
CM0343 – Large Individual Project

Olympic Diving Results
Information System

Interim Report

Matthew Aish (0918770)

14/14/2012

Supervisor: Dr. J. Shao

Moderator: Prof. D. Marshall

Abstract

This report details the current progress of my project- designing and implementing an Olympic
Diving Results Information System. The system is a dynamic web based application, powered by the
Olympic Data Feed: sets of XML messages that are processed live to a database to reflect
competition standings and statistics. Building upon existing solutions, the application will include the
integration of user interaction features such as score prediction. At this point in the project, I have
developed requirements, analysed this to form a design and implemented a very basic prototype to
demonstrate the feasibility of the proposed solution. Conclusions show that this is an approach that
can be developed into a full application that will meet the aims, objectives and requirements set.

Contents
Introduction .. 1

Overview ... 1

Existing Applications ... 1

Deliverables... 4

Audience ... 5

Approach ... 5

Background ... 6

Diving .. 6

Results Information Systems .. 6

Olympic Data Feed .. 7

Project Scope .. 8

Design .. 9

Changes in Approach .. 9

Requirements .. 9

Requirements Analysis .. 10

Basic System Components .. 11

System Flow .. 15

Data Structures ... 21

Basic Navigation and Layout ... 25

Prototype .. 29

ODF Sender ... 30

Database ... 34

PHP Page ... 35

Results ... 36

Conclusions ... 39

Results ... 39

Next Steps ... 39

Project Approach Evaluation .. 40

Changes in Approach .. 40

Bibliography .. 41

Page | 1

Introduction

Overview

Beginning in July 2011, through to the end of the Games of the XXX Olympiad, I worked for LOCOG

(London Organising Committee of the Olympic and Paralympic Games) where my role was a Test

Analyst and Deputy Results Manager for Diving. A large portion of this role involved testing the

various components of the Diving results systems, including:

 The LOCOG games-time website – a web based application providing live results for 109

million unique users (Balfour, 2012) during the games.

 CIS (Commentator Information System) – A system providing live results and statistics to

commentators and journalists through touch-screen technology.

 Info -a web application acting as the information hub of the games for accredited media,

sports officials and athletes.

The driving force behind these applications is an XML feed known as ODF (Olympic Data Feed). XML

messages are sent to these applications by timing and scoring systems located on venue. These

messages include data such as participant information, start lists and medallists, but are also used

during competition to reflect the current rankings and statistics.

My aim for this project is to implement my own Results Information System for Diving, powered by

ODF. The main differing aspect between my project and the real systems implemented at the

Olympic Games is that I will be focussing on integrating user interaction (e.g. Allowing users to

predict scores) in to the system, where as the real systems were purely designed for information

absorption.

Existing Applications

Atos Commentator Information System

(More information at uk.atos.net/en-

uk/olympic_games/what_we_deliver/information_diffusion_systems/default.htm)

Atos’ CIS was used at the Olympic Games to provide broadcasters and journalists with real time

results and statistics. Unfortunately, due to the private nature of this product I am unable to provide

any screenshots of it in use. For diving, users are presented with a schedule of the day’s events. They

then select one and can view either the start list or results for the event. A table is used to display

the current rankings and dive scores as the event progresses, and above, 2 boxes are used to display

athlete data- one to present the athlete before a dive, and the second to show the athletes detailed

scores after a dive.

Positives

 Results update in real time (seconds behind the real event).

 Simple navigation- users simply click on an event and can see all relevant data on one

screen.

Negatives

 Detailed scoring is only shown when a result is given- after this the breakdown of each

judge’s score is unavailable.

 CIS will only show results for events on a single day at a time- information about previous

days or future events is unavailable.

 When an athlete receives a score, the box their presentation data was in is empty but is still

visible.

 No user interaction.

Locog Games Time Website

(See london2012.com/diving)

The LOCOG games time website was used at the Olympic Games for users across the world to visit

and get the latest news and events. The specific part to focus on in relation to this project is the live

results aspect. Similarly to CIS, results are updated live, however, the website allows information to

be seen about all events, rather than just those on that day.

Positives

 Can look up all events.

 Detailed information (such as breakdown of scores) is available, but is hidden in expansions,

keeping the layout clear but not losing the extra data.

Negatives

 The only user interaction is the ability to share the page via social networking websites.

Results Page

Expansion to view score breakdown

Fantasy Premier League

(See fantasy.premierleague.com)

Fantasy premier league is an online game based on the English Football Premier League. It allows

users to pick a team of players, who are then awarded points as football matches progress

depending on what happens (points for goals scored, assists etc.). Users can see the match scores

updating as they see their own fantasy team points updating. Scores can be compared with other

users in fantasy leagues.

Positives

 Can see current scores and fantasy points updating together.

 Can participate in leagues to see how your points compare to others.

Negatives

 The actual results are placed underneath the fantasy scores so are far down the page. The

two entities are quite separate and could be integrated together more successfully.

Points are awarded for each player’s performance

Users can compete in leagues to compare their points to others

Deliverables

I have set myself the following deliverables for this project:

 Implement a dummy version of the Diving Olympic Data Feed so that messages can be sent

and received, and then processed. As the actual feed is no longer in operation, this will

simulate the sending of messages by selecting XML files from test data.

 Parse ODF messages and store the data contained in a database, to allow for meaningful use

in the main application.

 Provide a main application interface for users to view results information, including:

o Schedule information

o Participant information (entries, team composition, biographical data etc.)

o Start lists and results

o Medal winners and final rankings

 Provide results information (previous diver scores, current standings etc.) in real-time as

ODF messages are received during simulation of competition.

 Allow users to interact with the system during competition by predicting scores and

medallists.

Audience
The audience for the resulting application of this project focuses on sports fans interested in

following live results of sporting events. In this case, I am using Olympic Diving as an example due to

my experience at LOCOG (my experience being my knowledge of the competition format and rules

and knowledge of the data feed) in order to simplify the implementation of what could otherwise

become a massively complex project. However, I believe that the idea could be applied to many

other sports.

