
Akka Streams integration in CSV-W Validator tool to
improve performance

Ajay Joseph

MSc Advanced Computer Science with Professional Placement Year

C1917253

Supervisor: Martin Caminada

Moderator: Daniela Tsaneva

School of Computer Science and Informatics, Cardiff
University

26/11/2021

1

Table of Contents
INTRODUCTION... 3

AIMS AND
OBJECTIVES.. 4

BACKGROUND... 6

PROBLEM………………………………………………………………………………....….. 15

APPROACH... 20

Application of chosen approach…………………………………………………….. 22

PRODUCT... 23

Requirements………………………………………………………………………… 23

Design…………………………………………………………………………………. 24

Implementation……………………………………………………………………….. 25

Project Management ………………………………………………………………... 36

Results………………………………………………………………………………… 37

ANALYSIS... 38

CONCLUSIONS... 44

REFLECTION……………………………………………………………………………...… 46

REFERENCES……………………………………………………………………………….. 47

APPENDIX ..48

2

Introduction

The Office for National Statistics (ONS) is the producer of official statistics in the United

Kingdom and this dissertation project is done in collaboration with them. The ONS

publishes enormous amounts of data every week and most of it is in the form of

spreadsheets. The publishing team within ONS is moving towards a cleaner and better

form of publishing data and that is by switching to a new standard called CSV-W which

stands for Comma Separated Values on the Web.

CSV-W is a standard by the World Wide Web Consortium and it is starting to emerge as

the best form of linked data and thus it is being adopted by the governments across the

world. As CSV-W is a standard with a large set of rules, there comes the need of tools

to validate this standard.

The Integrated Data Platform or IDP team of ONS is at the forefront of this CSV-W

movement. The main aim of this project is to enhance the capabilities of the CSV-W

validation tool currently in use by the Integrated Data Platform team.

This project tries to find out if the Actor model (a computing model for concurrent

processing) can be integrated to the existing tool for CSV-W validation. The importance

of this project is based on the fact that ONS has to deal with CSV-Ws which has more

than millions of rows inside each table. Thus normal synchronous processing /

validation of rows are inadequate at times.

This report contains all the details of my efforts to revamp the existing CSV-W validator
tool of IDP. Objectives, method of approach, challenges faced in development, the
developed product, analysis and conclusions are discussed in detail in the coming
sections.

3

Aim and Objectives

CSV-W Validation can be an intensive process and the time complexity associated with

validating a CSV-W can grow significantly when the size of csv file increases.

The aim of this project is to optimally make use of the resources available in the

environment where the CSV-W validation is taking place. In the current state, the tool

(CSV-W Validator) executes in an synchronous (processed in a linear fashion, not

concurrent/parallel) manner and thus even if this tool is being executed in a machine

with huge potential it cannot take advantage of the resources.

Multi core processors are quite common these days and to fully employ them, software

packages which run on them should also be written taking these multicore architectures

in mind. The current code base of the CSV-W Validation tool was developed just for the

purpose - which is to validate a CSV-W. Performance aspects were not given much

importance during its development and thus it can take some time while validating very

large CSV-W’s. Even though these wait times are currently acceptable, we are not quite

sure how big these CSV-W files can become in the future. To be future proof, we should

try and make use of the maximum available resources while validating CSV-W files.

That ensures even if the CSV-W gets larger in the future we can just scale up the

infrastructure and keep the processing times within acceptable levels.

The plan is to learn, analyse and make use of the Akka framework in this project. The

basic idea is that bringing in parallelism while processing millions of rows can bring in a

boost in processing times. Akka is a toolkit for building highly concurrent, distributed,

and resilient message-driven applications for Java and Scala(https://akka.io). Akka is

the implementation of the Actor model for the JVM.

4

https://akka.io

This project tries to study the impact or performance gains the Akka framework can

bring to this particular project, CSV-W Validation.

5

Background

Team Overview

Our team is the Dissemination Branch of IDP (Integrated Data Platform) project which is

a long-term flagship project of ONS. The IDP will create a safe, secure, and trusted

infrastructure for Government data, enabling analysis to support economic growth,

better public services, and improving the lives of citizens.

It will do this by,

● Building on ONS’s existing infrastructure to ensure analysis is carried out

(where legally and ethically appropriate) across Government in line with

priority needs

with data being made available to the research and academic community to

support this analysis.

● Expanding the analytical capacity and capability in Government for

analysing large-scale, linked datasets.

● Ensuring findings and analysis are accessible and used.

● Facilitating better evaluation of the effectiveness of government policy.

● Ensuring common standards for bringing analytical data together, working

alongside Government Digital Service (GDS) and Department for Digital,

Culture, Media & Sport (DCMS).

● Leading the government’s ambition for a step change in data capability

across government.

The Dissemination team (the team in which I am working) focus on revolutionising the

UK Government Statistical Data on the Web by creating a repository of 5* Linked Open

Data and building products and services fit for a modern age. As part of this, we are

creating automated processes to transform the data that will underpin a reimagined

data-driven service for our users.

This dissemination element covers three objectives:

6

1. Value and efficiency - delivered by departments aligning with industry best

practice and adopting open-source technologies alongside introducing

robotics and automation.

2. Convergence around processes and statistical data in close collaboration

with departments. Standardised processes and data formats will drive

improved outcomes and support automation.

3. Meeting end user needs - develop an improved quality of service for users to

access statistical data and content.

CSV-W

The fundamental form of data that is being dealt with within our team is CSV. To achieve

the mission of 5* Linked Open Data mentioned earlier, we need to use the modern

standards in CSV such as the CSV-W by the Word Wide Web Consortium.

CSV is one of the most widely used formats for storing and sharing data on the internet.

