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Abstract
The Rubik's cube solver consisted three main parts of the system, the identification of the cube, the 
calculation of the method for solving the cube and the physical manipulation of the cube to return it 
to a solved state. The image processing was based around the Hough Transform approach to 
identify the position of the cube as well as colour identification using brightness constancy. The 
Friedrich method was used to solve the Rubik's cube, the solution was always correct but not 
optimal. Lego Mindstorms was used to physically manipulate the cube, however the robotic part of 
the system did not work correctly
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1 Introduction 
The overall goal of the project is to produce a device which can solve a Rubik's cube without the 
assistance of a human. This will be achieved by taking images of the cube to determine it's 
configuration, calculating the manipulations that are required to solve it and then manipulating the 
cube to a solved state by rotating robotic hands which are controlled by Lego Mindstorms.

Some terms are used in this report which are specific to this project and may cause confusion so 
they will be briefly explained. Whenever the term manipulate is used in this report it is referring to 
changing configuration of the cube by turning part of the cube whilst the rest is stationary, when the 
term rotate is used it refers to rotating the whole cube so that the configuration of the cube is 
unchanged but the cube's orientation has changed. A Rubik's cube is made up of 26 pieces called 
cubies. There are six faces of the cube and each face has a three by three grid of nine squares.

The system consists of three main sections, the first section is the computer vision part of the 
system, the aim of which is to calculate the position and configuration of the cube. The image 
processing section must be able to calculate the exact configuration of the cube from images taken 
by a web cam. The system does not need to successfully identify the configuration of the cube on its 
first attempt and can have multiple attempts to do so if required, however the number of attempts 
should be minimised to increase the speed of the system. The second section of the system is the 
cube solving portion, which must find a way of changing the configuration of the cube from its 
starting state to a solved state. The cube solver must be able to calculate a series of manipulations 
that will transform the Rubik's cube to a solved state. The robotics section of the system should be 
able to calculate and perform the physical manipulations of the cube that correspond to the steps 
which the solver section has specified. The robot should do this as quickly and as efficiently as 
possible, however this is not the author's particular expertise and there are limits to the 
improvements that can be made to the robotic system. 

A hybrid of both the waterfall and spiral models was used during the development of the project. 
The overview of the aims and main goals were known from the beginning of the project and were 
unchanged during the process of the implementation. The project was researched predominantly at 
the beginning but further research was required partway through the project. The design of  project 
was performed in small iterations and then implemented based on the designs. The project was 
redesigned and the implementation was changed if there were problems that occurred during the 
implementation of the project, but the key aims and goals remained unchanged. An example of the 
design adopting to fit problems that occurred during implementation is the addition of a second 
NXT brick when one was not sufficient, this is explained in greater detail later in the project.

2 Background
2.1 Lego Mindstorms
Lego Mindstorms is a technology which uses the constructive elements of Lego alongside the 
versatility of Java, with basic input and output devices around a processing unit called a NXT brick 
that together allow users to construct basic robotic systems. The NXT brick originally comes with 
Lego software installed on it, which restricts the user to a basic graphical environment which 
implements a drag and drop method of control. Lejos is an open source software suite which can be 
installed onto the NXT brick to allow users to write their own Java files, which can then be 
executed on the NXT brick. The NXT brick can be connected to a computer via USB or Bluetooth 
and messages can be sent between the brick and the computer whilst programs are being executed 
on both devices. A computer can also connect to several NXT bricks simultaneously if required. 
Motors can be connected to a NXT brick and can be used as output devices to manipulate the 
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environment. Signals from the motors to the NXT can be used to monitor the current status of the 
motor, such as the current speed and rotation. Standard Lego Technic parts can connect to the NXT 
brick and motors. This means that the Lego can be used to construct various structures and robots 
which can have basic input and output devices.[1]

2.2 Rubik's cube

The “Rubik's cube”, released in 1974, is a cube shaped puzzle which has been studied by 
mathematicians due to its complexity. The task of a Rubik's cube is to orientate all of pieces, or 
cubies, of the cube so that each side is a single colour. Each piece of the puzzle is unique and there 
is only one configuration that is deemed to be the solved state. (The overall orientation of the cube 
is irrelevant to the solution.) Each of the six faces of the cube can be rotated relative to the rest of 
the cube into three new positions (at 90ᴼ, 180ᴼ and 270ᴼ to the original). At any time there are 
therefore eighteen different moves possible which will alter the configuration of the cube. The cube 
consists of eight corner pieces which have a visible square on three faces, with four corner pieces 
visible on each face. The cube has twelve edge pieces which have visible squares on two of the 
faces. There is a single centre piece on each of the faces of the cube which can not be moved from 
its original position, and will always remain in the same place relative to the other centre pieces of 
the cube. Rotation of these pieces does not affect the overall configuration of the cube. These centre 
pieces are linked around a central frame which is not visible without de-constructing the cube. 

The concept of the puzzle is to 'shuffle' the cube by executing a series of random manipulations and 
then trying to return the cube to its original state. The cube must be shuffled by a series of random 
manipulations rather than dismantling the cube and then reassembling it, as very few reassembled 
configurations will result in a cube which is solvable. The cube must be solved by calculating a set 
of manipulations that will return the cube to its original state. There are many methods of 
calculating the manipulations that will solve the cube, where these methods will vary in terms of the 
number of manipulations and time taken to compute the solution. It is possible to calculate the 
solution with the fewest necessary moves, however a super computer and a large amount of time 
and money would be required to do this.[2] It is also possible to use very simple methods of solving 
the cube which require far more manipulations to complete the puzzle but require little processing 
power. The ideal solution is to minimise the combined calculation and manipulation times by 
finding a balance between the calculation and manipulation processes. The manipulation time is the 
time taken to physically move the cube and the calculation time is the time taken to identify a 
suitable series of manipulations. 

The Rubik's cube that is being used for this project is quite new, as older versions of the cube had 
more friction between the moving parts and were difficult to manipulate. However the cube has 
been used many times for testing and so some of the visible surfaces have sustained damaged. This 
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makes it harder to identify the cube's components with the computer vision section of the system. 
So the vision system's algorithms must be more robust and effective at identifying false positives. 
An algorithm which can cope with a excessively worn cube should be able to identify many cubes 
with differing degrees of wear.

2.3 Sobel Edge Detector
There is a large amount of image processing involved with this project, the most basic of which is a 
Sobel Edge Detector, which uses a mask to identify changes of intensity in an image. The mask is a 
set of values in a grid, which is raster scanned across each of the pixels in the image. A convolution 
is a procedure which is performed on one function a by another function b to produce a new 
function c which is a modified version of the function a. A convolution of the mask at each of these 
grid positions is used to score the intensity of the edge at that point. This is performed with a 
horizontal and vertical mask which are used to calculate an “edge map”, showing the intensity and 
the approximate angle of the edge at each point of the image.  The equation that represents this 
resulting value c at the coordinates ( x , y ) on the image a, if a convolution is performed with the 
kernel b is:[4]

The Sobel Edge Detector was selected as it is a simple to implement edge detection method which 
is efficient, robust  and will provide an edge map which is adequate for the Hough Transform later 
in the project. Figure(2) is the mask used to calculate the vertical part of the edges.