Live results, scores and statistics are hugely popular feeds of information, with thousands of web

and mobile applications dedicated to them. However, these applications mainly allow users to

absorb information- there is a lack of user interaction. I intend my application to appeal to current

users of sports results applications, but to demonstrate how user interaction can be increased, thus

also appealing to new users and providing a greater experience for existing ones.

 Such an application could be developed to provide results for many different sports- in this case

particularly other judged sports similar to diving such as Gymnastics or Synchronised Swimming. The

provision of live results for these sports could help to increase coverage for their respective events,

but along with the inclusion of greater user interaction, could also help to promote interest. Sports

like Gymnastics and Synchronised Swimming often suffer in popularity outside of the Olympic

Games. As is evident, systems like this are implemented for large scale events such as the Olympic

Games, but greater user interaction could add a new dimension to those systems already in place.

Similar systems could also be implemented on a smaller event scale by their respective organisers,

thus giving greater accessibility to live information for their sporting events.

Approach

In terms of my approach to this project, I think the best way to subdivide it is into four main areas:

 Simulating the ODF message feed.

 Processing messages and inserting the data into a database.

 Creating a dynamic user interface.

 Integrating user interaction into the user interface.

I plan to take a waterfall approach to development on each of these four areas- designing and

implementing one before moving on to the next. I think this is the most sensible approach to take to

implementation, as each area is largely dependent on the success of its predecessor. For example,

until I have implemented the sending of XML messages, it is difficult to know exactly how to process

them and insert the data into a database. Until the database is complete, it will be difficult to know

how to build the user interface. And without a baseline user interface, it will be impossible to

incorporate the user interaction features. I therefore see these four areas as the places throughout

the project timeline where there is the greatest likelihood that the project direction may change (for

example, needing to change my approach to implementation, new ideas for the use of the

application etc.). By completing these core elements before beginning work on the next, I believe I

will minimise the risk that the direction will change drastically, resulting in completing redundant

work, and ultimately minimise risk of project failure. A detailed Gantt chart with a breakdown of

tasks and their estimated durations can be found in Appendix A.

Background

Diving

For those unfamiliar with the sport, it may be useful to understand the basic rules of diving in order

to fully appreciate and understand the design and implementation of this project. A basic

introduction to diving (from www.london2012.com) follows, and for those interested, a complete

set of rules and regulations can be found on the website of FINA- the international swimming

federation (www.fina.org).

Divers submit in advance the dives which they will perform. The more difficult a dive, the higher the

potential score if it is executed correctly: judges award a score out of 10 for each dive, which is

multiplied by the dive’s degree of difficulty. In the Synchronised Diving events, pairs of athletes dive in

tandem and are assessed for their execution and synchronisation by separate groups of judges – a

judge never assesses both execution and synchronisation. The higher the judges’ score, the higher the

diver/team is placed.

Judges (seven for the individual events and 11 for the Synchronised) assess all phases of the dive,

including the level of synchronisation. Each judge awards a score out of 10. Divers may score zero on

a dive for double-bouncing on the end of the board, performing a dive other than the one they stated

or taking too long to dive. Divers also have marks taken off for restarting a dive or armstand.

Dives are divided into four stages – the starting position, the take-off, the dive itself and the entry

into the water. Each of these is judged against a strict set of criteria and the winning divers perform

difficult and ambitious dives where every part is as near to perfection as possible. Divers aim to enter

the water vertically with as little splash as possible. If you see a diver make no splash at all, you can

expect very high marks. In the Synchronised events, the two divers must dive in perfect harmony with

each other. (LOCOG, 2012)

Results Information Systems

Results information systems are key components of today’s modern, data driven sports events.

Sports data is constantly changing and customers need to know about these changes immediately.

Results information systems collect, store, process and send this data. The scale of these systems

varies drastically depending on the event in question. Smaller events may contract a single company,

purely to provide reliable timing and scoring and statistics, where as an event such as the Olympic

Games requires multiple companies providing a wide variety of systems that encompass timing and

scoring, live results, weather conditions, media conferences and much more.

Results information systems and services are most often provided by specialist companies to

sporting event organisers. For example:

 Swiss Timing (www.swisstiming.com): Specialising in timing, scoring, data handling and

broadcast solutions to major sports events throughout the world. They provide

systems such as venue results systems, accreditation management systems, central

database systems storing schedules, participants, start and results lists and medallists

as well as sub systems providing clients with an interface to access to this data

 Deltatre (www.deltatre.com): Deltatre offer many different systems to cover all areas

of a sporting event including online digital media solutions, on-venue and broadcast

systems as well as backstage event management implementations.

In terms of this project, I believe that it may be able to provide a basis for future results information

systems and could be developed in to a viable business solution. If this project is successful, it will

hopefully demonstrate the possibilities and benefits of integrating live results and user score

prediction. The use of ODF is purely as an example due to my experience with it, but we could see

similar XML feeds being applied across many other sporting events, with such applications as this

one at the front end for users.

Olympic Data Feed

ODF messages form the foundation of this project. They are sent from results systems based on the

venue to consuming systems. There are different types of messages to represent different parts of

competition data. Some are sent prior to competition, and others are sent during the competition to

reflect the live standings of the event. The messages are then forwarded to central systems off the

venue, where they are then forwarded to in house systems as well as external clients.

The table below gives a basic explanation of the types of messages that will be used in this project,

the data contained in them and when they are triggered/ sent. Detailed documentation as well as

sample data can be found at http://odf.olympictech.org. Samples of the messages below can be

found in appendix B.

Message Type Data Contained Trigger

DT_SCHEDULE /
DT_SCHEDULE UPDATE

Schedule information for
events, including start dates,
start times etc. A flag is used to
indicate the status of the event
(e.g. scheduled, in progress,
official)

Sent once prior to competition.
Schedule updates are then sent
whenever there is a change.

DT_PARTIC/
DT_PARTIC_UPDATE

Information about all
participants in the discipline
(names, country, date of birth
etc.)

Sent once prior to competition.
Participant updates are then
sent whenever there is a
change.

DT_PARTIC_TEAMS/
DT_PARTIC_TEAMS_UPDATE

Contains names and lists of
athletes that form each team.