It's short, easy to read for both people and machines, and it fits the tabular form of most

data neatly.

However, CSV is a bad data format. CSV has no way of indicating the type of data in a

given column or whether or not the values in that column must be unique. As a result,

validation is difficult and errors such as missing values or different data types within a

column are common.

CSV-W or Comma Separated Values on the Web was developed by the CSV on the

Web Working Group which comes under World Wide Web Consortium. This new

standard of CSV aims to eliminate all the problems with the current CSV files and to

enhance its capabilities. A CSV-W contains additional files which are called metadata or

7

https://www.w3.org/2013/csvw/wiki/Main_Page
https://www.w3.org/2013/csvw/wiki/Main_Page

schema which contains supplementary information to the CSV. The CSV on the Web

Working Group has developed standards to express meaningful additional data about

CSV files (CSV on the Web: A Primer. 2016).

Example:

CSV

Metadata

8

The example given above contains a basic CSV-W metadata file and the associated

CSV. The columns of the table are well defined, i.e. it says the total columns in each row

with the name of the column as well.

There can be a lot more information in the metadata about the CSV, some interesting

ones which I find are defining the types of data contained in a column, applying

constraints on the value of a column, enforcing primary and foreign keys across multiple

CSV contained in the CSV-W.

9

The image above shows how to set a data type for a column and to enforce minimum

and maximum length of the string data this column can contain.

Consider the metadata data file given below. This demonstrates how foreignkeys are to

be defined in a CSV-W. A foreign key is a column or set of columns in a relational

database table that connects data from two other tables. It serves as a cross-reference

between tables by referencing the primary key of another table and therefore creating a

relationship between two.

The foreign key notion is used by the majority of tables in a relational database system.

Data in a domain must be added across several tables in sophisticated databases and

data warehouses to maintain a relationship between them. Foreign key theory gave rise

to the concept of referential integrity. These features of CSV-W enhance the capabilities

of regular CSV and are extremely helpful.

Countries.csv and country_groups.csv are the two tables or CSVs here. The property

foreignKeys is an array property and can contain information about multiple foreign

keys, in this case there is only one. The column ‘country_group’ in table countries.csv is

linked to the column ‘group’ of the table country-groups.csv

10

11

Existing tools for CSV-W Validation

When there is a standard, there comes the need to develop tools to check whether a

document adheres to this standard. CSV-W validators were designed and developed to

validate CSV-Ws.

The World Wide Web Consortium has released a set of test cases which validator

implementations will have to pass to ensure that it checks all the rules and constraints

of the CSV-W standard. See the test cases here.

One such implementation is CSVLint. See their github homepage

https://github.com/Data-Liberation-Front/csvlint.rb. Currently CSVLint is used as the

main CSV-W Validation tool in ONS but it has many limitations. It is written in the

language ruby and thereby the performance this tool provides is not that good. Ruby is

not good for concurrency in general and thereby processing large CSV files containing

millions of rows becomes a tedious task for this tool. For example a typical large CSV

file we have to deal with in the ONS will be approximately 300 megabytes. If we assume

5 columns per row for this CSV, that will come around 4-5 million rows in this CSV.

Processing such a file took approximately 30 minutes to complete. Processing 5 million

records one by one is not a good idea and thus considering CSVLint as the long term

solution was not an option. This led to the development of our in-house CSV-W

Validation tool (https://github.com/GSS-Cogs/csvw-check).

12

https://w3c.github.io/csvw/tests/reports/index.html#csvw-validation-tests
https://github.com/Data-Liberation-Front/csvlint.rb
https://github.com/GSS-Cogs/csvw-check

Selection of programming language for CSV-W Validation

Developing a new tool to validate a standard like CSV-W was not an easy task. Since

we already had a tool to do this (CSVLint - the Ruby tool), the tool which is developed

next should be better than the existing one.

A lot of languages were considered before we finalised on Scala. Scala had many

advanced features over the languages we considered. Scala's advanced features

encourage better coding and boost performance. Scala’s ability to combine object

oriented and functional programming paradigm was really a factor which pushed us

towards Scala.

Another important feature of Scala was that it runs on Java Virtual Machine or JVM.

Although Scala is a different language from Java, it does not need developers trying to

reinvent the wheel. Scala offers Java compatibility and interoperability, allowing

programmers to:

● Make the most of JVM's benefits

● Continue using Java libraries

Scala generally use less lines of code when compared to Java or C#. The other

languages like Python and Ruby use even fewer number lines to accomplish the same

task, but interpreted languages were out of the question for this project. We wanted to

make something which runs significantly faster than the system we already had which

was written in an interpreted language. The problem with these languages is they do not

support multithreaded programming or they are single threaded languages.

Scala also had support for Akka framework which helps developers to build reactive,

concurrent, and distributed applications. This aspect of Scala was considered seriously

when Scala was initially selected. Currently this dissertation project focuses on this part,

ie to integrate Akka framework to CSV-W Check project.

13

It's common advice for developers to use the language that's most suited to the job. For

example, PHP might suffice if you're entrusted with creating a simple form for a website

with 10 daily visitors. Scala could be a bit much for this task.

Learning Scala is not easy and it does have a learning curve, but when it comes to

developing a tool which has a significant part to play in the team we decided to develop

in Scala.

This tool was developed in Scala aiming to improve performance. I was the lead

developer in the development of this tool and I was able to learn significantly about the

CSV-Ws during the process. The development took almost 10 months and I faced

multiple challenges in doing so. The large CSV-W (approx 300 megabytes) which took

30 minutes to finish validation using CSVLint (the current Ruby tool used in our team)

could be processed in less than two minutes using the new Scala tool.

