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Abstract

Android malware has become a prevalent threat to mobile devices with the rise in banking

malware and the increase in malware capabilities. Therefore, significant research has been done

on Android malware detection, especially solutions that leverage machine learning. However,

most of the training data from which these models learn contain outdated Android malware,

making the models less effective at detecting recent unknown malware. This thesis covers the

evolution and current threats of Android malware and then explores the static and dynamic

analysis methods used in research to extract key data from malware. Critical analysis is then

conducted on past academic literature, including the datasets they use to see potential limitations

in their research. After that, a design is created for the Droidloader tool, which can generate and

analyse new Android malware datasets with careful consideration of the features to implement.

The paper then discusses how the design for Droidloader was implemented, explaining certain

design choices. After the tool was completed, new datasets were generated and used to plot

comparisons between the features in the older datasets to see any behavioural changes. The

findings show that there are changes within the malware usage of features between the new and

outdated datasets. However, there were a few limitations with this approach, as there was evidence

of malware type bias being present in the generated datasets.
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1 Introduction

Mobile devices have evolved significantly over the past decade, with an increase in computational

power and more developed operating systems replacing the reliance of personal computers [1].

Applications used for mobile banking and social media have also become prominent in the mobile

space. Mobile phones are often used for multifactor authentication, with two-factor short message

service (SMS) authentication and authenticator applications. As a consequence, these capabilities

allow mobile devices to store various sensitive data, including bank account numbers and login

credentials, which can lead to financial loss and identity theft if breached. This makes it an

attractive target for threat actors, especially Android devices, due to their high market share

of 70.79% as of June 2023 [2]. To combat this issue, numerous machine learning (ML) based

Android malware detection has been researched and developed; however, the majority of training

data comes from outdated datasets [3]. As the Android malware scene continues to flourish with

new capabilities and malware families appearing [4], these machine learning detection tools that

are trained on older malware might not be able to detect these behavioural changes in newer

malware.

1.1 Project Aims and Objectives

The main project aim is to generate a new dataset to analyse the behaviour of Android malware

over the past few years. This will then be compared with previous datasets of Android malware to

see the differences in their behaviour. The overall result is to determine whether the changes are

significant enough, making old datasets ineffective for machine learning based Android malware

detection. To evaluate the success of the project, specific and measurable goals will be set as

follows:

• Understand the fundamentals of how malware is packaged, deployed, and executed within

the Android ecosystem.

• Research the current threat landscape of Android malware covering recent trends, distinct

malware families, and capabilities.

• Review existing literature and products on malware detection techniques and anti-virus

solutions to investigate the key data used to determine if an application is malicious.

• Cover various Android reverse engineering techniques used to obtain data from a malicious

Android application that can be used for further analysis.

• Generate a new dataset using various malware samples from various sources to analyse the

behaviour of modern malware.

• Compare the behavioural changes of current and past malware samples to evaluate their

differences.

This paper will also provide background information on the fundamentals of Android, includ-

ing its operating system and the architecture of applications. Android malware are essentially
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applications, so having the foundational knowledge is crucial to understand techniques malware

authors often deploy to successfully exfiltrate data from victim devices.

2 Literature Review

2.1 Android Malware Overview

Having a high-level understanding of the current threat landscape of Android malware is important

to investigate any new behaviours that might not be present in older malware.

2.1.1 Deployment of Android Malware

Normal malware for computers and laptops is usually deployed by tricking the user into down-

loading and executing the malicious file, such as phishing. However, one of the main ways for

users to download applications on Android is through the Google Play Store so adversaries need

to find a way to mask their malicious applications as legitimate applications. Zhou et al. [5]

reports that repackaging is one of the most common techniques that malware authors use to

piggyback a malicious applications into a popular application. Users are then enticed to download

these applications as they do not look malicious at face value. There are also two additional

techniques, the first being the update attack, which downloads the malicious payload at runtime

through an update making it harder to detect. And secondly, drive-by downloads enticing users

to download "interesting" apps but in reality they are malware. There have been some security

measures, with Google introducing play protection in 2017 to better identify potentially harmful

applications [6]. However, this does not completely stop malware from being deployed on the

app store as Aleksanddr Eremin [7] discovered a number of banking Trojans that implement evil

bits within the application package, so it was ignored by popular mobile security scanning tools.

2.1.2 Evolution of Android Malware

One of the first Android malware discovered was DroidSMS [8] in 2010. It worked by sending

SMS messages to premium numbers so that the victim is charged money. However, these kinds of

attack are harder to pull off in the present, with Android never allowing premium SMS messages

by default and popular phone providers offering unlimited texts. It only took a year after the first

malware developed for more sophisticated malware to appear, such as DroidKungFu, [5] which

communicated with a command and control (C&C) server enabling commands to be executed

remotely and supported data exfiltration. It also implemented obfuscation techniques, such as

encrypting constant strings, which made it harder to reverse engineer. Malware authors were also

developing techniques to hide malware with the first Android bootkit, enabling anti-virus products

to evade, as it existed only in the boot partition [9]. There are numerous evasion techniques and

capabilities that have been developed over the years, but these are a few notable examples from

the early beginnings of Android malware.

8



The number of malware samples has also increased significantly each year as Symantec [10]

witnessed known malware samples increase roughly four times the amount between June 2012

and June 2013. And in recent years, the number of mobile banking Trojan installers increased by

100% from 2021 to 2022 according to Kaspersky [11] although there was a dip in the year before

that. The increase in malware activity shows how it is a popular avenue for threat actors to attack

their target victims, leading to a greater demand for more sophisticated malware to be developed.

Figure 1: The number of mobile banking Trojans detected by Kaspersky in 2019-2022 [11]

Malware is often sold on the dark web where an attacker pays someone else who is an expert

at deploying malware onto the Google play store. Kaspersky [12] found out that a price of a

loader service, the process of injecting malicious code into a Google play store, is commonly

priced between $2000 and $20,000 . Overall, the rapid development of Android malware and its

increase in activity over the past decade shows how older malware can quickly become irrelevant;

malware authors will try to implement new and innovative features as a unique selling point

to sell their malware. Therefore, creating new Android malware datasets is crucial to provide

effective training data for malware detection as its more likely to contain the characteristics of

modern malware.

2.1.3 Current Threats

Banking malware has been a significant threat in the recent year with the appearance of new

malware families and twice as many malicious droppers on official application stores according

to ThreatFabric [13]. Mobile banking has become prevalent in society, where 89% of the survey

respondents said they use mobile banking according to the Intelligence Mobile Banking Competit-

ive Edge Study [14]. The surge in the use of banking apps attracts threat actors to find novel ways

to earn money by stealing directly from victims rather than selling their data online. ThreatFabric

also discovered a new capability called an automated transfer system (ATS), which first appeared

in 2019 as a prototype and then in 2021 where it was fully capable of achieving its objective.
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This technique enables criminals to automate the whole attack chain, from an infected device to

fully compromising the victim’s bank account. It leverages accessibility logging, which is the

extensive logging of all UI elements and all the events associated with them, such as clicking and

swiping.

Figure 2: Automated transfer system (ATS) process [13]

There are also other techniques deployed other than ATS such as 2FA code stealer and the

exfiltration of seed phrases from cryptocurrency wallets. These new techniques would not have

been covered in the datasets prior to the first appearance of ATS. Therefore, it would be more

difficult to detect this attack if the malware detection framework were trained using an older

malware dataset, as it would not have looked for these specific attack vectors.

2.2 Analysis Techniques

Reviewing analysis techniques used in the past literature provides information on the data that is

normally extracted from Android malware samples, as well as the advantages and disadvantages

of certain analysis techniques.

2.2.1 Static Analysis

Static analysis is a technique that examines a malware sample without executing it. Different static

features such as permissions, developer ID, API calls, intents, and components have been used

for malware detection [15]. Permissions are one of the most investigated characteristics, used for

various Android malware detection frameworks with Gyunka et al. [16] extracting permissions to

produce data that can be used to fit different learning classifiers. They are quick to process, with

tools such as Droidloader [17] checking for suspicious permissions to filter out a large collection

of Android applications.

Another feature that is continuously extracted for analysis is API calls, as they provide

information on a set of methods that a malicious application might use as part of their attack

chain. API calls are essentially class methods that are part of the Android package [18], with

Google providing documentation for the package’s classes and methods. These can be leveraged
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to look for suspicious calls that perform malicious tasks. In the intelligent mobile malware

detection paper [19], API calls were extracted from a sample of 27,891 containing malicious and

benign applications. The set of API calls for each application was observed to indicate malicious

behaviour. For example, the API calls Android/telephony/SmsManager;.sendTextMessage and

Android/telephony/SmsManager;.getDefault would indicate an SMS attack. Based on API calls,

applications are then categorised into distinct groups (Ambiguous, Risk, and Disruptive). More

advanced frameworks, such as Kunai [20], offer a Dalvik parser for accessing the DEX structure

allowing more features to be extracted, namely cross references(XREF). This can be used to

filter out method calls by checking if they are referenced in the main application rather than a

third-party package.

Publicly available tools such as Jadx [21] assist in static analysis by converting the dex code

to Java to easily analyse the decompiled code; however, Jadx cannot be automated and is therefore

not suitable for processing a large amount of samples. In all of these examples, a large number of

samples were processed, so the main advantage of this technique is that it can quickly analyse the

behaviours of thousands of malware samples.

2.2.2 Dynamic Analysis

Dynamic analysis is the process of running a malware in a safe environment called a sandbox to

analyse its true behaviour. Researchers have found techniques for automated dynamic analysis for

detection [22], so it could be a suitable choice for processing large Android samples. Tools such

as Monkey Runner [23] can aid researchers by simulating events on the mobile screen to capture

more data. One of the most frequently extracted dynamic features is system calls, which are calls

offered by the kernel to access hardware resources. Zhang et al. [24] analysed system call traces

to produce unique system call sequences and observed a difference where a specific sequence

appeared more in malicious traces than in benign traces, and vice versa. The collection of system

call traces was automated using Genymotion [25], an Android emulator, and the Android debug

bridge (adb) [26] command line tool that allows desktop computers to communicate with mobile

devices. Another notable feature observed is the traffic on the network, in particular the TCP,

HTTP, and DNS packet features. The network-based indicators shown in the network packet

table by Shyong et al. [27] (Figure 3) show some of the extracted features. CREDROID [28]

proposed a solution to inspect the contents of packets for personally identifiable information (PII)

by searching for keywords such as passwords and location. The solution also observed URL data

using the Web Of Trust API to determine the reputational score of the URL with a poor rating,

suggesting that the website contains some identity theft risks.

However, some malware will try to employ preventive techniques to avoid being dynamically

analysed. An Android malware hardening survey [29] shows numerous techniques being used,

such as anti-emulation and anti-debugger; mobile malware can judge whether its running on a

real device or not, based on the differences such as system properties, sensors, data, and network

between the real device and emulator [30]. In general, dynamic analysis can extract features that

are not present in static analysis however, it requires running malicious samples on a device and
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attempting to avoid anti-analysis techniques which could be an extensive process depending on

the size of the dataset to process.

Figure 3: Dynamic network packet extraction features [27]

2.3 Android Malware Detection Solutions

The detection of malware in Android applications based on machine learning has been increasingly

used by researchers, as it can learn more advanced malware traits compared to signature-based

anti-malware [3]. This approach requires a dataset in order to learn and determine whether an

unknown application is benign or malware. Datasets used in machine learning are different, as

they contain a mixture of malware and benign application instead of just malware. However,

finding malware proves to be a tricky task for researchers, as the applications on the market are

more likely to be benign; several papers end up using many more benign files than malware as

a result of this issue [31], [32]. The issue can be resolved by using existing malware datasets

such as Drebin [33] to add malware files to their dataset. To see the effect of not using recently

generated malware datasets, it is important to review previous research to identify any limitations

in their approach.

Han et al. [34] used the Drebin dataset as part of their training data for their machine learning

approach to detect Android malware based on API calls. It reported an impressive accuracy rate

of 99.75% in identifying if an application was malicious or benign. But this test was carried

out with malware in the Drebin dataset, and therefore the accuracy score does not indicate its

effectiveness against current Android malware. However, Fan et al. [35] uses a different approach

to download malware from various sources, such as malware from 2013 to 2014 on VirusShare

[36] and malware from MassVet [37], which are then uploaded to Virustotal [38] to classify the

malware into unique malware families. This can then be used to detect unknown malware, which

was tested on recent and old malware samples. It could detect 97.8% old malware from a sample

of malicious and benign applications, but only 75% when detecting recent malware. Although

various datasets were used, the accuracy rate still decreased due to the fundamental concept

drift problem [39], where models built through training on older malware can make poor and
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ambiguous decisions when faced with modern malware. There are many more cases of studies

using outdated datasets according to muzaffar et al. [3] and, as a consequence, their effectiveness

deters with newer malware.

2.4 Existing Android Malware Datasets

Reviewing key Android malware datasets used in previous studies can give insight into the various

collection methods used by researchers to retrieve malware. Knowing how malware is collected

can identify any flaws in their processes that this experiment can solve.

Android Genome Project and Drebin Datasets

The first dataset is from the Android Genome Project [5] containing 1260 Android malware

samples ranging from August 2010 to October 2011. They obtain the list of malware by examining

related security announcements, threat reports, and blog content from existing mobile anti-virus

companies and active researchers at the time. Unfortunately, all the research content used by the

project to find malware is not accessible, so the sources cannot be evaluated. The list of malware

was then downloaded by requesting malware samples from researchers or actively crawling from

the existing official and alternative Android application market. Overall, this approach would

be impractical given that the number of malware installers discovered each year currently has

reached more than a million samples; it would be impossible for researchers and companies to

produce work that exhaustively examines most malware today. However, it excels at removing

false positives in the dataset by running the malware through numerous mobile anti-virus software,

such as AVG Antivirus Free v2.9 or Norton Mobile Security Lite v2.5.0.379. If the anti-virus

software did not pick it up, the sample was manually verified to confirm its malware.