2.4 Hough Transform
The Hough Transform is a image processing technique for identifying graphical features of an 
image such as lines, circles and ellipses. The Hough Transform uses a separate accumulator space 
which represents values that are possible for the parameters of the features that are to be identified. 
A voting system is used to populate the accumulator where the greater values in the accumulator 
represent parameters of features which are likely to be present within the image.[3][4][8]

The type of Hough Transform which will be used in this project is for the identification of lines 
within an image. The identification of the lines starts by creating an edge map of the entire image. 
For each point in the image the value in the accumulator (the Hough Space), which corresponds to a 
line which can pass through that point is increased by the intensity of the edge at that point. The 
values in the accumulator are not simply incremented because the stronger edges found on the edge 
map should have greater influence in determining the presence of lines within the image. A local 
maximum will occur on the edge map where the parameters correspond to a line in the image. This 
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is due to several points of high intensity which lie on that line all voting for the parameters which 
correspond to it in the Hough Space. The Hough Transform was chosen as the method for detecting 
the Rubik's cube in the image as the the images were taken on a web cam and the Hough transform 
is not very susceptible to noise. A problem with identifying lines on the faces of the cube is that 
these lines can have breaks in them (at the edge of each square) which could impede other line 
detection methods. The Hough Transform is suited to this as it does not require these lines to be 
continuous for them to be identified. The gaps in the lines which are being referred to can be seen in 
the Figure(3).

2.5 Template Matching
Template matching is an approach of identifying part of an image by using a template of a known 
object which could be in the image. The method used to identify the template in the image can be 
based on the strength of the features of the template. If a object has particularly strong features then 
the template can be based on the stronger features rather than the whole object. The template is 
raster scanned over the image and the difference between the template and the image at that location 
is used as a score. The lowest score represents the part of the image that most closely resembles the 
template. The template may need to be rotated or resized and can use a lot of processing power if 
not implemented efficiently. Template matching can be used alongside several techniques in 
computer vision which include edge maps and Hough Space. Template matching was chosen to be 
used in this project as it is a versatile method for identifying the specific features that were required 
for the project. The Hough Space had to be searched for a pattern that represented the Rubik's cube 
and template matching was suited to this as the template could be modified to search for different 
sized Rubik's cubes.[4][6][8]

2.6 Brightness Constancy
The light which is reflected off an object into the lens of a camera may not always reflect the true 

7

Figure 3: Gaps in the Lines of the cube



colour of the object. The source of the illumination of the object can significantly alter the 
perceived brightness when viewed by a computer. Humans see colour differently to computers and 
their perception of colour is based on their surroundings. Brightness constancy is a technique which 
can be used in computer vision to estimate the lighting level that the image was captured in. Certain 
methods involve assumptions being made about the lighting of the object from features in the image 
and can then be used to calculate the colour of the object. Brightness Constancy was chosen for this 
project  to improve the reliability of the identification of the configuration of the Rubik's cube as a 
constant level of lighting of the cube was difficult to maintain.[4][7]

3 Speci  fication and Design  
3.1 Basic Overview
The overall process of the cube solution is split into three main parts which all accomplish specific 
tasks, all of which are regulated by a central control class. The image processing classes which are 
involved in the system are the camFeed, houghTransform and getColour classes. There is a single 
class associated with the solving of the cube called solver, which takes a large amount of processing 
power and a large amount of the time spent on the project was used to create this class. The classes 
involved with the robotics of the system are the adapterToRobot, onNXT and sendToNXT classes. 
The control class is the class that is executed to run the system and commands the system. The 
onNXT class is uploaded to the NXT bricks and is executed on both of them. The control class is 
run and instantiates the classes that are required. This allows the sendToNXT class to create a 
connection with the NXT bricks at the beginning of the execution. There are two NXT bricks used 
in this system and a connection with both must be established from the beginning. The camFeed 
class creates a canvas that images can be displayed on, as well as an image grabber which is ready 
to take images using the web-cam. The houghTransform class is then used to track the position of 
the cube which is held by the user. The location and orientation of the cube is returned to the 
control class which is aware of the location to which the cube must moved for the hands to grasp it. 
Once the cube is correctly located the hands of the robot hold the cube using the sendToNXT class. 
The system then takes a series of images of each of the sides of the cube by using the grabImage 
method in the camFeed class and rotating the cube with the sendToNXT and onNXT classes. Six 
images are taken of the cube, one image for each face of the cube. The images are stored in an array 
by the control class and the array is then sent to the getColour class as an argument.

The getColour class receives the images and must calculate the configuration of the cube. The 
getColour class uses a series of methods to calculate the colours on each of the sides of the cube 
and then uses the colours of the cube to calculate the configuration of the cube. The configuration 
data must be in a specific form which is recognised by the solver class. The getColour class must 
also check that the configuration of the cube is consistent (that it has the correct number of squares 
of each colour). If it is not consistent then new images of the cube are taken and the process is 
repeated. The control class then has to send the configuration of the cube to the solver class. The 
solver class uses a four step method of solving the Rubik's cube known as the “Friedrich Method”. 
The solver class then returns an array of strings which represent manipulations of the cube which, 
when executed, will solve the Rubik's cube. These manipulations refer to the type of rotation and 
the face of the cube that is to be rotated. The control sends the manipulations to the adapterToRobot 
class which must calculate a way of translating the manipulations of the faces into movements by 
the robotic hands. The movements of the hands which will be returned by this class must be 
described in terms of rotations and opening or closing of each hand. The control class must then 
send a series of moves from the adapterToRobot class to the sendtoNXT class. The moves are 
batched into sets of steps that the sendToNXT class can perform, between which the manipulation 
can be interrupted before the cube is fully solved. The sendToNXT class will communicate with the 
onNXT class to send the movements by the robotic hands to solve the cube. The onNXT class 
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receives the required movements and translates them into movements of the motors. After each 
batch of moves given to the sendToNXT class is performed, the control class checks that the cube is 
still correctly positioned by using the houghTransform class. If the control class is satisfied then it 
sends the next batch of moves to the sendToNXT class. A class diagram of this can be found in the 
appendices (Diagram 1).

3.2 Hough Transform
For the cube to be monitored during the execution of the system, the position, orientation and size 
of the Rubik's cube must be calculated within the image. The cube is difficult to identify due to the 
cube changing configuration when it is manipulated. This will lead to the colours of the faces of the 
cube changing, so it would be difficult to base the identification on colour. Template matching could 
be appropriate for the identification of the cube, however due to the large number of positions and 
orientations of the cube the identification would take a large amount of processing power and more 
efficient processes have been identified. The Hough Transform was a more appropriate method to 
tackle the problem as it can identify the lines of the image and then locate the cube within the image 
from the calculated lines.

3.3 Line representation
The standard way of representing lines in Cartesian coordinates is as y=mx+c where m is the 
gradient of the line and c is the y intercept. It is difficult to use this equation to represent lines for 
the Hough Transform as the value for m is unbounded. This makes it difficult to store the possible 
parameters of the lines in an accumulator. 

