
Appendix B

ODF Processor Implementation
When messages are sent, the document type (retrieved from the OdfBody node) is checked to find
out the type of message and then processing carried out through if/else statements e.g.

If (DocType == DT_SCHEDULE_UPDATE)

 Process

Else if (DocType == DT_RT_RESULT)

 Process

We also get the document code (the unique code identifying the event) from the OdfBody node as

this is used in many of the database queries.

Revisions since Prototype

Before implementing processing for the new message types, some adjustments were needed to be

made to the current implementation. Firstly, although the start order for the list of teams is

populated when a start list is processed, the sort order remains null. This means that as results

messages are processed and the database is updated, there will be a short period where the sort

order is null. Therefore the ODF Processor has been edited so that when the start order is inserted

into the database, the sort order is also updated so that all teams have a value for this field.

It was also realised that at no point in the original database schema has storing the current of an

event been considered. This is a field that will be necessary in order to know which dive to be

displayed for a team’s result. The “round” field has therefore been added to the “events” table in

the database. The value of this field is found in the DT_RT_RESULT messages, so will be updated as

these messages are processed.

DT_SCHEDULE

DT_SCHEDULE message structure

Pseudo Code

Go to competition node

Go to discipline node

Get discipline code

For each gender node

 Get gender code

 For each event node

 Get event code

 For each phase node

 Get phase code

 Go to unit node

 Get unit code

 Event ID = discipline + gender + event + phase + unit

 Get start date, end date, start time, end time, status

 Insert into database

 End For

 End For

End For

SQL

INSERT INTO EVENTS (code,date,start_time,end_time,status)

VALUES('"+eventID+"','"+startDate+"','"+startTime+"','"+endTime+"','"status

+"')

To process the DT_SCHEDULE message, we move to the discipline node and get the discipline code.

We then loop through each gender, each event and each phase, storing their respective code to

strings. Each phase has one unit, so we go to this node and get the unit code as well as the event

details. The start/end date and times are stores as a single string, so we perform a substring

operation to return these as separate strings. We also get the status of the event- an integer

representing whether the event is scheduled, in progress etc. By combining the discipline, gender,

event, phase and unit codes into a single string, we get a unique code for each event e.g.

DVM202101 being the Men’s 10m Synchronised Final (these codes are in accordance with the ODF

documentation and were used at London 2012).

DT_SCHEDULE_UPDATE

DT_SCHEDULE_UPDATE message structure

Pseudo Code

Go to competition node

Go to discipline node

Get discipline code

For each gender node

 Get gender code

 For each event node

 Get event code

 For each phase node

 Get phase code

 Go to unit node

 Get unit code

 Event ID = discipline + gender + event + phase + unit

 Get status

 Update status in database

 End For

 End For

End For

SQL

"UPDATE EVENTS SET status='"+status+"' WHERE code='"+eventID+"'

The DT_SCHEDULE_UPDATE message has the same structure as the DT_SCHEDULE message, except

it only includes information on events that need their status updating. So as before we loop through

the nodes to create a string for the event ID, and then get the status and update it in the database.

DT_RT_RESULT

DT_RT_RESULT message structure

Pseudo Code

Go to competition node

For each child node

 If node = UnitInfos

 Go to UnitInfo node

 Get DV_ROUND value

 Update round in database

 End If

 Else if node = Result

 Get Rank, RankEqual, SortOrder, Total

 Go to competitor node

 Get competitor code

 If no rank attribute

 Update SortOrder in database

 End If

 Else If no Total update

 Update Rank, RankEqual, SortOrder in database

 End If

 Else

 Update Rank, RankEqual, SortOrder, Total in database

 End Else

 If child node exists

 Go to ExtendedResults node

 Go to ExtendedResult node

 If DV_CURRENT = Y

 Update current in database

 End If

 Else If DV_PREVIOUS = Y

 Update previous in database

 Move to ExtendedResult DV_DIVE node

 Get Value and Pos

 Move to Extensions node

 Move to Extension node

 Get judge’s scores, penalty, average

 Update dive scores in database

 End If

 If DV_CURRENT = N

 Update current to NULL in database

 End If

 Else If DV_PREVIOUS = N

 Update previous to NULL in database

 End If

 End If

 End If

End For

To process the DT_RT_RESULT, we move to the competition node and then loop through its children.

If the child is a UnitInfos node, then we get the value for the current round and update this in the

database.

UPDATE events SET round='"+round+"' WHERE code='"+DocCode+"'

If the node is a result node, then we get and update the results (rank, if the rank is equal, total and

sort order), then move to the competitor node to get the team code. As per the ODF definition,

rank, rank equal and total are not mandatory attributes so not always present as part of the result

node. Therefore, we use if statements to determine if these attributes are present and update the

appropriate information in the database.

UPDATE RESULTS SET sort_order='"+sortOrder+"' WHERE competitor='"+teamID+"'

UPDATE RESULTS SET

sort_order='"+sortOrder+"',rank='"+rank+"',equal_rank='"+rankEqual+"' WHERE

competitor='"+teamID+"'

UPDATE RESULTS SET

sort_order='"+sortOrder+"',rank='"+rank+"',equal_rank='"+rankEqual+"',total

='"+totalPoints+"' WHERE competitor='"+teamID+"'

We now check if the competitor node has any children. If it does, this is where the current and

previous flags with detailed results information are located. If the flag is “DV_CURRENT = Y” then we

know to update the current competitor in the database

UPDATE RESULTS SET current='X' WHERE competitor='"+teamID+"'

If the flag is “DV_PREVIOUS =Y” then we know to update the previous competitor and also to update

the dive scores. We move to the extended result node and get the dive score and the dive number

from DV_DIVE. We then move to the extension nodes and get the individual scores by each judge,

the penalty, and the average score and update these values in the database.

UPDATE RESULTS SET previous='X' WHERE competitor='"+teamID+"'

UPDATE DIVES SET E1='"+E1+"',E2='"+E2+"',E3='"+E3+"',E4='"+E4+

"',E5='"+E5+"',E6='"+E6+"',S1='"+S1+"',S2='"+S2+"',S3='"+S3+"',S4='"+S4+

"',S5='"+S5+"',pen='"+penalty+"',avg='"+average+"',score='"+diveScore+"'

WHERE competitor='"+teamID+"'

AND dive_number='"+diveNo+"'

If the flag is “DV_CURRENT = N” or “DV_PREVIOUS=N” then we remove the flag from the database

by setting the field for that team back to NULL.

UPDATE RESULTS SET current=NULL WHERE competitor='"+teamID+"'

UPDATE RESULTS SET previous=NULL WHERE competitor='"+teamID+"'

DT_MEDALLISTS

DT_MEDALLISTS message structure

Pseudo Code

Go to competition node

For each medal node

 Get medal code

 Medal name = substring of medal code

 Go to competitor node

 Get team code

 Update medal field in database

End For

To process the DT_MEDALLISTS message, we got to the competition node, then loop through each

medal node. We get the medal name by performing a substring operation on the medal code. We

then move to the competitor node to get the team code and update the medal field in the database.

UPDATE RESULTS SET medal='"+medal+"' WHERE competitor='"+teamMedalCode+"'