The Drebin dataset was produced and shared as a result of an Android malware detection

study [33] using broad static analysis. It contains 5560 malware applications collected from

August 2010 to October 2012 by downloading and processing applications from the GooglePlay

store, Chinese markets, Russian markets, and other sources such as Android websites and malware

forums. To determine if an application was malicious, it was sent to VirusTotal [38] where the

output was inspected from the anti-virus scanners. All applications were classified as malicious

if they were detected by at least two of the scanners, and all samples classified as adware were

removed. The dataset also includes all samples from the Android Genome Project [5]. This

method is more scalable compared to the Genome project as it does not actively search for

malware for the majority of the data but instead downloads a large collection of samples from

application markets and filters for malware through VirusTotal which could be automated. Using

various anti-virus scanners instead of one also reduces the chances of false positives.
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CICAndMal2017 and CICMalDroid2020 Datasets

The CICAndMal2017 dataset is a more recent dataset generated to cover the shortcomings and

limitations of previous datasets [40]. Although not well established compared to previous datasets,

it is publicly available to download and contains 426 samples with 42 unique malware families. It

collects samples from several sources, such as VirusTotal [38] and Contagio Security blog [41]

but the time period for when the malware was collected is not specified. Some of the samples

were also removed due to sample error (unsigned and corrupted apps) and inconsistent malware

labelling, where the malware family is inconsistent among both academic and industry fields.

False positives were also removed by only accepting malware that is flagged by more than two

antivurs products in Virustotal. The advantage of using this dataset is that it labels malware into

four categories: Adware, Scareware, Ransomware, and SMS malware allowing flexibility in

choosing the type of malware to analyse. However, the paper does not explain how the malware

was categorised.

Finally, the CICMalDroid2020 dataset [42] is the largest with 9803 malware samples generate

to solve the problem of classifying categories for unknown malware. The sample collection is

roughly the same as the process for the CICAndMal2017 dataset, but also includes the AMD

dataset and other datasets used by recent research contributions [43], [44]. Samples are collected

from December 2017 to December 2018 but this collection process did not check for false

positives. The categorisation of malware is slightly different, with malware categorised as follows:

Adware, Banking Malware, SMS Malware, and Mobile Malware. 17,341 samples were initially

collected, but were filtered if they did not run successfully on CooperDroid [22] due to different

error types, such as bad ASCII characters or bad unpack parameters. After processing the samples,

only 11,598 applications remained, with 9,803 samples identified as malicious and the rest benign.

In general, reviewing the specified datasets shows how all the datasets rely on previous

research or datasets to collect malware samples, although the datasets used were the most recent

during the collection time period. The main issue is that none of the datasets specify a tool or

an automated procedure for collecting malware, so the process cannot be replicated for newer

malware. The program that will be created in the project aims to solve this problem. Despite this,

most datasets have a standard test for false positives to further validate that their dataset contains

correctly labelled malware. All datasets except the Genome Project dataset leveraged Virustotal to

either download malware or as an anti-virus scanner, and so this particular service should be used

in the experiment. Malware categorisation should also be considered, as the CICAndMal2017

and CICMalDroid2020 datasets categorised their malware, but their respective articles did not

define how they were categorised.
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3 Background

Android operating system differs greatly in terms of how applications run and interact with

the system compared to standard desktop operating systems such as Windows or Ubuntu. As it

provides a high level of abstraction, most of the technical details of how applications are compiled,

installed, and run on devices are hidden through the normal user experience. This section reveals

the hidden technicalities behind the Android OS and its supported applications.

3.1 Android Operating System

The Android OS has two main components: a modified Linux kernel and a modified Java virtual

machine (JVM) optimised to run mobile applications. By comparing the processes and file system

between a conventional Linux operating system, the differences are apparent.

r oo t @ gene r i c_x86 : / # ps

USER PID PPID VSIZE RSS WCHAN PC NAME

. . .

u0_a9 3785 2025 1335328 72612 S y S _ e p o l l _ b72ce685 S com . a n d r o i d . l a u n c h e r 3

u0_a52 3824 2025 1277828 40992 S y S _ e p o l l _ b72ce685 S com . a n d r o i d . messag ing

u0_a47 4050 2025 1297964 40112 S y S _ e p o l l _ b72ce685 S com . go og l e . a n d r o i d . gm

u0_a46 4285 2025 1302476 38988 S y S _ e p o l l _ b72ce685 S com . go og l e . a n d r o i d . p l a y . games . u i

u0_a33 4391 2025 1262900 25720 S y S _ e p o l l _ b72ce685 S com . go og l e . p r o c e s s . gapps

u0_a4 4830 2025 1259740 25628 S y S _ e p o l l _ b72ce685 S com . a n d r o i d . d e f c o n t a i n e r

. . .

Figure 4: Android processes

The list of processes on the Nexus 5 Android 6.0 emulated device shows how each application

is running as a different user compared to a standard Linux desktop where applications are usually

run under the user who started the application.

root@generic_x86 :/ # ls

acct

cache

charger

config

d

data

default.prop

...

Figure 5: Android file system

The root directory also contains additional folders/files specific to the Android device that are

not common within a normal Linux desktop file system. These are only a few notable examples

with numerous other comparisons that could be made to show their differences.

15



The modified JVM for Android has gone through two main iterations, Android Runtime

(ART) and its predecessor Java Dalvik virtual machine (DVM) used in Android 4.4 and below.

ART offers performance increases using ahead-of-time (AOT) compilation where all the code is

compiled during the installation of the app instead of during runtime as shown in Figure 6. This

has its drawbacks as compiling code increases both the installation time and storage required

for the application. However, both runtimes are compatible with executing Dalvik Executable

(Dex) format and Dex bytecode specification [45], which is the compiled format for Android

applications.

Figure 6: JIT and AOT differences [46]

3.2 Application Compatibility

With a rapidly developing operating system, it is important to understand the behaviour between

applications and major Android releases as it can affect its compatibility. Each major release

updates the existing Android application programming interface (API), with the addition, modi-

fication, and removal of packages [47]. The Android API is used to interact with the underlying

Android system, with the initial release being API level 1 for Android 1.0, and subsequent

releases have incremented the API level. Google [48] has made sure that applications are forward

compatible with newer versions of Android where most changes are additive, except for isolated

cases where an application uses a part of the API that is later removed for a specific reason.

However, the same cannot be said for backward compatibility because previous versions of the

Android platform do not include the new APIs. This could affect the behaviour of recent malware

as they use packages that are not present in older malware samples.

3.3 APK File Structure

The Android Package (APK) is a ZIP archive file with the .apk file extension and is used to

store and distribute Android applications. These packages contain all the relevant compiled code,

resources, and metadata required for a complete application. Since this is the only file that is

given when analysing Android malware samples, it is important to understand the defined files

and folders from an extracted APK. The following table below describes each defined entry:
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Entry Description

AndroidManifest.xml Contains the configuration information on the application and the

defined security parameters, such as required permissions, name,

and version.

classes.dex The application code compiled in the Dex format.

resources.asrc A table file containing a record of the mappings between the

resource file and the related resource ID.

assets/ A folder containing application assets that can be retrieved by

AssetManager.

lib/ Contains native libraries that are included with the application.

META-INF/ The signature of the APK is stored in this folder, as well as the list

of all files contained in the zip archive and their hash values.

res/ This contains any files primarily media files used for the applica-

tion, such as images or activity layouts.

Table 1: APK Pacakge Contents

3.4 Manifest Permissions

By default, Android prevents applications that require access to restricted data or actions un-

less the appropriate permissions are declared in the AndroidManifest.xml file [49]. Therefore,

sophisticated malware must trick users into accepting dangerous permission so that it can gain

further control and access to the victim’s phone and data. Knowing how these permissions work

allows for further investigation into dangerous permissions. First, Android has different types of

permissions such as install-time, normal, and signature permissions [50]. These permissions give

applications limited access to restricted data and present little risk to user’s privacy. On the other

hand, there are dangerous permission types such as runtime permissions, granting applications

access to restricted data or actions that attackers could take advantage of. This is one of the key

permission types to further analyse, since malware applications will normally abuse runtime

permissions to gain as much access to the phone as possible.

3.5 Dalvik Bytecode

All the application’s logic is stored in the classes.dex file, so knowing a few of the basic bytecode

instructions can give a general idea of what classes and methods the applications are using.

Reading the classes.dex file to get meaningful results is often difficult, as it is just a sequence of

hex characters. Using tools such as Apktool allows the decompilation of the application logic into

Smali code resulting in human-readable code. Google has provided documentation specifying the

description and syntax for each bytecode [51].
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4 Experiment Methodology

4.1 Choosing Android Malware Samples

There are several websites that contain recent malware samples that can be used to create new

datasets such as MalwareBazaar [52]. One of the key requirements is a way to fetch the download

through an API so that the generation of new datasets can be done automatically. It should also be

dynamic, meaning the tool will try to obtain the most recent samples from websites hosting the

malware to generate a dataset that is reflective of current malware. There were other methods that

were considered, for example, using an existing and regularly updated dataset such as Androzoo.

However, this dataset was too large, contains benign samples and dates back to 2016 requiring a

vast amount of pre-processing to extract the relevant samples.

4.1.1 VirusTotal

VirusTotal [38] is one of the most popular virus analyser websites where users can upload and

query samples to check if they are malicious. It also has an API however, users without an

enterprise licence are limited to the amount of endpoints they can query. The Advanced corpus

search endpoint [53] allows searching for files so in this case, the endpoint can be leveraged to

find files with the APK extension, but this feature is only available to enterprise users. The only

use case that can be used with VirusTotal is filtering a list of general malware hashes to only filter

for malware hashes that relate to Android as shown in Figure 7.

Figure 7: Filtering hashes through VirusTotal

The https://www.virustotal.com/api/v3/files/hash endpoint retrieves the file report that matches

the hash value, and then the program can use it to check if the file is an Android APK file. The

daily quota for API requests is limited to 20,000 requests for academic use, so it may take more

than a few days to get a sufficient dataset size that contains Android malware.
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4.1.2 MalwareBazaar

MalwareBazaar [52] is a project from abuse.sh with the aim of sharing malware samples with

the cyber security community. MalwareBazaar does not accept adware and has a strict malware

submission policy [54], meaning that the chances of false positive malware are very slim. It

also offers an API with a wider range of endpoints offered compared to VirusTotal. It can

query samples by filetype, but the maximum limit of hashes to retrieve is 1,000 hashes. As a

consequence, it can only retrieve and download 1,000 of the most recent samples, since the query

cannot specify a range or sort order. MalwareBazaar also labels malware with specific signatures,

such as Cerberos, but does not document the process of how it classifies malware to a specific

signature, so it should be viewed with some caution.

4.1.3 VirusShare

The last virus hosting platform to consider is VirusShare [36]. Compared to MalwareBazaar, it

contains samples of general malware and implements an API for programmes to interact with

the website. Sending a hash of a sample through the API returns a report similar to VirusTotal,

containing key information such as file type to allow for further filtering. However, the API has

limited functionality, and requests are limited to 4 requests per minute [55]. Despite that, the

website also hosts a repository of APK samples and a list of MD5 hashes for all malware samples

on the website. Unfortunately, the latest collection of APK samples is too large for sufficient

processing, as the size is roughly 200GB, storing 20,000 samples. The only option is to resort to

the list of MD5 hashes and leverage the VirusTotal API to filter for Android specific malware.

One of the issues with VirusShare is that it does not document how malware is uploaded to the

site, so some precaution should be taken for false positive malware. However, since samples are

being sent to VirusTotal for filtering, they can be verified as malicious by observing how many

anti-virus scanners detect the sample.

4.2 Choosing Past Android Malware Dataset

An appropriate Android malware dataset must be chosen to compare it with the generated dataset

from the experiment. The key requirements are that they are not too large (over 100GB) and

date back at least five years. One of the issues is that some datasets used in academic papers

for training data and analysis have either been discontinued or require permissions to access the

dataset. For example, the website hosting the AMD dataset was unavailable during the time period

of this project. Both the Drebin and Android malware genome datasets were also inaccessible

during the project period. As a consequence, the experiment will have to use the CICAndMal2017

and CICMalDroid2020 datasets, which have not been extensively used in past academic work.

Despite this, both datasets provide sufficient documentation of how they collected their malware,

which makes them valid datasets to use in the experiment. Any benign application contained in

the datasets will be ignored as the project goal is malware analysis. Adware will also be removed
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so that valid comparisons can be made with malware from MalwareBazaar, which does not

contain Adware.

4.3 Feature Extraction and Selection

To measure and compare the new dataset created during the experiment with the previous dataset,

features must be extracted from both datasets. A methodology must also be created to automate

the extraction of key information from a collection of APK files. There are many features that

could be extracted from an APK file from both static and dynamic analysis, but only a few were

selected to keep the experiment in scope. The experiment will only use static analysis methods,

as it is faster at extracting data from a large number of malware samples compared to dynamic

analyis; the application does not need to run on a device, which takes longer to analyse, and it

could potentially be harder to automate. The selected features to extract were permissions and

classes, since various malware samples share the same set of classes and permissions, making

it measurable to compare their frequency between two datasets. Comparisons between classes

contained in the Android API package [18] can also be compared between two datasets.

Decompiling APKs

As APK files are essentially a ZIP packaged file, it can be extracted by using an unzipping tool;

however, there are a few limitations to this approach. First, some of the files are unreadable,

including AndroidManifest.xml, and there is no decompilation, which makes it challenging to un-

derstand the application logic. A more suitable tool would be Apktool [56], which allows readable

files to be extracted. Apktool was designed with the main purpose of disassembling, assembling

and analysing APK files. It also decompiles Dalvik bytecode into smali code, which will be useful

when extracting classes. It has been around for more than thirtheen years maintaining a strong

open source community and requires minimal installation and prerequisite knowledge. It has also

been used in academic work with Gunkya et al. [16] using it to reverse engineer Android APKs.

