

Final Report
Concurrent Thread-based Web Crawler (“UniCrawler”)

Michael Graham

ABSTRACT

This final report discusses the final design and implementation of a piece
of crawling software written entirely in Java called “UniCrawler”. The
report will contain information regarding the implementation and design
approach used for crawler components specific to this project, testing
techniques carried out, and any issues that arose whilst implementing
the typical generic crawler components. Finally, a brief analysis of the
crawler and any future work or improvements that could be made to the
final piece of software will be discussed.

 Page 2 of 31

Acknowledgements

I would like to thank my supervisor Professor David W. Walker, for taking the
time to have regular meetings with me to discuss and guide me through this
project.

I would also like to thank my moderator Professor Paul L. Rosin, for taking the
time to critically evaluate my project hand-ins and provide valuable feedback.

Without the School of Computer Science & Informatics at Cardiff University this
project would not have been made possible. I’d like to thank all faculty staff
members for their time and dedication to their students.

Finally, I would like to dedicate this work to my parents and family, for
supporting me throughout my life’s education.

 Page 3 of 31

Table of Contents

Acknowledgements .. 2

[1] Introduction ... 4

[2] Design ... 5
[2.1] User Requirements ... 5
[2.2] Standard Crawler Component Overview .. 5
[2.3] UniCrawler Components ... 6
[2.4] Configuration Design ... 7

[2.4.1] Crawler Configuration Properties .. 7
[2.4.2] Concurrency Configuration Properties .. 8
[2.4.3] Downloader Configuration Properties ... 8
[2.4.4] Misc. Configuration Properties .. 9

[2.5] Design Justification ...10

[3] Implementation ... 11
[3.1] UniCrawler’s Environment ..11
[3.2] UniCrawler’s Types ...12
[3.3] Crawler Workers ...13
[3.4] The Frontier Component ..14
[3.5] The Downloader Component ..15
[3.6] The Robot Exclusion Protocol Implementation ...17
[3.7] The Parser Implementation ..17
[3.8] The Configuration Implementation ..18
[3.9] Implementation Issues ..19

[4] Results and Evaluation .. 20
[4.1] Testing ...21
[4.2] Executed Crawls ...21

[4.2.1] Crawl Limited to Seed URL Host .. 21
[4.2.2] Crawl Limited by Depth ... 22

[4.3] UniCrawler Limitations ...23
[4.3.1] Crawler Limitations ... 23
[4.3.2] Frontier Limitations .. 23
[4.3.3] Downloader Limitations .. 24
[4.3.4] Parser Limitations .. 24

[4.4] Evaluation ..25

[5] Future Work ... 26

[6] Conclusion ... 27

[7] Reflection ... 28

Appendices ... 30

References .. 31

 Page 4 of 31

[1] Introduction

Whilst web crawlers at a glance seem relatively straightforward from a logical
point-of-view, designing and implementing an efficient and traditional crawler
that can be compared to the likes of Google1 and other large web corporations is
a complex task. The objective of this report is to describe my design and
implementation of a generic Web Crawler (named “UniCrawler”) – which in
terms of functionality and performance is very simplistic compared to other
large-scale corporation web crawlers.

In terms of extensibility, UniCrawler has been designed to allow certain generic
crawler components to be replaced by custom implementations (such as
swapping the frontier component for a custom-made frontier component).
Making use of various Object-Orientated programming techniques has made this
possible; meaning components within the crawler can be re-implemented by
other third parties.

In terms of scalability, the current implementation is very simplistic and has not
been designed to scale up to the entire web. Although the multi-threaded nature
of UniCrawler’s architecture means it can discover new pages on the web at a
significantly fast rate, the use of in-memory data structures means a crawl could
be limited due to hardware constraints. This will be described in more detail
under the limitations section of this report.

The primary motivation for this project was to gain a better understanding on
web crawling architecture and to appreciate the complexity involved within
writing an effective crawler. However other various motivations such as
improving my java knowledge, improving my effectiveness of concurrent
programming and providing my supervisor with the requested piece of software
also apply.

The remainder of this final report is separated into appropriate sections. The
next section (section [2]) describes the design choices chosen for UniCrawler for
specific web crawler components. Section 3 compliments the previous section
(crawler design) and describes the implementation stages of UniCrawler in a
finer level of detail, referring to any concepts and ideas implemented throughout.
Any problems that arose whilst implementing UniCrawler will also be discussed,
as well as how those problems were initially overcome. Section 4 discusses the
results of preliminary crawls using UniCrawler, as well as any tests carried out to
ensure UniCrawler functions as expected. In this section, UniCrawler will also be
critically evaluated based on any preliminary crawls and tests, commenting on
any strengths or weaknesses of the initial implementation and design. Section 5
will comment and discuss any future work that is felt would be required to
further improve upon the current implementation. Finally, section 6 provides
any conclusions on the project overall.

1 http://www.google.com/ - One of the worlds leaders in Crawling / Indexing

http://www.google.com/

 Page 5 of 31

[2] Design

The overall aim for UniCrawler’s design is to keep components relatively simple
in terms of complexity and operation. Within the design of UniCrawler you can
expect all of the typical crucial web crawler components, separated into their
own respective Java packages within the project. This section describes the
complete component overview design approach taken, and where appropriate
comments on design alternatives will be included.

[2.1] User Requirements

From the offset it was necessary to identify specific user requirements for the
intended crawler. The original project description regarding the implementation
of a Web Crawler played an important role in determining the user
requirements. The following project description for UniCrawler:

“In this project you will develop a multi-threaded Java program for
crawling the Web that. Each web page encountered will be processed
in some way that is dependent on its content. The software will offer
options for constraining the search; for example, to just one web
site.”

Upon studying the project description, I was able to determine several
user requirements (in this case; for my supervisor) that was required to
be included whilst designing UniCrawler:

1. The crawler software must be implemented using the Java programming

language.
2. The crawler software must make use of concurrent programming

techniques (Threading).
3. The crawler software must parse any downloaded content.
4. The crawler must incorporate different search constraints, which can be

triggered or specified by the end-user.
5. The crawler must incorporate the typical crawler components and

perform as a traditional web crawler.

[2.2] Standard Crawler Component Overview

Re-capping on the fundamental crawler components that are required for a
functional crawler as stated within the Interim Report, the basic sequence
executed by a crawler is to take a singular or multiple seed URL’s and execute the
following steps repeatedly: poll for a URL from a given storage method,
download the document that is associated with the polled URL and parse the
given document independently depending on its content (usually we want to
extract any links within the document). For all of the links extracted from the
document, each URL is required to be normalized to an absolute URL and then
added to the stored URL list - unless the URL has been discovered previously.