An alternative method for representing straight lines in the Rho - Theta method. The Rho-Theta 
method uses a distance Rho and an angle Theta to represent straight lines. The Rho and Theta 
values of a line are based on a vector which is perpendicular to the line and passes through the 
origin. The angle that the vector is about the origin is the Theta value and the distance from the 
origin to the point where the vector meets the line is the Rho value. Figure(4) To calculate a line 
through the point (x,y) the following equation can be used Theta is represented by “θ” and Rho is 
represented by “ρ”;

 

x cos θ + y sin θ = ρ

The values of Rho and Theta can be used as the parameters for the Hough Space and unlike the 
y=mx+c representation, a single accumulator is required to represent all of the possible parameters. 
The Theta value is limited to vary between  0ᴼ and 179ᴼ and the Rho value will be based on the size 
of the image, the Rho value can also be negative or positive as it can be either side of the origin. 
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3.4 Lines of the Rubik's cube
The array of squares on a face of the Rubik's cube produce two sets of parallel lines which are 
perpendicular to each other. The Rubik's cube is identifiable in the Hough space due to these 
parallel lines that are present on the face of the cube. The red lines draw in Figure(5) show the 
horizontal and vertical parallel lines which are present on the Rubik's cube. The lines can be split 

into the two sets of six parallel lines when attempting to identify them within the Rubik's cube. 
The lines of the Rubik's cube are parallel and so can be identified in the Hough Space, as their Theta 
value, which is the angle from the origin, will be common for that set. The other set of lines is 
perpendicular to the first set and so the Theta value will differ by 90ᴼ. Due to the Theta value being 
limited between  0ᴼ and 179ᴼ and the two sets of parallel lines differing by 90ᴼ there must always be 
one set of parallel lines for which Theta is less than 90ᴼ and another set for which it must be greater 
than or equal to 90ᴼ.

The distance between each of the parallel lines is not equal and will also vary due to the cube 
moving towards and away from the camera, so that the size of the cube image will change. The size 
of the gaps between the parallel lines will stay proportional to the other gaps when the cube is 
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moved. Figure(6) shows that the width of the gaps between the squares of the cube are seven times 
smaller than the squares of the cube and this can be used to identify the Rubik's cube within the 
Hough Space.

The system can sometimes struggle with the identification of the lines associated with the Rubik's 
cube in the Hough space due to noise. This is due to the poor quality of the images that are being 
processed. The hardware restricted the quality of the images as a web cam had to be used to obtain 
the images.

The number of unwanted votes that are accumulated in the Hough Space can be reduced to improve 
the clarity of the real lines within the image. The edge map that is calculated by the Sobel Edge 
Detector produces an estimation of the angle of the edge as well as the intensity of the edge. The 
system can use this estimation to limit the number of votes that are cast in the Hough Space. The 
estimation of the angle of the edge is not very accurate and so votes are cast for Theta value which 
differ from the estimate angle by less than 23ᴼ. This will also have the benefit of reducing 
processing power required for this part of the program. A butterfly filter is one which is used to 
emphasise points in the Hough Space which correspond to correct lines in the image. The butterfly 
filter is raster scanned across the Hough Space and the value in the Hough Space is changed to a 
convolution of the filter at that position. The butterfly filter used in this system can be seen in 
Figure(7).

3.5 Colour Calculation and Cube Configuration
The colours of each of the squares of the cube must be identified so that the configuration can be 
calculated. The difficulty of this is that the lighting of the cube will depend on the environment in 
which the cube is in being viewed. The lighting will be difficult to control and so the system must 
be able to accommodate different levels of lighting.

The second part of the computer vision section of the system is the colour identification and finding 
the configuration of the cube. This is found within the getColour class which is given six images of 
the faces of the cube. The brightness of the pixels which represent the cube may change and so my 
program must acknowledge this. The method for identifying the colours of the cube began by 
calculating an average of the intensity of the six sides of the cube to estimate the strength of the 
illumination on the whole cube. This was used to estimate the strength of the light source to aid in 
the identification of the colours. The mean average colour for each of the squares of the cube was 
taken. Due to the condition of the cube the edges of the squares were not included when calculating 
the average colour. The average colour of each square was compared to a pre calculated set of 
colours to calculate the colour that it most closely resembled. The brightness calculated previously 
was used to assist in the identification of the colours by assuming that the illumination was constant 
across the object and normalising each of the calculated colours. 
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The colours may not be successfully identification in the getColour method and this could lead to 
the squares being assigned as the incorrect colour. The pieces of the cube are unique and so the 
system would become confused when trying to compute a piece which does not exist, this could 
lead to incorrect identification of the cube. A method is required to check the colours of the cube 
and attempt to correct them.

The number of squares of each colour are then counted to check that there are the correct number of 
each of the colours. If there is not nine of each colour the system attempts to resolve the problem by 
recalculating the assignment of some of the colours. The colours which appear too frequently are 
identified the squares that correspond to these values are re-evaluated and the colour which is most 
similar to a different colour is reassigned. This is repeated on each of the colours until there are the 
correct number of each colour.

The Rubik's cube solver class takes the configuration of the cube as a argument in a specific manner 
which is based on the orientation and position of the corners and edge pieces. The cube can also be 
represented as 54 squares with a value referencing a colour at each square. There must be a method 
which can translate the colours of the squares of the cubes to the unique position and orientation of 
each of the edge pieces.

The system then attempts to identify the configuration of the cube based on the colours that were 
identified. If the system can not resolve the identify the configuration then a new set of images are 
taken of the cube. The system then returns the configuration of the cube as arrays of the edge and 
corner pieces.

3.6 Solving the Rubik's cube
The Rubik's cube had to be solved by calculating a series of manipulations on the cube that change 
the configuration of the cube from its original state to it's solved state. The method used to produce 
the solution should minimise the number of manipulations of the cube and calculate the moves in a 
reasonable amount of time.

As the solver class part of the system was mentioned in great detail during the Interim Report, there 
is little detail in this section of the report, however a large amount of the time allocated for this 
project was spent in this area. The solver class is given the configuration of the cube in a fashion 
which was chosen to make it easy to understand and process. The Friedrich method is used by the 
solver to find a suitable series of manipulations for solving the cube.  Once the solving algorithm of 
the cube is found all of the rotations of the cube must be removed, the solver class does this by 
changing the reference to the faces that are to be manipulated after this rotation . The solution is 
finally optimised so that any manipulations of the same face which are next to each other in the 
solution are concatenated into one move or removed if they are one complete rotation. 

3.7 Connection to NXT and On NXT
There must be a connection active between the computer and each of the bricks for the full-length 
of the execution of the project, however messages will not need to be sent simultaneously to both of 
the brick as only one hand should be moving at once. The connection must also be terminated once 
the cube has been solved so that the NXT bricks can disconnect and properly end the execution of 
software that it is running.

The connection must be established between the computer and each of the NXT bricks, this can be 
done via Bluetooth. Bluetooth was chosen over USB for the connection from the computer to the 
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NXT bricks as it improved the mobility of the system and the USB cables may have interfered with 
the rotation hands of the robot. It has been decided that identical software is to be run on both of the 
NXT bricks, this is to simplify the system as it will make it easier to add more moving hands and 
NXT bricks to the system as well as requiring only one piece of software to write and update the 
devices. The program that is run on the NXT brick will consist of establishing a connection to the 
computer and then receiving, executing and acknowledging messages that will be passed to it. The 
execution of these messages will include rotating the motors attached to the NXT to move the 
robotic hands and closing the connection to the computer at the appropriate moment.