Extracting Permission Data

The permission information for each Android application is defined in the AndroidManifest.xml

file, which can be read after decoding a sample with Apktool. Figure 8 shows the format of

defining permissions with the use of <uses-permission> tag. A description of each permission

is provided in Google’s Android developers documentation [49]. To extract only permissions,

regular expressions (regex) can be used to find all instances of the <uses-permissions> and then

retrieve the permission name from inside the quotations.
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1 <uses − p e r m i s s i o n a n d r o i d : name=" a n d r o i d . p e r m i s s i o n . INTERNET"/ >

2 <uses − p e r m i s s i o n a n d r o i d : name=" a n d r o i d . p e r m i s s i o n . ACCESS_NETWORK_STATE"/ >

3 <uses − p e r m i s s i o n a n d r o i d : name=" a n d r o i d . p e r m i s s i o n . ACCESS_WIFI_STATE"/ >

4 <uses − p e r m i s s i o n a n d r o i d : name=" a n d r o i d . p e r m i s s i o n . READ_EXTERNAL_STORAGE"/ >

5 <uses − p e r m i s s i o n a n d r o i d : name=" a n d r o i d . p e r m i s s i o n . WRITE_EXTERNAL_STORAGE"/ >

6

Figure 8: AndroidManifest.xml permissions example

Extracting Classes Data

Android applications are built with languages that follow the object-orientated paradigm (Kotlin

or Java). Google provides packages containing Android specific classes and methods to provide a

layer abstraction from the internal mechanisms of the operating system. This is so that developers

can easily interact with the operating system when building applications, saving a significant

amount of time. Developers can also import standard Java classes and third-party libraries

externally or internally. Extracting classes from a dataset of malicious APKs is useful to investigate

as it can give insights into any common methods the applications are leveraging to execute

malicious commands. One of the methods to extract the classes is by inspecting the smali code

to look for specific calls. These are five main calls to look for when finding method calls which

include: invoke-virtual, invoke-super, invoke-direct, invoke-static and invoke-interface. Figure 9

shows an example of the Android class PrintedPdfDocument being closed. Regex can also be

used to extract the class names from the invoke commands.

1 invoke − v i r t u a l { p1 } , L a n d r o i d / p r i n t / pdf / P r in t edPdfDocumen t ; − > c l o s e ( )V

2

Figure 9: Invoking class method in smali

4.4 Processing Results

After extracting the mentioned features from a dataset, it will be processed to produce relevant

results to compare the behaviour between two Android malware datasets. The main comparison

to make is the frequency of permissions and classes used in both datasets to see which ones

were the most common to use in Android malware during the year the dataset was generated.

The experiment will present these data in a horizontal double-bar chart of two Android malware

datasets and the categories would be the top n most common features used in a dataset, where

n in the number of unique features. This is to visually see the differences in the frequency of

features extracted, which could indicate behaviour changes in both datasets.
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4.5 Tool Design

As performance of the tool is not main factor for this experiment, the tool will be programmed

in Python due to performance not being a main factor in the experiment, as well as support for

numerous files/folder manipulation with Python modules such as the os module [57]. The name

given to this tool is Droidloader, which will perform various functions and will have a built-in

command line interface to provide flexibility in what commands to execute for a target dataset.

To avoid scope creep of the project, a set of required commands will be specified to measure the

completion of the program.

Command Description

Download Download malware samples to a folder to generate a new dataset by specifying

which website to download the files.

Extract Samples downloaded from the website are usually encrypted in a zip folder.

This command extracts the APK from the zip folder to be left with a collection

of malware samples contained in a folder.

Decompile This command decompiles a dataset containing APKs using the Apktool. The

decompiled dataset is saved to a separate folder for further analysis.

Filter Filter the list of MD5 hashes of general malware samples provided by Vir-

usShare to generate a list of MD5 hashes of Android specific malware. This list

can then be used to download samples which have the same MD5 hash value.

Permissions Extract the permissions from a decompiled Android malware dataset.

Classes Extract classes from the decompiled dataset of Android malware dataset.

Graph Produce a bar chart of permissions or classes to visually view the differences

between two datasets.

Table 2: Droidloader Commands

4.6 Testing and Benchmarking Plan

Droidloader performs two main functions, generating the dataset and then extracting features

from a dataset. The first function is simple to test, as the tool should output a folder with a batch

of APK files. The second function is more difficult as there needs to be a verification check to

determine if the features extracted from the dataset are correct. As the experiment is mainly

focused on the results, rather than on the tool itself, a set of thorough test cases for the tool will

not be produced to check for edge cases.

Testing with Androguard

Androguard is a reverse engineering tool to analyse Android files [58] and can extract various

key information about an APK, for example, permission data as shown in Figure 10. It has the

reputation of being a sufficient application, as it has been explored in past academic papers; for
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example, DroidBot [59], a test input generator for Android, and popular embedded malware

analysis frameworks such as Mobile Security Framework (MobSF) [60].

1 In [2]: a.get_permissions ()

2 Out [2]:

3 [’android.permission.INTERNET ’,

4 ’android.permission.WRITE_EXTERNAL_STORAGE ’,

5 ’android.permission.ACCESS_WIFI_STATE ’,

6 ’android.permission.ACCESS_NETWORK_STATE ’]

7

Figure 10: Androguard extracting permissions example

Androguard can also take the form of a Python package, where it can be embedded in existing

applications. This tool will be used to compare the features extracted from the experiment to

verify that the features are correct. The plan for testing would be to generate a random sample

of 10 malicious applications and verify whether the permissions and classes extracted from

Droidloader are the same as those extracted from Androguard.

Measuring Performance

Performance was not the main goal for the experiment; however, to justify building a tool from

scratch instead of utilising third-party tools, performance must be measured between Androguard

and Droidloader to determine if Droidloader performs better. The main performance factor to

consider is speed, as it is more favourable to use a tool that can process a dataset quicker than the

other. This will be done by creating a benchmarking plan consisting of three randomly generated

datasets containing 10, 25 and 50 random samples and then measuring the time it takes for both

tools to extract the classes and permissions of each dataset. The reason for using various dataset

sizes will be to determine whether the tools would perform better or worse if they had more data

to process. As performance can slightly vary due to external factors that cannot be controlled

(operating system processes), the performance test will be done five times, where an average will

be taken.

4.7 Environment Setup

As malware will be downloaded to a machine during the experiment, using a virtual machine

would be a sufficient barrier to negate any damages if the malware accidentally executes on the

machine. Although APK files are incompatible with a desktop operating system, there could be

accidental download of malware compatible with the host operating system. Figure 11 shows

the virtual machine settings that will be used to conduct the experiment. Using a separate host

machine only containing the malware samples would not be necessary as the risk of malware

being accidentally executed is negligible. Table 3 and Table 4 shows the software requirements

and hardware specificants that are going to be used to run and test the experiment.
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Software Version Description

Vmware Workstation

Pro 17

A desktop hypervisor software to run virtual machines.

Ubuntu 22.04.3 LTS

Desktop

A linux distribution to host the experiment. As there are no spe-

cific dependencies to install, this distribution would be sufficient

enough to run the experiment.

Python 3.10.12 To run DroidLoader which is created in the experiment.

Apktool 2.8.1 To decompile the APK files to extract readable files

Androguard 3.3.5 Testing and benchmarking the tool created in the experiment

OpenJDK 11 To run Apktool as it is a Java Archive (JAR) file

Table 3: Experiment software requirements

Item Specification

Processor (CPU) AMD Ryzen 7 5800H

Memory (RAM) 16GB

Disk Storage (SSD) 475GB

Graphics Processor (GPU) NVIDIA GeForce RTX 3060

Table 4: Experiment hardware specification

Figure 11: VMware settings configuration
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5 Experiment Implementation

This section focuses primarily on the logical aspect and design choices for each main component

of Droidloader, instead of explaining Python’s syntax in detail. Appendix F shows the full code

base for the Droidloader tool.

5.1 Command Line Interface

Using the argparse module [61], the program can perform a particular action, depending on the

arguments set by the user. The first argument is the main commands the user can use, as shown in

Figure 12. Each main command then has additional arguments and command line options, which

are different depending on which command is used. Appendix H shows screenshots of each of

the main commands, including their options.

Figure 12: Droidloader command line interface

5.2 Generating New Datasets

5.2.1 MalwareBazaar API

The MalwareBazaar API only has one endpoint which is https://mb-api.abuse.ch/api/v1/; however,

modifying the post-form data can return different results depending on the value of query. The

first query value is get_file_type allowing samples to be searched with a specific type but it only

returns information about the sample and not the binary data of the sample. However, one of

these data points that is returned is the sha256_hash which can then be used to download the

sample by specifying the query value to be get_file and providing the sha256_hash.
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Figure 13: MalwareBazaar API requests

The limit parameter value can also be specified to specify how many samples to return from

the query with the maximum value being a 1000 samples. Droidloader allows the user to specify

the number of samples to download as long as its below the maximum limit. The binary data is

then written to a folder as shown in Figure 14.

1 def downloadSample(dir , hash):

2 query = {"query": "get_file", "sha256_hash": hash}

3 response = requests.post(MBURL , data=query , timeout =60,

allow_redirects=True)

4 open(f"{dir}/{ hash}.zip", "wb").write(response.content)

5

Figure 14: Downloading samples through MalwareBazaar

The API also allows us to search for files by the type of malware family to which they

belong using the get_siginfo query value. The getMalwareByFamily function returns a list of

hashes by providing a list of notable malware families such as Hyrda or Cerberus. This is only an

experimental feature and will not be used when generating a dataset for analysis. As mentioned

above, MalwareBazaar does not document how they classify malware into a particular family, so

it will not be valid to use as a comparison dataset.
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1 def getMalwareByFamily(families , limit):

2 hashes = []

3 for family in families:

4 query = {"query": "get_siginfo", "signature": family , "limit":

limit}

5 hashes.extend(getHash(query))

6 return hashes

7

Figure 15: Retrieving hashes by malware family

5.2.2 VirusShare and VirusTotal API

Downloading samples using both of these platforms requires a workaround due to a request

limit and limited endpoints. VirusShare provides a list of files in the format of a basic text file,

each containing 65,536 MD5 hashes. The text file can then be used to send GET requests to

https://www.virustotal.com/api/v3/files/{id} substituting the id parameter to be the MD5 value;

the endpoint then returns a file object when the request is valid. This file object contains the

type_description and type_tag attributes, which can then determine whether the MD5 value

belongs to an Android malware sample (Figure 17). It also contains the malicious attribute which

totals the amount of anti-virus scanners that marked the sample as malicious. If it is picked up

by more than two scanners, it is deemed malicious. As the daily request limit for VirusTotal is

20,000 a day, requests must be spread over four days to filter APK samples from one MD5 file.
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Figure 16: Filtering MD5 hashes

1 sampleType = response.json()[’data’][’attributes ’][’type_description ’]

2 extension = response.json()[’data’][’attributes ’][’type_extension ’]

3 detections = response.json()[’data’][’attributes ’][’last_analysis_stats ’

][’malicious ’]

4 if sampleType == "Android" and extension == "apk" and detections >= 2:

5 return hash

6 else:

7 return None

8

Figure 17: Checking MD5 hash sample type

The pickle module is used to keep track of MD5 hashes that Droidloader has processed,

allowing the serialisation and deserialisation of the python object so that it can be saved to disk

[62]. Figure 18 shows the format of the pickle object where it contains the list of MD5 hashes

and the count value showing the number of MD5 hashes that have been processed by VirusTotal.
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1 import pickle

2 with open("VirusShare_00476.pkl", "rb") as f:

3 print(pickle.load(f))

4 ...

5 {’hashes ’: [’675 bda8cff31499260a41805de3bc667 ’, ...

6 ’49 c2416e0c88fd129b481c2aa646d9da ’], ’count ’: 38000}

7

Figure 18: Retrieving hashes by malware family

After processing the MD5 file, the list of hashes can be sent to https://virusshare.com/apiv2/download

endpoint with a GET request specifying the hash value as one of the parameters. Requests are

limited to 4 per minute, so only 240 samples can be downloaded per hour. Overall, this method is

significantly longer than using MalwareBazaar as it takes days to process; however, the trade-off

of being able to generate a larger dataset justifies the implementation of this method.

1 def downloadSampleVS(dir , hash , limit):

2 count = 0

3 if count < limit:

4 time.sleep (15)

5 url = f"https :// virusshare.com/apiv2/download?apikey ={ VSAPIKEY }&

hash={hash}"

6 response = requests.get(url)

7 open(f"{dir}/{ hash}.zip", "wb").write(response.content)

8 count +=1

9

Figure 19: Downloading samples through VirusShare

5.3 Extracting and Decompiling Samples

The samples downloaded from both methods generate a new dataset, but they are not in the

correct format as they are stored in a ZIP file. By processing the datasets, it can be stored in the

correct format and allows features to be extracted from the dataset. When a sample is downloaded

from either MalwareBazaar or VirusShare, it contains an encrypted ZIP file with the passphrase

"infected", so it needs to be extracted. This can be automated with Python by extracting each ZIP

file from a specified folder to a different folder, resulting in a valid dataset that contains only APK

files as shown in Figure 20. However, extracting from VirusShare samples does not put the APK

extension for the extracted file, so Droidloader needs to add the extension in order to format the

sample correctly.
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1 def extract(targetdir , outputdir):

2 os.mkdir(outputdir)

3 for archive in os.listdir(targetdir):

4 if archive.endswith(".zip"):

5 with pyzipper.AESZipFile(f"{targetdir }/{ archive}") as zf:

6 zf.extractall(path=outputdir , pwd=bytes("infected", "utf

-8"))

7

Figure 20: Extracting Dataset containing ZIP files

Once the datasets are formatted correctly, the APKtool command line program can be used

to decode each file ready for further analysis. This process can also be automated by taking

advantage of the os.system function, which allows the execution of Linux commands within

Python. One dataset such as the CICAndMal2017 dataset contains sub directories so the program

needs to crawl through each directory and then store the absolute path of each APK file into a list.

The list is then iterated by running the APKtool command as shown in Figure 21.

1 for sample in samples:

2 if sample.endswith(".apk"):

3 os.system(f"cd {outputdir} && java -jar {apktool} d {sample}"

)

4

Figure 21: Decompiling dataset containing APK files

The output of the decompilation is written in a new directory where the user can specify

the name of the new directory. This is to avoid tampering with the original dataset in case it

needs to be reused. Java and Apktool must be installed before decompiling the dataset which can

be installed with the openjdk-11-jdk package in Ubuntu and then downloading Apktool 2.8.1

through their website. Figure 22 shows the whole process in the form of a diagram.

Figure 22: Extraction and decompilation process
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APKtool Limitations

One of the limitations of using Apktool is that it can sometimes fail to decompile an APK file

and thus cannot be analysed. Here are a few examples of errors that were discovered.