Sent once prior to competition.
Updates are then sent

whenever there is a change.
DT_START_LIST Contains the start list for an

event including dive lists for
each competitor.

Sent when the start order has
been drawn, and then again
when all dive lists have been
submitted.

DT_RT_RESULT Sends the current ranking and
score information for a
competitor, and sets the
current and previous athlete
flags.

Is sent on presentation of an
athlete (i.e. the athlete is about
to dive) to send current dive
information, and sent when the
dive is complete to send scores,
rank and total.

DT_MEDALLISTS List the medallists of an event Sent when results are official.

Project Scope
After careful consideration of my aims and the background, it is important to define the scope of this

project.

My aim is to make a working prototype and not a feature-packed application that is ready to be used

in the real world. Being based on the Olympic Games, the application has the potential to take an

extremely long amount of time, which would be impractical given the time restrictions on this

project and that it is only myself working on it. It took over a year to simply test the real results

applications, so it would be impossible and impractical to create a complete application here.

However, I need to define a scope that still demonstrates that the aims of the project can be met.

I believe a suitable scope for the project is as follows:

• To implement the system using synchronised events only. There are less competitors and

phases so this will make it quicker to implement. There is a slightly different structure

between synchronised and individual ODF messages, so to implement everything would

require a large amount of work which is unnecessary for this prototype.

• Results are the most important aspect of the data. Therefore it is not completely necessary

to implement some items I specified in the initial plan. For example: Entry lists, biographies,

judge lists. Although this data is important, its implementation would be long and

superfluous in this case.

• The key part of the project I want to focus on is creating a form of live results feed that a

user can interact with during competition. It is important for me to keep this as the main aim

and to not go on a tangent of developing a huge results information system with large

quantities of data. The feed contains a large amount of data, which all has value, however I

will only be taking the most important data in to my own database for the purpose of this

project.

• I will only focus on happy path scenarios. Introducing unhappy scenarios into events such as

late changes in start lists, withdrawals, disqualifications, event postponement etc. will

massively over complicate the proposed system. These kinds of scenarios are very unlikely in

real events, and as stated earlier, took over a year to fully test for the Olympic Games. It

would be impossible to complete a system that took all of these eventualities into account

given the time and resources available.

Design

Changes in Approach

Following the definition of the project scope, and given chance to reflect on my approach, I have

decided that the approach I described in the introduction and initial plan is not suitable.

I think that the waterfall like approach is not the best way to develop this application, and that it

would be much more sensible to work iteratively. I now plan to begin by creating a very simple

prototype to test the feasibility of my design, and if this is successful, to then iteratively develop

each aspect of it. Although I was correct in identifying that there are four main components to

implementation, these are all heavily interlinked. Therefore it is much more suitable to develop each

in parallel, allowing me to test and make necessary changes before the project moves too far ahead.

If changes need to be made to the fundamental elements of the application, then it will pose a much

greater difficulty to do this when some have already been completed. I believe this new approach

will minimise the risk of project failure, and will help me to identify risks and changes that need to be

made much quicker, with a much smaller impact on the overall project.

Upon reviewing my project plan, I think that I took a naive approach in the beginning. Immediately, I

think much more time needs to be spent on the basic design. A detailed design and plan is crucial to

a successful project, and I feel that I definitely need to scope more time on this. Although this does

leave me with less time for implementation, I believe that with a well thought plan I will not need as

much time for this as I am less likely to make mistakes.

I have decided that my aim for the end of this report is to have designed and implemented the basic

prototype, after I have completed the basic design steps for the whole application. This will allow me

to test the feasibility of my design and give plenty of time to make adjustments to the project if need

be. If the prototype is successful, then this will provide me with a strong platform to build the whole

application in the New Year.

Adjustments to the project plan Gantt chart can be found in Appendix C.

Requirements

From my aims, and given the background research, I have set the following requirements for my

system:

 The application must provide an interface to simulate the sending of ODF messages.

 The application must process the ODF messages needed and store the relevant data.

 The application must provide the ability to view data for all synchronised events at any time.

 The application must be able to retrieve data stored from ODF messages.

 The application must generate and display schedule information.

 The application must generate and display start lists, including dive lists.

 The application must generate and display live results, updating when a change is made to

the results data.

 The application must display medallists when available.

 On request, the application must display detailed scoring information.

 The application must allow users to register, sign in and sign out.

 The application must allow signed in users to predict scores as competition progresses.

 The application must award a points score for correct predictions and track a total for the

event.

 The application must integrate streaming video (I have decided to include this so that users

can fully interact with the system whilst still being able to watch the event).

 The application must be able to show users results of their prediction (i.e. a breakdown of

the points gained).

 The application must be able to show a user their ranking in a league table compared to

other users.

Requirements Analysis
From the requirements stated above, I have developed the uses cases shown below for a user faced

with the front-end of the application. Detailed descriptions of each use case follows.

Select Event:
A user should be able to select one of the diving events (in this case a synchronised event) to view its
current state i.e. the start list, results or medallists depending on how far the event has progressed

View Schedule:
A user should be able to view a schedule of the events including basic information such as start
times, end times, and if the event is currently running.

View Start List:
A user should be able to view the start list for an event and view basic information such as the teams
and start order and the dives they will be performing.

View Results (Live and Static):

Register Select event

View Results (live and static)

View Detailed Scores

View Prediction Points

Watch Stream

View Start List

View Medallists

View Schedule Log in/out

Predict Score

User

During competition, a user should be able to view live results to show the current standings. The
screen should then update as the competition progresses. When complete, a user should be able to
view a static screen containing the complete results for that event

View Detailed Scores:
Often in diving, results are displayed as overall totals or totals for each dive. A user should be able to
find these totals and view a breakdown of each total by each judges score and any penalties that
were awarded.

View Medallists:
A user should be able to view the medal winners for an event.

Register:
In order to use prediction features, a user will be able to register- creating a username and
password.

Log In/Out:
As users can have a user account, the user should be able to log in and out when desired.

Predict Score:
During competition, a user should be able to input a score prediction that they would award for a
given dive.

