Interim Report

Concurrent Thread-based Web Crawler

Michael Graham

ABSTRACT

This report discusses the early design and implementation of a piece of
crawling software written in Java that has been designed to perform
efficiently in a multi-threaded environment, its limitations and any
future work required. Discussions of specific crawler functions are also
mentioned, such as crawler policies, crawler techniques as well as a
crawler’s general architecture and its limitations.

Table of Contents

[1] INTRODUCTION ...ciuitrmcsmsssassnsnes 2
[1.2] PROJECT AIMS ..eueueeueenreenseessesssessesssesssesssesssesssesssesssessssssssssesssesssesssesssesssesusessssasessnssssssasssasssasssessssssnesas 3
[2] BACKGROUNDcocucuiuimsmssssiss s s s sasssssssssssssss s s sssssssssasssssssssssnsnsses 3
[2.1] EXISTING WEB CRAWLERS ...cueuueeteeuseessessseessesssesssessssssssssasssesssesssesssesssssssesssssssssssssssssasssesssasssesssessnesas 4
[2.2] GENERAL OVERVIEW OF A WEB CRAWLERS ARCHITECTURE ...uvcvvuseeruseesssesssssessssessssesssssessssenes 4
[2.3] LIMITATIONS OF A GENERIC WEB CRAWLER ARCHITECTURE ..vvcvvusrermseessrensssesssssessssesssssessssenes 6
[2.4] CRAWLING TECHNIQUES w.coueuueuseessessseessesssesssesssesssesssessssssasssesssasssesssesssesssssssesassssssssssssasssasssasssassssssnesas 8
[2.4.1] FOCUSEA CTAWIING w..cooveorvrrsseeserseerssesissssi s sssssesassssissssissssisssessssssassssisssssssssssssssassssassssanns 8
[2.4.2] Path-aSCeNAiNG CTAWIING.......ccweeeeeseerseersesrisserssesssesissssissssisssessssesassssisssssssssssssesassssassssenns 9

[2.5] WEB CRAWLER POLICIES ... ttuituueetseeuseesseesseessesssesssesssesssessesssesssesssesssasssssssessssssssnssssssssssasssasssessssssnesas 9
[2.5.1] PAGE 1@-VISTE POLICY ..o rrerrereeerireeriseseesserseerssesissssisssssssesassesissssissssssssessssssassssisssssssssssssssassssessssenns 9
[2.5.2] POIItENESS POLICY .ouvvereverereeerseerisesrisssisssesssesassssissssasssessssesassesassssssssssssssssssesassssasssassssssssesassess 10
[2.5.3] PAGE SEIECLION POLICY ..oorvveereeerirerressrrsserssesssssissssisssessssesassesissssssssssssssssssesasssssssssassssssssesssess 10

[3]1 APPROACHoitiiicissmsssssssssssssssssssssss s ssasssss s s ssss s s sasa s s s as s s s s s s anans 11
[3.1] SIMPLE IMPLEMENTATION OVERVIEW .ccvuueeruseeesseessssessssesssssesssssesssssesssssssssssesssssesssssssssssssssssessssnes 11
[3.2] SIMPLE IMPLEMENTATION LIMITATIONS.....ccuusteeuseessseessssesssssesssssesssssesssssesssssessssesssssessssssssssssssssnes 12
[3.3] FUTURE IMPLEMENTATION WORK ..oocoreeuseeuseessersseesessesssesssessssssesssssssesssssssesssesssssssssssssssesssssssssesssas 13
[00008 10 (0) 13
APPENDICESocuiuiticssississsssssssssssssssss s ssssss s sssas s s s s 14
REFERENCES ..ot sssssssss s s assss s s s s sasass s s s s anans s 14

[1] Introduction

The ability to find specific information and websites is becoming increasingly
essential for a typical end-user whilst browsing the web. This is essentially one
of the main reasons as to why crawler software exists - to provide users a mirror
of the web, either for archive purposes or simply to find relevant information
using search keywords.