1 I: Using Apktool 2.8.1 on

d4ad38f2e12655e2ea9ca6267ec088c61218be90db0b8593b2a8d67afbf462c1.apk

2 Exception in thread "main" brut.androlib.exceptions.AndrolibException:

brut.directory.DirectoryException: java.util.zip.ZipException: Invalid

CEN header (invalid zip64 extra data field size)

3

4 I: Using Apktool 2.8.1 on

d65b7bbb0e96b15cbe707ca091c2d34ba2e159ffcf95bf3b4e9746074f55fea8.apk

5 Exception in thread "main" brut.androlib.exceptions.AndrolibException:

brut.directory.DirectoryException: java.util.zip.ZipException: zip END

header not found

6

Figure 23: APKtool error messages

The first error is due to an invalid CEN header, which is a documented issue within the

Apktool code repository [63]. Unfortunately, there was no simple fix for this issue, so this error

was accepted because it did not appear frequently. The second error message "zip END header not

found" appears to be due to the APK file being corrupted [64], however, checking the SHA256

checksum shows that the file has not been modified when downloaded. As there is no solution to

this error, it has to be accepted. Java 17 was also used to test the errors to ensure that the errors

were not due by using a specific Java version, but the same error messages occurred. When these

errors occur, Apktool still outputs the decompiled folder even though its empty. To bypass this

problem, a cleanup must be performed to remove empty decompiled folders from the dataset as

shown in Figure 24.
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1 def cleanDecodedSamples(targetdir):

2 sampleCount = 0

3 fileCount = 0

4 for decodedSample in os.listdir(targetdir):

5 fileCount += 1

6 decodedSample = os.path.join(targetdir , decodedSample)

7 if not os.listdir(decodedSample):

8 os.rmdir(decodedSample)

9 else:

10 sampleCount += 1

11 print(f"[+] {fileCount} Files processed")

12 print(f"[+] {sampleCount} Files successfully decompiled")

13 print(f"[-] {fileCount - sampleCount} Invalid decompiled files

removed")

14

Figure 24: Cleaning decoded samples

5.4 Extracting Features

5.4.1 Extracting Permissions

Extracting permissions requires going through each decompiled sample’s AndroidManfest.xml

file and then extracting the permissions from each <uses-permission> tag. Droidloader uses the

following regular expressions to extract the permissions from the application. The regexr [65]

website provides a description of how each of the special characters works.

1 <uses -permission .*?\/>

2 "(.*?)"

3

Figure 25: Extracting permissions with Regex

The first expression finds all cases where the "<users-permission>" start tag is written in the

file followed by any characters, since each permission tag will have different text inside it. There

are few cases in AndroidManifest.xml files where there are two <uses-permission> tags on one

line, so the regex needs to accommodate for this edge case so that the permissions are treated

separately. This is solved using this particular expression *? which is a reluctant quantifier that

matches a pattern as few characters as possible. Figure 26 shows the differences between the use

of a reluctant quantifier; permissions are treated as two separate elements in the list instead of

one. Finally, the end of the expression checks if the tag is closed \/>. The second expression is

more simple to implement, where it extracts the permission name that is in quotations.
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1 >>> import re

2 >>> permissions = """<uses -permission android:name=" android.permission.

SEND_SMS"/> <uses -permission android:name=" android.permission.SEND_SMS

"/>"""

3 >>> print(re.findall(r’<uses -permission .*\/>’, permissions))

4 [’<uses -permission android:name=" android.permission.SEND_SMS"/> <uses -

permission android:name=" android.permission.SEND_SMS"/>’]

5 >>> print(re.findall(r’<uses -permission .*?\/>’, permissions))

6 [’<uses -permission android:name=" android.permission.SEND_SMS"/>’, ’<uses -

permission android:name=" android.permission.SEND_SMS"/>’]

7

Figure 26: Regex reluctant quantifier

Using pickle, the permissions are then saved as a Python object in the format of a list shown

in Figure 27. The user can specify how many samples to extract from a given dataset with the

default value being ten. The permission key values are stored as a set data type to avoid duplicate

permissions being stored. The reason for storing it as a list is so that it can be iterated during data

analysis.

1 [{’hash’: ’352070

d3b4149fb4b28b030acfd60da0d143650eb643fd58ff12ddfc904f23c8 ’, ’

permissions ’: {’android.permission.ACCESS_NETWORK_STATE ’, ’android.

permission.READ_PHONE_STATE ’, ...}}]

2

Figure 27: Permissions data

5.4.2 Extracting Classes

Classes are more complex to extract compared to permissions as there are multiple files involved.

There are two types of classes: the first are internal classes that are packaged within the malware,

and the second are external classes which are classes the application uses but are not present

in the package. The first thing to understand is the location of the smali code within a decom-

piled Android application. The smali code is stored in the smali folder, and sequential folders

smali_classes starting from smali_classes1 depending on how large the malware sample is. The

bigger the sample, the more small_classes folders it contains. Within these folders, the smali

code can be placed in subdirectories (Figure 28). Before extracting classes, the program needs to

crawl for each smali file to generate a list of file paths to every smali file contained in the malware

sample.
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1 \smali

2 a.smali

3 \com

4 \android

5 ...

6 b.smali

7 ...

8 \smali_classes2

9 \smali_classes3

10 ...

11

Figure 28: Smali directory format

1 def getSmaliFolders(sourceCode):

2 return [file for file in sourceCode if re.search(r’smali_classes\d+|

smali’, file)]

3 ...

4 smaliFolders = getSmaliFolders(sourceCode)

5 for folders in smaliFolders:

6 for root , _, files in os.walk(os.path.join(sourceCodePath , folders)):

7 ...

8

Figure 29: List of smali file paths

This function parses in the sourceCode, which is the directory containing the decompiled

malware sample, and then returns a list containing the mali folder by searching for the relevant

name using regex. After the list is returned, the os.walk function is called for each folder, which

returns every file in a given folder including files in the subfolders.

Now that the program can iterate through each file, retrieving the classes that are packaged

within the malicious file is relatively simple. Each smali file is essentially a class file with its class

name defined at the top of the file as shown in Figure 30.

1 .class public final Landroid/support/v4/media/RatingCompat;

2

Figure 30: Smali class definition

The name is always declared at the end, so string manipulation can be performed to retrieve

only the class name.
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1 >>> className = ".class public final Landroid/support/v4/media/

RatingCompat;"

2 >>> name = className.split()

3 >>> print(name)

4 [’.class’, ’public ’, ’final’, ’Landroid/support/v4/media/RatingCompat;’]

5 >>> print(name[len(name) -1][1: -1])

6 android/support/v4/media/RatingCompat

7

Figure 31: Smali class name extraction

The split command splits each word separated by a whitespace into a list. The next command

retrieves the last element of the list, which is the class name, and then removes the first and last

character, as they are not relevant to the name. One of the limitations with this method is that

the class names are obfuscated when decompiled, so even if the names are extracted, the results

will be very different compared to looking at the original source code. After finding all the class

names that are packaged within the malicious APK, the next step is to search for all the instances

in each smali file where a class is invoked or referenced (const-class).

1 with open(smaliCode , "r") as f:

2 class = re.findall(r"invoke -virtual .*|invoke -super .*|invoke -direct .*|

invoke -static .*|invoke -interface .*|const -class.*", f.read())

3

Figure 32: Finding invoke and reference calls

The | separator in regex is similar to the OR operator, where it will try to find any instances

where it matches one of the invoke commands. This is then passed to the formatClass function

which performs the following string manipulation, where it essentially only extracts the class

names as shown in Figure 34.

1 def formatClass(item):

2 if "const -class" in item:

3 return item.split(" ")[2][: -1]

4 if "}," in item and ";->" in item:

5 return item.split("},")[1]. split(";")[0]. replace(" ", "")

6 else:

7 return ""

8

Figure 33: Extracting class names from invoke calls
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1 [’invoke -direct {p0}, Ljava/lang/Object;-><init >()V’, ’invoke -virtual {v0

}, Ljava/lang/Class;->getName ()Ljava/lang/String;’]

2 [’java/lang/Object ’, ’java/lang/Class ’]

3

Figure 34: Extraction process output

With all the classes extracted, the last step is to format the classes and save them to disk as a

Python object. Classes are categorised into three categories: internal, external, and all before being

stored. The internalClasses variable is the result of getting all class names within the package

as seen in Figure 31 and the classes variable is the result of extracting all invoke and reference

instances (see Figure 34). Both of these variables are stored as a set data type to avoid repeated

classes and to be able to perform set operations to create the mentioned categories, as shown in

Figure 35.

1 classInfo = {

2 "hash": application ,

3 "internal": internalClasses ,

4 "external": classes - internalClasses ,

5 "all": classes | internalClasses

6 }

7

Figure 35: Class name saved format

5.5 Processing Data

The permissions and classes stored as a pickle object when extracting features from an Android

malware dataset need to be processed to produce results that can be compared. The first step is to

compute the frequency distribution of the number of features observed in a dataset (Figure 36).

1 def getPermissionsFrequncy(fileName , size):

2 permissionFrequency = Counter ()

3 data = readData(fileName)

4 if data:

5 random.shuffle(data)

6 for application in data[:size]:

7 permissionFrequency += Counter(application[’permissions ’])

8 return permissionFrequency

9

Figure 36: Computing frequency distribution

Counter [66] is a Python Dictionary subclass from the Python collections module, where

elements are stored as keys, and their counts are stored as dictionary values. This allows per-
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missions to be added up for each sample in the database resulting in a dictionary containing the

frequency for each unique permission observed. The same is applied to classes but there are

separate frequency distributions for their three types (internal, external, all). The function also

includes the size argument to allow for simple random sampling if only a desired amount of

samples want to be taken from a dataset.

Formatting Data

Data are required to be formatted correctly before being plotted on the bar graph. There are too

many permissions and classes to reasonably plot on the graph with more than 300 permissions

[49] that can be defined and thousands of classes that can be defined for a single application;

therefore, the aim is to retrieve the top n most common features for a dataset with their frequency,

where n is the number of unique features to plot. The frequency would then be plotted against

another dataset to see the differences in the usage of the specified features.

1 def processPermissions(file1 , file2 , categorySize , sampleSize=None):

2 dataset , dataset2 , size = processSample(file1 , file2 , sampleSize)

3 Data = getPermissionsFrequncy(file1 , size)

4 Data2 = getPermissionsFrequncy(file2 , size)

5 category , frequency = formatData(Data , categorySize)

6 frequency2 = []

7 for permission in category:

8 frequency2.append(Data2[permission ])

9 category = [permission.split(".")[-1] if ".".join(permission.split(".

")[0:2]) == "android.permission" else permission for permission in

category ]

10 processGraphData(category , "Permissions", categorySize , size ,

frequency , frequency2 , dataset , dataset2)

11

Figure 37: Processing permission data

1 def formatData(data , categories):

2 data = data.most_common(categories)

3 return [item [0] for item in data], [item [1] for item in data]

4

Figure 38: Formatting data

In Figure 37, the frequency distributions of both datasets are retrieved from the getPermis-

sionsFrequency function. The first distribution is passed into the formatData (Figure 38) function

so that only the most common permissions are used when plotting the graph. The function also

separates the permissions and frequency into two separate arrays so that the data are formatted

correctly when plotted. Permissions are then filtered from the second distribution to include only
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permissions that are the most common in the first distribution. As the majority of permissions

are from Android, they are modified to include only the permission name if it starts with "an-

droid.permission". Any permissions that deviate from Android are given the full name to show

that they are not part of Android specific permissions.

Processing Android API classes

One key data to plot is the Android API classes used for a dataset. The list of each package

provided by Google [18] can be used to see which classes are contained in this package and

therefore part of the Android API. Figure 39 shows a snippet of the getClassesFrequency function,

which is similar to the getPermissionsFrequency but gets the data for all three types of classes. It

works by filtering the classes through the ValidateAPI function, which returns all class names

that start with any one of the names of the Android API package, showing that they are part of

that package.

1 ...

2 for types in classTypes:

3 frequency2 = []

4 if types == "Android API":

5 types = ’all’

6 filteredData = {key: count for key , count in Data[types ].items()

if validateAPI(key , androidAPI)}

7 category , frequency = formatData(Counter(filteredData),

categorySize)

8 ...

9

Figure 39: Filtering Android API classes

1 def validateAPI(classes , AndroidAPI):

2 for package in AndroidAPI:

3 if classes.startswith(package):

4 return True

5 return False

6

Figure 40: Filtering Android API classes

Plotting Data

The Matplotlib module [67] can be used to create visualisation of data, such as the horizontal

bar chart. The processGraphData function as shown in Figure 41 is created specifically to allow

plotting for both classes and permissions, and also for different features that could be implemented

in the future.
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1 def processGraphData(category , featureType , categorySize , sampleSize ,

frequency , frequency2 , dataset , dataset2):

2 category = category [::-1]

3 frequency = frequency [:: -1]

4 frequency2 = frequency2 [:: -1]

5 y = np.arange(len(category))

6 barWidth = 0.3

7 plt.barh(y - barWidth/2, frequency , barWidth , label=f"{dataset}")

8 plt.barh(y + barWidth/2, frequency2 , barWidth , label=f"{dataset2}")

9

10 plt.xlabel(’Frequency ’)

11 plt.ylabel(f’{featureType}’)

12 plt.title(f’Top {categorySize} {featureType} from {dataset} Dataset

Compared to {dataset2} Dataset ({ sampleSize} samples)’)

13 plt.yticks(y, category)

14 plt.legend ()

15 plt.show()

16

Figure 41: Plotting Graph

The order of the category and frequency lists needed to be inverted so that the most common

feature appeared at the top of the bar graph instead of the bottom. The number of categories to

display for the bar chart can also be changed to allow more features to be compared. The label

and title of the graph are also dynamic, so that the plot description does not need to be manually

changed for each feature.