View Prediction Points:
A user should be able to view the “points” they have attained by correctly predicting the scores
awarded by the judges and which athletes will win medals.

Watch Stream:
A user should be able to view a stream of the event/phase in question when it is in progress.

Basic System Components

I now need to design the basic components of the system and how they will interact, as well as the

technologies I will use.

Architecture

I believe that I have three architectures to choose from:

Option 1

The ODF Sender sends messages and stores them on a server. The message is then retrieved and

processed by the ODF Processor and data is inserted in to the database. The results application then

reads from the database in order to display information.

Advantages:

 The system makes logical sense- the data can be separately stored and managed and the

components only manipulate this data

Disadvantages:

 The system is complex as it has many different components working in parallel

Option 2

 The database is removed, and instead the data is fed directly to the results application by the ODF

processor as messages are processed.

Advantages:

 We remove the need for a database so overhead is decreased

Disadvantages:

ODF

Sender

Server

ODF

Processor

Results Application

ODF

Sender

Server

ODF

Processor

Data

Results Application

 The results application will need to be running in order for updates to be made- with a

database this does not need to happen

 It will be difficult to store information about previous and upcoming events without a

database

 Although the architecture becomes simpler, the implementation becomes much more

complex

Option 3

The ODF Sender and Processor are combined, so that when messages are “sent” they are simply

processed and the data is sent to the database.

Advantages:

 Combining the send and processor makes the architecture simpler and removes the need to

use the server to communicate between them

 As I’m not using the real feed, it just needs to be simulated and this seems a simpler way to

do so

Technologies

I will now look at the potential technologies for each element of the application.

ODF Sender and Processor

1. The sender and processor could be implemented using Java. I have implemented a small

XML parser before using a text book so may be able to reuse elements of that program. It is

also simple to implement a simple graphical user interface to select and send a file.

2. PHP has a lot of inbuilt XML support, and it also makes it simple to interact with a server as it

is a server based language. However, the application would need to be run in a browser

which may not be the simplest interface to use and implement.

ODF Sender and

Processor

Server

Data

Results Application

3. JavaScript could also be used, which has the same benefits and disadvantages as PHP as it is

also a browser based scripting language.

Database

1. MySQL is open source, can be run on the server and provides all the basic functionality I will

need. Java, PHP and JavaScript can all connect and interact with these types of databases.

2. I could continue to work in Java. Although this would make it easier to communicate with

the ODF Sender and Processor if that is in Java as well, it would mean implementing data

structures from scratch. I feel this would be too complex and time consuming.

Results Application

1. If I continued with Java, and implemented everything in Java, it would again simplify

interaction between the different components. However, I think this is unsuitable as

implementing a complex GUI in Java will take a lot of time and learning.

2. PHP will allow me to perform queries on a MySQL database with relative ease and provides

many options for processing the results.

3. JavaScript could also be used to access data, however this is bad practice as it is a client side

scripting language. PHP is much more suitable as it is a server side scripting language.

However, features of JavaScript can be combined with PHP, which may be useful for

implementing the GUI.

4. AJAX can be used refresh the live results elements of pages without having to refresh the

whole page.

Server

1. Creating a server using free software is relatively simple and can also easily be integrated

with PHP and MySQL. Apache is a frequently used piece of free server software that matches

this description.

Video Streaming

1. After searching, I have discovered that full streams of the Olympic events are available on

YouTube, so it will be simple to embed this streaming media inside PHP pages. An example is

here: http://www.youtube.com/watch?v=_lmT4WlK7G0

2. If the videos are removed from YouTube, for the purpose of this project, video clips can be

stored on the server and then accessed by users using free software such as JWPlayer- a

JavaScript streaming video player. (Avilable at http://www.longtailvideo.com/jw-player/)

Decision

I have decided that the best choice for this project is option 3. I will implement a small Java

application to send and process ODF messages, reusing parts of a previous application I have worked

with. This will then insert the data into a MySQL database running on an Apache server. The results

application will then be browser based, and using PHP pages will access the database to generate

pages. The pages will incorporate JavaScript to create a fully functional graphical user interface (yet

to be designed) and live pages will update asynchronously using AJAX. Streaming video will be

embedded from YouTube.

System Flow

For each of the use cases described earlier, I have modelled the flow of the system between its

components. The activity diagrams below show how the system will logically progress in order to

achieve the results of each use case.

 Get Schedule

The user chooses to view the schedule information. The application then connects to the database

and retrieves the information for the events in question, and displays this to the user.

Select Event

A user chooses an event to view. The application then connects to the database and checks the

schedule status of the event in question. If it is scheduled then it will show the start list, if it is in

progress it will show the current live results, and if official it will show the final results along with the

medallists. The page is then built and displayed to the user.

View

Schedul

e

Connect

to DB

Build

Page

Page

Displayed

Get Schedule

Info

User Results Application

Connect to DB

The application requests to connect to the database. The request is received and either fails or

succeeds, returning the outcome to the results application.

Connect

to DB

Process

Request

Error

Received

Send

Error

Connection

Established

Send

Success

[Success]

[Failure]

Results Application Database

Choose

Event

Connect

to DB

Get Start

List

Get
Results

Build

Page

Page

Displayed

Get Results and
Medallists

[Scheduled] [Official]

[In Progress/Unofficial]

User Results Application

Update Live Results

The application regularly checks the database to see if there has been an update to the results. If

there has been an update, the current standings are returned. The page is then built and displayed

to the user.

Register

A user inputs their registration information, and if the data is complete the application connects to

the database. It then checks if the email address and username specified are already in use, and if

not creates the user and notifies them that registration was successful.

Check DB for

Updates

Get
Results

Build

Page

Page

Displayed

[No Update]

Updated]

User Results Application

Login

The user inputs their login details. If the details are complete, the application connects to the

database and validates the input credentials. The outcome is then returned to the user.