The hands of the robot will stay in the same position relative to the camera and this should not be 
changed each time the system is run. A default position is then created which is the variable which 
describe the location of the the cube when it is held by these robotic hands. The cube is tracked on 
the camera using the Hough Transform and the program will know the position of the cube relative 
to the camera. This default position can then be used when the cube is tracked in the cameras view 
to know when the cube is in the correct position. Once the cube is correctly positioned, the hands 
can then close on the cube so that it can be held ready to be manipulated. At certain intervals while 
the cube is being manipulated the movements of the hands must stop so that the system can use this 
edge detection and Hough Transform process to check if the cube is still correct.

3.8 Main Control
The classes had to be linked so that they could be used together, this was required for the system to 
function correctly but also allowed the parts of the system to be tested in conjunction before the 
final system was fully implemented.

The control class will be run by the user when the system is activated. The control class must make 
sure that all of the classes work correctly together, this will be particularly important when trying to 
take images of each of the sides of the cube at the beginning of the program. The control must tell 
the getImage class to take a image and then instruct the sendToNXT class to make a specific rotation 
of the the cube several times. The getColour class is then given the images of the cube and 
calculates the configuration of the Rubik's cube. The control class then gives the configuration of 
the cube to the solver class which calculates the movements required to solve that cube. These 
movements are passed to the adapterToRobot class which must work out the optimal method for 
rotating the hands in a manner which will solve the cube.

3.9 Physical Lego design
A simple design for this is to have two robotic hands perpendicular to each other, where both are 
able to grasp and rotate a face. The robot will be able to move the cube around so that it can access 
each face by having one hand open while the other is closed and rotating the closed hand. The robot 
will be able to manipulate the cube by moving the face require to be manipulate to a position where 
it can be grasped by a hand and then closing both of the hand and rotating the hand with the face 
that is required to be manipulated.

The most significant problems that had to be overcome when using this design is that when a hand 
grasps the cube it must not block the actions of the other hand. The way that a hand holds the cube 
must be acknowledged when assessing this problem. For the cube to be manipulated with two hand 
perpendicular to each other the cube can not hold any of the squares of the manipulated face as it 
would block the other hands rotation. Figure(8) Therefore the hand must only grasp the central 
square of the face that is being held. Each hand can be rotated to be aligned with two different axes 
and they both share a common axis which for this project is named the vertical axis. The hands can 
still block each other if the are both in a vertical position and both closed and so my program must 
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acknowledge this and ensure that it never attempts to do so. Figure(9) If one hand is vertical and the 
other is not then the hand that is vertical will block the other from manipulating the cube, however 
the vertical hand in this situation will still be able to manipulate the cube. Figure(10)

 The design of the robotic hand has a cable which is attached to a motor which opens and closes the 
hand and this motor is rotated every time the hand rotates to manipulate the cube. This results in the 
cable being twisted whenever the hand is rotated which limits the maximum number of rotations of 
a hand in one direction. To overcome this problem the program must remember the rotation of the 
hand in specific direct and whenever possible rotated the hand towards its original position without 
slowing the performance of the robotic hands. The program does this by understanding when the 
direction of the rotation is irrelevant such as when the hand is being rotated 180ᴼ and rotated the 
hand in a manner which will decrease the angle of rotation from its original position. 

3.10 Adapter to robot.
Once the cube has been solved by the solver class a series of moves which refer to manipulations of 
the six faces is produced. There are three different positions to rotate a face from its original 
position using 90ᴼ rotations. The two hands of the robot can be rotated, opened and closed. Each 
face of the cube is not held directly by a hand and so the robotic hands must reposition the cube 
before a face can be manipulated. The hands are also limited in their movement as they rotate in a 
specific direction due to the restrictions caused by the cables. The adapter must also ensure that the 
hands do not block or crash into each other.

The purpose of the adapter is to calculate the moves that are 
required by each of the robotic hands to perform the 
manipulations. The adapter must first move the required face to 
a position where it can be manipulated by one of the hands. For 
a face to be manipulated it must be at the bottom of the cube as 
show in Figure(11). The adapter must always know the 
position of the cube faces relative to the hands. The adapter can 
then identify the position of the required face and rotate the 
face to the correct position so the manipulation can then be 
performed. This is repeated for each manipulation and the next 
iteration begins by identifying the following face to be 
manipulated. The output of the class will be a set of moves 
which are based on rotations and grasps of the two hands.
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Figure 8: The cube being held.  
Hand A on the left Hand B on 
the right

Figure 9: The hands block 
each other and so can not be 
positioned like this

Figure 10: Hand A can be 
rotated to manipulate the  
cube. Hand B can not rotate  

Figure 11: Faces which can be 
manipulated



The final large problem that was originally not acknowledge but had to be adjusted to, was the way 
that the NXT brick is designed. A NXT brick has seven ports the project required four ports, two for 
each hand, however only three of the seven ports are output ports which the project requires to 
power the motors. This resulted in the project needing two NXT bricks rather than just one with 
each NXT brick controlling a hand which are connected to the computer using Bluetooth.

The complexity and quality of the Lego hands is limited to the Mechanical Engineering ability of 
the author as well as the physical limitations of the Lego motors and the limited number of Lego 
parts that the author owns. This resulted is a limited but functioning design of the hands which 
could be improved upon by using more durable materials which were specifically manufactured for 
the project as well as using a greater number of robotic hands so that the cube can be manipulated 
from more sides, this would be maximised at five, as six would impede the access of the cube for 
viewing by the camera.

The accuracy of the motors in the Lego Mindstorms kit was unclear and was required to be tested as 
a small degree of inaccuracy could cause drastic problems later in the process. Inaccuracy in the 
motors could cause the cube to be accidentally dropped or the rotation of the cube to be wrong and 
jam the machine. The method that was used for testing the accuracy of the motors was to perform 
multiple 90ᴼ rotations of the cube using the robotic arms, as this is the way that the robot would be 
used in the final system. The motor was accurate enough as after two hundred rotations the robotic 
arm remained in the original position and so if the other robotic hand was present hypothetically it 
could manipulate a face of the cube. This shows that the accuracy of the motors of the Lego 
Mindstorms is sufficient as they will be used less that two hundred times in a standard solution. The 
process was repeated five times to ensure accuracy of the testing. The time was recorded for the 
rotations of the cube and the average time taken to perform one manipulation of the cube was 0.87 
seconds

4.0 Implementation
4.1 Camera Feed
The “camFeed.java” class uses google open source library to take images using the web cam of the 
computer that the software is being run on. The class uses a Framegrabber class to grab the image 
by simply creating an instance of it and using a grab method. The result is a BufferedImage which is 
a standard java class, this is returned whenever the grabImage method is called within camFeed. 
The camFeed class also has a canvas which can be used to display the image, this can be used to 
display live images of the cameras view which will can be updated to show the cubes position.