5.6 Implementation of Testing Method

Androguard needs to be configured specifically to extract features to create tests to validate the

permissions and class names extracted from a malicious sample. Specific classes and methods

can be imported using the Androguard package. [68]. The analayseAPK function (Figure 42)

shows how permissions, all classes, and external classes of an APK file are extracted by importing

and using Androguard’s classes and methods that perform all the processing. The full code for

Androguard’s and testing implementation can be seen in Appendix G.
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1 from androguard.core.bytecodes import apk , dvm

2 import androguard.core.analysis.analysis as analysis

3

4 def analyseAPK(file):

5 apkFile = apk.APK(file)

6 dalvik = dvm.DalvikVMFormat(apkFile)

7 dx = analysis.Analysis(dalvik)

8 permissions = [permission for permission in apkFile.get_permissions ()

]

9 classes = [ dexClass.name [1:-1] for dexClass in list(dx.get_classes ()

)]

10 externalClasses = [ dexClass.name [1:-1] for dexClass in list(dx.

get_classes ()) if dexClass.is_external ()]

11 return permissions , classes , externalClasses

12

Figure 42: Androgurad Extracting Features

Figure 43 shows a snippet of the getPermissionsAndClasses function, which is used to retrieve

and format features from a dataset using the Androguard package. It first calls analyseAPK to get

all the features from Androguard, and then formats the permissions and classes to be the same

format used in the Droidloader feature extraction process. Androguard cannot return internal

classes but the internal class can be derived by excluding external classes from all classes, as

shown in the set operation used (Figure 43). The hash data are included for both permissions and

classes so that the program can match and compare the features extracted with Androguard to

features extracted with Droidloader for a specific malware sample.

1 permissions = set()

2 classes = set()

3 externalClasses = set()

4 permissions , apkClass , apkExternalClass = analyseAPK(os.path.join(

targetDir , application ,))

5 classes.update(apkClass)

6 classInfo = {

7 "hash": application [:-4],

8 "internal": classes - externalClasses ,

9 "external": externalClasses ,

10 "all": classes

11 }

12 permissionsList.append ({"hash": application [:-4], "permissions": set(

permissions)})

13

Figure 43: getPermissionsAndClasses function snippet
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The permissions extracted from Droidloader are then compared with Androguard’s results to

check if they are correct, as shown in Figure 44. The same concept applies to classes where each

of the categories of classes are compared against Androguard.

1 def testGetPermissions ():

2 permissions = getPermissions(’datasets/TestDecoded ’, 10)

3 androguardPermissions = getPermissionsAndClasses(’datasets/Test’, 10)

[0]

4 successful = 0

5 for i in range(len(permissions)):

6 for j in range(len(androguardPermissions)):

7 if permissions[i][’hash’] == androguardPermissions[j][’hash’

]:

8 successful += 1

9 print(f"[+] 10 samples tested")

10 print(f"[+] {successful} permissions from samples are correct

compared to Androguard")

11

Figure 44: Validating permissions

5.7 Implementation of Benchmarking Method

To measure the performance of the tool, a benchmarking program was created that measures the

time it takes for Droidloader to perform two actions: decompile a random dataset with Apktool

and extract features. The combined time will be compared only with Androguard’s time to extract

features, since Androguard works with normal APK files. The code used for the automated

benchmark can be seen in Appendix G where Figure 45 shows the key lines of the code. It first

iterates through the selected values of the sampleSize array where each iteration generates a

dataset in the datasets/Benchmark folder consisting of the specified number of malware samples.

The program also ensures that the Benchmark folder is empty before generating the dataset by

deleting and recreating the directory after each iteration. This dataset was then processed by

Droidloader and Androguard, where its processing time is measured using the timeit module [69].

The times are then saved as a pickle object (Figure 46) so that every time is recorded for each

benchmark test.
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1 sampleSize = [10, 25, 50]

2 times = readData(’data/Benchmark/times.pkl’)

3 sampleDir = ’datasets/Benchmark ’

4 decodedDir = ’datasets/BenchmarkDecoded ’

5 ...

6 for size in sampleSize:

7 if os.path.exists(sampleDir):

8 shutil.rmtree(sampleDir)

9 os.mkdir(sampleDir)

10 generateSample(sampleDir , size)

11 execTimeDecompile = timeit.timeit(lambda: decompileTime(sampleDir ,

decodedDir), number =1)

12 execTime = timeit.timeit(lambda: permissionsAndClassesTime(decodedDir

, size), number =1)

13 execTimeAndroguard = timeit.timeit(lambda:

permissionsAndClassesAndroguardTime(sampleDir , size), number =1)

14 times.append ({"sampleSize": size , "decompileTime": execTimeDecompile ,

"droidloader": execTime , "androguard": execTimeAndroguard })

15 writeData(times , "Benchmark", "times")

16

Figure 45: Measuring performance

1 [{’sampleSize ’: 10, ’decompileTime ’: 35.329267517000034 , ’droidloader ’:

2.1299222259999624 , ’androguard ’: 47.114663334} , {’sampleSize ’: 25, ’

decompileTime ’: 95.49785511700003 , ’droidloader ’: 4.98925046100004 , ’

androguard ’: 97.97501675800004} , {’sampleSize ’: 50, ’decompileTime ’:

135.027086436 , ’droidloader ’: 8.33165734499994 , ’androguard ’:

144.97242858799996}

2

Figure 46: Benchmarking data
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6 Results and Evaluation

6.1 Generated Dataset Review

Two new datasets have been generated as a result of this tool. The first is MalwareBazaarRecent,

which is the 1000 of the most recent samples taken from MalwareBazaar taken on August 22nd

2023. The second dataset is VirusShareRecent, which contains all Android malware that were

filtered and downloaded from the VirusShare_00476.md5 [70] file. The CICAndMal2017 and

CICMalDroid2020 dataset have been modified to exclude any Adware and the number of samples

for the CICMalDroid2020 data has been reduced to make the size of the dataset similar to other

datasets as well as storage limitations. Future references of the datasets in this section refer to

their modified counterparts. Unfortunately, due to errors in the Apktool decompilation, some of

the samples cannot be processed in the dataset including samples from previous datasets with

Table 5 showing their success rate:

Dataset Name Number of

Malware Samples

Samples Successfuly

Decompiled

Success

Rate (1 d.p.)

MalwareBazaarRecent 1000 842 84.2%

VirusShareRecent 774 633 81.8%

CICAndMal2017

(Modified)

322 322 100%

CICMalDroid2020

(Modified)

500 472 92.4%

Table 5: Dataset decompilation success rate

The average percentage of samples that have been successfully decompiled is 89.6% which is

a sufficient percentage of samples that are processed. The number of malware samples for each

dataset is small compared to datasets such as Drebin [33]. One of the issues of having a smaller

sample size is that certain malware categories or families might be completely missed from the

dataset. This could make the dataset represent less in the malware behaviour that was actually

present from a certain time period. However, due to storage limitations and the CICAndMal2017

dataset having a small sample size, this cannot be avoided.

6.2 Testing and Benchmarking

Validating Extracted Permissions and Classses

Ten samples were randomly selected from all four datasets to create the test dataset where the

features extracted from Droidloader are compared against Androguard. Figure 47 shows the

results of the test for each file in which Droidloader correctly extracted the permissions and

internal, external and all classes for each sample. This validates the feature extraction process.
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Figure 47: Feature extraction test results

Performance results

The time it took both tools to extract features from a dataset was recorded five times for each

specific sample size. The average of those times is shown in Figure 48:

Figure 48: Performance between Droidloader and Androguard
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From the graph, Droidloader and Androguard have similar results in performance. Decom-

piling took most of the time for Droidloader, but when it came to extracting features, it was

significantly faster. Since decompiling a dataset is persistent, users can quickly extract features

multiple times with Droidloader without having to decompile the dataset again. The graph also

appears to show a linear relationship between the sample size and the time it takes to process the

samples; therefore, working with thousands or more samples would not significantly affect the

performance of the tool. However, one of the drawbacks of decompiling the dataset is the amount

of storage it takes, where Table 6 shows the differences in size between a normal dataset and a

decompiled dataset. While Droidloader can quickly extract features once the data are decompiled,

disk storage had to be sacrificed.

Dataset Name Size Decompiled Size

MalwareBazaarRecent 9.5GB 56GB

VirusShareRecent 8.2GB 30GB

CICAndMal2017

(Modified)

895MB 5.6GB

CICMalDroid2020

(Modified)

1.4GB 5.9GB

Table 6: Dataset decompilation size comparison

6.3 Features Comparison

As there are four main datasets, twelve distinct bar charts could be made for each extracted

feature; however, these many comparisons would not be necessary to provide sufficient results. To

ensure that comparisons are standardised for each feature, the datasets used for each plot will be

the same. There would be one plot between the newly generated dataset (MalwareBazaarRecent)

and the older dataset (CICAndMal2017), as well as a plot between the newly generated datasets

(MalwareBazaarRecent and VirusShareRecent) and a plot between the older datasets (CICAnd-

Mal2017 and CICMalDroid2020). Any significant differences in frequency for unique features

will be discussed in the section and will provide insight into why the differences occurred. The

same number of samples are taken from both datasets so that the frequency distribution is not

weighted for one dataset or the other.

6.3.1 Permission Data Comparison

Figure 49 shows the top twenty most common permissions used in the MalwareBazaarRecent

dataset compared to the CICAndMal2017 dataset. The additional plots for Android permissions

can be seen in Appendix A, which is also analysed in this section.
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Figure 49: Permission frequency between MalwareBazaarRecent and CICAndMal2017

First of all, there are two permissions that are not included in the CICAndMal2017 dataset

which are FOREGROUND_SERVICE and REQUEST_IGNORE_BATTERY_OPTIMIZATIONS.

The first permission, FOREGROUND_SERVICE was added in API level 28 [49] which correlates

with Android 9. This version of Android was released publicly in August 2018, so the permission

would not be present in malware that was released before the version. Foreground services can be

exploited to execute tasks from the background context [71]. Exploiting these flaws allows an

application to use the device’s resources, even when it is closed. The second permission does not

look malicious at first as it is used to simply ignore battery optimisation. However, this permission

can be exploited to prevent Doze [72] which restricts certain access and actions for an application

when the device is on sleep to preserve battery. Malware authors use this permission so that

malware, particularly remote access trojans, can constantly connect back to their command and

control servers. This permission was introduced in Android 6, released in Sepetember 2015, so

there is no concrete reason why none of the samples have this permission set in the older dataset.

Some of the samples collected in the CICAndMal2017 dataset have evidence of C&C activity

[73] so the reason is not due to biased malware types.

The frequency distribution of permission is also different between MalwareBazaarRecent and

VirusShareRecent (see Appendix A) despite the malware samples being taken from the same time

period. Both datasets do not follow the same pattern in frequency distribution as expected, with

a few notable permissions that have major differences in their frequency. The first are permis-

sions related to SMS messages and contacts reconnaissance (READ_SMS, READ_CONTACT,
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RECIEVE_SMS) which the majority of samples from VirusShareRecent dataset do not have

this permission set. This could be due to malware sample bias, where the samples taken from

VirusShare may contain different malware types such as adware that does not need access to

contact information. Other permissions include QUERY_ALL_PACKAGES, which allows the

malware to query any normal application, and USE_FULL_SCREEN_INTENT, used to display

a full-screen notification. Displaying a notification can trick the user into potentially clicking it

to grant the malware more access to the device. These permissions are not as intrusive as SMS

and contact permissions, so their usage depends on the specific goal that the malware is trying

to achieve. All these permissions mentioned were also available to use when the malware was

written from both datasets, so malware authors had the option to include these permissions to

maximise their malware capability.

Lastly, the permission distribution between the CICAndMal2017 and CICMalDroid2020

dataset roughly follows the same pattern, with no particular permissions standing out from the

distribution. In general, there are significant changes in the frequency distribution of permissions

from older malware samples to newer malware samples. This suggests behavioural changes in

malware, making older datasets not as effective as training data. However, there is also evidence

of behavioural changes even when malware is compared between datasets from the same time

period. It suggests that generating new datasets is not optimal for Android malware detection

based on machine learning; malware behaviours can be vastly different depending on their type,

so further processing should be used where malware is categorised depending on their capability.

The categorised data should then be used to detect specific malware types, for example, creating

a detection model to detect unknown banking malware should only be trained with banking

malware.

6.3.2 Classes Data Comparison

Producing meaningful results from comparing the frequency of classes used for each dataset is

more difficult than comparing permissions, as the methods used for each class are not known in

the data; it is difficult to know the full intent of why the author used a specific class or Android

API. When it came to producing graphs for the classes in the external and all category, the

bar charts produced similar results to classes that were part of the Android API package (see

Appendix B). Therefore, only the frequency of classes that are part of the Android API package

will be analysed. As a result, a new category of classes will also be plotted, which are all classes

that are not part of the Android API package. Overall, this section reviews three distinct categories

of classes: internal, part of the Android API package, and not part of the Android API package.

Internal Classes

Figure 50 shows the top twenty classes that were packaged within the malware samples of the

MalwareBazaarRecent dataset compared to CICAndMal2017. Additional plots for internal classes

can be found in Appendix C.
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Figure 50: Internal classes frequency between MalwareBazaarRecent and CICAndMal2017

Looking at the internal classes, the majority of samples in the newer dataset use the androidx

package, which is not present in the older dataset. This is because Androidx is a major improve-

ment to the original Android support library that is no longer maintained [74]. The graph shows

the older dataset’s samples using the outdated support library. This first stable release of Androidx

was in September 2018 [75] which dates after the release of malware in the CICAndMal2017

dataset. The actual package provides backward compatibility within the android application, so it

is not malicious. However, malware authors could use this to increase the number of Android

versions that are compatible with the malware so that more devices can be targeted.

There is an anomaly with the MalwareBazaarRecent and VirusShareRecent datasets (see

Appendix C), where most of the malware in the VirusShareRecent dataset do not include the

Androidx package. This indicates that the VirusShareRecent malware is outdated, and so the

malware is not as recent as expected. This could have been one of the reasons for the unexpected

results when comparing both of the mentioned datasets permission frequency distribution, as

malware from both datasets was created at the same time. However, this does not completely rule

out the possibility of malware type biases in the generated datasets.