Input

Registration

Data

Connect

to DB

Email

already

registered

Username

in use

Create

User

Registration

Successful

[Data Complete]

[Email Not Registered]

[Email Registered]

[Username Available] [Username Taken]

User Results Application

[Incomplete Data]

Predict Score

The application requests a score prediction. The user can choose not to, in which case nothing

happens. If the user does input a prediction then this is compared to the actual scores and a points

total is calculated. This is then displayed to the user and their total points are updated in the

database.

Request

Prediction

Input

Score

Get Actual

Dive Score

Calculate

Points Gained

Display Points

Total

Update total

in DB

[No Prediction]

[Prediction Made]

User Results Application

Input Login

Details

Connect

to DB

Login Failed

Login

Successful

[Data Complete]

[Success] [Failure]

User Results Application

[Data Incomplete]

View Points Total

A user requests to view their total points. The application connects to the database and gets the

total points gained in each event and returns this to the user.

Watch Stream

The user chooses to play the live stream, the video is then retrieved and if this is successful, the

content plays.

Play

Video

Retrieve Video

from Server

Error

Stream

Content

[Success] [Failure]

User Results Application

View

Points

Connect

to DB

Build

Page

Page

Displayed

Get Total Points

from Each Event

User Results Application

Sending ODF Messages

In order to send ODF messages, a directory containing the messages is selected. The file is then

chosen and sent. The XML is parsed and if the message is the correct format the data is inserted into

the database. Success or failure is returned back to the sender.

Data Structures
From the requirements, I have decided on the data I will need to obtain from the ODF messages and

the data that will come from user input. The table below shows the data I will be storing in the

database and its source:

Data Description Message

Event Code A unique identifier for each
event (e.g. DVM202101 –
Men’s 10m synchronised)

Initially populated from
DT_SCHEDULE. Each message
has an event identifier
(DocCode) in the header to
specify the event it relates to

Event Date Date the event starts DT_SCHEDULE
Event Start Time Time the event starts DT_SCHEDULE
Event End Time Time the event ends DT_SCHEDULE
Event Status Flag to indicate if the event is

schedule, in progress, official
etc.

Initially from DT_SCHEDULE,
updated by
DT_SCHEDULE_UPDATE

Athlete Code A unique identifier for each
athlete

DT_PARTIC

Athlete Family Name Family name of the athlete DT_PARTIC

Select

Directory

Send File Parse XML

Incorrect

Format

Connect

to DB

Insert Data
Message

Sent

[ODF Format] [Non-ODF Format]

Athlete Given Name Given name of the athlete DT_PARTIC
Athlete Gender Gender of the athlete DT_PARTIC
Athlete Date of Birth Date of birth of the athlete DT_PARTIC
Athlete NOC The National Olympic

Committee that athlete
represents (i.e. the nation they
are competing for)

DT_PARTIC

Team Code A unique identifier for each
team that specifies the event
they are competing in (e.g.
DVM201CAN01 Canada’s Men’s
3m Synchronised Team.

DT_PARTIC_TEAMS

Team NOC The National Olympic
Committee the team
represents

DT_PARTIC_TEAMS

Team Name The name of the team (in this
case the full name of the NOC)

DT_PARTIC_TEAMS

Team Athlete 1 The ID of the first athlete in the
team

DT_PARTIC_TEAMS

Team Athlete 2 The ID of the second athlete in
the team

DT_PARTIC_TEAMS

Result Competitor The ID of the team a result
relates to

DT_START_LIST, then updates
from DT_RT_RESULT

Result Event The ID of the event a result
relates to

DT_START_LIST, then updates
from DT_RT_RESULT

Start Order The start order of the team in
an event

DT_START_LIST

Current Flag to indicate if the team is
the current team diving

DT_RT_RESULT

Previous Flag to indicate if the team was
the last team to receive a score

DT_RT_RESULT

Rank The current ranking of a team DT_RT_RESULT
Equal Rank A flag to indicate if the teams

rank is equal (e.g. =2)
DT_RT_RESULT

Sort Order The order that teams are sorted
by (used in the case that ranks
are equal so we can still sort all
the teams)

DT_RT_RESULT

Total The current total score of a
team

DT_RT_RESULT

Medal A flag set to indicate the medal,
if any, associated with an
team’s rank at the end of
competition

DT_MEDALLISTS

Dive Number A number used to identify
which number the dive is in a
team’s dive list

DT_START_LIST

Dive Code A code used to identify the
different dives (e.g. 407B)

DT_START_LIST

Dive Description A text description of the dive DT_START_LIST
Dive Difficulty The difficulty rating of the dive DT_START_LIST

Dive Scores (E1...E6, S1...S5) The scores for each dive
awarded by each judge (scores
will be stored individually)

DT_RT_RESULT

Total Total score for the dive DT_RT_RESULT
Average Average score for the dive DT_RT_RESULT
Penalty Penalty awarded, if any, for the

dive
DT_RT_RESULT

Username A users chosen username Form input
Password A users chosen password Form input
Email Address A users registered email

address
Form input

Points Total A users total points gained
through predictions

Calculated by application

Predicted score The predicted score by a user Input by user
Actual score Used to compare predicted

scores for feedback
RT_RESULT (same as average
score)

From this, I have modelled the following class diagram to show the relationship between the data.

When it comes to implementing these relationships in the database, it will be better to implement

them using the relational model rather than an object-oriented model because:

 There is mostly numerical data (scores and ranks) and related data (names and descriptions)

so storing this kind of data in tuples is a widely adopted practice.

 The database will be largely used for looking up values- using keys is a very efficient way to

do this.