 Page 6 of 31

Given this simple outline of a crawler, whilst designing UniCrawler it was
necessary to identify crucial components required for basic functionality:

 Crawler component to store URLs (named “Frontier’s” in UniCrawler)
 Crawler component(s) to download documents (named “Downloader’s”

in UniCrawler)
 Crawler component(s) to extract hyperlinks from downloaded documents

(named “Parser’s” in UniCrawler)

Although there are several other components related to UniCrawler that extend
its functionality as a “basic” crawler, the components listed above are crucial for
basic web crawler functionality. Other components will be described later within
the report.

[2.3] UniCrawler Components

Figure 1 shows the main components of UniCrawler. As shown, each initial crawl
is handled by multiple CrawlerWorker instances, where its thread number
identifies each worker. The maximum amount of CrawlerWorker instances is
determined within the crawler configuration by the end-user.

Figure [1] – UniCrawler’s main components.

The first stage of the crawl process is to poll for a URL from UniCrawler’s URL
Frontier component to be downloaded by the Downloader component. In the
initial implementation, there is only support for downloading of webpages using
the HTTP protocol – however the default downloader component (Webpage
Downloader) inherits from an available interface allowing for customization, and
more Downloader components to be integrated into UniCrawler in the future.
The downloader component continues to download the requested URL and
returns its result back to the Crawler Worker thread that invoked the original
download request.

Crawler Worker Frontier

Downloader

Parser

INTERNET

URLS

 Page 7 of 31

The second stage of the crawl process is to pass content downloaded from
UniCrawler’s downloader component onto the relevant parser component. In the
initial implementation, there is only support for parsing of page hyperlinks,
however much like the UniCrawler’s downloader component each parser
component inherits from an available interface allowing for further parsers to be
implemented within the future.

The third and final stage of the crawl process consists of the CrawlerWorker
traversing through the parsed results returned via the parser component. Here,
several constraints are checked such as whether or not the URL has previously
been discovered by UniCrawler, if the max crawling depth has been reached as
set via the user configuration, or if the hyperlink discovered has been disallowed
using the target hosts robot exclusion protocol (robots.txt)[1]. If all constraints
are passed, then the traversed hyperlink is en-queued within UniCrawler’s URL
frontier, ready to be crawled by another crawler worker thread later on.

The above top-level overview of UniCrawler’s design excludes explicit
implementation details. Designing and making use of data structures that can
handle large amounts of datasets efficiently consists of a wide range of
engineering complexities. More detailed information regarding UniCrawler’s use
of data structures and finer design details can be found within the
Implementation section of this report (Section 3).

[2.4] Configuration Design

There are many aspects of UniCrawler that can be configured to tailor an
individual’s needs when performing a crawl. Since the project requirements
state that a crawl must have the ability to be constrained, there must be a simple
and easy method of configuring these constraints as well as any other
miscellaneous properties that will affect UniCrawler’s operation.

[2.4.1] Crawler Configuration Properties

The ‘Crawler properties’ section of UniCrawler’s properties file contains
configurable properties relating specifically to how each crawler worker
behaves. It allows for customization of what frontier component to use, as well
as any search constraints to be applied to each crawler worker. Figure 2 contains
a table listing each customizable property available.

Property Name Data Type Description
crawler.seedurl String The initial seed URL for the crawler to start the

crawl. This must be in the form of a valid web
address (starting with ‘http://’).

crawler.maxdepth Integer The maximum amount of ‘hops’ from the seed URL
that should be crawled. If set to ‘-1’, the maximum
depth to be crawled is infinite.

crawler.seedonly Boolean Whether a crawl should be limited to the domain

 Page 8 of 31

specified within the seed URL. If set to true,
hyperlinks not matching the seed URL domain will
be ignored.

crawler.frontier String Location of UniCrawler’s frontier component class.
If the class cannot be found, the default
‘unicrawler.frontier.DefaultFrontier’ component is
used.

crawler.userobotsprotocol Boolean Whether a crawl should take into consideration a
domains robots.txt. If set to false, the
RobotsManager component is not used and
robots.txt for subsequent hosts will not be
downloaded and parsed.

Figure [2] – Table containing UniCrawler’s Crawler-specific configurable
properties.

[2.4.2] Concurrency Configuration Properties

The ‘Concurrency properties’ section of UniCrawler’s properties file contains
configurable properties relating to how the thread pool containing crawler
workers behave. For a more in-depth description of these properties, please see
reference [3]. Figure 3 contains a table listing each customizable property
available.

Property Name Data Type Description
thread.poolsize Integer Number of threads to keep within the ThreadPool.

thread.pooldelay Integer The amount of time to wait before executing a
crawler worker – if crawler worker has been set to
execute after a specific delay (crawler politeness
period).

thread.keepalive Integer The amount of time in milliseconds for threads to
wait after executing a task to see if any more
crawler worker tasks are en-queued.

thread.debug Boolean Whether information should be displayed for
debugging purposes, showing active amount of
crawler workers and various thread pool statistics.

Figure [3] – Table containing UniCrawler’s concurrency properties.

[2.4.3] Downloader Configuration Properties

The ‘Downloader properties’ section of UniCrawler’s properties file contains
configurable properties regarding the downloader component. Figure 4 contains
a table listing each customizable property available.

Property Name Data Type Description
downloader.useragent String The User-Agent used to identify the crawler. The

User-Agent is used by some websites to display

 Page 9 of 31

different information, or for server administrators
to identify possible abuse within their access logs.

downloader.contenttypes Comma
Delimited
String

Content types that UniCrawler should download
when crawling. Multiple content types may be
specified by adding a comma in-between content
types e.g. ‘text/html, application/pdf’.

downloader.followredirects Boolean Whether UniCrawler should follow redirects. If set
to false, redirects will not be followed.

downloader.maxretries Integer The number of times a URL should be retried
upon connection timeout or failure. Once this
value has been reached, the downloader will not
attempt to re-try the download.

Figure [4] – Table containing UniCrawler’s downloader properties.

[2.4.4] Misc. Configuration Properties

The final section of UniCrawler’s configuration design is the miscellaneous
properties. The idea of this section is to limit output to the console window,
which proves useful if debugging specific situations (such as only wanting to see
pages / URL’s that time-out or redirect). Figure 5 contains a table listing each
customizable property available.

Property Name Data Type Description
log.showskipped Boolean Whether UniCrawler should output information to

the console window about URL’s that have been
skipped for various reasons (e.g. in-appropriate
content-type)

log.showresponseerrors Boolean Whether UniCrawler should output information to
the console window regarding URL’s that returned
a HTTP error whilst attempting to download.

log.showmaxdepthwarn Boolean Whether UniCrawler should output information to
the console window if the max depth has been
reached whilst traversing through parsed
hyperlinks. (!WARNING! lots of ‘spam’ outputted
to console when enabled)

log.showseedonlywarn Boolean Whether UniCrawler should output information to
the console if a parsed URL doesn’t match the seed
domain (only applies if crawler.seedonly property
is set to TRUE).

log.showprevcrawledwarn Boolean Whether UniCrawler should output information to
the console if a parsed URL has already been en-
queued and crawled by UniCrawler.