Android API Classes

Figure 51 shows the top twenty classes that are part of the Android API packaged from the

MalwareBazaarRecent dataset that are compared to the CICAndMal2017 datasets. Additional

plots for Android API classes can be found in Appendix D.
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Figure 51: Android frequency between MalwareBazaarRecent and CICAndMal2017

Viewing all the plots for the frequency distributions of Android API classes (see Appendix

D), show no real differences in the use of Android API classes between datasets other than

the MalwareBazaarRecent and VirusShareRecent dataset. VirusShareRecent has numerous API

classes that appear only more than half the time compared to MalwareBazaarRecent. A few

notable API classes include Android/content/BroadcastReceiver and android/net/URI. The first

API class allows malicious applications to trigger certain actions based on which broadcast intent

was received [76]. Broadcast intents are system-wide intents delivered to each app when an

event happens, such as unlocking the screen. The second API class can be used to help build

and manipulate URI references [77], which could be used to send specific http requests to C&C

servers.

Although the other datasets differed less in Android API class usage compared to Mal-

wareBazaarRecent and VirusShareRecent, there are few instances of API Classes having a

notable difference in usage between datasets. These include: java/io/FileInputStream and an-

droid/text/TextUtils between MalwareBazaarRecnet and the CICAndMal2017 dataset as well

as android/content/SharedPreferences and android/content/SharedPreferences$Editor between

CICAndMal2017 and CICMalDroid2020. FileInputStream obtains input bytes from a file in

a file system [78] so it could be used to read files. Textutils is used to perform operation on a

String object, making it useful for decoding any obfuscated strings within the malware. Lastly,

SharedPreferences [79] is an interface that allows accessing and modifying preference data

that could be used to retrieve stored data. Altogether, comparing the Android API classes has

provided some highlights of API classes malware authors can use to maximise the impact of the
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malware. However, the differences in Android API usage were not significant enough compared

to the permissions and internal classes frequency distributions to justify behavioural changes in

Android API usage over time. Not every malware is going to be the same for each dataset so

some differences in frequency are expected.

Non Android API Classes

Figure 52 shows the top twenty classes that are not part of the Android API package from the

MalwareBazaarRecent dataset compared to the CICAndMal2017 dataset. Additional plots for

Non Android API classes can be found in Appendix E.

Figure 52: Non Android API classes frequency between MalwareBazaarRecent and CICAnd-

Mal2017

Both the MalwareBazaarRecent and CICAndMal2017 plots, and the MalwareBazaarRecent

and VirusShareRecent plots show no real pattern in their respective frequency distribution of

non-API classes (see Appendix E). All the differences in non API classes usage in the mentioned

dataset are very different with no specific classes having consistent usage. Some classes that stand

out are those that belong to the okhttp3 and google package. The okhttp3 package [80] is an HTTP

client that can accept requests and produce responses, such as posting data to a service. HTTP

activity could suggest that the malware is trying to exfiltrate data to a command and control server,

by using the HTTP protocol to mask the activity [81]. There were no suspicious google package

classes other than Google Firebase as the Firebase messaging service has been used by threat

actors in the past to download malicious payloads [82]. Overall, the variable differences in the
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use of these classes signify behavioural changes in the specified datasets. The CICAndMal2017

and CICMalDroid2020 datasets show a more consistent usage in non API classes, but that is to

be expected as the malware are from the same time period; malware in these datasets primarily

uses Apache to perform http services, and as mentioned above, these services can allow malware

to communicate to external servers such as C&C servers.
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7 Conclusions

In conclusion, the project reviews the existing research in ML-based Android malware detection

and recognises the main problem where most of the frameworks use outdated Android malware

dataset to train their framework. After reviewing the evolution and current threats of Android

malware, it is apparent that its behaviour and capabilities change throughout the years. As a result,

detection rates were not as effective when testing against new malware due to significant changes

in their behaviours.

To solve this problem, the Droidloader tool was created, which is a command-line interface

tool that automates the generation and analysis of new datasets. It was decided that the malware

sources would be from MalwareBazaar and VirusShare as they both provide an API to allow the

tool to interact directly with both sources. The MalwareBazaar API allows the retrieval of Android

malware and has a strict process for uploading malware samples to the website, so the chances of

false positives in the generated dataset were negligible. However, the MalwareBazzar API only

allowed a limited the number of samples that could be downloaded. A different approach had to

be designed for VirusShare as Android malware cannot be queried directly from the VirusShare

API, as well as their database potentially containing false positive malware. This was done by

using the VirusTotal API so that it could filter for VirusShare Android malware and remove false

positives. However, the request limit for both VirusTotal and VirusShare meant that it would take

a few days to download a sufficient amount of Android malware samples. Despite this, there is

no hard limit on the number of malware samples that could be obtained. As a result of the tool,

two new datasets, MalwareBazaarRecent and VirusShareRecent were generated. By using APIs,

Droidloader can dynamically generate new datasets where if the tool was used in the future, it

will generate a new dataset with malware created in that future time period.

After generating the datasets, Droidloader had to extract features from the dataset so that

comparisons could be made between two separate datasets. By covering various static and

dynamic techniques used to extract features from previous academic research, it was decided that

the tool will perform only static analysis, as it is a more suitable technique when processing large

amounts of malware samples. The features chosen to extract were the permissions and classes

defined in each malware sample. More features could have been analysed, but the scope of the

deliverable had to be reduced to ensure it was complete before the deadline. However, there was

a problem when processing the dataset as Apktool was unsuccessful in decompiling some of the

malware samples. This proved not to be a major issue with Apktool successfully decompiling

89.6% of the samples from the chosen datasets.

When the features were extracted, they could then be plotted in a double bar chart for further

analysis by comparing the frequency distribution of the features used in one dataset with the other.

Two datasets, CICAndMal2017 and CICMalDroid2020, created from previous academic research

were chosen to be compared with the generated dataset. Other datasets that are more widely used,

such as Drebin [33] would have been preferred, but access to this dataset was not granted during

the project period.
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To ensure that Droidloader correctly extracted the features, Androguard was used to test the

output of the extracted classes and permissions from ten malware samples. Ten samples were

used to ensure that the extraction process could work for any sample and the test verified that

Droidloader could correctly extract all the features of the malware samples.

The performance of the tool was similar to that of Androguard in extracting features. But

once the datasets were decompiled, Droidloader performs faster, which justifies the reason for

designing and implementing individual methods to extract features. A dataset is only required to

be decompiled once before numerous feature extraction can be performed. But, as a consequence

of the fast performance, decompiled datasets take up a large chunk of disk space, so there needs

to be some optimisation to remove any files not relevant in the analysis from decompiled files.

After Droidloader could extract features, the comparisons of datasets could be made through

plotting double bar charts. The plots showed that the frequency distribution of permissions for

both the outdated dataset and the new dataset was significant enough to indicate behaviour

changes. This was due to some of the permissions being added in later versions of Android,

which meant that the permissions were not available for malware that was part of an older dataset.

However, the analysis also showed unexpected results where it indicated behavioural changes

within the two generated, including malware from the same time period. As a consequence,

only generating a new dataset might not be sufficient for training data, and further processing,

such as categorising the malware type, should be considered. When it came to comparing the

classes, the plots showing the frequency distribution of the internal and non Android API classes

were very different indicating behaviour changes within Android malware. The reasons for these

changes could be due to newer and better classes. However, the analysis process revealed that the

VirusShareRecent database could be outdated, as it contained old internal classes. Analysis of the

frequency of Android API classes between datasets also showed no promising results, as usage

was generally consistent for different time periods of malware.

By designing Droidloader to be a command-line tool, users are given the flexibility to

download different sizes of dataset, choose a specific number of samples to analyse, and change

the number of categories to display when plotting graphs. The code does not need to change to

allow for specific commands in the tool. However, the documentation for the tool is not present

and there was no unit testing performed, so the behaviour of the tool could drastically change or

crash if a user enters an unexpected input.

Overall, this project has achieved all the measurable goals specified which led to the creation

of a newly generated Android malware dataset, where their behaviour was compared with an older

Android malware dataset. The results indicated behavioural changes reinforcing the problem

of using outdated datasets, but it also introduced a whole new problem of malware type biases

within generated datasets.
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8 Future Work

There are various avenues through which this project can be further developed for future work.

A few ideas include making further improvements to the tool itself, or expanding on the initial

problem outlined in this project, which could lead to original research for a PhD thesis. This

section covers a few key areas for the future work of this project.

Reducing Malware Type Biases in Datasets

One of the problems discovered in this project was the potential malware-type biases in the

generated datasets. This is an issue because the dataset could be biased towards specific malware

types and exclude certain categories within the dataset as there are no processes to categorise the

malware. One of the problems when it comes to malware type categorisation is malware labelling.

Different anti-virus vendors will label a virus differently even if it is in the same family or type.

Tools such as AVClass [83] try to solve this problem by labelling malware behaviours, types, and

file properties based on a certain class based on multiple anti-virus labelling results. The most

common type that is labelled for a malware sample can then be used to categorise the malware.

There might also be other ways to categorise malware that do not rely on anti-virus labelling,

such as producing a unique methodology that categorises the malware by type if exhibits a certain

behaviour when executed. There was also an issue with generated datasets that contained outdated

malware, so a filtering system needs to be implemented to only accept malware from a certain

date. By creating a solution that also categorises malware after it is generated, it could provide

some novel contribution that can lead to a PhD.

Improving Droidloader

The Droidloader tool was created to facilitate the project and, although it achieves the objectives

set in the project, there are few areas in this tool that can be further explored. The commands and

options used for the interface were mainly decided by personal preferences, which might not

be clear to a new user. So the first step is to improve the user experience, as currently the tool

has no supporting documentation; users have to go through multiple commands to generate the

decoded database, which might not be easy to perform for a new user. Creating documentation

for the tool would be useful so that users know what each command does and the main use case

of the tool. Improvement to the interface could include clearer arguments or options, so instead

of -s for specifying the size, use –size. Once the changes have been made with the interface,

numerous users who have never experienced the tool can test to see if the interface is easy to use

by attempting to successfully extract and plot features from a specified database. If many users

have failed the test, then it would be clear that the tool needs my work in its user experience.

Another option would be to create a graphical user interface where users can drag the dataset

folder into the program and it will do all the processing in the background.

Another improvement to consider is making the tool open source so that external developers

can contribute to the code as well as make provide issues of requests for certain features. Although
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the code styling is consistent with Droidloader, it does not conform to PEP 8 [84] which provides

standard guidelines and practise on how to write Python code. Droidloader would have to conform

to this standard before its released to the open source community so that the code styling is

consistent since every developer would know and use this standard even if they have a certain

styling preference. Lastly, some optimisation changes should be implemented in Droidloader,

for example, reducing the file size of decompiled datasets as they are large compared to the

unmodified datasets. One of the ways that this could be done is by removing folders and files that

are not relevant for feature extraction within the malware after decompilation.

Extracting More Features

Only static analysis was used for the comparison of the dataset and only a limited number of

features were extracted. While the classes were successfully extracted, the methods of the classes

were not obtained, which limited the analysis section, as there was no context behind why each

class was initialised within the malware. Another idea would be to use dynamic analysis methods,

where the tool automates the execution of each application so that it can generate data for analysis.

This can be done by using adb [26] to load the application onto a physical or emulated mobile

device, and then using monkey runner [23] to simulate actions. Data such as network traffic

and system calls can then be extracted, which could provide some useful behavioural indicators

for given malware samples. With more features extracted, a more thorough analysis could be

considered to further validate behavioural changes within malware.

Implementing Machine Learning

Lastly, machine learning could be used to quantify behaviour changes in malware from outdated

datasets and generated sets. Two separate machine learning models for Android malware detection

could be created, where one is trained on the generated datasets and the other on outdated datasets.

The models would then be tested on unknown malware to see if they can correctly detect it.

The detection accuracy could then be compared between both models to see if using generated

datasets would improve ML-based Android malware detection. If improvement is observed, then

there is evidence of behavioural changes, since the new model could adapt to the new changes in

malware.
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9 Project Reflection

I initially found the project challenging in the beginning with limited knowledge about how the

Android ecosystem worked on a technical level, including how Android malware are packaged,

deployed, and executed on a system. It was definitely a daunting experience starting a project with

little prior knowledge in the project background area. I also found that Android does not have

as much documentation and research compared to other systems, such as Windows, making it

more difficult to fully understand the key concepts. However, after dedicating the first few weeks

of learning Android and its malware by playing around with APK files and reading tutorials

and books, I felt confident in the foundational knowledge I had about Android and its relevant

malware to start the dissertation project.

One of the main issues I faced was coming up with a suitable and novel project idea. This

project was initially going to analyse the vulnerabilities of Android mobile applications by

writing mitigation techniques to prevent the vulnerabilities; however, there was limited academic

literature and so the project would have just been a paper detailing past vulnerabilities without

insightful research. But then I started reading academic papers on Android malware, particularly

in ML-based Android malware detection where I discovered the key problem which was that

most of the solutions used outdated datasets. This problem then provided a base for my project,

which I am glad I chose, as it meant that I could critically analyse the literature and provide

insightful results to solve the problem.

One of the key strengths I had going into this project was having a strong programming

background, especially in Python. Therefore, I wanted to make this project programming-based,

which is why I decided to write the Droidloader tool. The experience greatly helped as I could

immediately write the code for Droidloader instead of spending time learning the language. The

experience also made sure that I took a modular approach in programming, where separate files

and functions performed a particular task. This approach allowed me to make small tweaks to

the code towards the end without too much friction, and also avoid redundant code. Python’s

third-party libraries also saved a lot of time, as I did not have to build some of the features by

scratch, such as using the argparse module to provide command-line options for the user. It was

definitely daunting to write the tool at first, as there were some concepts with which I did not

have much experience, such as sending and retrieving API requests and file manipulation. But

with the help of documentation forums, these concepts were manageable to implement. I also had

little experience in regex, but the expressions required to write were not too complex, so I did not

have to learn all the syntax in regex.

The major limiting factor in this project was definitely time. There were some ideas that I

wanted to implement in the project, for instance, dynamic analysis to extract features. However,

there were external factors outside my control working on the project that meant that I could not

fully focus on the project. Therefore, I made the decision to reduce the scope of the tool so that I

had a completed product for the project. Other factors also include a lack of knowledge in other
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areas, as I wanted to use machine learning in the project; however, I never had the fundamental

knowledge of how machine learning works before starting the project, so I decided against it.