4.2 Colour Calculation and Cube Configuration
The Java class that is used for calculating the colours of the image is called  getColour. The class is 
given images of the six faces of the cube as BufferedImage objects. The RGB value of a pixel is the 
Red, Green and Blue components of the light that has entered the camera, a larger value indicates 
that light of a higher intensity has entered the camera at that point. The class is given the position 
and orientation of the cube and so the exact location is known. The method getColoursFromImage 
is executed and calculates the average RGB value of each of the squares of the cube. The overall 
illumination of the cube is calculated by cumulating these values. The whole cube is used to 
calculate the average illumination, this is due to a single face may be lacking in colours of high or 
low intensity and so the results of the illumination of that face of the cube would be skewed.

The calcSquare method is then run to calculate the colours of each of the squares of one of the faces 
of the cube. The RGB values calculated for each of the squares in the previous method is 
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normalised by factoring in the average brightness of the cube. The RGB values of the squares are 
then compared with a pre-set value for each colour. The colour which most closely resembles the 
square is then assigned to that square. The method returns an array of the colours that it believes 
each of the squares corresponds to. The pre-set values for each of the colours was calculated by 
taking images of the cube under varying degrees of light. The colours of the squares on the face of 
the cube were know by the system and so hundreds of images could be taken which could then be 
normalised and the average values could be calculated.

The fixColours method was then used to identify when there were too many squares of one colour. 
The method identifies any colour which has too many squares assigned to it and attempts to rectify 
the error by calculating the square which most closely resembles a different colour. The method is 
run until there are nine of each of the colours or it has attempted to correct the squares 
unsuccessfully one hundred times. The method can not guarantee that the squares can be correctly 
identified and new images of the cube are taken if it fails to find the problem. The method may not 
identify a problem if two of the squares have been badly identified but there are still nine of every 
colour. This problem will be amended later by the cornerAndEdges method and new images will be 
taken.

The cornerAndEdges method is used to identify the configuration of the cube by calculating the 
unique corner and edge pieces based on the colours of the squares that it is given. The method 
contains arrays of the unique pattern of each of the eight corners and the twelve edges. For each of 
the corners of the cube the method calculates the three colours that are present at that corner 
according to the array of the colours of the squares. The three colours are then compared with each 
of the eight corner pieces to identify the orientation and position of each of the corners. This is 
repeated for the twelve edge pieces to find the overall configuration of the cube. If a corner or edge 
can not be identified then an error must have occurred previously and so new images of the cube 
must be taken.

4.3 Hough Transform
The HoughTranform Class begins with a simple Sobel Edge Detector which produces an edge map 
of the intensity and angle of the edges of the image. The intensity i and angle α can be  calculated 
from the gradient of the horizontal Gh and vertical Gv components of the edges using these 
equations:

i  =  √ (( Gh ^ 2) + ( Gv ^ 2 ))

α = arctan( Gv / Gh )
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space 



The Hough Space is then created, an example of which can be see in Figure(12). To improve the 
speed of the system without loosing too much accuracy to be able to identify the cube, the Theta 
values, which were on the x axis, were limit to 180 different values so that one each x coordinate 
represented 1ᴼ. The possible Rho values were limit to the size of the image and each integer value 
of Rho was represented by a value on the y axis. This was calculated by using finding the distance 
corner of the image to the opposite corner using Pythagoras' Theorem. The Hough Space was 
accumulated by raster scanning across the edge map, if an edge intensity is greater than 500 then the 
point  was used. The threshold of 500 was selected as the true values of the lines of the Rubik's cube 
had edge intensities greater than that value. The use of a threshold reduces the number of unwanted 
values that are accumulated in the Hough Space, this will reduce the required processing power and 
increase the visibility of the correct lines. The positions corresponding to lines through the point 
that varied from the estimated angle by less than 22ᴼ were increased by the intensity of the edge 
map at that point. For a point on the edge map with coordinates (x, y) the values in the Hough Space 
with the coordinates  ( θ , r ) are increased by using the equation:

x cos θ + y sin θ = r`

Once the values of the Hough Space has been accumulated the butterfly filter is raster scanned 
across the  Hough Space and the value in the Hough Space is changed to a convolution of the filter 
at that position.

4.4 Template Matching within the Hough Space
The program must identify the position and orientation of the Rubik's cube by attempting to find the 
lines that refer to it within the Hough Space. With little knowledge of Hough Transformations the 
Rubik's cube does not appear to stand out in the Hough space. The Hough space can be noisy so the 
method for identifying the Rubik's cube must be robust. Single lines are fairly easy to identify 
within the image as the higher values in the Hough space represent the lines in an image. The 
position of the value in the Hough Space will correspond to the two variables Rho and Theta. 
However, it is far more complicated to identify a Rubik's cube within a Hough Space as the twelve 
lines that represent a Rubik's cube must first be identified. A single line in the image could represent 
a line of the Rubik's cube, but without the context of the other lines a system could not tell if it is 
part of the Rubik's cube. There are four variables that represent the position and orientation of the 
Rubik's cube. The xOffset, yOffset, the angle about the origin Theta and the size of the cube

The twelve lines of the Rubik's cube can be represented by their Rho and Theta values. As 
previously mentioned, the lines that can be used to identify the Rubik's cube are structured as two 
sets of six parallel lines, where the sets of lines are perpendicular. This means that for each set of 
parallel lines the Theta values are the same, the sets of lines differ by 90ᴼ from each other. The 
Theta value of the first set of lines identified is represented by the angle variable and can be 
increased by 90ᴼ to find the Theta value of the other set of lines. This means that one of the two sets 
of lines must have a Theta value less than 90ᴼ and this set of lines will be identified first.

The size variable represents the scale of the cube by changing the distances between the lines of the 
Rubik's cube; the distance between each line is not equal but all will be scaled equally given the 
size. The size value that specifies the distance between the lines will be the same for both of the sets 
of lines. An array of the ratios of the distances between the Rubik's cube lines was used to calculate 
line distances, by multiplying the value in the array by the size. This ratioArray was essential in the 
calculation of the cube position and appears in the system as approximately (0,7,8,15,16,23).

The xOffset marks the lowest Rho value of any line within the first set of parallel lines. The yOffset 
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marks the lowest Rho value for the second set of parallel lines. The Rho values can then be 
calculated for the other lines of the cube by using the offset, size and ratioArray. The Rho and Theta 
values of the xth line of the Rubik's cube will be equal to:

For the first set of lines.
Theta = angle;
Rho = xOffset + size*ratioArray[x];

For the second set of lines.
Theta = angle+90;
Rho = yOffset + size*ratioArray[x];

The system must calculate the size, angle and xOffset of the first set of lines in the Hough Space, 
this is achieved using a Template matching based approach to identifying the values. Templates are 
created for the six Rho and Theta values that correspond to varying size, angle and xOffset values.

4.5 Identifying the First set of parallel lines
The Hough Space is repeatedly raster scanned by a template which increases in size with each 
iteration until the maximum size value is reached. The maximum size value was approximated by 
viewing the cube with the web cam and testing the ranges of the size of the cube based on the 
camera's field of vision. The angle  value begins at 0ᴼ and iterates through to 89ᴼ in 1ᴼ steps, as the 
first set of lines must have a Theta value between 0 and 90. The xOffset is incremented from 0 to the 
height of the Hough Space minus the height of the cube, as the whole cube must be included in the 
image for it to be identifiable. The height of the cube is calculated by multiplying the current size by 
the final value in the ratioArray (i.e. 23), which refers to the line of the cube with the largest Rho 
value. A score is calculated from the sum of the six points of the template. The size, angle and 
xOffset values that produce the largest score (and therefore the best match) are recorded.