 The data is not really based on a real world object as it is mostly statistical and numerical

 Data persistence is not important as records will be accessed and changed frequently

So a relational model of this gives the following tables (Primary Keys underlined, Foreign Keys Bold):

Events (Code, Date, StartTime, EndTime, Status)

Event

-Code
-Date
-StartTime
-EndTime
-Status

Team

-Code
-Name
-NOC
-Athlete1
-Athlete2

Athlete

-Code
-FamilyName
-GivenName
-Gender
-DOB
-NOC

ResultEntry

-CompetitorCode
-StartOrder
-Current
-Previous
-Rank
-EqualRank
-SortOrder
-Total
-Medal
 Dive

-Number
-Code
-Description
-Difficulty
-E1Score
...
-E6Score
-S1Score
...
-S5Score
-Total
-Average
-Penalty

Prediction

-Score

User

-Username
-Password
-Email
-PointsTotal

1

*
*
*

1 1

*

*
*

*

*

*

*

Athletes (Code, FamilyName, GivenName, Gender, DOB, NOC)

Teams (Code, NOC, Name, Athlete1, Athlete2)

Results (Competitor, Event, StartOrder, Current, Previous, Rank, EqualRank, SortOrder, Total, Medal)

Dives (Competitor, Number, Code, Description, Difficulty, E1Score....S5Score, Total, Average,

Pentalty)

Users (Username, Password, Email, PointsTotal)

Predictions (Username, Competitior, Number, Score, Actual)

Basic Navigation and Layout

To help visualise the application, I will begin planning the basic layout and navigation of the user-

facing front end. This will aid in creating the overall image of the application, and is a good place to

start building the user interface. These plans are very basic, but provide a platform to begin full

design and development of the user interface at a later date.

ODF Sender

The ODF Sender will be a very basic tool, simply to simulate sending messages by processing XML

files and inserting data into the database. This part of the application will be a simple window with a

drop down list to select files, a button to open a file chooser window and select a directory, and a

button to send the selected file. There will also be a text log to show a history of sent files and if the

sending was successful or not. There is a button to clear the text log if the sender desires.

Results Application Pages and Navigation

For the user-facing, web-based part of the results application, I believe I will need to include the

following pages:

Log to report when messages are sent and processed

successfully

DT_Result.xml Send Drop down list

of XML files in

directory

Button

“sends” the

selected file

Button opens

a File Chooser

to select

directory

Clear Log
Button clears

the text log

 A home page, to act as the index

 An “About” page, to describe the application and how prediction works

 A page describing the rules of diving for those unfamiliar

 A page for each event to display start lists, results and medallists

 A predictions page where users can view a breakdown of their predictions and points gained

 A page for users to register on

Each page will share a header that will allow access to all other pages, and will also include a section

to log in/ register if the user is not logged in. A menu in the header will allow all the pages to be

accessible from any other page.

Header and Home Page Layout

The header features at the top of every page. It contains links to every other page- the links to event

pages are under a drop down menu. The main content of the home page will be textual. The link to

the register page is contained in the sign in box.

Register Page

The register page provides users with a familiar form to complete to allow them to register and use

the prediction features.

Sign In Register

Home About Diving Rules Events Predictions

Title
(Links to Home Page)

Links to

corresponding

pages

Drop down list

with links to

each event

Header

Registered users

can sign in, or

click the link to

“register” page

Only shown

when no user is

logged in

Event Page

The event pages contain the information for the current diver and the fields to predict scores at the

top of the page. As the application aims to focus on user interaction I think that the top of the page

is the area where this will be noticed the most and is therefore most encouraging for users to use.

Below this is the streaming video of the event- this remains near the top of the page as users will not

want to scroll in order to predict scores and still watch the event. Below this is the score information

for the previous diver- so the user should be able to view these main 3 elements (and the most

important elements) without scrolling. The user can then scroll down to see a detailed ranking

standings table.

Header

Email

Username

Password

Confirm Password

Confirm Email

Submit

If registration is

successful, will

navigate back to

the home page

Otherwise the

error will be

shown here

Header

Video Stream

Current diver info

Input Prediction Submit

Previous diver info

Standings

Prediction and

submit button

only available

to logged in

users

Predictions Page

Other Pages

The “About” and “Diving Rules” pages will have the same structure as the home page, as they will

only contain textual content in the main body.

Prototype
I am now going to implement a very basic prototype in order to test the feasibility of my design and

as a basis to then continue the development into the complete application.

My aim for the prototype is to implement a basic PHP page that can display a start list to screen,

with dive information for each team. This will require me to implement the ODF Sender, process

DT_PARTIC, DT_PARTIC_TEAMS and DT_START_LIST messages, insert this data into the database and

then retrieve and print this data to a browser using PHP.

I think this will be a suitable prototype because it tests communication between the main

components of the application that are fundamental to its correct operation. Although this

prototype will not include any of the prediction features and graphical user interface of the results

application, I do not feel these features are completely necessary to include as they do not need as

proof of functionality- we know a graphical user interface can be applied to a PHP page using CSS,

and that PHP can capture form input from users. Once I can confirm that connecting to and querying

the database works correctly, I am confident that these prediction features can be implemented and

that stylistic elements can be applied. At this point, I think the functionality is the most important

thing to focus on, because if it fails then the design may need a lot of readjustment.

Header

League table

showing users

current

ranking

Event 1

List of detailed predictions and points

Event 2

Event 3

Event 4

Clicking an

event opens a

drop down table

of detailed

predictions and

points gained

for the user

ODF Sender
The ODF Sender is divided into 3 main functions. The message is sent from the GUI, then parsed into

a tree of ODF Elements, which is then processed by the ODF Processor class to get the required data

and is inserted into the database. ODF Element is my own class, which is comprised of the element

name, and a vector containing ODF Attributes. Each attribute is a pair of strings- the name of the

attribute and its value. The pseudo code and explanations below gives more detail on the

implementation (complete code listings can be found in Appendix D):

ODF Sender

 If (SendButton)

 Get Selected File

 Add Filename to Log

 Create SAXTreeViewer

 Tree = SAXTreeViewer.init (File)

 Create ODFProcessor

 ODFProcessor.Process (tree)

 End if

If the send button is pressed, the application gets the file that is selected and adds its details to the

log. A SAXTreeViewer is then created (more below about this class), and is initialized on the file. This

returns a tree of OdfElements. An ODFProcessor is then created which processes the tree.