Figure [5] – Table containing UniCrawler’s miscellaneous properties.

 Page 10 of 31

[2.5] Design Justification

When the time came to design UniCrawler’s components, there were initially two
approaches to decide upon in terms of controlling the components and allowing
for extensibility. The first approach being the simpler approach, as explained
within section [2.3]. The second approach was slightly more complex, however
allowed for a greater amount of extensibility. The idea was to implement a
Controller/Manager for each component type (e.g. DownloaderController,
ParserController etc.), which controlled instances of both default component
implementations as well as any other instances of custom component
implementations. This would mean custom components / specialized
components could be instantiated for say, specific domains or content types by
holding all instances within a collection object. Figure 6 provides a diagrammatic
view of what this may have looked like if implemented.

Figure [6] – Simple representation of how Component Controllers/Managers
may have looked.

Another design justification taken into account was the design of UniCrawler’s
configuration. Since there is a relatively large number of configuration options
for UniCrawler, using a properties file approach over passing a number of
arguments via command line seemed more appropriate in terms of ease-of-use.
The initial design of UniCrawler’s configuration was passing one properties file
via a command line argument, which contained both the Crawler’s logging
component (log4j)[2] configuration as well as UniCrawler specific configuration
– however this was changed as log4j is a separate 3rd party library with separate
configuration settings and seemed to clutter / complicate the configuration of
the crawler. Since the average user would not want to change the log4j
configuration, UniCrawler’s configuration was moved to a separate properties
file and two command line arguments are now passed to UniCrawler; the log4j
library configuration file followed by UniCrawler’s properties file.

GenericController

getGenericInstance() Instances

addCustomInstance
(identifier, instance)

GenericInstance
e

 Page 11 of 31

[3] Implementation

This section of the report compliments the above section (Section 2, UniCrawler
design) however provides more intricate details on the implementation of each
of UniCrawler’s components. Details such as data structures used and
implementation issues for each component will be mentioned and justified
where possible.

[3.1] UniCrawler’s Environment

The idea of UniCrawler’s environment class is to provide a base class where
crucial component instances can be held and retrieved easily. The design pattern
is similar to the factory design pattern, where functions can be called to return a
specific instance of a component.

The environment class also handles instantiation of all UniCrawler components
ensuring appropriate arguments are passed and all components instantiated
without returning errors / exceptions.

One notable feature of the environment class is the ability to swap out the
frontier component depending on the crawlers configuration file. The
setupFrontier function makes use of Java’s reflection techniques to construct an
instance of a custom frontier implementation. If the class cannot be found using
reflection, then the default frontier is automatically instantiated instead of
terminating the environment prematurely. Once the frontier is constructed, the
seed URL is then en-queued within the constructed frontier. Figure 7
demonstrates the reflection technique used to pass arguments to a custom
frontier instance.

Constructor<?> frontierConstructor;

try {

frontierConstructor =

Class.forName(this.config.getFrontierClassName()).getConstructor(CrawlerEnvi

ronment.class);

 this.mFrontier = (IFrontier)frontierConstructor.newInstance(this);

} catch (NoSuchMethodException | SecurityException | ClassNotFoundException

| InstantiationException | IllegalAccessException | IllegalArgumentException

| InvocationTargetException e) {

logger.error("Unable to locate frontier class \"" +

this.config.getFrontierClassName() + "\" - using DefaultFrontier");

 // Unable to locate class ns specified in settings file

 this.mFrontier = new DefaultFrontier(this);

}

Figure [7] – Reflection technique used to instantiate and pass arguments to a
custom frontier component.

Another important role of UniCrawler’s environment class is to setup and create
the thread pool used to hold and execute crawler worker threads
(CrawlerWorker). The setupThreadPool method constructs a

 Page 12 of 31

ScheduledThreadPoolExecutor object, setting appropriate configuration flags
from UniCrawler’s properties file. The use of a ScheduledThreadPoolExecutor
was decided based on how crawl politeness was going to function. Delaying the
execution of a crawler worker was intended based on crawl politeness factors
and to prevent overloading of a server. The schedule() method of the
ScheduledThreadPoolExecutor allows for a delayed execution of a crawler
worker, meaning a politeness time period could be implemented to prevent
server overloading – whereas the execute() method instantly executed the
crawler worker thread. The limitations of this choice will be explained in section
4.3.1, as well as an explanation in future work (section 5) as to why crawler
politeness is not currently implemented.

Another note when setting up the ScheduledThreadPoolExecutor is the creation
of a worker monitor thread. Within UniCrawler, this is identified as
CrawlerMonitor. The idea behind this monitor thread is to track the statistics of
the thread pool – such as how many completed threads, active threads and
worker threads are waiting to be executed. This thread operates as a daemon
and implements the runnable interface. Once a crawl has been completed (may
be completed if crawl is limited to seed URL only or other search constraints),
statistics are provided by the monitor thread as to how long the initial crawl was
executing for, how many pages were discovered within the crawl and other
statistics such as error counts and redirects.

[3.2] UniCrawler’s Types

UniCrawler’s types are essentially models to contain data. The two main types
are wrappers for important objects within the crawling architecture. UniCrawler
implements two custom objects – one for downloaded content (Page) and one
for URL’s to be processed by crawler worker threads (CrawlerURL).
The CrawlerURL class provides a method of retaining and dealing with
constraints such as the URL’s depth. It is a very simplistic approach, and only
contains a string representation of the URL; its recorded crawl depth and a
method for returning the string representation of the URL as a Java URL object.
The Page class provides a method of containing downloaded content
information. Information such as the URL of the page downloaded, the
downloaded pages content, HTTP response code returned by the downloader
component, the content character-set for appropriately decoding the
downloaded resources content and any HTTP headers extracted by the
downloader component. All HTTP response headers are stored within an
ArrayList data structure, as a response from the downloader component can
contain an unknown number of headers (dependent on how the hosts webserver
is configured), meaning it will need to grow in size. The Page object also contains
a method for extracting the redirect URL from the HTTP headers collection –
meaning if a HTTP redirect response code is encountered, the redirect URL can
be extracted by the crawler worker thread by calling this method.

 Page 13 of 31

These types implemented within UniCrawler are crucial for operation, and
without them the crawler worker would not be able to record and extract
information such as crawl depth and other search constraints.

[3.3] Crawler Workers

Crawler Workers (known as CrawlerWorker within UniCrawler) are crucial to
the operation of the initial crawl session. A Crawler Worker is essentially a
thread that resides within the main ScheduledThreadPoolExecutor that
performs the crawl.

Each worker is identified by its position within the thread pool. A separate class
named CrawlerWorkerCounter has also been created containing an
AtomicInteger to keep track of how many worker threads are currently active.
The AtomicInteger doesn’t necessarily mean each worker thread is active, this is
due to constraints of the size of the thread pool – however it gives a good
indication of how many crawls are waiting to be executed. Obtaining the number
of active threads within the thread pool and comparing to the value of workers
means the amount of crawls waiting to be executed can be calculated.