4.6 Identifying the Second set of parallel lines
The yOffset must then be found within the Hough Space by creating a new template in which the 
size and angle values will not vary as this template is moved across the Hough Space. The Theta 
value is set to 90 + angle from the previous best recorded score. The yOffset is then incremented 
from 0 to the height of the Hough Space minus the height of the cube. The yOffset value that 
produces the largest score is recorded. This will determine the position of the Rubik's cube if there 
is little noise in the image. 

This approach was tested several times and it was uncommon for the position to be identified 
correctly. To improve on this the template of the Hough Transform was therefore blurred to include 
the nearby values at each of the points originally calculated, but reducing the influence that they 
have on the final result. This is to accommodate the template not matching each of the lines of the 
Rubik's cube exactly. 

4.7 Improving the Template Matching
The greatest score was often produced when one of the lines of the template correlated with a single 
strong edge in the background. So a disproportionately strong line could swamp values for the other 
lines. This problem was tackled by restricting the total scores which were recorded, discounting 
those where all six of the sub scores did not contribute significantly (providing at least 8.4% of the 
total). 

Occasionally the system would still incorrectly identify the cube due to noise in the Hough Space 
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and so, to test the system, the ten greatest scores produced by the identification of the first set of 
parallel lines was recorded. The template that produced the greatest score would often match the 
lines of the cube. When the ten highest scoring templates were analysed  it was almost certain that 
one of them would correctly identify the lines of the cube. 

The method for identifying the second set of parallel lines had to be modified to accommodate the 
changes to the previous method. The method had to be repeated with the variables of each of the top 
ten scores from the previous method. The twenty five overall greatest scores were recorded so that 
they could be analysed.

4.8 Back Project onto Edge Map
The scores that were calculated by the system were then back projected onto the edge map to 
analyse the results produced when identifying the parallel lines. To do this a template was created 
that reflected the edges of the cube on the edge map. The template was position and orientated in 
accordance with the results. The system then counted the occurrences of strong edges that mapped 
to a point of the template. A value could then be return that represented the percentage of the points 
of the template that mapped to strong edges. Figure(13)

4.9 Adapter to robot.
The adapter to robot class must convert the moves that have been calculated in the solver class into 
manipulations of the robotic hands. For each hand variables are used to represent the orientation of 
each hand, whether it is open or closed and overall rotation from its original position. The moves 
from the solver class are in the format of an array of strings with each variable in the array 
representing a manipulation of a face of the cube. The letter in the string represents the face of the 
cube that is to be rotated. The character after this letter is the type of rotation that is to be done on 
the face of the cube. A letter on it's own represents a 90ᴼ clockwise rotation, a “2” following the 
letter represents a 180ᴼ rotation and a “ ' ” following the letter represents a 90ᴼ anti-clockwise 
rotation of the face . For example a 90ᴼ clockwise rotation of the left face would be “ L ” and a 90ᴼ 
anti-clockwise rotation of the down face would be “ D' ”. 

19

Figure 13: The template is back projected onto the  
Edge Map



The class must keep track of the positions of the faces of the cube and will do this by keeping an 
array of the positions and updating it whenever the cube is rotated. Whenever a hand is rotated one 
of three different things could be occurring, a manipulation of a face, a rotation of the whole cube or 
the hand is being readjusted. If both hands are closed whilst a rotation occurs the cube is being 
manipulated, if the hand being rotated is closed whilst the other is open the cube is being rotated, if 
the hand being rotated is open whilst the other is closed then the hand is repositioning so that it can 
hold the cube. This is calculated every time a rotation of a hand occurs so that the position of the 
cube can be updated. After a rotation the class must update the orientation of the hand so that it 
knows when a hand is vertical or not and the overall rotation must also be updated. The class will 
need to ensure that the hands are nether both open at the same time, must never be closed whilst 
both are in the vertical position and must reduce the overall rotation in a given direction whenever 
possible. The direction of the rotation of the hand will not matter when the hand is being rotated 
180ᴼ and also when the hand is open and is being repositioned between vertical or non-vertical. 
This can then be used to try to reduce the overall rotation from the original position.

The cube is orientated with two faces at the bottom, both at 45ᴼ to the ground, these are the faces 
held by the hands. Once the required face and move are calculated the adapter to robot class must 
rotate the required face to a position where it can be manipulated. It does this by having the two 
hands positioned at the bottom of the cube and rotating the required face of the cube to the bottom. 
For a face to be manipulated the hand which is not holding the manipulated face must not be 
vertical as it would get in the way of the manipulation. This must be acknowledged when moving 
the face to be manipulated to the bottom of the cube. The face that is required to be manipulated can 
be in one of six different positions, or three pairs of positions, the top, the sides and the bottom. 
Figure(14) The face will not need to be moved if it is already in the bottom position. The remaining 
four positions are two pairs of positions which mirror each other. What is meant by this is the 
movements required by the hands to get the top face to the bottom will be the same for both of these 
faces but the movements will be done by the opposite hands. For instance to get the top left face to 
the bottom right position a 180ᴼ rotation is required by the left hand. This is mirrored for moving 
the top right face to the bottom left position as a rotation of the right hand is required. This can also 
be applied to the repositioning of the faces on the sides of the cube as they too are mirrors of each 
other.
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4.10 Send to NXT and On   NXT   
It was difficult to get the correct syntax for this part of the system and so small snippets of code 
were taken from the website[6].
The onNxt class of the system waits for a connection to be established with the computer and uses 
BufferedReader and BufferedWriter methods to communicate with the computer. The class waits for 
a message to be sent,  the message is interpreted as a move which is executed or a command to stop 
the connection. 

The sendtoNXT class creates a Bluetooth connection with a NXT brick initialises BufferedReader 
and BufferedWriter methods in the constructor. The moves can then be sent to the NXT bricks using 
a method in the sendtoNXT class.

5.0 Results
5.1 The Hough Transform
The Hough Transform class involves identifying the cube within the image and the ability of the 
identification needed to be tested. The variables which represent the orientation and position of the 
cube are calculated in the Hough Transform. These variables are back projected onto the edge map 
and a score is returned which represents the similarity between the back projection and the edge 
map. To calculate whether the Hough Transform has correctly identified the cube within the image 
the score compared with a pre-set threshold of 70 which the score must be greater than for the result 
to be considered a success. To test the Hough Transform the cube is held in front of the camera and 
the program tries to identify the cube 1000 times, the time taken to run this was recorded. This was 
run three times with varying degrees of light. It should be noted that the back light from the screen 
casts some light on the cube. The cube was being held in front of the screen by hand and so the cube 
would move around slightly, this is how it is to be used in the system and so is a useful way of 
testing the class.