SAX Tree Viewer

 StartElement()

 Get Current Tree Node

 Get Name of Element at Current Tree Node

 New ODFElement (Element Name)

 For each attribute

 New ODFAttribute

 Add attribute to ODFElement

 End For

 Create tree node containing ODFElement

 Add node to tree

 End StartElement()

 EndElement()

 Go back to parent node

 End EndElement()

The SAXTreeViewer is a class created by Brett McLaughlin and is demonstrated in the book “Java &

XML”. The original application uses SAX (Simple API for XML), a free Java library that provides XML

parsing support (available at.saxproject.org). It allows us to instantiate a reader, which is then

instructed to parse an XML document. The SAX parser has content handlers registered to it, which

allow application code to be executed as the XML data is being parsed. The handlers that are of most

interest here are the StartElement() and EndElement() handlers, which are executed whenever the

parses encounters the start of an element and the corresponding ending. The original application

builds a default tree model. When it sees the start of an element it creates a tree node containing

the element name and adds sibling nodes for all of the attributes. When the tree model is created it

is then turned into a JTree and displayed in a frame.

I have changed the application slightly. It creates the tree model, however, when the start of the

element is found, it creates a new ODFElement from the element name, and then loops through the

array of attributes returned by the parser. In this loop it creates an ODFAttribute for each attribute,

and adds it to the ODFElement. The ODF Element is then added to a tree node, which is added to the

tree When the element ends, we move back up the tree so we can add the next element. Instead of

creating a JTree, the tree model is returned so that it can be processed by ODFProcessor.

ODF Element

 OdfElement (String Name, Vector<OdfAttribute> Attributes)

 AddAttribute(OdfAttribute)

 Add OdfAttribute to Vector

 End AddAttribute()

 GetElementName()

 Return name of Element

 End GetElementName()

GetAttValue(SearchTerm)

 For every attribute in Vector

 Get Attribute Name

 If Name == SearchTerm

 Get Attribute Value

 Break For Loop

 End If

 End For

 Return Attribute Value

EndGettAttValue()

 End OdfElement

The OdfElement class is my own class, used to store and access information about OdfElements. The

Element is made up of a name and a Vector containing OdfAttributes. Its methods allow us to add an

attribute to the vector, return the name of the element, and return the value of a given attribute.

The latter is achieved by searching through the attributes, and if the name of an attribute matches

the attribute we are searching for then the value of that attribute is returned.

ODF Attribute

 OdfAttribute(String Name, String Value)

 GetAttributeName()

 Return Name

 End GetAttributeName()

 GetAttributeValue()

 Return Value

 End GetAttributeValue()

 End OdfAttribute

The OdfAttribute class is simply a pair of strings- the name of the attribute and the value of the

attribute. It has a method to return each of these values.

ODF Processor

 Processor.init()

 Connect to Database

 End init

 Processor.process(tree)

 Set root node

 Go to ODFBody

 Get DocType and and DodCode

When the processor is initialised, it makes a connection to the database. The process method then

takes the tree model supplied to it and gets the Document Type and Document Code from the

ODFBody Element. This tells us what type of message it is and what event it relates to. The processor

then checks the DocType, and executes different methods depending on which message type it is, as

they all have a different structure.

 If DocType == DT_PARTIC

 Go to competition element

 Go to participant element

 For all participants

 If participant is accredited and function is athlete

 Get id, family name, given name, noc, gender and dob

 Insert into athletes table

 End If

 End For

 End If

If the message is DT_PARTIC, we navigate to the participant element, and then loop through all sister

nodes on the tree. This allows is to loop through all the participants, where we can get their data

(provided it is an accredited athlete, there is data for other “participants” in the message such as

coaches and officials) and then insert it into the database using the connection that was made

earlier in the class.

Graphical version of the tree structure created from DT_PARTIC

 If DocType == DT_PARTIC_TEAMS

 Go to ODFBody element

 Go to Compeition element

 Go to Team element

 For all Teams

 Get code, organization and name

 Go to composition

 Go to athlete

 Get athlete 1 and athlete 2

 Insert data into teams table

 End For

 End If

If the message is DT_PARTIC_TEAMS, we go to the team element and loop through all sibling nodes.

We then get the team name, organisation and code, and then step down the tree to retrieve the

athlete codes. This is then inserted in to the database.

Graphical version of the tree structure created from DT_PARTIC_TEAMS

 If DocType == DT_START_LIST

 Go to UnitInfos Element

 For all sibling nodes

 If Element name == Start

 Get StartOrder

 Go to Competitor Element

 Get Team Code

 Insert Start Order and Team Code into Results Table

 Go to EventUnitEntry

 For all eventunitentry

 Get Difficulty, Code, Number and Desc. for each

dive

 Insert Dive Information into Dives Table

 End For

 End If

End For

 End If

If the message is a start list, we go to the UnitInfos element which has siblings which are Start

elements. We loop through all the sibling nodes, and if it is a Start element then we get the start

order. Next we go to the competitor element to get the team code- these 2 pieces of data can now

be inserted in the results table (and we add the event code from the DocCode we got earlier). After

this we get the dive information by going to EventUnitEntry and looping through all the sibling

nodes, then inserting the data into the database.

Graphical version of the tree structure created from DT_START_LIST

Database

In order to ease the management of my database, I installed PhpMyAdmin on the server, a free and

open source tool written in PHP, intended to handle the administration of MySQL databases through

a browser (available at phpmyadmin.net/home_page/index.php). The following screenshots show

the partial implementation of the tables I defined earlier. These are the tables and fields needed for

the prototype and will be added to later to create the full application.

Athletes

Teams

Results

Dives

PHP Page
The following pseudo code describes the implementation of the PHP page to generate a start list

with dives in a browser window. Full code listings can be found in Appendix E.

 Connect to database

 Select competitors from results where event = this event

 If rows returned == 0

 Print “no start list available”

 End If

 Else

 Select name, order, noc and athletes names from results where event =

this event

 While (rows returned)

 Print team information

 Select dive information from dives where competitor = this

competitor

 End while

 While (rows returned)

 Print dive information

 End while

 End else

The PHP page first connects to the database. We then select competitors from results which have

the same event the page is for. If this returns 0 rows, then we know there is no start list sent yet.

Otherwise we get the all team information and the athletes names for the event in question. We

then use a while loop to go through every row of the tuples returned, echoing the data to the page.

For each row, we then perform a query to return all of the dive information for that team, and echo

this to screen as well.