Each worker when executed communicates with crucial crawler components
within UniCrawler. Whilst executing the run() method of the crawler worker, the
assigned URL to the worker goes through a series of operations and conditional
checks. Firstly, a conditional check to check if the URL matches the seed domain
is performed – and providing the user has specified to constrain the crawl to the
seed domain only the worker thread will be terminated and
CrawlerWorkerCounter decremented. Next, the worker thread requests that the
downloader component downloads the specified URL assigned to the worker
thread. A series of conditional checks are check after the download to ensure the
downloader provided a valid result – if the result from the downloader
component is null then it is assumed the resource was either skipped or
unsuccessfully downloaded.

The next stage of the worker thread is to check the HTTP response code obtained
from the downloader component. It is important to check if the URL host server
has issued a redirect or other HTTP error that means content is non-existent. If
the downloader component returns a HTTP redirect (a HTTP code between 300
and 400) then the redirect URL is requested from the Page object by calling the
getRedirectUrl() method. A conditional check ensures that the returned URL is
not null and is a valid URL before en-queuing the new redirect URL and
terminating the worker thread. If the downloader component returns a HTTP OK
response (HTTP code 200), then the URL and Page object containing the
downloaded content is added to the URL frontier’s successful crawled pages
collection (further explained in section [3.4]), and the parsePageLinks() method
is called within the page object to start the parsing of downloaded content by
UniCrawler’s parser component(s). Whilst traversing through the results
returned by the parser component(s) results, several conditional statements are
checked such as whether or not the URL has been seen before by the frontier

 Page 14 of 31

component (and if it has, skip the current iteration) and whether the maximum
crawl depth has been reached if specified within UniCrawler’s configuration.
Other conditionals such as checking if the parsed URL from the downloaded
pages content is disallowed by robots.txt within the robots manager component,
however this will be explained in more depth in section 3.6. Finally, if all
conditions are met, the newly discovered URL is added to the frontier queue
ready to be processed by another crawler worker at a later time. It should be
noted that if any other response code is returned other than the codes
mentioned above, the crawler worker terminates.

[3.4] The Frontier Component

The Frontier component of UniCrawler (also known as the URL Frontier) is one
of the most crucial aspects of a crawler. Essentially, it is a component that
contains all the URL’s that are remaining to be processed by a CrawlerWorker (a
crawl worker thread within a ThreadPool). UniCrawler’s implementation is
slightly different compared to traditional crawlers, as it supports storage for
previously crawled URL’s as well as storage for successful crawls.

Since UniCrawler performs a breadth-first traversal of the web (starting with the
seed URL as supplied within the configuration), the Frontier component makes
use of a FIFO (First-in, First-out) queue data structure for storing and managing
URL’s due to be crawled, meaning that URL’s are de-queued in the order they
were en-queued. The initial queue makes use of the abstract interface Queue[4] –
which implements Java’s LinkedList[5] data type. In terms of web crawling
architecture, this is a very simple implementation. For further comments on the
frontier’s data structure limitations, please see section [4.3.2]. The data type of
choice for storing successful crawls is a HashMap, as a copy of the crawled page
is also stored within the collection with each subsequent map key being the
absolute hyperlink to the crawled resource. Finally, the data type of choice for
storing discovered URL’s is an ArrayList. Since the discovered URL’s are not
required to be in any particular order, and the amount of discovered URL’s
within a crawl session is an unknown length (an array would not be suitable), an
ArrayList seemed the most appropriate data structure to use.

The frontier component of UniCrawler is one of the “pluggable” components,
meaning it can be swapped out for a completely different implementation. The
class diagram representation of the frontier as shown in Figure 8 shows how
UniCrawler’s default frontier inherits from the IFrontier interface, as well as any
fields and methods contained within the default implementation.

 Page 15 of 31

Figure [8] – Class diagram representation of UniCrawler’s Frontier component.

The frontier queue is processed by making use of the Thread object
(frontierThread) – which is initialized within the DefaultFrontier’s constructor.
Once the ‘start’ method is called, the Thread begins processing the queue, which
takes place within the processQueue function. The use of the Thread object
instead of explicitly allowing the class to implement the runnable interface is due
to extensibility purposes; a 3rd party may wish to include several threads (for
example, using multiple Queue’s or other I/O operations) in order for the
frontier to behave differently. All other functions are self-explanatory within this
simplistic frontier component implementation.

There are several conditional checks in place within the frontier implementation.
For example, when en-queuing a new URL, the frontier will check the
crawledUrls collection to prevent the same resource being added to the active
frontier queue more than once. Other conditional fail-safe checks include
ensuring the queue is not empty before starting the frontiers Thread and
therefore processing the queue, and ensuring when polling from the frontiers
active URL queue that the object returned from the queue is not null.

[3.5] The Downloader Component

Much like the frontier component, UniCrawler’s Downloader component(s) are
crucial to crawler operation. This component handles downloading content as
requested by the crawler worker threads, and returns the Page object (discussed
in section [3.2]). The implementation provided within UniCrawler is a basic
HTTP webpage downloader, capable of making HTTP requests to a web server to
retrieve content.

 Page 16 of 31

The implementation provided by UniCrawler supports filtering multiple content
types, a maximum number of download retries upon failure – as well as custom
HTTP headers to be sent to the target host. Custom headers are handled by
another object known as DownloaderRequest, which is essentially a container
containing the target host URL and any custom headers within a collection to be
sent to the target URL. Figure 9 displays the class representation of the HTTP
downloader component and any other related objects.

Figure [9] – Class representation of the downloader component and any

associated components.

The downloadPage() method instinctively requests the given URL resource from
a HTTP webserver. Information such as the HTTP response code after opening a
HttpURLConnection to the resource is gathered, as well as HTTP headers
returned by the hosts server. UniCrawler’s basic implementation does have
support for detecting whether or not a website is compressed using GZIP[6] – if
GZIP is detected then the downloader component will continue to un-compress
the requested content into a readable output, allowing parser components to
parse the downloaded content properly. The downloader component also
supports parsing of the resources character set – if unable to obtain the
appropriate character set of the resource (in this instance the server may be
misconfigured) the character set is set to UTF-8 by default. Finally, the Page
object is returned (for clarification on what information is stored by
UniCrawler’s Page object, please see section 3.2).

There are several limitations with UniCrawler’s downloader component, please
see section 4.3.3 for more information.

 Page 17 of 31

[3.6] The Robot Exclusion Protocol Implementation

An advanced feature implemented into UniCrawler is the ability to abide to any
web servers Robot Exclusion Protocol rules. The implementation is rather crude,
however it works reasonably effectively and webmasters disallowed URL’s are
ignored by crawler worker threads.