Essentially, a web crawler is a piece of software the scours the web, discovering
links to new pages in an automated fashion. In general, crawlers are generally
used to index pages ready for use by a search engine - however crawlers can also
be design to discover and parse different resources on the web (examples are
images, or even image and video meta-data).

With the web growing and changing significantly over the years, it is becoming
increasingly more difficult to efficiently and accurately crawl the entire web at a
respectable pace, which would therefore in turn provide users with in-accurate
or outdated information. There is a lack of public information regarding these
limitations and their solutions due to the competitive nature of the search engine
indexing market (some big names include Googlel, Bing? and Internet Archivel).

L http://www.google.com - One of the leaders in search engine indexing
2 http://www.bing.com - Microsoft's take on search engine indexing

Page 2 of 14

The three biggest challenges a web crawler has to deal with are as follows:

1. A crawler must use as many resources as possible when crawling a
specific site/server to allow the crawler to quickly and effectively deal
with any content crawled and move onto other URLs or tasks. However at
the same time, the crawler must not abuse a server hosting the crawled
information by overloading it.

2. Crawlers like ‘good pages’. Good pages can be defined as pages that are
rich in information and hyperlinks. However, typically a crawler isn’t
going to know whether or not a page is ‘good’ before requesting the
resource from the server and analyzing it. This relates to point (1)
mentioned above - adding a bottleneck to when other URLS located
within the same domain can be crawled and wasting resources crawling
effectively ‘useless’ pages to the crawler.

3. Copies of resources / pages must be fresh and up-to-date. However,
determining how often to re-visit pages and crawl them is another issue.
If pages are re-visited too often and the page hasn’t changed - resources
are wasted. If pages aren’t re-visited enough - pages that exist within the
crawler are outdated. There is also the issue that a crawler must have the
ability to discover new pages also - so re-visiting pages and discovering
new pages require to be balanced effectively.

[1.2] Project Aims

This reports main goal is to demonstrate a simple working implementation of a
concurrent thread-based web crawler written within the Java programming
language. The initial simple implementation limited to simply crawling web
pages in a concurrent environment, parsing web page hyperlinks and crawling to
a specific depth. Possible improvement and further implementation for the next
version of the crawler will also be discussed. Possible bottlenecks and limitations
within traditional crawler architectures will also be explored, stating a range of
previously researched techniques and algorithms for elements such as page
freshness and revisit policies.

[2] Background

Web crawlers are typically a lot more complicated than one would expect with a
small amount of background knowledge relating to them. In order to crawl the
web successfully (by the term successfully, | mean quickly, efficiently and

L http://www.archive.org - An attempt to index the entire web across many
years

Page 3 of 14

minimal resource overhead) a great deal of architectural planning and structure
is required.

[2.1] Existing Web Crawlers

When using the term “Web Crawler” most people would more than likely think
of the most popular site on the web - Google[1]. However, there are also several
other large-scale crawlers such as: Microsoft Bing, Internet Archive, Yahoo.
There are also several open-source implementations for large-scale crawling
such as: Apache Nutch!, ABot? and Heritrix3.

Majority of the larger-scale web crawlers are generally used as the background
processing for search engines. Indexing and ranking pages based on their
content quality and returning the correct information and results from search
queries is a complicated and resource intensive task - hence why they’re
probably the most appreciated in terms of web crawling.

However not all crawlers are design to cover the entire web in a “general”
fashion. Crawlers such as the Heritrix are designed to crawl the entire web and
mirror exactly what it discovers — making it a crawler that is designed to
download not only web-pages but other media types such as images and zip
archives.

Although there are open-source implementations regarding web crawling,
majority of the large-scale web crawler solutions are “business secrets” — making
the competition to build an exceptional crawler all the more difficult.

[2.2] General Overview of a Web Crawlers Architecture

Since the web is growing an increasingly fast rate, there are billions of web pages
to process. However, the number of URL’s pointing to these billions of web pages
greatly exceeds the number of web pages that exist, which is why it is important
to design a structurally efficient web crawler.