Whilst doing this project, I have massively improved my research skills by skimming through

academic papers to determine if it is worth reading and utilising their references to find even

more papers. My time management skills have improved significantly, as I delegated enough time

to writing the project so that the work was manageable. I also have greater reliance when it comes

to learning new concepts, as I do not get too overwhelmed when I am struggling, but instead try

to take a more calm approach. Overall, I found this project to be an enjoyable experience from

start to finish, especially when it came to programming the tool. I have learnt many skills that I

can put into practise in the future and I hope one day that I can release my tool to the public so

that my tool can aid researchers in the future.
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A Appendix: Permissions Frequency Distribution Plots

A.1 MalwareBazaarRecent to CICAndMal2017
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A.2 MalwareBazaarRecent to VirusShareRecent
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A.3 CICAndMal2017 to CICMalDroid2020
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B Appendix: External, All and Android API Classes Plot Compar-

ison
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C Appendix: Internal Classes Frequency Distribution Plots

C.1 MalwareBazaarRecent to CICAndMal2017
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C.2 MalwareBazaarRecent to VirusShareRecent
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C.3 CICAndMal2017 to CICMalDroid2020
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D Appendix: Android API Classes Frequency Distribution Plots

D.1 MalwareBazaarRecent to CICAndMal2017
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D.2 MalwareBazaarRecent to VirusShareRecent
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D.3 CICAndMal2017 to CICMalDroid2020
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E Appendix: Non Android API Classes Frequency Distribution Plots

E.1 MalwareBazaarRecent to CICAndMal2017

76



E.2 MalwareBazaarRecent to VirusShareRecent
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E.3 CICAndMal2017 to CICMalDroid2020
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F Appendix: Droidloader Code

F.1 droidloader.py

1 import requests

2 import re

3 import json

4 import pyzipper

5 import argparse

6 import os

7 import sys

8 import time

9 import random

10 from configparser import ConfigParser

11

12 from core.classAnalyser import getClasses

13 from core.filterHashes import generateApkHashes

14 from core.dataProcess import readData , writeData

15 from graphAnalyser import processPermissions , processClasses

16

17 config = ConfigParser ()

18 config.read(’config.ini’)

19 VTAPIKEY = config[’VirusTotal ’][’apikey ’]

20 VSAPIKEY = config[’VirusShare ’][’apikey ’]

21 MBURL = config[’MalwareBazaar ’][’url’]

22

23 def getHash(query):

24 response = requests.post(MBURL , data=query)

25 data = response.json()["data"]

26 hashes = []

27 for i in range(len(data)):

28 sample = data[i]

29 if sample["file_type"] == "apk":

30 hashes.append(sample["sha256_hash"])

31 return hashes

32

33 def downloadSample(dir , hash):

34 query = {"query": "get_file", "sha256_hash": hash}

35 response = requests.post(MBURL , data=query , timeout =60,

allow_redirects=True)

36 open(f"{dir}/{ hash}.zip", "wb").write(response.content)

37

38 def downloadSampleVS(dir , hash):

39 time.sleep (15)

40 url = f"https :// virusshare.com/apiv2/download?apikey ={ VSAPIKEY }&hash

={hash}"

41 response = requests.get(url)

42 open(f"{dir}/{ hash}.zip", "wb").write(response.content)

43
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44 def getMalwareByFamily(families , limit):

45 hashes = []

46 for family in families:

47 query = {"query": "get_siginfo", "signature": family , "limit":

limit}

48 hashes.extend(getHash(query))

49 return hashes

50

51 def getRecentMalware(limit):

52 query = {"query": "get_file_type", "file_type": "apk", "limit": limit

}

53 return getHash(query)

54

55 def extract(targetdir , outputdir):

56 os.mkdir(outputdir)

57 for archive in os.listdir(targetdir):

58 if archive.endswith(".zip"):

59 with pyzipper.AESZipFile(f"{targetdir }/{ archive}") as zf:

60 zf.extractall(path=outputdir , pwd=bytes("infected", "utf

-8"))

61 for file in os.listdir(outputdir):

62 if not file.endswith(".apk"):

63 os.rename(f"{outputdir }/{ file}", f"{outputdir }/{ file}")

64

65

66 def getReport(targetdir , outputfile):

67 url = "https ://www.virustotal.com/api/v3/files/"

68 for _, _, files in os.walk(targetdir):

69 for sample in files:

70 if sample.endswith(".apk") or sample.endswith(".zip"):

71 hash = sample [:-4]

72 response = requests.get(f"{url}{hash}", headers ={"accept"

: "application/json", "x-apikey": VTAPIKEY })

73 with open(outputfile , "a") as f:

74 json.dump(response.json(), f, ensure_ascii=False)

75 f.write("\n")

76

77 def decompile(targetdir , outputdir , apktool):

78 samples = []

79 for root , _, files in os.walk(targetdir):

80 for file in files:

81 samples.append(os.path.abspath(os.path.join(root , file)))

82 os.mkdir(outputdir)

83 apktool = os.path.abspath(apktool)

84 for sample in samples:

85 if sample.endswith(".apk"):

86 os.system(f"cd {outputdir} && java -jar {apktool} d {sample}"

)

87
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88 def cleanDecodedSamples(targetdir):

89 sampleCount = 0

90 fileCount = 0

91 for decodedSample in os.listdir(targetdir):

92 fileCount += 1

93 decodedSample = os.path.join(targetdir , decodedSample)

94 if not os.listdir(decodedSample):

95 os.rmdir(decodedSample)

96 else:

97 sampleCount += 1

98 print(f"[+] {fileCount} Files processed")

99 print(f"[+] {sampleCount} Files successfully decompiled")

100 print(f"[-] {fileCount - sampleCount} Invalid decompiled files

removed")

101

102 def getPermissions(targetDir , limit):

103 permissionsList = []

104 dataset = os.listdir(targetDir)

105 random.shuffle(dataset)

106 for sourceCode in dataset [:limit]:

107 permissions = []

108 manifest = f"{targetDir }/{ sourceCode }/ AndroidManifest.xml"

109 if os.path.isfile(manifest):

110 with open(manifest) as f:

111 permissions = re.findall(r’<uses -permission .*?\/ >’, f.

read()) #Regex to extraction permissions from AnroidManifest

112 permissions = [re.search(r’"(.*?)"’, permission).group ()

[1: -1] for permission in permissions if re.search(r’"(.*?)"’,

permission)]

113 permissionsList.append ({"hash": sourceCode , "permissions": set(

permissions)})

114 return permissionsList

115

116

117 if __name__ == "__main__":

118 parser = argparse.ArgumentParser(description="Dataset Generator",

formatter_class=argparse.ArgumentDefaultsHelpFormatter)

119 subparsers = parser.add_subparsers(title="subcommand", dest="

subcommand", description="subcommand")

120

121 downloadParser = subparsers.add_parser("download", help="Download

Recent Malware samples from Virus Sample hosting platforms")

122 downloadParser.add_argument(’outputfolder ’, type=str , help="Output

Folder")

123 downloadParser.add_argument(’-m’, choices =[’MalwareBazaarRecent ’, ’

MalwareBazaarFamily ’, ’VirusShareRecent ’], help="Download Type", dest=

"mode")

124 downloadParser.add_argument(’-s’, default =100, type=int , help="Number

of Samples to Download", dest="size")
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125

126 extractParser = subparsers.add_parser("extract", help="Extract folder

containg zipped samples")

127 extractParser.add_argument(’targetfolder ’, type=str , help="Target

Folder")

128 extractParser.add_argument(’-o’, help="Output Folder", dest="

outputfolder")

129

130 decompileParser = subparsers.add_parser("decompile", help="Decompile

folder containg APK samples")

131 decompileParser.add_argument(’targetfolder ’, type=str , help="Target

Folder")

132 decompileParser.add_argument(’-o’, help="Output Folder", dest="

outputfolder")

133

134 filterParser = subparsers.add_parser("filter", help="Filter a list of

MD5 from VirusShare for APK files")

135 filterParser.add_argument(’targetfile ’, type=str , help="VirusShare

MD5 File")

136

137 permissionParser = subparsers.add_parser("permissions", help="Get

Permissions based off decompiled datasets")

138 permissionParser.add_argument(’targetfolder ’, type=str , help="Target

Decoded Sample Folder")

139 permissionParser.add_argument(’-s’, default =10, type=int , help="

Number of Samples to get Permissions", dest="size")

140

141 classesParser = subparsers.add_parser("classes", help="Extracts

classes from decompiled datasets")

142 classesParser.add_argument(’targetfolder ’, type=str , help="Target

Decoded Sample Folder")

143 classesParser.add_argument(’-s’, default =10, type=int , help="Number

of Samples to get Classes", dest="size")

144

145 graphParser = subparsers.add_parser("graph", help="Produce Graphs

from two datasets")

146 graphParser.add_argument(’targetdata ’, type=str , help="Target Data")

147 graphParser.add_argument(’-t’, choices =[’permissions ’, ’classes ’],

help="Type of Feature", dest="type")

148 graphParser.add_argument(’-d’, help="Comparison Data", dest="

comparedata")

149 graphParser.add_argument(’-s’, default =100, type=int , help="Number of

Samples Retrieve in each Dataset", dest="size")

150 graphParser.add_argument(’-c’, default =20, type=int , help="Number of

Categories to Display", dest="categorySize")

151

152 if len(sys.argv)==1:

153 parser.print_help ()

154 parser.exit()
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155 args = parser.parse_args ()

156

157 if args.subcommand == "download":

158 hashes = []

159 if args.mode == "MalwareBazaarFamily":

160 hashes = getMalwareByFamily (["Cerberus", "Hydra", "FluBot", "

Octo", "Ermac"], args.size)

161 if args.mode == "MalwareBazaarRecent":

162 hashes = getRecentMalware(args.size)

163 if args.mode == "VirusShareRecent":

164 data = readData("data/VirusShare/VirusShare_00476.pkl")

165 if data:

166 hashes = data[’hashes ’][: args.size]

167 else:

168 print("No mode specified")

169 outputdir = args.outputfolder

170 if not os.path.exists(outputdir):

171 os.mkdir(outputdir)

172 if hashes:

173 for hash in hashes:

174 if args.mode == "VirusShareRecent":

175 downloadSampleVS(outputdir , hash)

176 else:

177 downloadSample(outputdir , hash)

178 else:

179 print("Directory Exists")

180

181 if args.subcommand == "extract":

182 outputdir = args.outputfolder

183 if args.outputfolder is not None:

184 if not os.path.exists(outputdir):

185 extract(args.targetfolder , outputdir)

186 else:

187 print("Directory Exists")

188 else:

189 print("Output Folder Required (-o)")

190

191

192 if args.subcommand == "decompile":

193 outputdir = args.outputfolder

194 if outputdir is not None:

195 if not os.path.exists(outputdir):

196 decompile(args.targetfolder , outputdir , "dependencies/

apktool_2 .8.1. jar")

197 cleanDecodedSamples(outputdir)

198 else:

199 print("Directory Exists")

200 else:

201 print("Required Output Folder")
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202

203 if args.subcommand == "filter":

204 md5File = args.targetfile

205 if os.path.exists(md5File):

206 outputFileName = os.path.basename(md5File)[:-4]

207 fileHashes = readData(f"data/VirusShare /{ outputFileName }.pkl"

) # Get saved hashes

208 if fileHashes:

209 apkHashes , count = generateApkHashes(md5File , fileHashes[

’hashes ’], fileHashes[’count’])

210 else:

211 apkHashes , count = generateApkHashes(md5File , [], 0)

212 if apkHashes and count:

213 writeData ({"hashes": apkHashes , "count": count}, "

VirusShare", outputFileName)

214

215 if args.subcommand == "permissions":

216 targetdir = args.targetfolder

217 dirName = os.path.basename(targetdir)

218 if dirName == "":

219 dirName = os.path.basename(os.path.dirname(targetdir))

220 permissions = getPermissions(targetdir , args.size)

221 if permissions:

222 writeData(permissions , dirName , "permissions")

223 else:

224 print("Invalid Sample")

225

226 if args.subcommand == "classes":

227 targetdir = args.targetfolder

228 dirName = os.path.basename(targetdir)

229 if dirName == "":

230 dirName = os.path.basename(os.path.dirname(targetdir))

231 classes = getClasses(targetdir , args.size)

232 if classes:

233 writeData(classes , dirName , "classes")

234 else:

235 print("Invalid Sample")

236

237 if args.subcommand == "graph":

238 targetdata = args.targetdata

239 comparedata = args.comparedata

240 sampleSize = args.size

241 categorySize = args.categorySize

242 if args.type == "permissions":

243 processPermissions(f"{targetdata }/ permissions.pkl", f"{

comparedata }/ permissions.pkl", categorySize , sampleSize)

244 elif args.type == "classes":

245 processClasses(f"{targetdata }/ classes.pkl", f"{comparedata }/

classes.pkl", categorySize , sampleSize)
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246 else:

247 print("No type specified")

F.2 core/classAnalyser.py

1 import os

2 import re

3 import random

4

5 def formatClass(item):

6 if "const -class" in item:

7 return item.split(" ")[2][: -1]

8 if "}," in item and ";->" in item:

9 return item.split("},")[1]. split(";")[0]. replace(" ", "")

10 else:

11 return ""

12

13 def className(root , smaliFile):

14 smaliCode = os.path.join(root , smaliFile)

15 with open(smaliCode , "r") as f:

16 name = re.findall ((r"\.class.*"), f.read())[0]

17 name = name.split()

18 name = name[len(name) -1][1:-1]

19 return name

20

21 def returnClasses(root , smaliFile):

22 smaliCode = os.path.join(root , smaliFile)

23 with open(smaliCode , "r") as f:

24 classes = re.findall(r"invoke -virtual .*| invoke -super .*|invoke -

direct .*|invoke -static .*| invoke -interface .*|const -class.*", f.read())

25 if classes:

26 classes = [formatClass(item)[1:] if formatClass(item).

startswith("L") else formatClass(item)[2:] for item in classes if item

!= ""]

27 return classes

28

29 def getSmaliFolders(sourceCode):

30 return [file for file in sourceCode if re.search(r’smali_classes\d+|

smali’, file)]

31

32 def getClasses(targetDir , limit):

33 classesList = []

34 decodedSamples = os.listdir(targetDir)

35 random.shuffle(decodedSamples)