The implementation of the Robot Exclusion Protocol in UniCrawler makes use of
two objects. The RobotsDownloader class, which is responsible for requesting
the robots.txt from the desired host and the RobotManager, which is responsible
for managing entries for existing hosts previously parsed and parsing newly
requested robots.txt resources. Figure 10 displays the class representation of
these two objects.

Figure [10] – Class representation of the Robot Exclusion Protocol components.

The RobotManager consists of a thread-safe HashMap collection to store
disallowed hosts; the key representing the host domain, and the values being an
ArrayList collection containing all disallowed URL’s that the Webmaster has
specified not to be crawled by web crawlers. To extract disallowed hosts from
the robots.txt, a regex pattern is used to match any disallowed URL’s that may be
contained within the robots file and added to the collection. The
RobotsDownloader implementation is very simplistic; making use of a
BufferedReader and a stream from the URL object. A StringBuilder is then used
to append each read line from the BufferedReader and returned to the
RobotsManager for parsing.

[3.7] The Parser Implementation

The role of the parser component(s) in UniCrawler is to parse content
downloaded in a way dependent on its content. UniCrawler by default only
searches content for new hyperlinks and parses them accordingly. Figure 11
demonstrates a class representation of UniCrawler’s hyperlink parser.

 Page 18 of 31

Figure [11] – Class representation of UniCrawler’s parser component(s).

The default hyperlink parser within UniCrawler makes use of regex patterns to
detect hyperlinks within HTML bodies. Once a match is found, the harvested
hyperlink is then required to be normalized. Normalized links are generally
referred to as “absolute URLs” – meaning they include the full domain and path,
as well as document. In some cases poor HTML can mean URLs on a page are
relative to their location, e.g. “../../page.html”. This is ok when browsing a
website as the browser can interpret the hyperlink. UniCrawler makes use of a
3rd party class to do this, and can be referred to by viewing reference 7. The
hyperlink parser also makes an attempt at URL canonicalization (decoding
characters within the URL based on the pages character set) by making use of
Java’s URLDecoder – however it is very limited. You can read more on the
hyperlink parser limitations in section 4.3.4.

[3.8] The Configuration Implementation

The final UniCrawler component to discuss in detail is the configuration
component. As stated earlier in Section 2.3, UniCrawler makes use of a
properties file to load user-defined properties. These properties can be anything
from search constraints to other miscellaneous crawler functionality changes.

Since the configuration is read from a properties file, a class has been created
that utilizes Javas Properties object – which can be used to parse property
key/value pairs within a properties file. This class can be passed a file location
for any given properties file to be parsed, which is then in turn loaded with
support of a FileInputStream object. This class contains methods for retrieving
strings, integers and Booleans from the properties file – with the ability to
specify default values if a property key cannot be located within the file.

A class for interacting with the properties file and holding parsed properties
within variables has been designed and created, named CrawlerConfig. Within
this class, properties are requested from the properties file using the
PropertiesFile class mentioned above. This class is simple in functionality, with
get/set methods for each subsequent crawler property implemented. Within the
constructor, a few conditional statements to ensure properties required for

 Page 19 of 31

crawler functionality are present – as well as valid values for these required
properties.

[3.9] Implementation Issues

Throughout the development stages of UniCrawler I encountered several
implementation issues. From a programmer’s perspective, majority of these
issues were relatively easy to overcome – however some did have a hindrance on
the initial project plan and schedule.

One issue was with processing of the frontier queue. Running the thread
consistently polling from the queue sometimes provided null results for the
popped URL results. This was due to crawler workers not being able to put URL
objects within the queue quick enough for the frontier thread to process. This
was overcome by adding a simple conditional statement to check if the result is
null before assigning a worker thread with the URL object.

Whilst developing the downloader component several implementation issues
arose. Firstly, when requesting content from which the host’s server compressed
HTTP pages using the GZIP compression method – crawling seemed to terminate
prematurely, with statistics only stating that 1 page was crawled and discovered
(the original seed URL). This required some fairly in-depth debugging to
determine that the downloaded content-type was not human readable, meaning
that the regex pattern within the hyperlink parser component could not match
any hyperlink elements within the HTML page. The fix was relatively simple and
required use of Java’s GZIPInputStream. A code-view of the GZIP implementation
can be viewed in figure 11. Another issue that arose was parsing the downloaded
resources character set. Using the HttpURLConnection getContentType() method
does not always contain the character set – this could be due to a server
misconfiguration on the requested resources webserver or that the character set
is contained within the contents MIME (Multipurpose Internet Mail Extension)
field. This was not overcome, and is explained in more detail within the
limitations section (4.3.3) of this report.

// Do we have compressed data? usually the browser uncompresses this

for us

if (contentEncoding != null && contentEncoding.equals("gzip")) {

content = IOUtils.toByteArray(new GZIPInputStream(is));

}

else {

content = IOUtils.toByteArray(is);

}

Figure [11] – Implementation of GZIP decompression of pages that have been
compressed by the host webserver.

Finally, probably the most time-consuming and biggest issue whilst
implementing UniCrawler was the ability to normalize and canonicalization
parsed URL’s. At first, an implementation was attempted to be created to
normalize all relative or non-absolute URL’s discovered by UniCrawler via its
own component. However, this proved very difficult due to the nature of

 Page 20 of 31

different URL formats across a wide range of different webpages – there is no
standard that is consistent across the web. If a URL was poorly structured and
the URL Normalizer could not normalize it to a required absolute URL by
UniCrawler, then the page could not be crawled. Instead of wasting any more
time on a concrete implementation, the component was scrapped and a 3rd party
class was found that worked relatively well (much better than the original
implementation). For a more detailed view of this library of this class, please see
refer to reference 7. On the subject of URL normalization, URL canonicalization
was also a relatively large issue. Since time constraints didn’t allow for a
concrete implementation, an URLDecoder object is used in conjunction with the
parsed page character set in an attempt to decode any special characters. This
simplistic approach seems to work relatively well; however does still fail in rare
circumstances. Figure 12 demonstrates the handling of URL normalization and
canonicalization, as well as ensuring the URL identifier starts with http.

// This is a pretty lame attempt at URL canonicalization by

specifying charset set by downloader headers

try {

link = URLDecoder.decode(link, this.mPageCharset);

}

catch (UnsupportedEncodingException ex) {

 // if this happens, there's no fallback

}

// attempt to normalize url

link = UrlUtils.resolveUrl(this.mParentUrl, link);

// Check we have proper protocol, url normalization doesn't check for

rss://, feed:// etc

String identifier = link.substring(0, 5);

if (! identifier.equalsIgnoreCase("http:")) {

 continue;

}

Figure [12] – Attempt implementation of URL normalization and
canonicalization.