The aim of this project is to see if the performance of this Scala tool to validate CSV-W

can be further improved by using the actor model. Decades ago a model was proposed

by Carl Hewitt which is the basis of the Actor model. This model was designed to

efficiently handle parallel processing, but such environments were not available at his

time. Things have changed today and have caught up or even outperformed hardware

and infrastructure capabilities envisioned by Hewitt’s and we have highly capable high

performance networks today. (reference - maybe

https://doc.akka.io/docs/akka/current/typed/guide/actors-motivation.html?_ga=2.158349

114.1852574399.1636623621-545249789.1635752149) Consequently, organizations

building distributed systems with demanding requirements encounter challenges that

cannot fully be solved with a traditional object-oriented programming (OOP) model, but

that can benefit from the actor model.

This project studies whether akka framework can be integrated successfully with

CSV-W Validator to improve performance, analyse what exactly is the performance gain

and analyse the drawbacks if any.

14

https://doc.akka.io/docs/akka/current/typed/guide/actors-motivation.html?_ga=2.158349114.1852574399.1636623621-545249789.1635752149
https://doc.akka.io/docs/akka/current/typed/guide/actors-motivation.html?_ga=2.158349114.1852574399.1636623621-545249789.1635752149

Problem

The capacity of a system to scale up or down in performance and cost in response to

changes in application and system processing demands is known as scalability.

Examples include how well a hardware system operates as the number of users grows,

how well a database handles increasing quantities of queries, and how well an

operating system runs on various hardware classes. When considering hardware and

software, businesses that are rapidly expanding should pay special attention to

scalability.

The problem we had with the CSV-W Validator tool we developed was its inability to

scale. Currently the data publishing pipelines of ONS were deployed on a Jenkins build

pipeline. The total memory allocated to this was 8 GB and in terms of processing

capacity it was 4 standard cores. In the current scenario, the Scala CSV-W Validator

tool will run on this setup with limited performance.

Our team wanted this tool to be future proof, i.e. we wanted to have the ability to

increase the performance in future just by throwing more memory and processing cores

at it. In the current state of the CSV-W Validator this cannot be achieved as the code did

not have any features which maximises the potential of the system which it ran on.

Another reason we wanted this tool to be future ready is because of the importance it

can have in other teams of ONS as well as in other governmental departments which

publish data. One of the goals of our team, IDP- Dissemination is to educate and train

various producers of data to publish their data in the 5* Linked Open Data standard

without depending on the publishing services of ONS. CSV-W validation is an

unavoidable part of data publishing and thus our team didn’t want this piece to be a

bottleneck in the data publishing pipeline. Other organisations which may use this tool

can have very large CSV-Ws to validate and even the resources to do so. In such a

scenario, the validation part should not lag behind just because the code is not

optimised to take advantage of the potential of the infrastructure it executes on.

15

As one of the main publishers of official data in the UK, our team also wanted to explore

the new trends in software engineering for maximising performance. If successful this

project can act as a proof of concept for multiple systems to be designed based on the

Actor model.

Why do modern systems need a new programming model?

Lets see what are the differences between the traditional programming concepts and

the reality of multi-threaded, multi-CPU systems in today's world.

Problems with encapsulation

Encapsulation is a key component of OOP. The internal data of an object is not

immediately accessible from the outside; it can only be modified through invoking a set

of vetted methods, according to encapsulation. The object is in charge of exposing safe

actions that safeguard the invariant nature of the data it encapsulates.

Let’s look at an example of a message execution chart

16

Unfortunately, the figure above does not adequately depict the instances' lifelines

throughout execution. In practise, a thread conducts all of these calls, and invariants are

enforced on the same thread that called the method. After updating the diagram with the

execution thread, it appears as follows:

When you try to simulate what happens when numerous threads are present, the

importance of this clarification becomes evident. Suddenly, our well-drawn diagram is

insufficient. We can use the following example to show many threads accessing the

very same instance:

17

In the area where the two threads access the same object 2, we cannot guarantee

anything in that section. What if thread 1 changes the value of object 2 and this

changed value is not the one required by thread 2? What if thread 2 is looking for an

updated object 2 and for some reason the update by thread 1 does not complete in

time?

There are multiple questions which become unanswered here. The common approach

here is to add a lock. This ensures that only one thread can access the object 2 at a

time. This is an inefficient approach to this problem because,

● They limit concurrency to a great extent. It is very costly to pause or suspend a

thread and resume it at a later stage.

● Since the thread is blocked, it cannot do any other useful task. Introducing more

and more threads can be said as an approach to overcome this, but we should

understand that threads are very costly as well.

● Bringing in locks brings another classic problem, deadlocks. This is a situation

when the lock to a resource is no longer released.

To put shortly, it can be said that:

● The state gets corrupted if there are no adequate locking mechanism

● Multiple locks can seriously affect the performance of the system. It can also lead

to deadlocks.

Another thing with locks is they only work well in the local environment. When it comes

to distributed systems, distributed locks will have to be put in place. The issue with

distributed locks is the communication / messages that have to be passed around the

system to manage these locks. Being a distributed system, latency is considerably large

and this makes distributed locks way less effective than the locks in a local system.

Effectively it brings a limit on scaling the distributed system.

18

Shared memory on modern systems

Memory on modern systems is entirely different from what it has been conceptualised in

the 80’-90’s. Every processing core has its own cache memory, so often its writing to

cache instead of writing to the main memory. In this scenario, the cache memory of a

core is mostly not accessible to the other cores. If other cores need to have access to

them, they have to be transferred between the caches of cores.

In general, the shared memory concept which was in existence is no longer completely

valid. CPU cores exchange data pieces (cache lines) in the same way that machines on

a network do. Many people don't understand that inter-CPU communication and

network communication have a lot in common. Messages are now routinely passed

between CPUs and networked systems.

