
Page 1 of 4

	

Initial	 Plan	
Concurrent	 Thread-‐based	 Web	 Crawler	

Michael	 Graham	

MODULE	 NUMBER:	 CM0343	 (40	 CREDITS)	

Supervisor:	 David	 W	 Walker	
Moderator:	 Paul	 L	 Rosin	
	
	 	

Page 2 of 4

Project Description

In this project I will develop a multi-threaded Java application for crawling the
Internet (Web Crawler). The crawler application will have the ability to process
each individual web page in an appropriate manner depending on its content
and structure.

The application will support a range of different configurations for constraining
a crawl – for example limiting the crawl to one specific domain or specific
content by providing MIME types.

Project Aims and Objectives
	
The objective for the Interim report due on the 14/12/2012 is to provide
extensive research on the supplied areas below – as well as a minimal /
partial implementation of the web crawler to further improve and extend ready
for the final report.

The objective for the Final report due on the 03/05/2013 is to have a fully
implemented web crawler, along with analysis of my implementation
(execution times, algorithm comparisons, scheduling techniques) – as well as
any future work regarding the final state of my project.
	
Research:

• Existing web crawlers
o Public-domain crawler techniques – research relating to

known crawling techniques currently in use by both proprietary
and open web crawlers

• Web Crawling algorithms
o Path-ascending crawling – some background information and

effectiveness of ascending to every path on a given domain

o Focused Crawling – some background information and
effectiveness of crawling based on page similarities

o Page selection policies – research regarding the best methods
to state when a page should be crawled, and when it should be
skipped

o Page re-visit policies – research to determine when an
appropriate time to re-crawl a page for changes may be. This
includes determining the freshness of a crawled page, as well as
the age of a crawled page.

o Crawl politeness policies – research to determine the best
methods to respect server administrators resources, looking

Page 3 of 4

specifically at a partial solution of robots.txt

• Existing architecture implementations & execution environments

Architecture:

• Parallelization
o Maximize page download rates – design a efficient to

maximize page crawls and downloads

o Minimize overheads – ensure any parallelization implemented
within the crawler doesn’t cause significant overheads, e.g. for
downloading a copy of a page simultaneously on separate
threads

• Scheduling techniques – decide which scheduling method is most

suited and if time permits, implement more than 1 scheduling technique
and compare.

o Bredth-first scheduling
o Performance based scheduling
o Quality based scheduling
o Crawl-ability based scheduling

• Storage

o Design best storage method – to determine the freshness and
age of a crawled page, a suitable, efficient storage method is
required

o Usage of a HashTable– for a preliminary implementation of the
web crawler, a hashtable will be sufficient to store crawled
URLS. However efficiency will be scrutinized as the crawler
matures

• Class diagrams - to develop an expandable, modular and efficient
application within the Java environment. Also to determine object
dependencies within the applications architecture.

Implementation:

• Java environment
o Threading and Synchronization – make use of Java’s

concurrency library to achieve parallelization and efficiency

o New I/O – implement and make use of Java’s New I/O (also
referred to as NIO) for downloading web pages.

• Specific crawler properties
o Different crawl method implementations – if time constraints

permit

Page 4 of 4

o Acknowledging robots.txt – concrete implementation of
parsing web administrators crawler rules, abiding to a politeness
policy

o Search constraints – implementation of either customizable
“.properties” file or command line arguments to control the web
crawlers search constraints

Testing:

• Test-cases
o Carry out sufficient testing on all aspects of crawler components.

Provide evidence each component performs correctly.

• Execution times, efficiency
o Document execution times throughout the project, and compare

with previous implementations as well as different crawling /
scheduling techniques if time permits