[4] Results and Evaluation

This section reports on the operational results of crawls by UniCrawler, with
varying configurations. Comments on whether or not UniCrawler functions
correctly will also be mentioned, as well as any testing techniques to ensure
proper operation of each component. Limitations of UniCrawler’s
implementation/design will also be commented upon, justifying any
improvements that could be made to the final implementation. The main
intention of this section is not to provide an in-depth analysis of the web
crawler’s performance, but rather evidence UniCrawler is capable of performing
a simple crawl of the web with user-defined constraints.

 Page 21 of 31

[4.1] Testing

Testing of UniCrawler was relatively limited. As each component was developed,
outputting information such as variables and debug messages to the console
window to ensure both conditional statements and other elements were working
correctly was a form of testing I incorporated. This is a particularly bad method
of testing, as it does not test every possible state that could be encountered by a
user. It did however provide a quick insight as to whether blocks of code were
performing as it should in various circumstances.

Another testing technique that was used throughout UniCrawler was the choice
of IDE (Integrated Development Environment) named ‘Eclipse’[8]. Making use of
this IDE’s debugging features such as code breakpoints, variable watches and
thread inspector to inspect running worker threads proved very useful in
spotting abnormal operation behavior. It also allowed to analyse the
performance of the thread pool – how quickly the thread worker pool filled up
and how many active worker threads within the pool were being used.

From the start of the project it was my intention to use a form of test-case tables
in conjunction with a Java-based testing framework (such as JUnit2) for rigorous
testing. However, lack of knowledge and previous use of such a framework in
combination with time-constraints prevented me from doing this.

[4.2] Executed Crawls

To ensure functionality of UniCrawler’s components, several test crawls have
been carried out and demonstrated. Most crawls carried out were small crawls,
and demonstrate the user-defined properties for constraining and limiting
crawls by factors such as depth and seed host only.

[4.2.1] Crawl Limited to Seed URL Host

One of the crawl constraints provided by UniCrawler is the ability to limit
crawling to the seed URL’s host. This proves to work relatively well – however
due to the nature of URL normalization, UniCrawler is unable to determine sub-
domains to be of the same host as domains. This means if the seed URL contains
a sub-domain (such as users.cs.cf.ac.uk) – it is determined to be of a different
host without a sub-domain (such as cf.ac.uk). Implementing proper DNS lookups
could solve this with domain resolution techniques – which will be explained
more in section 4 (UniCrawler Limitations). Figure 13 demonstrates the result of
a crawl that was carried out on my supervisor’s homepage (without the
frameset)3, limiting to the seed domain only (users.cs.cf.ac.uk).

2013-05-01 20:10:26,239 [main] INFO unicrawler.CrawlerEnvironment -

Starting crawl with seed URL

2 http://junit.org/ - A programmer-orientated testing framework for Java.
3 David Walker Main Page - http://users.cs.cf.ac.uk/David.W.Walker/head.html

http://junit.org/

 Page 22 of 31

"http://users.cs.cf.ac.uk/David.W.Walker/head.html"

2013-05-01 20:10:27,229 [Thread-0] INFO unicrawler.crawler.CrawlerMonitor -

Discovered a total of 12 page(s)

2013-05-01 20:10:27,229 [Thread-0] INFO unicrawler.crawler.CrawlerMonitor -

Successfully crawled 2/12 of these pages.

2013-05-01 20:10:27,230 [Thread-0] INFO unicrawler.crawler.CrawlerMonitor -

Redirects: 0, Errors: 0, Skipped: 1

2013-05-01 20:10:27,240 [Thread-0] INFO unicrawler.crawler.CrawlerMonitor -

Crawl finished in 00mins, 01secs and 1053ms

2013-05-01 20:10:27,240 [Thread-0] INFO unicrawler.crawler.CrawlerMonitor -

Crawler ThreadPool is shutting down now...

Figure [13] – Crawl limiting the crawler workers to crawl URL’s matching the
seed URL’s domain.

When a URL that does not match the seed domain is encountered, a warning is
displayed to console providing the user configuration has been set. Figure 14
demonstrates this from the crawl above.

2013-05-01 20:48:29,647 [pool-1-thread-1] WARN

unicrawler.crawler.CrawlerWorker - Not crawling www.cardiffconnect.com - it

doesnt match seed domain

Figure [14] – Warning outputted regarding discovered hyperlink not matching
seed domain.

[4.2.2] Crawl Limited by Depth

The other crawl constraint provided by UniCrawler is the ability to prevent
crawling above a certain depth. Depth can be described as “hops” from the
original seed URL, for example setting a maximum depth of 2 will mean
harvesting a link from the seed domain allows the crawler to both crawl the
harvested link from the seed domain, as well as links from the resource crawled
from the seed URL. Figure 15 demonstrates a crawl of my supervisor’s homepage
with a maximum depth of 2.

2013-05-01 21:13:17,515 [main] INFO unicrawler.CrawlerEnvironment - Loading

crawler configuration...

2013-05-01 21:13:17,531 [main] INFO unicrawler.CrawlerEnvironment -

Starting crawl with seed URL

"http://users.cs.cf.ac.uk/David.W.Walker/head.html"

2013-05-01 21:13:55,573 [Thread-0] INFO unicrawler.crawler.CrawlerMonitor -

Discovered a total of 351 page(s)

2013-05-01 21:13:55,574 [Thread-0] INFO unicrawler.crawler.CrawlerMonitor -

Successfully crawled 304/351 of these pages.

2013-05-01 21:13:55,574 [Thread-0] INFO unicrawler.crawler.CrawlerMonitor -

Redirects: 33, Errors: 8, Skipped: 3

2013-05-01 21:13:55,580 [Thread-0] INFO unicrawler.crawler.CrawlerMonitor -

Crawl finished in 00mins, 38secs and 38060ms

2013-05-01 21:13:55,580 [Thread-0] INFO unicrawler.crawler.CrawlerMonitor -

Crawler ThreadPool is shutting down now...

Figure [15] – A depth limited crawl within UniCrawler.

When the maximum depth has been reached, providing the end-user has enabled
the logging of maximum depth level reached warning property within

 Page 23 of 31

UniCrawler’s configuration file then a warning is issued to the console. Figure 16
demonstrates this warning.

2013-05-01 21:29:49,365 [pool-1-thread-8] WARN

unicrawler.crawler.CrawlerWorker - Max depth reached for

"http://socitm.govmetric.com/Home/Index"

2013-05-01 21:29:49,407 [pool-1-thread-22] WARN

unicrawler.crawler.CrawlerWorker - Max depth reached for

"https://www.gov.uk/#homepage"

Figure [16] – Maximum depth level reached warning messages.

[4.3] UniCrawler Limitations

Throughout UniCrawler, the simplistic nature of its design and implementation
means there are many limitations in both an architecture perspective, as well as
from a typical crawler’s operational perspective. This section has been divided
up into appropriate sub-sections outlining these limitations.

[4.3.1] Crawler Limitations

There are several crawler limitations that could not be implemented due to time
constraints. This doesn’t affect the initial functionality of UniCrawler, it could
however hinder performance greatly.