L http://nutch.apache.org/ - Apache Community open-source crawler

2 http://code.google.com/p/abot/ - A C# open-source crawler

3 https://webarchive.jira.com/wiki/display/Heritrix/Heritrix - Internet-
Archives open-sourced crawler

Page 4 of 14

PAGES & REQUESTS

URLS

TEXT &

METADATA
URLS

Figure [1] - A general high-level overview of a web crawler’s architecture

As a general overview, a web crawler looks relatively simple. High-level
components include:
* Fetcher & Parser - Downloads & parses downloaded content.

* Storage - Form of storage method for storing URLs and any specifically
crawled content.

* Queue - a queue of URLs ready to be crawled by the crawler.

* Scheduler - a method of scheduling URLS (can either be based on
content, timeout periods or other factors)

Although this is a simplistic view of initially how a crawler would operate, there
are also many other details and complicated features required to be
implemented within a real-world crawler. Other components required for a
successful real world crawler include and are not limited to:

* URL Frontier - in reference to storage outlined in figure 1, this
component is a method of storing URLS to be visited by the crawler. The
URL frontier is also responsible for determining whether the URL should
be scheduled, ready to be crawled - meaning implementations of
politeness and freshness could become an aspect of the URL frontier
component.

* Downloader - in reference to fetcher outlined in figure 1, this component
is responsible for handling the multitude of content types encountered by
visiting a URL and performing HTTP requests to download the
encountered content.

* Specialized Parser - as stated in figure 1, a parser to extract content
supplied by the downloader. This can vary depending on the goal of the

Page 5 of 14

crawler. Examples include just parsing links, or even varied parsers that
can crawl AJAX (Asynchronous JavaScript and XML) content and older
websites that use framesets. Crucial crawler configurations such as
robots.txt are required to be parsed also.

* Link Normalizer - when parsing web pages for new fresh hyperlinks, it
is important to “normalize” links. This effectively means determining
whether or not the URL is encoded using HTML entities, as well as
determining whether URLs are relative to the domain (e.g. domain
“example.com” has a hyperlink defined as “) - a crawler has to be able to
determine whether or not the URL requires normalizing before passing
over to the Downloader component.

The general lifetime process for a crawler can be defined within a few steps that
appear simple; but contain some complex logic. The following pseudo-code
defines the high-level logic of this cycle:

Var queue = getSeedUrls() // seed urls could be more than 1

While (queue length is not empty)

{

var url = poll queue // pop the head of the queue
var page = download page via downloader

var childLinks[]= parse page links via link parser

for each link in childLinks
{

// politeness implementation etc
schedule link for crawl

}

With a sheer amount of content available via the web, it is inevitable that writing
a full-scale web crawler suddenly becomes very much a complicated and
daunting process, dealing with different content types and link variations (also
not forgetting different character set types within webpages, for example
different character encodings for foreign languages) and ensuring pages are
visited frequently enough and quickly enough - yet not too quick as to overload
the domains webserver. Architecture design is critical - and in places
parallelization is inevitable, which further complicates the architectural design
by dealing with multiple processes executing simultaneously.

[2.3] Limitations of a Generic Web Crawler architecture

With the sheer size of the task a web crawler has to tackle, it’s almost certain an
architectural design will run into issues or limitations. In order to maintain an

Page 6 of 14

index of URL'’s in vast quantities with an acceptable “freshness” (freshness
determines how up-to-date a page is) - the crawler has to be able to download
and process vast quantities of both requests and information per minute. In
order to utilize multiple machines, concurrent concepts must be implemented.
However, if a crawler that is downloading in parallel across multiple distributed
machines, the crawler has to ensure that not too many requests are focused at
one server / host simultaneously, otherwise the web server will become
overloaded. This can be remedied by implementing a form of policy known in the
crawling industry as a politeness policy (which is described in more detail later
in [2.5.2]) to limit the amount of requests sent to a particular host / domain,
taking into account server administrator wishes (robots.txt, explained later in
[2.5.2]) and other factors dependent on the politeness policy algorithm used. At
the same time, a web crawler has to attempt to utilize the maximum amount of
resources available to it when requesting pages simultaneously from the same
domain / server - have too strict a politeness policy and you will under-utilize
resources available to the crawler, causing long-term catastrophes such as large
over-heads of out-of-date pages and over-heads when re-queuing URLs within
the crawlers scheduler and URL frontier.