Low Light Standard Light Bright Light
Success Rate 78.30% 82.40% 75.40%
Time Taken (s) 768 762 766

The result of this test showed the cube was on average correctly identified 78.7% of the time and 
took 765 seconds to run the tests. This test was repeated with no cube visible in the camera this 
resulted in none of the one thousand iterations identifying a cube when it was not present. The time 
taken for one attempt at finding the cube t and the probability of finding the cube p can be used to 
calculate the average time it will take to identify the cube. The minimum time taken will be t and 
the average number of failures before the first success can be calculated using  ( 1 - p ) / p.  The 
average time taken to produce a successful result will be:

( 1 – p ) / p * t + t = Average Time

p = 0.787 and t =0.765 

Therefore:
Average Time = (0.213 / 0.787) * 0.785 + 0.765
Average Time = 0.972 seconds
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5.2 Colour Calculation and Cube Configuration
The getColour class calculates the the configuration of the cube based on images of the six sides of 
the cube. There are three parts of the class where the ability of a method should be tested, getting 
the colour of the nine squares of the cube in an image, ensuring that there are nine or each colour 
and finally calculating the configuration of the cube from the colours. The first test was performed 
by placing the cube in a fixed point in front of the camera, the system was told the position of the 
cube and had to calculate the colours of the squares. The test produced three results for each face of 
the cube and this was repeated fifty times on different faces of the cube. All of the colours of the 
cube were correctly identified in 126 of the 150 tests. It should be noted that tests would get the 
same results when they were initially repeated. Of the 24 remaining tests only one of the colours 
was incorrectly identified. 

To test the ability of the system to correct the colours of the faces, images were taken of the six 
faces of the cube. The colours of the squares were then calculated for each of the six sides. The 
number of each of the six colours was counted,  if there were nine of each colour the cube was 
assumed to be correctly identified. The system then selected one of the 54 squares at random and 
changed them to one of the other five colours at random. The test was also completed with two and 
three squares selected and changed. The fixColours method then tried to correct the colours of the 
image and the result was compared to the original value to calculate the ability of the method. This 
was repeated 1000 times on one cube and repeated for five different cubes. There were 15000 tests 
in total.

Number of squares changed.
One Two Three

Unsuccessful 91 334 687
Failure Rate 1.80% 6.70% 13.70%

The negative results of these tests were further examined and it was found that if two squares 
swapped colour so that there will still nine of each colour then the system did not identify a problem 
and so did not correct it. (diagram) This would later be resolved when the class attempts to calculate 
the configuration of the cube in the getCornersAndEdges method and finds that it is not possible, 
the images of the cube would then be retaken.

The ability to calculate the configuration of the cube was difficult to test as the colours could not be 
positioned at random due to the unique pieces of the cube. The Rubik's cube is stored in the same 
manner for the solver class as the output from the  getCornersAndEdges method and the 
writecolour method converts the configuration of the cube into the colours of the squares. To test 
the getCornersAndEdges method a cube was created by the solver class, it was then shuffle and the 
configuration noted. The writecolour method creates a string of colours which is formatted 
specifically for the getCornersAndEdges method. The getCornersAndEdges method then attempts 
to calculate the configuration and the result is compared to the original configuration. This was 
repeated 10000 times and was successful ever time. To check that the test was working correctly a 
single not central colour was change before the getCornersAndEdges method was run and the 
method failed 100 out of 100 times. The central colours were not changed as they would not affect 
the configuration of the cube.

The testing of the getColour class was difficult because in the final system the robot rotates the cube 
and the control class will take image of the six sides which are then possessed. At the time that the 
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getColour class was tested the robotic part of the system was not complete. The author had to 
manually manipulate the cube and ensure the position was correct when the images were taken and 
so some human error could have occurred.

The chance of success can be calculated by finding the chance of the colour of a square being 
incorrectly identified and calculating the chance that the fixColours method will fix the problem. As 
the getCornersAndEdges will always succeed this does not need to be factored into the equation. 
The probability PXY of a colour being incorrect identified exactly X times given the number of 
faces of the cube Y and given the chance of failure on one face being P can be calculated using the 
equation:

(( Y ! / ( Y - X ) ! ) / X ! ) *  ( P )^X * (1 – P )^( Y - X  ) = PXY

The probability P of the failure on one face was calculated previously as 126/150 or 0.16.
The number of sides of the cube Y is always 6.
The X value will vary between 0 and 3 as these values were tested for the fixColours method and 
the chance of 4 failures or more is less than 1%.

The chance of X failures is calculated and multiplied by the values calculated by the tests done in 
the fixColours method Pfix these can be summed to find the overall chance of success.

Where X varies from (0 to 3)
PXY*Pfix ~ Overall chance of success

when X=0
(1 – 0.16) ^ 6 = PXY = 0.351
0.351*1 = 0.351 (chance of successful fixColours method is 1 if  X is 0)

when X=1
6 * (0.16) *(1-0.16)^5 = PXY = 0.401
0.401*(1-0.018) = 0.394

when X=2
((6*5)/2) * (0.16)^2 * (1-0.16)^4 = PXY = 0.191
0.191*(1-0.067) = 0.178

when X=3
(120/6) *  (0.16)^3 * (1-0.16)^3 = PXY = 0.049
0.049*(1-0.137) = 0.042

0.351+0.394+0.178+0.042 = 0.965  = chance of success

The equation used before to calculate the average time taken to successfully identify the Rubik's 
cube in the image can be used to calculated the average time to calculate the configuration of the 
cube. However for this example the time taken for a failed attempt tf is higher than the time taken 
for a successful attempt ts. The robotic hands must rotate the cube for images of each side to be 
taken. There are eleven rotations of the robotic hands in the process of taking the images and it 
takes approximately 0.9 seconds for a each rotation. It also requires eleven rotations to reset the 
cube and hands to the original positions if the class cannot correctly identify the cube. The equation 
to calculated the Average time to successfully identify the cube will be:
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( 1 – P ) / P * tf + ts = Average Time

ts = 11*0. 87 =9.57
tf  = 22*0.87 = 19.4
P = 0.965

(1-0.965)/0.965*19.4+9.57 = Average Time = 10.27

5.3 Cube Solver
The solver class of the algorithm was tested by shuffling the cube, calculating the manipulations to 
return the cube to its solved state, performing the manipulations and then testing if the cube was 
solved. The cube was shuffled by selecting twenty five manipulations at random and performing 
them on the cube. The part that required testing was the solve and optimise methods which were run 
once the cube had been shuffled. This produced the series of manipulations that were required to 
solve the cube. These manipulations were then performed on the cube and a checkSolved method 
was used to check if the cube was in the solved state. A counter was incremented every time that the 
cube was not correctly solved. This was run 30,000 times and did not fail on one of the occasions. 
The ability to test the solver class was also tested by purposefully adding one incorrect 
manipulation to the cube before the checkSolved method was run and of the 1,000 times the test was 
run the checkSolved method correctly identified that the cube configuration was not solved.

The time taken to solve 10,000 Rubik's cube was recorded as 1.27*10 13 nanoseconds which is just 
over three and a half hours with an average time of 1.27 seconds per cube. The average number of 
manipulations was also recorded and the cube on average requires 77.6 manipulations to solve.