UniCrawler behaves like a typical crawler – it does not support different
crawling techniques such as path ascending crawling and focused crawling. This
isn’t necessarily a limitation of the crawler’s behalf – however if a user wished to
perform different crawling techniques – or simply implement their own,
UniCrawler’s design and architecture would not allow for it.

Another feature not implemented is a form of crawler politeness policy. The idea
behind using a ScheduledThreadPoolExecutor was to implement a form of
politeness policy – where the scheduling of crawler worker threads could be
delayed by a set constant before executing the initial crawl. Within UniCrawler,
crawler worker threads are executed instantaneously meaning the use of a
ScheduledThreadPoolExecutor was not really necessary; and a normal thread
pool could have been used in its place.

Finally, an advanced feature not implemented within UniCrawler and therefore
is a limitation is a page revisit policy mechanism. Since URL’s are checked to see
if they have been discovered before by the frontier component, the current
default implementation would not allow for such mechanism.

[4.3.2] Frontier Limitations

Although UniCrawler’s frontier works relatively well for smaller-scale crawls, the
use of in-memory data structures means the queue size is limited by computer
memory constraints. With the significant rate of new URL’s being discovered, a

 Page 24 of 31

form of I/O disk storage would be required. To do this originally, the use of Java’s
efficient NIO (New Input/Output, java.nio) was going to be used - however due to
time constraints it was not possible to implement this feature.

As outlined within section 4.3.1, the use of a Queue data structure would not be
appropriate if implementing crawler policies. This is because the queue data
structure works in a first in first out policy, meaning URL’s within the queue
cannot be re-arranged depending on freshness / politeness efficiently. However,
if the user wanted since there is an implementation to swap out the frontier
component with a custom built frontier – meaning all of the above could be
implemented if desired.

[4.3.3] Downloader Limitations

Although UniCrawler’s HTTP downloader component provides a concrete
implementation of fetching web pages, there are still limitations that could cause
incorrect downloading, or improper requests of resources with special
circumstances.

One limitation is the lack of support for SSL (Secure Socket Layer) connections to
a webserver. UniCrawler only has support for URL’s that provide a non-
encrypted connection to a given host, meaning if a URL scheduled to be crawled
was to contain the https protocol, the downloader component would be unable
to properly process the download.

Another limitation is lack of ability to access pages that require a login. This
could be either via cookies or a server .htaccess page. The downloader’s
components lack of ability to retain cookies or provide login credentials to
possible protected resources means these pages would be unable to be crawled
sufficiently.

Finally, if a pages character set cannot be parsed within the content-type header
as set by the host’s webserver then the character set is set to UTF-8 by default.
This may not reflect the resources proper character set, meaning special
characters located within the content (e.g. hyperlinks parsed) cannot be decoded
properly. It may be a possibility to parse the resources content type within the
MIME type as set by the host’s webserver – however UniCrawler does not check
for this currently.

[4.3.4] Parser Limitations

As mentioned in section 3.9 (implementation issues) there was initially lots of
issues with the parser component of UniCrawler. Extraction performed by the
parser component itself is not limited – and all hyperlinks are extracted
successfully by making use of a regex pattern to match elements of the
downloaded content.

 Page 25 of 31

The crucial limitation of the parser component is the ability to not be able to
parse every URL encountered in the same way. Due to the nature of the web and
varying HTML standards across a range of websites, it is largely difficult to re-
build URL’s to their absolute state – by absolute I mean including the full host,
path and relative file. As it stands, UniCrawler’s use of a 3rd party library works
fairly well at normalizing these URL’s – however at times error messages are
displayed to the console stating that some URL’s could not be parsed correctly.
Figure 17 demonstrates an error message displayed by UniCrawler’s parser
component upon failed decoding / normalization of a URL. Another note would
be the inability to determine that domains with sub-domains pre-appended may
be of the same host. Thus, some form of DNS resolution would be required to
determine if a sub-domain of a host is equal to the seed URL domain when
constraining a crawl.

2013-05-02 14:20:41,639 [pool-1-thread-29] ERROR

unicrawler.crawler.CrawlerWorker - java.lang.IllegalArgumentException:

URLDecoder: Illegal hex characters in escape (%) pattern - For input string:

"= "

java.lang.IllegalArgumentException: URLDecoder: Illegal hex characters in

escape (%) pattern - For input string: "= "

 at java.net.URLDecoder.decode(URLDecoder.java:192)

 at unicrawler.parser.HyperlinkParser.harvest(HyperlinkParser.java:52)

 at unicrawler.types.Page.parsePageLinks(Page.java:44)

 at unicrawler.crawler.CrawlerWorker.run(CrawlerWorker.java:60)

 at

java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)

 at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:334)

 at java.util.concurrent.FutureTask.run(FutureTask.java:166)

 at

java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$

201(ScheduledThreadPoolExecutor.java:178)

 at

java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(Sch

eduledThreadPoolExecutor.java:292)

 at

java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:11

10)

 at

java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:6

03)

 at java.lang.Thread.run(Thread.java:722)

Figure [17] – Error displayed by UniCrawler’s hyperlink parser upon failure of
decoding / normalization.

[4.4] Evaluation

When starting the UniCrawler project, I decided to take a RAD (Rapid
Application Development) approach – meaning diving straight into the code, and
adjusting the architecture of the crawler as development matured. Before
initially writing any code, I had a rough idea as to how each component would
communicate effectively with each other with a mindset of how to enable the
crawler to become easily extendable.

The idea behind the design was to keep UniCrawler’s architecture relatively
simple. Over complication of the design posed a potential threat to the project

 Page 26 of 31

not being completed within the given and planned timescale. Overall I feel the
simplistic design of the crawler works well, however I do not feel it is suitable for
commercial use, but rather personal-gain or research purposes.

One functionality change I would make if starting UniCrawler again would be to
not use a ScheduledThreadPoolExecutor. This choice as mentioned in section
4.3.1 (Crawler Limitations) was in light of being able to implement a politeness
policy for crawling the same host. However, upon evaluating the use over a
number of months – the thought occurred to me that if scheduling a crawler
worker to execute with a delay, a slot within the thread-pool will be taken
meaning other crawler workers (such as new URL’s discovered) will not be able
to be executed due to waiting for the scheduled worker to execute and finish. I
was unable to find any reference as to this being the case, however logically it
makes sense that the ScheduledThreadPoolExecutor would behave in this
manner. Originally I would have liked to of implemented my own concurrent
queues – however “re-inventing the wheel” did not seem appropriate due to time
constraints within the project.

The use of the Java programming language was required by the project
description, however I felt it was a good choice. Java provides all the libraries
required to implement a successful web crawler – and also provides a wide
range of different concurrency techniques. I already had prior experience with
Java before carrying out this project, so picking up any new libraries or objects
used within UniCrawler was not too difficult.