Another critical issue web crawlers have to deal with daily is the ability to
determine “good pages”. What is a “good page”? A “good page” is a page that
contains a saturated amount of hyperlinks or information (dependent on what
the web crawler is crawling for) for the crawler to parse. However, it is difficult
for a crawler to determine how “good” the page is to crawl, without first
downloading the page and analyzing it. If a page contains useless data, for
example is empty or contains un-related / useless information then resources
have been wasted crawling the page. This relates closely to the crawler resource
utilization mentioned above; crawling useless pages adds a bottleneck to the
crawler’s resources due to the nature of crawler politeness and respecting web
administrator’s server resources.

Determining how often and when a previously crawled URL should be visited to
maintain page freshness is also another resource intensive and complex issue
within the architectural design of a web crawler. If a URL that has previously
been crawled isn’t visited often enough, the freshness of the page will decrease
meaning the indexed page will become out of date. This means in terms of a
search engine, information relayed to the users keyword search becomes
outdated - especially if the content nature of that page is dynamic or updates
frequently. However, re-visit the page too often and you will waste valuable
resources, which in the long run adds a bottleneck to how many pages can be
crawled simultaneously (again relating to crawler politeness). A solution to this
is known as a re-visit policy (and is described in further detail in [2.5.1]) - which
helps aid in maintaining the balance between discovering new
pages/information and re-visiting pages that are possibly outdates in order to
re-new their freshness.

Finally, with the vast amount of URLs a concurrent crawler is likely to discover, a
general queue data type will more than likely exhaust any memory within a

Page 7 of 14

singular machine. Since the URL frontier typically handles any URLs that have
been crawled or are required to be crawled, an effective and lightweight storage
solution is required. Storage to a disk is plausible in a highly distributed crawler
- but storage space is still limited and expensive to maintain / expand. To store
within a database is also plausible — however this can still provide latency /
efficiency issues. Take a scenario in a concurrent environment where one page is
being crawled per second on a thread pool with a size of 100 - the database
would be required to be polled 100times per second just to determine if a URL
has already been crawled and indexed by the crawler. This would require a very
robust and efficient database cluster - something that isn’t easily achievable.

[2.4] Crawling Techniques

There are no ‘set’ crawling techniques - in fact in large-scale crawlers there is
more than likely to be proprietary crawling techniques to gain a positive
outcome depending on the type of service provided. However, there are two
predominant fairly well documented crawling techniques that I will mention -
Focused Crawling and Path-ascending crawling.

[2.4.1] Focused Crawling

The focused crawling technique (also known as tropical crawling) is a method of
crawling that focuses directly on a specific topic or “keyword”. The idea behind
focused crawling is to only download and visit pages that are relevant to the
topic or “keyword” supplied — making it an ideal technique for search engine
crawlers. Essentially, pages are crawled based on their importance (importance
being how relevant or similar the page is using a focused crawler algorithm). To
predict the similarity / relevance of a page without physically downloading it is
to analyze previously crawled page(s), paying extra attention to anchor links
from hyperlinks to determine the similarity.

Given the example keyword / query, “holiday”, previously crawled content will
be analyzed to determine the similarity of the original search query and the
pages/URLs that have yet to be crawled.

However, performance of focused crawling is highly dependent on the “quality”
of a page. If a page contains little or no links, or even links that are dis-similar to
the original query then this technique does not provide adequate results. An
existing search engine is generally required to provide the crawler with seed
URLs relating to the query to kick-start the crawling.