Reactive Streams

One solution to address the problem mentioned previously is to use reactive stream

processing. They are gaining huge popularity these days and the basic purpose of

Reactive Streams is to control the transfer of stream data over an asynchronous

boundary ie. sending elements to another thread or thread-pool while preventing the

receiving side from buffering arbitrary quantities of data. We could make use of these

technologies in the heavy data processing problem we have inside the CSV-W check.

The purpose of reactive streams, especially akka streams (which we are considering

and trying to implement to the CSV-W Check project) is to provide a new safe way to

process streams of data. Akka streams is designed in such a way that it can process

these data streams in limited resources (CPU and memory) while maximising the

efficiency.

19

The three main parts of a stream are the producer, consumer and the various

components/functions through which the data flows before reaching the consumer.

Consider a data stream where the producer might be really quick to produce data but

the consumer cannot keep up with the speed of the producer. There are mechanisms in

the akka streams where this scenario is handled automatically. This is termed as

Backpressure and it is one of the core features of akka streams. This ensures that the

difficult problem of propagating and responding to back-pressure has already been

factored into the design of Akka Streams, so developers don't have to worry about all

this.

Approach

Since this project is done for the IDP-Dissemination team of ONS, they are like my

clients who set the criteria to be met and I was a developer who tries to achieve these

objectives in twelve weeks.

Software Development methodology

Our team uses Agile software development methodologies. To be more specific, we use

Scrum - a specific Agile methodology. We work in 3 week sprints, with every sprint

having sprint planning, splint review and sprint retrospective meetings. Sprint planning

is usually conducted on the first day of the sprint and sprint reviews are conducted on

the last day of the sprint. Retrospectives are sometimes avoided if a majority of the

team decides against it. There are 15 working days in a sprint and this project was

spread over 4 sprints in our team.

20

One of the important aspects of Agile software development methodology is to provide

users with some usable software as soon as possible and iteratively improve it. This

was not exactly true for this project, as the reactive stream integration was successful

only after 8 weeks (i.e. about 3 sprints). Given the aspects of this project it was

reasonable and from then on it was building on what I had. I continually improved the

akka stream implementation I had and by the time it reached the end of dissertation, I

had a piece of software which was extremely efficient.

Choosing between akka actors and akka streams

There are primarily two versions of this akka actor system, akka actors and the akka

streams.

Akka Streams is a module facilitating ingestion and processing of streams built on top of

Akka Actors. It provides simple APIs for creating streams that take advantage of the

Akka toolkit's capabilities without having to define actor behaviours and messages

directly.

The first challenge is to decide what to use among them. This can be crucial as both of

these modules have different APIs and learning both of them can be time consuming. A

decision had to be taken on what module to use at the earliest so that this module can

be focused on.

Developing a proof of concept

I had to prove that these modules can be used effectively to process large CSV before

beginning the work on the actual CSV-W Validator. The plan was to create a proof of

concept application which takes in a large CSV and then does basic operations on this

data in a parallel or concurrent manner using akka modules.

21

Integration of the chosen akka framework to CSV-W Check application and
performance evaluation

After having a proof of concept, the plans are to integrate the chosen akka module with

the CSV-W Validator tool. This will be a challenging task, as the existing code has to be

heavily rewritten to accommodate akka modules.

Finally, the performance of the parallelised version of the application will be tested

against the synchronous version without akka. Analysis of these results will then

determine which version of the application to stick to in the longer run. If the akka

version does not yield significant performance, then it can be ditched. Hopefully the

parallelized version should give better throughput at least when dealing with large

CSVs.

Application of the chosen approach

I regularly conducted meetings with my manager, Rob Barry who was my point of

contact for this project in my team. Every blockers I had was discussed with him and he

guided me in the best possible way he could. We continuously discussed the state of

the project and set systematic timelines. Rob was also the product owner and it was him

who decided what exactly is needed from this tool.

Decision to use Akka Streams was taken very quickly and the application to

demonstrate concurrent processing using Akka Streams was also developed. The

Integration of Akka Streams into the CSV-W Check application was comparatively

difficult and it didn’t happen easily. The challenges faced here will be explained in detail

in other sections.

22

Product

Requirements

Since this is a project aimed primarily at improving the performance of an existing

system, the functional requirements of this project are relatively straightforward. They

are,

● Implement Akka framework into the existing CSV-W Check project.

● Achieve parallel processing capabilities and thereby improvement in performance

● There are 282 CSV-W Validation test cases by the World Wide Web Consortium

which passes for the version of CSV-W Check. The new implementation should

not break any of these test cases.

Non functional requirements are,

● Analyse the performance improvement of the system with and without Akka

framework

● Decision on what version of CSV-W Check to use (the new Akka framework

integrated version or the existing version) based on the detailed analysis of

various performance metrics

● Test how the new version behaves in an environment with limited computing

resources (memory and cpu)

● Overall understanding of the Akka system so that it could be put into use in

similar projects within the team (even if the Akka implementation is not feasible in

this project)

23

Design

Deciding between Akka Actors and Akka Streams

The first and most important design decision was to choose between Akka Actors and

Akka streams. Akka Streams was chosen because of its simplicity over Akka Actors.

We wanted a simple and efficient system which is maintainable and easy to understand

for more people on the team.

Akka Streams has a better level of abstraction and thus more time could be spent on

the development of actual needs rather than setting up the system. Akka Actors had too

many things for the developer to worry about than Akka Streams. This makes it even

harder for me to jump to a programming model which the team does not have

experience with.

Learning phase

Resources to learn and experiment with akka actors or akka streams were limited and

this really had an impact on the progress of this project. The only reliable resource was

the original Akka documentation found here:

Akka Documentation

Learning about Akka streams in a systematic way was difficult. The best resource I

found and recommended by many over the internet is

Akka Streams for Scala - Professional

The problem with this course is that, firstly it is not free and even if I am willing to pay,

they won’t offer it to individuals. Their target customers are groups of people in a team.