Results

The prototype is run and works correctly using the following steps:

1. DT_PARTIC and DT_PARTIC_TEAMS are sent from ODF Sender

2. The data is populated in the database

3. If we look at the PHP page, there is currently no start list

4. We send DT_START_LIST from ODF Sender

5. The data is populated in the database

6. The PHP Page now shows the start list and dive list for each team

Conclusions

Results
I believe that the project is currently on track to meet the aims deliverables I set out. So far I have

managed to specify a basic design concept and the technologies I will use to achieve this, including

specifying the intricacies of data flow through the system and a resulting user interface concept.

After building a basic prototype based on this design, I believe that my design ideas have been

justified as the prototype has been successful- meeting the aims I set for it and proving that the

design is a feasible one. I think this prototype has provided a strong platform to build the full

application from as I continue the design and implementation processes. However, it is important to

acknowledge that my design and prototype are so far very basic, and represent a very small portion

of the overall system. There is still a lot of more detailed design work to complete, and the final

implementation will be far more complex than what I have achieved so far. I could easily run into a

lot of problems in the future and have to make changes to the project, however, I feel that my work

so far has definitely proven that the core functionality of my system is viable and I am confident this

can be continued and adapted into a full system to meet my aims.

Next Steps

Now that the prototype has confirmed the viability of my design, the project can move forward into

implementing the full system. This will involve iteratively developing the results application

functionality, along with its graphical user interface and incorporating user prediction. Although this

implementation will now make up the majority of the project, it is vital that I recognise the

importance of design. Up to this point, I feel that the extra time spent on background and design is

largely what has lead to a successful prototype. I need to make sure that I continue to design the

more detailed parts of the implementation, rather than going straight into building as I believe that

good design will lead to a much more successful outcome. So immediately, the next step is to begin

designing the more detailed elements of the application, such as detailed layouts, user interface,

how the sure prediction will work etc. I will also need to complete implementing the database and

message processing before I begin implementing the main application as the main application

cannot function properly without complete data.

Project Approach Evaluation

In terms of my approach to managing the project, I feel that my initial approach was naive. Because

of my experience at the Olympics with the real systems, I think I initially acted as if I knew exactly

what to do for the project, and how to go about it so did not pay a lot of attention to how I would

approach it. This was evidently a poor move and I soon changed my mind as I began designing. It

became quickly apparent that I was allowing my past experience to drive the project rather than

stopping and thinking about it myself. Although this was an early mistake, I feel I did well to rectify

this quickly and change my approach. Once I had taken time to step back and think about the aims

and the scope of the project I recognised the flaw in my approach, and I believe changing this has so

far been successful. I now feel that I have a strong plan for the next steps of the project and have a

much better whole picture of how the project will progress.

I would’ve liked to have added more features and implementation to my prototype, however, the

scope I could set for it was greatly affected by the amount of time available. Because I needed to

complete my basic design and background research before beginning the prototype, there was not a

great amount of time left to complete it for this report. It would have been nice to include a small

part of user interaction and a basic graphical user interface, however, I don’t think this could have

been achieved for this report. However, I do feel that building the basic prototype was successful in

determining the feasibility of my design by showing that the core functionality will suffice to meet

my aims.

Changes in Approach

As I mentioned above, I would’ve liked to have included more features in the prototype but did not

have the necessary time to do so, so I am now going to re-assess my project plan again to ensure I

have made the greatest use of the time available in the coming months.

Originally I planned not to continue working into the Christmas break, however, I feel it may be

necessary to use some of this period towards this project. As I mentioned previously, I think it is

extremely important to continue design work throughout the project, therefore I feel that I should

allocate more time to detailed design. However, this is hard to fit into the project plan, so I think

making more time available is the best solution. I’ve also noticed that at no point have I planned to

get any user feedback. Considering a large bulk of the application is user-orineted, I am going to add

a user test and heuristic evaluation into the development lifecycle to make sure my designs

demonstrate good human computer interaction. These additions can be seen in the latest version of

the project plan in Appendix F.

Bibliography
Atos, n.d. Information Diffusion Systems. [Online]

Available at: http://uk.atos.net/en-

uk/olympic_games/what_we_deliver/information_diffusion_systems/default.htm

[Accessed 4 December 2012].

Balfour, A., 2012. London 2012 Olympic and Parlympic Games-Time Digital Report. [Online]

Available at: http://www.slideshare.net/balf/london-2012com-olympic-games-digital-round-up-13-

august-2012

[Accessed 4 December 2012].

Deltatre, 2012. Deltatre. [Online]

Available at: www.deltatre.com

[Accessed 6 December 2012].

International Olympic Committee, 2012. Diving - Sync. - Women - 3m - London 2012 Olympic Games.

[Online]

Available at: http://www.youtube.com/watch?v=_lmT4WlK7G0

[Accessed 28 October 2012].

International Olympic Committee, 2012. Olympic Data Feed. [Online]

Available at: http://odf.olympictech.org/

[Accessed 26 October 2012].

LOCOG, 2012. Olympic Diving. [Online]

Available at: http://www.london2012.com/diving/

[Accessed 2 December 2012].

LOCOG, 2012. Olympic Diving - Information, History, Rules. [Online]

Available at: http://www.london2012.com/diving/about/

[Accessed 4 December 2012].

Long Tail Video, 2012. JW-Player Overview. [Online]

Available at: http://www.longtailvideo.com/jw-player/

[Accessed 28 November 2012].

McLaughlin, B., 2001. Java & XML. 2nd ed. Sebastopol: O' Reilly.

Megginson, D., 2004. SAX. [Online]

Available at: http://www.saxproject.org/

[Accessed 12 November 2012].

phpMyAdmin, 2012. phpMyAdmin. [Online]

Available at: http://www.phpmyadmin.net/home_page/index.php

[Accessed 28 November 2012].

Premier League, 2012. Fantasy Premier League. [Online]

Available at: http://fantasy.premierleague.com/

[Accessed 3 December 2012].

Swiss Timing, 2012. Swiss Timing. [Online]

Available at: www.swisstiming.com

[Accessed 7 December 2012].