An example of a focused crawling is the “ARACHNID (Adaptive Retrieval Agents
Choosing Heuristic Neighborhoods for Information Discovery)” algorithm by
Filippo Menczer[2]. For more information regarding this algorithm, please refer to
reference [2].

Page 8 of 14

[2.4.2] Path-ascending Crawling

The Path-ascending crawling technique aim is to crawl and download as many
resources from a given URL as possible. For each URL within the queue, the
crawler will traverse through every possible path within the given URL until the
root path is reached. This is typically the behavior that site Web Harvesters will
use to ensure all resources are found and downloaded within a given URL. Path-
ascending crawling has also been discovered to be useful for finding unknown /
non-publically presented resources - such as pages or files that have no direct
inbound link from external pages.

Given the example URL “http://domain.com/path1/path2/path3”, a path-
ascending crawler would traverse through the following URLs:

* http://domain.com/path1/path2/path3

* http://domain.com/path1/path2

* http://domain.com/path1

* http://domain.com

For more information regarding the performance of Path-ascending crawling,

please see reference [3] by Viv Cothey.

[2.5] Web Crawler Policies

Due to the aggressive nature of a web crawler, there are several policies that is
advised to be implemented to improve efficiency, reduce over-head within
resources, and prevent abuse towards web administrators - as well as to crawl to
gain the best possible results. The policies covered within this report are: page
selection policy, page re-visit policy and the crawl politeness policy.

[2.5.1] Page re-visit policy

The page re-visit policy is fairly self-explanatory. Due to the web becoming
increasingly dynamic (with server-side and client-side programming languages,
in most cases pulling from a database), pages may change or become unavailable.
[t is important for a crawler to keep an up-to-date record of a page to provide
accurate information - but at the same time not to re-visit the page too often. See
Limitations of a Generic Web Crawler Architecture [2.3] for more information as
to why a page re-visit policy is required to be implemented correctly.

A study carried out by Junghoo Cho and Hector Garcia-Molina[4] identified two
possible re-visit policies. These two polices are known as “Uniform policy” - re-
visiting every page within the crawler queue at the same frequency, ignoring the
rate of change factors the page inherits, and “Proportional policy” - visiting
specific pages more often than others due to their change behaviors (based upon
an estimated age of the page using algorithms highlighted in reference [4]). The
study concluded that “Uniform policy” is the best, as typically a crawler will

Page 9 of 14

schedule too many crawls for frequently changing pages - hindering the
performance of discovering new URLs and pages from pages that change less
frequently.

For more in-depth reading regarding page re-visit polices, please refer to
reference [4].

[2.5.2] Politeness policy

Politeness policy within a given domain / server is very important when
crawling for new un-discovered pages. Hit a website with too many requests
from a parallel downloader within a web crawler and either the server will
overload under intense pressure, or server administrators will be contacting
you. It's very important as a crawler not to abuse server administrator’s
resources.

There are several implications when executing a crawl, which include but aren’t
limited to:
* Bandwidth resources - hitting a server with multiple concurrent requests
for different URLS use bandwidth resources, costing site administrators
money

* Poor architecture - if a crawler has a poor architecture design, or
elements are implemented in-efficiency (this includes policies outlined
within this report, as well as physical crawler components such as the
crawler queue) - not only will it waste resources for the crawler itself, but
it will also have implications on the server administrator if requests are
malformed or improperly executed.

One solution to prevent overloading servers is to include a form of intervals
between requests, for example delaying the scheduling of a thread for X amount
of milliseconds. Generally, a fixed delay is substantial enough per domain to not
overload a webserver - however a delay could very well be calculated on how
well the server responded to previous requests within the crawler queue (an
adaptive policy).

Finally, another politeness method is abiding to site administrators robots.txt
(Robot Exclusion Protocol). This simple text file can advise crawlers what
resources to access, and what resources to exclude. This simple implementation
can significantly reduce network and resource abuse - however using an
adaptive or fixed request interval is generally considered more efficient and
reliable.