They are aiming for firms to organise this Akka Streams training for their employees. I

wanted to enroll in this course to get an in-depth idea, but unfortunately I wasn’t able to.

24

https://doc.akka.io/docs/akka/current/index.html
https://academy.lightbend.com/courses/course-v1:lightbend+Akka-Streams-For-Scala-Professional+Instructor-Led/about

Pluralsight is a learning platform which I had access to, this is provided to all developers

by the Office for National Statistics. I pursued a course from Pluralsight which was not

exactly on Akka Streams, but it did have areas which I needed for creating an

asynchronous processing system. See the contents of this course which I did here:

https://app.pluralsight.com/library/courses/scala-asynchronous-programming/table-of-co

ntents

The chapters in this course, especially “Going Async with Scala futures” and “Actor

model for async communication” were extremely helpful in this dissertation project.

These were the structural learning I carried out for this project. I can say this was not

enough and most of the knowledge I acquired for this project is from hands-on learning.

There are countless stackoverflow questions which I referred to and numerous youtube

vlogs which helped me in my issues with Akka Streams and Asynchronous

programming.

Implementation

Our team wanted to validate large CSV-W’s and this term ‘large’ is not that precise.

What is large in terms of a CSV-W? I consulted this with various stakeholders of the

teams and we all agreed upon a CSV-W that we had as the benchmark for large. This

CSV-W had a single table structure with 4.8Million rows in it.

The version of CSV-W Check which we had in Scala could validate this, if we had an

environment which did not have limitations on processing power or memory. I tried

validating the large CSV-W on the version without Akka Streams and it was found that it

successfully validated it on a machine with 8 cores and 32 Gigabytes of memory. It

25

https://app.pluralsight.com/library/courses/scala-asynchronous-programming/table-of-contents
https://app.pluralsight.com/library/courses/scala-asynchronous-programming/table-of-contents

failed when memory and cores were reduced. Sometimes it took longer than 15 minutes

and I had to kill the process.

What we needed was clear, we needed to validate large CSV-W in an environment with

limited resources. To be more specific, limited resources mean 2 cores and 2 GB of

memory. This is the current specification of the machine in which we run the CSV-W

Validation.

The main classes of this project are

PropertyChecker - validates the properties inside the metadata file of CSV-W

Schema - deals with the type of metadata file provided (metadata files can be URLs or

actual files)

TableGroup - Contains information about all the Tables inside a metadata file, also has

the necessary functions to work with this data

Table - Contains information about a single table and methods to process these data

Column - Contains information about a single column and methods to process them

Validator - This class orchestrates the whole validation process. This is the class in

which the majority of the changes were made to integrate Akka Streams.

26

Initially I implemented Akka Streams in one area where it matters the most, ie where it

tries to validate each row. So if there are 4.8Million lines, this has to be executed 4.8

times and they do not overlap. My thoughts were to bring in parallelism using Akka

Streams here and thus boost performance.

It did work, but there was not much improvement in performance. I investigated this to

find why it is not considerably faster than the version without Akka Streams. The answer

to this was the additional overhead (communication and management of threads, a lot

of events were triggered by Akka Streams in the background which was not originally

there) brought in by Akka Streams.

I realised that if the actual computation time required for processing something is really

low, the gains brought in by parallelism could be overshadowed by the additional costs

27

of the Akka Streams. Validating the contents of a row is not an expensive task. If we

parallelise this using Akka Streams, yes it can do 8 rows at a time we can set

parallelism to 8 (depends on the resources of the system), but the additional cost of

managing all these processes almost takes away the gains by parallelisation. Coming to

this conclusion was not easy and this involved profiling of the application using various

tools like VisualVM, AsyncProfiler (the default profiling tool build into IntelliJ IDEA)

The way forward was group rows together and parallelise. This was achieved by using a

function from Akka Streams named ‘grouped’. This function allows accumulating the

incoming elements until a specified number has been reached. Then comes the

question of how many rows to accumulate? This was found out using a brute force

approach where I repeated the validation using various row groupings. As it stands,

grouping 1000 rows together works for us perfectly and increasing this number further

does not bring in any gains.

The logic for the number of rows to be grouped together was changed and at the

moment the application reads this from the environment variable. If that variable is not

set it continues to use the best number worked, which is 1000.

Even though this worked and did manage to bring in considerable improvement in

performance, my employer based supervisor for this project (Rob Barry) was not really

happy with one particular part of this implementation. Parallelising one particular part in

the code and then waiting for this parallelised part to complete to resume other

operations was not a good practice according to him. He suggested to convert the entire

application to a Akka Stream graph, and materialize only at one point i.e. in the main

function.

This is a way to implement Akka Streams, in which a large graph is created and only

executed at the end where it produces results. Graphs are connections of Source,

Flows and Sinks described in previous sections.

28

https://doc.akka.io/docs/akka/current/stream/operators/Source-or-Flow/grouped.html

Converting the Validator graph to return a graph was not easy, as it was already

programmed to return normal Scala types. The validator class was largely redesigned to

achieve this. One important problem I had to address here is that storing states was not

that straight forward in Akka Streams. The entire idea of Akka Streams is based on a

functional approach and thus being functional, I cannot use shared variables outside of

the Akka Streams to accumulate results. I had to learn many new operations to write

code in this functional way.

One fine example for this would be the operation Fold. The data in the list, an initial

value, and a combining function are all passed to the fold function, then the combining

function is applied to each element in the list.

val list = List(1, 2, 3, 4, 5)

val sum = list.fold(0)((x, y) => x + y)

 There are two sets of arguments for the fold method. The first has a start value, while

the second has a combining function. The function is then applied recursively to two

operands: an accumulated value and the next element in the list as it steps through the

list.