36 i = 0

37 for application in decodedSamples [: limit]:

38 isApplication = False

39 classes = set()

40 internalClasses = set()

41 sourceCodePath = os.path.join(targetDir , application)
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42 sourceCode = os.listdir(sourceCodePath)

43 smaliFolders = getSmaliFolders(sourceCode)

44 i += 1

45 for folders in smaliFolders:

46 for root , _, files in os.walk(os.path.join(sourceCodePath ,

folders)):

47 isApplication = True

48 for smaliFile in files:

49 if(smaliFile.endswith(".smali")):

50 internalClasses.add(className(root , smaliFile))

51 classes.update(returnClasses(root , smaliFile))

52 classes.discard("")

53 if isApplication:

54 classInfo = {

55 "hash": application ,

56 "internal": internalClasses ,

57 "external": classes - internalClasses ,

58 "all": classes | internalClasses

59 }

60 classesList.append(classInfo)

61 return classesList

F.3 core/filterHashes.py

1 import requests

2 import os

3 from concurrent.futures import ThreadPoolExecutor

4 from configparser import ConfigParser

5

6 config = ConfigParser ()

7 config.read(os.path.abspath(’config.ini’))

8 VTAPIKEY = config[’VirusTotal ’][’apikey ’]

9

10 def getType(hash):

11 url = "https ://www.virustotal.com/api/v3/files/"

12 response = requests.get(f"{url}{hash}", headers ={"accept": "

application/json", "x-apikey": VTAPIKEY })

13 try:

14 sampleType = response.json()[’data’][’attributes ’][’

type_description ’]

15 extension = response.json()[’data’][’attributes ’][’type_extension

’]

16 detections = response.json()[’data’][’attributes ’][’

last_analysis_stats ’][’malicious ’]

17 if sampleType == "Android" and extension == "apk" and detections

>= 2:

18 return hash

19 else:

20 return None

21 except:
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22 return None

23

24 def listmd5(file):

25 with open(f"{file}") as f:

26 md5List = [md5.strip("\n") for md5 in f.readlines () [6:]]

27 return md5List

28

29 def generateApkHashes(md5File , apkHashes , count , limit =18000):

30 count = 0

31 md5List = listmd5(md5File)

32 executor = ThreadPoolExecutor(max_workers =4)

33 i = 0

34 if count < len(md5List):

35 for hash in executor.map(getType , md5List[count:count+limit ]):

36 i+=1

37 if hash is not None:

38 apkHashes.append(hash)

39 return apkHashes , count+limit

40 else:

41 print("MD5 File exhausted")

42 return False , False

F.4 core/dataProcess.py

1 import pickle

2 import os

3 import random

4 from collections import Counter

5

6 def writeData(data , dirName , fileName):

7 if not os.path.exists(f"data/{ dirName}"):

8 os.makedirs(f"data/{ dirName}")

9 with open(f"data/{os.path.basename(dirName)}/{ fileName }.pkl", "wb")

as f:

10 pickle.dump(data , f)

11

12 def readData(fileName):

13 if os.path.exists(fileName):

14 with open(f"{fileName}", "rb") as f:

15 return pickle.load(f)

16 else:

17 return False

18

19 def average(numbers):

20 if len(numbers) == 0:

21 return 0

22 total = sum(numbers)

23 average = total / len(numbers)

24 return average

25
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26 def getSampleSize(fileName):

27 data = readData(fileName)

28 if data:

29 return len(data)

30 else:

31 return False

32

33 def validateAPI(classes , AndroidAPI):

34 for package in AndroidAPI:

35 if classes.startswith(package):

36 return True

37 return False

38

39 def getPermissionsFrequncy(fileName , size):

40 permissionFrequency = Counter ()

41 data = readData(fileName)

42 if data:

43 random.shuffle(data)

44 for application in data[:size]:

45 permissionFrequency += Counter(application[’permissions ’])

46 return permissionFrequency

47

48 def getClassesFrequency(fileName , size):

49 classTypes = [’internal ’, ’external ’, ’all’]

50 classFrequency = {’internal ’: Counter (), ’external ’: Counter (), ’all’

: Counter ()}

51 data = readData(fileName)

52 if data:

53 random.shuffle(data)

54 for application in data[:size]:

55 for types in classTypes:

56 classFrequency[types] += Counter(application[types])

57 return classFrequency

F.5 graphAnalyser.py

1 import matplotlib.pyplot as plt

2 from collections import Counter

3 from core.dataProcess import readData , getClassesFrequency ,

getPermissionsFrequncy , getSampleSize , validateAPI

4 import os

5 import numpy as np

6

7 def formatData(data , categories):

8 data = data.most_common(categories)

9 return [item [0] for item in data], [item [1] for item in data]

10

11 def processSample(file1 , file2 , size=None):

12 dataset = os.path.basename(os.path.dirname(file1))

13 dataset2 = os.path.basename(os.path.dirname(file2))
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14 sampleSize = getSampleSize(file1)

15 sampleSize2 = getSampleSize(file2)

16 if size is None or size > sampleSize or size > sampleSize2:

17 size = sampleSize if sampleSize < sampleSize2 else sampleSize2

18 return dataset , dataset2 , size

19

20

21 def processGraphData(category , featureType , categorySize , sampleSize ,

frequency , frequency2 , dataset , dataset2):

22 category = category [::-1]

23 frequency = frequency [:: -1]

24 frequency2 = frequency2 [:: -1]

25 y = np.arange(len(category))

26 barWidth = 0.3

27 dataset = dataset.replace("Decoded", "")

28 dataset2 = dataset2.replace("Decoded", "")

29 plt.barh(y - barWidth/2, frequency , barWidth , label=f"{dataset}")

30 plt.barh(y + barWidth/2, frequency2 , barWidth , label=f"{dataset2}")

31

32 plt.xlabel(’Frequency ’)

33 plt.ylabel(f’{featureType}’)

34 plt.title(f’Top {categorySize} {featureType} from {dataset} Dataset

Compared to {dataset2} Dataset ({ sampleSize} samples)’)

35 plt.yticks(y, category)

36 plt.legend ()

37

38 plt.show()

39

40 def processPermissions(file1 , file2 , categorySize , sampleSize=None):

41 dataset , dataset2 , size = processSample(file1 , file2 , sampleSize)

42 Data = getPermissionsFrequncy(file1 , size)

43 Data2 = getPermissionsFrequncy(file2 , size)

44 category , frequency = formatData(Data , categorySize)

45 frequency2 = []

46 for permission in category:

47 frequency2.append(Data2[permission ])

48 print(frequency2)

49 category = [permission.split(".")[-1] if ".".join(permission.split(".

")[0:2]) == "android.permission" else permission for permission in

category ]

50 processGraphData(category , "Permissions", categorySize , size ,

frequency , frequency2 , dataset , dataset2)

51

52 def processClasses(file1 , file2 , categorySize , sampleSize=None):

53 dataset , dataset2 , size = processSample(file1 , file2 , sampleSize)

54 classTypes = [’internal ’, ’external ’, ’all’, "Android API", "Non

Android API"]

55 androidAPI = readData(’data/AndroidAPI.pkl’)

56 categoryList = []
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57 frequencyList = []

58 frequencyList2 = []

59 Data = getClassesFrequency(file1 , size)

60 Data2 = getClassesFrequency(file2 , size)

61 for types in classTypes:

62 frequency2 = []

63 if types == "Android API" or types == "Non Android API":

64 if types == "Android API":

65 types = ’all’

66 filteredData = {key: count for key , count in Data[types ].

items() if validateAPI(key , androidAPI)}

67 else:

68 types = ’all’

69 filteredData = {key: count for key , count in Data[types ].

items() if not validateAPI(key , androidAPI)}

70 category , frequency = formatData(Counter(filteredData),

categorySize)

71 else:

72 category , frequency = formatData(Data[types], categorySize)

73 categoryList.append(category)

74 frequencyList.append(frequency)

75 for classes in category:

76 frequency2.append(Data2[types][ classes ])

77 frequencyList2.append(frequency2)

78 for i in range (5):

79 category = categoryList[i]

80 frequency = frequencyList[i]

81 frequency2 = frequencyList2[i]

82 processGraphData(category , f"{classTypes[i]. capitalize ()}

Classes", categorySize , size , frequency , frequency2 , dataset , dataset2

)
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G Appendix: Testing and Benchmarking Code

G.1 test_droidloader.py

1 from droidloader import getPermissions

2 from core.classAnalyser import getClasses

3 from core.androguardAnalyser import getPermissionsAndClasses

4

5 def testGetPermissions ():

6 permissions = getPermissions(’datasets/TestDecoded ’, 10)

7 androguardPermissions = getPermissionsAndClasses(’datasets/Test’, 10)

[0]

8 successful = 0

9 for i in range(len(permissions)):

10 for j in range(len(androguardPermissions)):

11 if permissions[i][’hash’] == androguardPermissions[j][’hash’

]:

12 successful += 1

13 print(f"[+] 10 samples tested")

14 print(f"[+] {successful} permissions from samples are correct

compared to Androguard")

15

16 def testGetClasses ():

17 classes = getClasses(’datasets/TestDecoded ’, 10)

18 androguardClasses = getPermissionsAndClasses(’datasets/Test’, 10)[1]

19 classTypes = [’internal ’, ’external ’, ’all’]

20 equalScore = [0, 0, 0]

21 containsScore = [0, 0, 0]

22 difference = []

23 total = []

24 for i in range(len(classes)):

25 for j in range(len(androguardClasses)):

26 if classes[i][’hash’] == androguardClasses[j][’hash’]:

27 for k in range(len(classTypes)):

28 if classes[i][ classTypes[k]] == androguardClasses[j][

classTypes[k]]:

29 equalScore[k] += 1

30 if len(androguardClasses[j][ classTypes[k]] - classes[

i][ classTypes[k]]) == 0:

31 containsScore[k] += 1

32

33 print(f"[+] 10 samples tested")

34 for i in range(len(classTypes)):

35 print(f"[+] {equalScore[i]} {classTypes[i]} classes from samples

are correct compared to Androguard")

36 print(f"[+] {containsScore[i]} {classTypes[i]} clasess from

samples contains classes from Androguard")

37

38 print(total)
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39 for i in range(len(total)):

40 print(f" Hash: {classes[i][’hash ’]} Total classes: {total[i]}

Difference: {difference[i]}")

41

42 if __name__ == "__main__":

43 #testGetPermissions ()

44 testGetClasses ()

G.2 benchmarker.py

1 from core.androguardAnalyser import getPermissionsAndClasses

2 from core.classAnalyser import getClasses

3 from core.dataProcess import readData , writeData

4 from droidloader import getPermissions , decompile , cleanDecodedSamples

5 import timeit

6 import random

7 import os

8 import shutil

9

10 def generateSample(targetDir , size):

11 datasets =[’datasets/MalwareBazaarRecent ’, ’datasets/CICAndMal2017 ’, ’

datasets/VirusShareRecent ’, ’datasets/CICMalDroid2020 ’]

12 samples = []

13 for dataset in datasets:

14 for root , _, files in os.walk(dataset):

15 for sample in files:

16 samples.append(os.path.join(root , sample))

17 random.shuffle(samples)

18 samples = samples [:size]

19 for sample in samples:

20 shutil.copy(sample , targetDir)

21

22 def decompileTime(sampleDir , targetDir):

23 if os.path.exists(targetDir):

24 shutil.rmtree(targetDir)

25 decompile(sampleDir , targetDir , ’dependencies/apktool_2 .8.1. jar’)

26 cleanDecodedSamples(targetDir)

27

28 def permissionsAndClassesTime(sampleDir , size):

29 permissions = getPermissions(sampleDir , size)

30 classes = getClasses(sampleDir , size)

31 return permissions , classes

32

33 def permissionsAndClassesAndroguardTime(sampleDir , size):

34 permissions , classes = getPermissionsAndClasses(sampleDir , size)

35 return permissions , classes

36

37 if __name__ == "__main__":

38 sampleSize = [10, 25, 50]

39 times = readData(’data/Benchmark/times.pkl’)
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40 if not times:

41 times = []

42 sampleDir = ’datasets/Benchmark ’

43 decodedDir = ’datasets/BenchmarkDecoded ’

44 for size in sampleSize:

45 if os.path.exists(sampleDir):

46 shutil.rmtree(sampleDir)

47 os.mkdir(sampleDir)

48 generateSample(sampleDir , size)

49 execTimeDecompile = timeit.timeit(lambda: decompileTime(sampleDir

, decodedDir), number =1)

50 execTime = timeit.timeit(lambda: permissionsAndClassesTime(

decodedDir , size), number =1)

51 execTimeAndroguard = timeit.timeit(lambda:

permissionsAndClassesAndroguardTime(sampleDir , size), number =1)

52 times.append ({"sampleSize": size , "decompileTime":

execTimeDecompile , "droidloader": execTime , "androguard":

execTimeAndroguard })

53 writeData(times , "Benchmark", "times")

G.3 core/adroguardAnalyser.py

1 from androguard.misc import AnalyzeAPK

2 import os

3

4 def analyseAPK(file):

5 apkFile , _, dx = AnalyzeAPK(file)

6 permissions = [permission for permission in apkFile.get_permissions ()

]

7 classes = [ str(dexClass.name [1: -1]) for dexClass in dx.get_classes ()

]

8 externalClasses = [ str(dexClass.name [1: -1]) for dexClass in dx.

get_external_classes ()]

9 return permissions , classes , externalClasses

10

11 def getPermissionsAndClasses(targetDir , limit):

12 classesList = []

13 permissionsList = []

14 decodedSamples = os.listdir(targetDir)

15 for application in decodedSamples [: limit]:

16 permissions = set()

17 classes = set()

18 externalClasses = set()

19 permissions , apkClass , apkExternalClass = analyseAPK(os.path.join

(targetDir , application ,))

20 classes.update(apkClass)

21 externalClasses.update(apkExternalClass)

22 classInfo = {

23 "hash": application [:-4],

24 "internal": classes - externalClasses ,
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25 "external": externalClasses ,

26 "all": classes

27 }

28 permissionsList.append ({"hash": application [:-4], "permissions":

set(permissions)})

29 classesList.append(classInfo)

30 return permissionsList , classesList
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H Appendix: Droidloader Commands Options
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