[5] Future Work

The development of UniCrawler is still in very early stages. There is a multitude
of additional crawler functionality left to be implemented – as well as room for
architecture improvements to make UniCrawler even more extendable. This
section briefly explains any future work that either I or another developer could
carry out to improve UniCrawler.

 Testing Framework – building test cases using a framework such as
JUnit to ensure proper functionality. Testing manually took up a lot of
time throughout the development of UniCrawler, and it is definitely
something I would want to use for future large projects.

 Better abstract architecture – there are many architectural changes I
would make based upon UniCrawler’s simple implementation and
architecture. Managers / controllers to control components and any
customized components would allow for much greater extendibility and
code re-usability.

 Different crawler techniques – different worker threads could be
created to perform different types of crawls. This could consist of path
ascending crawling, or even focused crawling if emphasizing on a search

 Page 27 of 31

engine indexer.

 Crawler policy implementations – the implementation of a crawler
politeness policy would be crucial for large-scale crawls to prevent abuse
of webmasters servers. This would require significant design changes –
however I feel the benefit would outweigh the work required.

 Disk storage for frontier – storing partial queues to the disk using I/O
within the frontier component would allow for much larger crawls. Since
UniCrawler is limited to available memory on the computer executing the
crawl, implementing this feature would provide a much better crawling
solution. I had intentions of implementing this feature, however due to
time constraints I was unable to.

 Downloader SSL support – supporting secure connections for
discovered URL’s requiring the https protocol. This could be implemented
by using the HttpsURLConnection class within the java.net package. This
could be implemented as a separate class (SecureWebpageDownloader).

 Downloader authentication / cookie support – supporting the ability
to login to protected webpages would provide functionality to users who
wish to crawl user-only areas.

 Accurate URL normalization – although the current URL normalization
technique works well, a much more accurate and custom implementation
would improve crawl results significantly. I felt that a URL normalizer is a
project in itself – so perhaps would be a good side-project to UniCrawler
due to the complex nature and variations of URL’s encountered on the
web.

Future work mentioned above is just the tip of the iceberg in terms of a
commercial web crawler. Custom implementations of libraries instead of using
Java’s in-built libraries would be required to be in with a chance to even compete
with large-scale crawlers such as Google and Bing. I feel a good starting point if
someone else was to continue with UniCrawler would be to implement a crawler
politeness policy to make use of the currently implemented
ScheduledThreadPoolExecutor – I would personally be interested in finding out
how well it worked for delaying crawler workers in terms of politeness, as well
as its functionality as to whether or not a slot within the thread pool is reserved,
preventing other worker threads waiting that fell outside the politeness period
from executing.

[6] Conclusion

A web crawler is generally considered an important component of modern web
services of today – however there is a lack of documentation on implementations
and techniques used to build an efficient and scalable crawler. Since data
collected by a crawler is generally too big to fit in modern-computers memory,

 Page 28 of 31

there can be performance issues when attempting to balance in-memory data
and disk data. UniCrawler focused more on small-scale crawling, meaning it
would not be fit for large-scale crawls in a commercial environment.

A crawler that has been built from scratch within the Java programming
language, making use of in-built libraries has been provided. From the offset it
was clear that UniCrawler had to support user-defined search constraints –
which have been implemented by providing a user-defined, customizable
configuration file. One of the requirements of the crawler was to execute within a
concurrent environment – which has been achieved by making use of Java’s
available concurrency objects. A few small-scale crawls have been demonstrated,
proving UniCrawler is in fact a functioning web crawler that can be used without
too much hassle or configuration properties. An advanced feature that should be
noted that I did have time to implement was the use of the Robots Exclusion
Protocol – although a simplistic implementation it works well in conjunction
with small-scale crawls.

Overall I feel UniCrawler has met its required specification. There are many
advanced features I wanted to implement - however due to time constraints I
was unable to. If items highlighted within the future work section was to be
undertaken, there is no reason why UniCrawler could evolve into a something
bigger and better than its current state. A full listing of code and diagrams can be
found by referring to appendices 1.

[7] Reflection

The completion of this project has been a learning curve and an overall great
method of exercising my planning and Java programming knowledge. The entire
project allowed me to exercise many different skills such as; arranging meetings,
managing time effectively, building an effective plan, designing and
implementing a piece of software and writing an informative report to reflect the
work that has been carried out.

I feel I have communicated effectively with my supervisor – arranging regular
meetings and explaining any issues I had. I also felt I communicated effectively
within these meetings, keeping my supervisor up-to-date with any progression
towards the project and discussing any discrepancies I encountered.

I also felt I have improved my Java concurrency programming knowledge. I
learnt new techniques for synchronizing collections in Java (such as using
Collections.syncronizedMap) that I did not know about. Prior to this project, I
had never used a thread pool, so deciding to use a thread pool within my project
was entirely new to me.

Although I had a rough idea as to how web crawlers worked, I had never looked
into web crawlers in the depth required for this project. I have learnt to
appreciate the engineering complexities required to build and execute a large-
scale crawl. I have also learnt valuable information about some existing crawler

 Page 29 of 31

architecture, as well as different crawling techniques and policies (such as page
revisit policies). I felt my research on web crawlers was sufficient enough to
build a working implementation and provide an in-depth analysis of crawlers
within my interim report.

Overall, I have enjoyed the experience of researching and developing a web
crawler, and would definitely enjoy further developing UniCrawler into
something more mature in my spare time.

 Page 30 of 31

Appendices

[1] Full UniCrawler code archive and all class diagrams – See uploaded item
“UniCrawler.zip” under “Archive Files” in PATS2.

 Page 31 of 31

References

[1] Wikipedia. (2013). Robots exclusion standard. Available:
http://en.wikipedia.org/wiki/Robots_exclusion_standard. Last accessed 28th
April 2013.

[2] Apache Foundation. (2012). Apache log4j™ 1.2. Available:
http://logging.apache.org/log4j/1.2/. Last accessed 28th April 2013.

[3] Oracle. (Unknown). Class ScheduledThreadPoolExecutor. Available:
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ScheduledThr
eadPoolExecutor.html. Last accessed 21st April 2013.

[4] Oracle. (Unknown). Queue. Available:
http://docs.oracle.com/javase/7/docs/api/java/util/Queue.html. Last accessed
29th April 2013.

[5] Oracle. (Unknown). LinkedList. Available:
http://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html. Last
accessed 29th April 2013.

[6] Jean-loup Gailly. (2003). GZIP. Available: http://www.gzip.org/. Last
accessed 20th April 2013.

[7] HtmlUnit. (Unknown). HtmlUnit is a "GUI-Less browser for Java
programs. Available:
http://sourceforge.net/p/htmlunit/code/8165/tree/trunk/htmlunit/src/main/
java/com/gargoylesoftware/htmlunit/util/UrlUtils.java. Last accessed 12th
March 2013.

[8] Eclipse Foundation. (Unknown). Eclipse. Available: http://www.eclipse.org/.
Last accessed 10th April 2013.