Step 1: x(0) + y(1) = 1

Step 2: x(1) + y(2) = 3

Step 3: x(3) + y(3) = 6

Step 4: x(6) + y(4) = 10

Step 5: x(10) + y(5) = 15

Value of the variable sum will be 15 after executing this.

29

This is the simplest implementation of method Fold, what I had to implement in the

CSV-W Check project to integrate Akka Streams had to deal with much more complex

data types and a difficult combining function as shown below:

30

31

The code shown above is the most important part of the concurrent processing in this

project. It practically out of scope of this report to explain what every classes and

functions of this project are, but feel free to have a look at the latest version of the code

here: https://github.com/GSS-Cogs/csvw-check/tree/akka-streams-complex. Design

decisions are also properly commented inside the code to aid any other developer who

might work on this project.

By the time I successfully implemented Akka Streams, the tool was a lot quicker to

validate a large CSV-W. Another main hurdle which needed to be tackled was to reduce

the memory usage of the application. It should be able to execute with less than 2 GB of

memory and before I started optimising memory the application was using around 4GB

of memory to validate a large CSV-W.

Using profiling tools, I found out that about 2-3 GB of memory is used by the set which

holds the primary key values.

Sets were used in the first place to store the primary key values as it is the most efficient

way to look up inside a large collection. HashSet has a lookup time complexity of eC

which is the best when compared against the other data structures available in Scala.

eC is the same as constant time but this might depend on some factors such as max

length of a vector or distribution of hash keys.

This is vital because if there is a primary key defined for this large CSV-W, while going

through every row we have to make sure that a particular row is not violating the

primary key. All primary keys are unique and thus we have to check if the primary key

values for the current row is not present in the collection of primary keys of all rows that

we have already parsed.

32

https://github.com/GSS-Cogs/csvw-check/tree/akka-streams-complex

Using Sets has its disadvantages as well. Sets achieve high performance by

compromising on the memory usage. The sets which hold the primary keys for us were

using enormous amounts of memory and we had to find a way to fix this.

The original primary key value for a row is of the type List[Any]. For example if the rows

are,

Period,Flow,Region,Geography,SITC 4,Value,Measure Type,Unit

quarter/2013-Q1,exports,EA,A,00,4,net-mass,kg-thousands

quarter/2013-Q1,exports,EA,A,01,273,net-mass,kg-thousands

quarter/2013-Q1,exports,EA,A,04,34,net-mass,kg-thousands

quarter/2013-Q1,exports,EA,A,05,0,net-mass,kg-thousands

And the primary key for this table is,

"primaryKey": [

33

"period",

"flow",

"hmrc_reporter_region",

"hmrc_partner_geography",

"sitc4",

"measure_type"

]

We store a list like

[quarter/2013-Q1,exports,EA,A,00,4,net-mass] for every row. All of them will

be accumulated in a Set. So the final set of primary keys will contain,

{ [quarter/2013-Q1,exports,EA,A,00,4,net-mass],

[quarter/2013-Q1,exports,EA,A,01,273,net-mass],

[quarter/2013-Q1,exports,EA,A,04,34,net-mass],

[quarter/2013-Q1,exports,EA,A,05,0,net-mass] }

This is the set of primary keys for 4 rows,so for our large CSV-W there will be 4.8

Million Lists inside the Set and that is not good for memory usage.

I tried using Arrays, ArrayBuffers and Lists for storing the primary keys but the results

were terrible. It brought the memory usage down to the ranges of 500-600 megabytes

but it was so drastically slow that the validation of the large CSV-W was never

completed. I had to kill the process after 40+minutes. The results of using other data

types forced me to stick with the HashSets for primary keys.

34

I found a way to optimise the memory usage even with using sets and that was to use

hashes. Instead of storing the primary keys of each row in a set, I hashed them and

stored the hash value in the set. So instead of storing a Set with List[Any], I could now

store the hashed value which will be an integer. This sounded promising and I

implemented it with the hope of getting the best of both worlds. My excitement didn’t last

long as this implementation has a serious problem, hash collisions.

Hash collision is a situation in which a hash function will produce the same hash for 2

data pieces even when they are different. So while processing 4.8 million rows, I got

around 300-500 rows with the exact same hash, even when their contents were

different. For all the hash collisions, the tool raised a primary key violation error which

was not right. This means that the tool cannot be used in this form as it reported false

negatives.

The next approach was to keep the hashing (as it gave good performance in terms of

memory) but to bring in an additional safety net which ensures that false negative errors

are not reported. To do this, the plan was:

● Store all the row numbers for which a hash collision occurred

● Read these rows again and store its actual value in a set (but now the set will be

very small)

● Check if they really are a primary key violation or just a hash collision

Even though the algorithm to do this looks simple, to incorporate this to an already

developed and working system was challenging. Many modifications were made in the

code to achieve this. Eventually this was achieved and there were no cases of false

primary key errors.

35

Test cases were run against this version of the code to ensure that it does not break any

existing features and works as expected for a large set of CSV-Ws. Thus a

sophisticated tool which validates CSV-W with least resources and maximum

performance was created!

Project Management

As mentioned in the previous sections, I followed an Agile approach while working on

this project. Our team was following 3 week sprints and I followed the same in this

project.

Project management tools such as Zenhub were used to track issues and features.

Since the boards on Zenhub are private and used within our team, it cannot be shared

here. I also used a Trello board to keep a track of things for my own personal use.

This project already had unit tests and integration tests even before starting the

integration of Akka Streams. This became a vital part of the project management as I

had a set of tests to run against after each iteration. The final decision of whether to go

ahead with an iteration depends on these tests. If any of them failed, I can check the

details of the failed test and understand which area of the code had a problem.

