I have agreed with my supervisor to meet online every 

Tuesday at 12pm and I would typically work from Thursday to Sunday for this project.  
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