The cube solver took 77.6 manipulations on average to solver the Rubik's cube this value can be 
used by the adapter to robot to calculate the average number of robotic manipulations. The solver 
was expected to solve the Rubik's cube in far fewer manipulations than this, it is due to the one of 
the four parts of the Friedrich methods is performing poorly. 

The Adapter to robot class would convert manipulations from the solver class into movement by the 
robotic arms. The class was tested by creating a virtual cube and testing the manipulations and the 
order that the manipulations are performed. The program randomly generated a series of 77 
manipulations and then attempted to perform them. The class tracked the position of each of the 
faces whilst the cube was being manipulated, calculating when a manipulation were performed and 
the face that it was performed on. The manipulations which were actually performed were then 
compared with the manipulations which were randomly generated to determine the ability of the 
Adapter to robot class. The test was repeated 100000 times and it was found to be correct every 
time. The test was modified to check if both hands were simultaneously open or if both hands were 
close and in the vertical position. This was done to ensure that errors would not occur due the cube 
being dropped or the two hands colliding. The test was repeat, of the 100000 times no problems 
occur with the ability of the movement or the occurrence of errors.

When designing the system it was found that if a hand was rotated too far in one direction from the 
original position then cable to the hand would become too taught and the hand would no longer 
rotate .This occurred when the hand was rotated 720ᴼ, however it is best to be cautious and so the 
system was tested at 540ᴼ to reduce to lower risk of problems caused by tangled wires. The class 
was also tested to check how often the hand would rotate to 540ᴼ or more in one direction. The 
hands would rotate to 540ᴼ or more 4.5% of the time and so the robotic arms may not work 
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correctly. After this test it was decided that the code should be modified so that if the rotation in one 
direction was greater than 360ᴼ then the hand would be rotated back 360ᴼ  to reduce the tension on 
the wire. The testing was then repeated and the hands were never rotated to 540ᴼ or more from the 
origin.

5.4 Robotics
 A test was going to be run for the time taken for the software to convert manipulations into 
movements however it was clear that the time would be negligible due to the time taken to do the 
tests 10000 taking approximately 3 seconds. Finally the number of moves, opening and rotating the 
hands, that are required to perform 77 manipulations was tested. When the test was run 100000 
times it required 324 movements on average by the robot to perform manipulations. The figure of 
324 movements can be multiplied by the time taken for a movement 0.87 seconds to estimate that 
the manipulation part of the system will take on average 281.9 seconds.

The implications of the results of the testing of the AdapterToRobot class are that it will always 
successfully convert a series of manipulations of the cube into a series of movements of the robot 
which will not overly rotate any of the wires and will not cause collisions between hands. This has 
no implications on the ability of the physical robot arms and is only testing the software part of the 
system. 

The robotic part of the system failed to properly hold the Rubik's cube and so the cube could not be 
physically manipulated. Every programming part of the system that was required worked correctly 
however the engineering part of the project was unsuccessful. This meant that the system could not 
be tested as a whole. However the average time that it would take for the system to run could still 
be estimate.

Hough 
Transform

Configuration 
Calculation

Cube Solver Robotic
manipulation

Total

Time Taken(s) 0.97 10.27 1.27 282 294.4

The time taken for the each of the sections of the system conforms to expectations as sections 
involving the rotation of the robotic arms take far longer. The total time take is most heavily 
influenced by the final section of the project which is the manipulating of the Rubik's cube to return 
it to a solved state. The Robotic manipulation time could be decrease by reducing the time taken to 
perform a manipulation of the cube, reducing the number of  manipulations required to solve the 
cube and producing a more efficient way of adapting the manipulations of the cube to the rotations 
of the robotic arms.

The project generally was quite successful as all of the programming parts of the system were 
successfully implemented in the system. The approach to this project was suitable as the project was 
designed and implemented in iterations, which made the design more flexible. The programming 
language Java was used for the project and was appropriate the the was easy to access open source 
software available for both the web cam and the Lego Mindstorms.

6.0 Future Work
The final system did not function correctly due to the robotics arms being unable to deal with the 
weight of the cube. If further work was carried out on this system then improving the robotic arms 
would be a priority. The robotic arms were severely limited by the available construction materials, 
and a large amount of time was wasted designing the robot. The robotic arms could be improved 
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greatly by constructing them from stronger materials or improving the engineering ability of their 
designer. 

Improvements to the cube solver were originally planned to occur once the image processing 
section of the system had been completed. However the time taken to implement the image 
processing part of the system took longer than expected as the reliability of the identification of the 
cube had to be improved. The cube solving method is divided into four separate parts and three of 
the four sections are efficient, however the second method solveCorners when tested was on 
average responsible for 54 of the 77 manipulations. This is the second highest priority if 
improvements are intended to be performed on the system.

The Hough Transform and Colour configuration sections of the system could be generally improved 
by increasing the chance of successfully identifying the cube or reducing the the time taken to 
identify the cube. However these sections have quite high chances of identifying the position or 
configuration of the cube and they take very little time, so this would have little effect on the system

Some additional features that could be added to the system in the future is the addition of one or 
more robotic hands to try to increase the speed of the system. 

7.0 Conclusion
In conclusion the system was successful as every computing part of the system worked correctly 
and the aims of the these parts of the system have been met. The robotic part of the system does not 
solve the Rubik's cube which is a failure of that part of the system as it was key to the project. The 
parts of the project which do work, function quite well as the have low failure rates and ways to 
return to the original cube position if a problem occurs.

8.0 Reflection
Many things have been learnt from the creation of this project, this does not simply include 
improving my programming ability, but recognising the change in my ability to work on large 
projects over a long time scale. It is very difficult to manage the timing of the project as I can get 
stuck trying to improve a specific part of the system, before I more on to the next section. I should 
use Gantt charts and milestones to help decide how much time to spend on each part of the system. I 
often struggle to keep these charts updated and so there should be a regular schedule for updating 
any progress on the chart so that the project does not fall behind schedule. The time management 
skills learnt from this project will be transferable to almost all of the projects I will be a part of in 
the future.

One of my strengths in this project is my great interest in it, I really enjoyed implementing the 
solver of the Rubik's cube and the image processing classes as there was a large amount of problem 
solving involved. The solution to the problems in this system were often unclear, in the example of 
the Rubik's cube, it was very difficult to view the current state of the cube in the program. This 
made it difficult to test the system and a small piece of code which displayed the cube had to be 
written to show the current configuration of the cube. This was not an obvious way of resolving the 
problem and this may help me think of different ways of solving problems in the future.

I was in communication with my supervisor every via email week and would occasionally ask him 
questions on certain aspects of the project. The meeting that were held every week helped me to 
keep the project from falling behind schedule and ideas on the projects could be expressed.
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The parts of the project which I would have change would be the robotics part of the project I found 
it very time consuming and connecting the NXT bricks to the computer was annoying to implement 
as it was difficult test for errors. I am also unhappy that the robotic part of the system did not work 
as if felt it. Take attention away from the working parts of the system, this will also make it difficult 
to demonstration the working parts of the system.

Appendices
The Java code is contained in these files and can be found in the archive 
adapterToRobot.java
camFeed.java
control.java
getColour.java
houghTransform.java 
onNXT.java
sendToNXT.java
solver.java

Diagram 1.
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