The integration tests of the CSV-W Check were provided by the World Wide Web

Consortium and were extremely reliable. See them here:

https://w3c.github.io/csvw/tests/#manifest-validation

These tests are defined for the tools which validate CSV-W. The World Wide Web

Consortium (W3C) working group for CSV-W accepts a validator tool only if this test

suite has a 100% pass rate when tested against it. Our long term plans are to submit

this tool to the W3C and get it listed in their official tools for working with CSV-W.

36

https://w3c.github.io/csvw/tests/#manifest-validation

Results

The results after completing the development were really promising. This was evident

even by just looking at the time it took to complete validation before Akka Streams

integration and after.

Complete analysis of the results are discussed in detail in the next section.

37

Analysis

One of the important aspects of this project is to prove with results that Akka Streams

can be used in the existing CSV-W Check application. Also we wanted to study the

improvement that Akka Streams brings in and compare the performance of the tool

against what we began with.

To analyse the performance a set of tools were used:

● Visual VM

● Java flight recorder

● Async profiler (IntelliJ)

● Time command (Linux, Unix)

● Activity Monitor (Mac)

Visual VM

VisualVM is a robust tool that provides a dashboard for viewing extensive information

about the local and remote Java applications running on a Java Virtual Machine (JVM).

It also aids in the performance of the application and ensures that memory utilisation is

optimised.

Visual VM has graphs which help in understanding the real time memory usage and

CPU usage while an application is running on the JVM. Since our application is written

in Scala and runs on JVM, this tool was extremely helpful in understanding the

performance.

It also has the feature to capture memory snapshots. Memory snapshots help in

understanding the exact usage of memory by objects at that moment in time.

Java Flight Recorder

38

JFR is a tool for gathering diagnostic and profiling data about a running Java

programme. It's built into the Java Virtual Machine (JVM) and has essentially no

performance overhead, so it's suitable for use in even the busiest production

applications. Internal tests and customer comments indicate that using default settings

has a performance impact of less than 1%. It can be substantially lower for some

applications. However, relative startup and warmup times for short-running apps (which

are not the type of applications used in production systems) can be longer, affecting

performance by more than 1%. JFR gathers information on both the JVM and the Java

programme that runs on it (About Java Flight Recorder. 2021).

Async Profiler

Async Profiler analyses the application's JVM-level parameters to provide a better

picture of how it's run and how memory and CPU resources are allocated. This

information can assist developers in identifying and resolving performance issues and

bottlenecks. Since Async Profiler does not require threads to be at safe points in order

to sample stacks, it avoids the problem of safepoint bias. Furthermore, the profiler

supports Flame Graph, which allows it to visualise stack traces (Async Profiler | IntelliJ IDEA.

2021).

Time Command

The time command is used to determine the length of time it takes for a command to

run. It's useful for determining how well an application or script performs. For example, if

there are two scripts that accomplish the same thing and want to know which one

performs better, developers can use the time command to see how long each one

takes to run.

39

When the time command is terminated, it provides a summary of the real-time, user

CPU time, and system CPU time consumed. 'Real' time refers to the amount of time it

takes a command to execute according to the wall clock, whereas 'user' and 'sys' time

refer to the number of CPU seconds a command needs in user and kernel mode,

respectively.

Memory usage comparison: Before and After Akka Streams

Before integrating Akka Streams, the peak memory usage of the application stood at

5.9 GB while validating the large CSV-W. The image below shows the memory usage

against time. The memory usage of the application gradually grows to this value before

slightly dipping in the end. This is far ahead of the limit in which we wanted the

application to execute.

40

Whereas after integrating Akka Streams, we can see a considerable drop in memory

usage. The peak memory usage stood at 1.1 GB for validating the large CSV-W as

seen below. This is an improvement of 5.3 times or 530% in terms of memory usage.

Since this 1.1 GB is well under the 2 GB target which was set initially, the validator tool

can now handle ever larger CSV-W files if required in the future without increasing the

memory allocated to it.

41

Real world processing time: Before and After Akka Streams

This is one of the most interesting metrics which proves Akka Streams can significantly

boost the processing times of large CSV-Ws.

To make an effective comparison here, a few facts have to be established initially. The

version of application without Akka Streams will not even complete validation of a large

CSV-W when it is run in a machine with 2GB of memory.

It needed approx 5GB of memory at least to complete the validation successfully. So we

are comparing the real processing times with 5GB of memory and maximum cores

available for both versions of the application.

The figure below shows the time taken by the version of the application without Akka

Streams. The last part of the command -J-Xmx5G is done to limit the maximum heap

size of JVM to 5 GB. This is essentially limiting the application to run in 5GB of memory.

42

The figure below shows the time usage by the Akka Stream version of the application.

As we can see, it completed processing in 20 seconds which is almost 1.7 times or 77%

faster than the previous version.

I would like once agains reiterate the fact that this is when the 2 versions are given 5GB

of memory to work with. Our team is not comfortable in allotting 5 GB of memory to this

tool to work with. This is mainly due to the fact that this tool could be shared with

multiple organisations and teams. So we want the application to run with minimal

resources as we cannot predict high specification machines with them. When the

versions are tested with a limited memory of 2 GB, the Akka Streams version wins

hands down.

CPU usage comparison: Before and After Akka Streams

Using maximum available resources was one of the main goals of this project. I can

confidently say that this is achieved in this project and the graphs shown below shows a

higher CPU usage in the version of application with Akka Streams.

43

The second graph which shows the CPU activity shows an average usage of 52%

which is almost double than the previous graph.