[2.5.3] Page Selection policy

A selection policy is essentially a policy to restrict / prioritize pages relevant to a
certain topic, instead of crawling aimlessly and downloading random areas of the

Page 10 of 14

web. A study in 2005 by A. Gulli and A.Signorini stated that “we revise and
update the estimated size of the indexable Web to at least 11.5 billion pages as of
the end of January 2005”[5] - which is extremely outdated concerning the
growth of the web today. As explained earlier, web crawlers wish to utilize as
many resources as possible - without wasting or over-utilizing, hence why a it is
desirable to request and download relevant pages.

There are several factors that determine a pages importance:

* Content quality

* The popularity of the page in a sense of amount of inbound links from
other web pages

* The popularity of a page in a sense of how many hits the page receives

* Sometimes the URL and domain can be a deciding factor to determine
page importance (e.g. domain is a well-used English word such as
“holidays.com”)

Designing a “real-world” selection policy is generally deemed fairly difficult, as a
crawler has to work with partial data as the page hasn’t been requested and
downloaded (the crawler is determining whether or not to crawl the actual page
based on the selection policy). Corporate crawlers (such as Google) selection
policies are generally deemed to be proprietary (due to the competitive nature of
other crawlers / search engine indexers).

[3] Approach

To compliment this report, | have written a simple web crawler within the Java
Programming language (Java 7 to be precise) that performs a simple traversal
through a queue, parsing any hyperlinks and then crawling to a specific depth
(depth is number of “hops” after visiting a seed page). This is all executed within
a concurrent, multi-threaded environment. It should also be noted that the usage
of a 3rd party library named log4j[7] by the Apache Foundation is used to output
logging information such as debug and status information.

[3.1] Simple implementation overview

To become familiar with the web crawling architecture, a RAD (Rapid
Application Development) approach was taken - diving straight in and getting a
working yet very limited (and in some places quite crude) implementation of a
web crawler.

As outlined in the class diagram within appendices [1], there is not a very object
orientated approach for the simple implementation. Currently, 8 classes exist, all
of which are at very preliminary stages in an attempt to complete a concrete
implementation.
* CrawlerEnvironment - includes main entry-point for Crawler
application (void main()), as well as initialization of required classes and

Page 11 of 14

concurrency.

CrawlerWorkerCounter - thread-safe counter of how many active
crawlers are within the used ScheduledThreadPoolExecutor.

CrawlerWorker - a “worker” thread that performs the initial crawl. It’s
here where pages are processed and crawl depth and other search
constraints are checked (such as whether to crawl outside the seed
domain).

CrawlerMonitor - a ‘monitor’ thread (or ‘daemon’) to overlook the status
of the current ScheduledThreadPoolExecutor state. Handles shutdown
and debug information regarding the Thread pool.

PropertiesFile - a wrapper class for reading different data-types within a
Java properties file (using Java's PropertyFile object).

CrawlerUrl - a wrapper to contain the crawlers Urls. Has a ‘crude’
implementation of URL Normalization currently, as well as keeping track
of depth and return a Java URL object.

WebpageDownloader - a wrapper for the Java HttpURLConnection
object to download pages. Currently very limited.

The use of an ScheduledThreadPoolExecutor (see reference [6] for the Javadocs)
allows more than one concurrent CrawlerWorker to execute in parallel. The
ScheduledThreadPoolExecutor also has the ability to delay threads from
executing their main body - something that will be useful when integrating a
good crawler politeness algorithm.

[3.2] Simple Implementation limitations

Since my implementation is a very basic and preliminary implementation of a
web crawler, there are currently plenty of limitations. Current limitations are:

No abstraction - there is currently no interfaces within the initial design.
This means there is no room for expansion, e.g. when a downloader
wishes to not download a web page, there is no inherited class to
download other content types.

No crawler polices - there are currently no web crawler polices
implemented (politeness, page selection, re-visit), meaning the crawler
only has limited behavior when discovering new links, updating of pages
and scheduling new crawler worker tasks.

Limited / crude URL Normalization - the current implementation /
attempt at URL Normalization doesn’t work for all scenarios. This means

Page 12 of 14

the crawler is limited to crawling links discovered within downloaded
web pages.

* Limited parsing - currently only hyperlinks are parsed.

* Limited downloader - content types, character sets and HTTP headers
are either implemented very basically, or are currently not implemented.

* No URL Frontier & storage - there is currently no implementation of a
URL frontier, meaning previously crawled URLS are re-crawled and are
not stored.

[3.3] Future implementation work

As outlined within the limitations, there is a lot of future work to be carried out
for the final implementation. The initial plan is to design interfaces for the
downloader and parser components, to allow multiple content types and parsers
without duplication of code. Other future work includes and isn’t limited to:

* Implementation of a crawler politeness policy - an implementation of
both the robots.txt protocol and the “Uniform” re-visit policy to abide to
web server politeness.

* Better Object Orientated design - interfaces for downloader(s) and
parser(s) to support multiple content types and loose coupling.

* General overhaul of current components - refactoring current
components to suit new Object-Orientated design.

* Design and implement a URL Frontier and storage method

* Different crawler techniques and policies - if time permits, addition of
crawler techniques (such as path-ascending) and polices (re-visit policy)
will be implemented and analyzed.

[4] Conclusion

In this report [have covered almost every important aspect of the functionality
of a web crawler. | have provided a simple implementation, of which has a lot of
limitations, which have been discussed. For the final report, | hope to vastly
improve my implementation, relating to the Future Work section within
Approach [3.3].

Page 13 of 14

Appendices

[1] Simple implementation Class Diagram - See uploaded item
“classdiagram.png” under “Other Files” in PATS2.

[2] Simple implementation source code - See uploaded item “unicrawler.zip”
under “Archive Files” in PATS2.

References

[1] Alexa. (2012). Top 500 Global Sites. Available:
http://www.alexa.com/topsites/global. Last accessed 13th December 2012.

[2] Filippo Menczer. (1997). ARACHNID (Adaptive Retrieval Agents Choosing
Heuristic Neighborhoods for Information Discovery).Available:
http://informatics.indiana.edu/fil/Papers/ICML.ps. Last accessed 13th
December 2012.

[3] Viv Cothey. (2004). Web-crawling reliability. Available:
http://onlinelibrary.wiley.com/store/10.1002/asi.20078/asset/20078_ftp.pdf?v
=1&t=haoas782&s=29ad99a260826b5ba64b356dcla41e83a4026alc&systemM
essage=Wiley+Online+Library+will+be+disrupted+on+15+December. Last
accessed 13th December 2012.

[4] Junghoo Cho and Hector Garcia-Molina. (2003). Effective Page Refresh Policies
for Web Crawlers. Available:
http://delivery.acm.org/10.1145/960000/958945/p390-
cho.pdf?ip=131.251.253.21&acc=ACTIVE%20SERVICE&CFID=156660322&CFT
OKEN=68960911&_acm_=1355430791_3eeefbb619427642f12490df6d6762c5
. Last accessed 13th December 2012.

[5] A.Gulli, A.Signorini. (2005). The indexable web is more than 11.5 billion

pages. Available: http://delivery.acm.org/10.1145/1070000/1062789/p902-
gulli.pdf?ip=131.251.253.21&acc=ACTIVE%20SERVICE&CFID=156936930&CFT
OKEN=68692141&_acm_=1355485489_84c0e28076b7d38d0b969c0b056b24
el. Last accessed 13th December 2012.

[6] Oracle. (). Class ScheduledThreadPoolExecutor. Available:
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ScheduledThr
eadPoolExecutor.html. Last accessed 13th December 2012.

[7] Apache Foundation. (2012). Apache log4j 1.2. Available:
http://logging.apache.org/log4j/1.2/. Last accessed 13th December 2012.

Page 14 of 14