44

Conclusion

The integration of Akka Framework into the existing CSV-W Check application is a

complete success. All of the aims and objectives that were kept in the start of this

project are met. I would stretch that statement a bit and say that more than what has

been set in the beginning has been achieved. For example the memory aspects of the

application were never tested before the start of this project. Our team never thought

about it initially. As the integration of Akka Streams progressed, multiple profiling and

benchmarking of the application was done and it was understood that the version of

application without Akka Streams is not memory efficient. This shortfall of this

application was also fixed in the process of integration of Akka Streams.

Integration of Akka Streams went well and now our team has a strong experience with

using Akka in real projects. This can help in the development of future tools within our

team where performance is of utmost importance.

Akka integration and all the performance improvement that comes with it did not come

at any costs. All the tests which were in place initially still pass with the new version and

this gives me the confidence to say that I have developed a far better version of the

CSV-W Validator tool.

One area in which I am not completely satisfied is the processing times. I thought it

would be 4 times faster (If I execute it on a 4 core machine) than the version without

Akka Streams. In reality it was not the case. Yes it became faster, to be more specific

77% faster but that is far less than what I thought initially. Now I understand that with

parallel processing comes a lot of overhead and some of the performance

improvements will be taken away with these additional loads.

Another thing to mention would be the time constraints associated with this project. The

entire feasibility study, creating a proof of concept, actual development with Akka

Streams, profiling and analysis of performance was done in 10 weeks which I personally

think is not sufficient. If I was to work on this project in my team (not as a dissertation

project), I think I would have got more than 10 weeks for it. In such a scenario, I would

45

have spent more time on optimising the Akka part of the code. There are still a lot of

areas in Akka Streams which I haven’t explored. There could be better ways to do

things in Akka (than the current approaches I have taken).

Reflection

Working on this dissertation project was helpful for me in many ways. Firstly I was

assigned with the task of integrating a framework which I had no previous experience

with. Even though I found it hard initially, I have realised that I can adapt to whatever

technology or tools as and when needed. This realisation has increased my confidence

to take up or work with any new technology.

Another area in which I think I have improved because of this project is functional

programming. I have tried functional programming in the past (mostly Haskel) but I was

never confident in using functional programming paradigms in any real projects. Since

Akka Streams is designed to work in a functional manner, I had to understand multiple

functional concepts before implementing Akka Streams into the codebase. I found that it

is relatively easy and cleaner to perform certain tasks in a functional way than to code it

in an Object Oriented way.

I do think that my capability to think critically in situations have been improved during

the last three months in which I was working on this project. I faced multiple challenges

and I was able to overcome most of it on my own. Even though I took guidance and

opinions when I was blocked, those were minimal. My skills to evaluate the situation or

problem at hand and to find the most effective solution to it have improved.

Since I was also working 20 hours for ONS, I often had to deal with some other work

related meetings and tasks which kind of slowed the progress on this project. Even

while saying that, I sincerely thank my employer based supervisor for this project Rob

Barry as he constantly tried not to assign any other tasks (which are not related to this

46

project) to me. I also thank him for his guidance and help which was crucial in this

project. I would also take this opportunity to thank Martin Caminada who has supported

me a lot during this dissertation project.

Managing my time effectively was another area which I improved during this dissertation

project. As mentioned earlier, the entire feasibility study, creating a proof of concept,

actual development with Akka Streams, profiling and analysis of performance was done

in 10 weeks and the rest of the time was used to create this report. I was committed to

deliver the best possible results in the available time frame and the results of this project

is an outcome of that.

I now hold descent expertise on Actor model and reactive streams which I think is going

to be beneficial for me in my career as a Software Engineer. I definitely believe that

concurrent processing is here to stay as the number of cores in the microprocessors are

getting larger and efficient. Last and not the least, I was able to create a fully functional

product which met and exceeded all the requirements and objectives. This was a great

opportunity for me to work on a critical project which will be used in a public sector firm

for the public good. Imagining the amount of data that will be handled by the code I

wrote excites me.

47

References

About Java Flight Recorder. 2021. Available at:

https://docs.oracle.com/javacomponents/jmc-5-4/jfr-runtime-guide/about.htm#JFRUH17

0 [Accessed: 26 November 2021].

Akka 2.6.17 - akka.stream. 2021. Available at:

https://doc.akka.io/api/akka/current/akka/stream/index.html?_ga=2.121108616.1898158

589.1637571531-545249789.1635752149 [Accessed: 26 November 2021].

Reactive Streams. 2021. Available at: https://www.reactive-streams.org [Accessed: 25

November 2021].

Async Profiler | IntelliJ IDEA. 2021. Available at:

https://www.jetbrains.com/help/idea/async-profiler.html [Accessed: 26 November 2021].

48

Appendix

Running the application

I have pushed the latest docker image to my docker hub. The easiest way to run the

application is to pull the latest docker image from docker hub.

Link to this docker repository: https://hub.docker.com/r/josepajay/csv-w-check

Pull the image using command,

docker pull josepajay/csv-w-check:0.1

Run the image using the following command,

docker run -it --rm -v $(pwd):/workspace -w /workspace

--env PARALLELISM=2 --env ROW_GROUPING=1000

josepajay/csv-w-check:0.1 -s

large_schema/observations.csv-metadata.json

Before running the above command, make sure the files observations.csv

-metadata.json and observations.csv inside in your local machine. I will be uploading

them as supporting documents, download these files from the Pats. Feel free to play

around with the CSV-W files and see the errors popping up from the application.

Just in case, if you fancy running the application from source code, feel free to do so. I

will be uploading the entire source code as well. To do this Scala, Sbt, JDK etc will need

to be installed. My suggestion is to go for my dockerized image which will be a lot

easier.

49

https://hub.docker.com/r/josepajay/csv-w-check

