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1. Introduction 

Open world games, such as Genshin, Zelda, World of Warcraft, etc. The 

popularity of these games in the world not only caters to the aspirations of 

game lovers for the game world, but also opens the possible of the realization 

of the imaginary world which similar to the descriptions in Sword Art Online 

and other animations. On the other hand, the visualization of real landscape 

on a computer is an important skill whether in the Geographic Information 

Systems (GIS) or the military field. Therefore, countless scholars have worked 

hard in this field and made breakthroughs in all directions. This article 

focusses on the initial stage of this field, which is to visually render a 

continuous and broad landscape. 

1.1 Levels of detail 

Different from the real world, the visualization of landscape in the 

computer is achieved by using a large number of colored or textured polygon 

grids which can approximate the contour of curve of the terrain. In the 

displayed window, each figure is composed of many polygonal patches. When 

rendering one polygon, computer needs to obtain the position of each vertex 

in the polygon. When people want to visualize a complex and huge terrain, 

the computer will process a large number of polygons and vertices data. 

However, the performance of computer has its limits. This may require tens of 

millions of vertices information, which consumes a lot of computing resources 

and leads to the waste of it. Therefore, many developers have carried out 

research on the optimization of rendering, and it is also the content of this 

article. 

When rendering objects, more triangle fragments can make the 

performance of rendering closer to the real objects. This also means that 

more computer resources will be consumed. On the other hand, when 



detailed terrain information is not needed, it can also be achieved by reducing 

the number of triangles rendered. In this way, more computing resources can 

be released. As well, it is found that in real life, the closer the object is to the 

observer, the more details it will show; and when the distance is far away, the 

observer can only get the outline of the object. Applying this discovery to 

computer rendering, we can render objects with different details based on the 

distance between the object and the observer. 

As a result, the rendering method - Levels of Detail (LOD) was created by 

developers. In this method, the triangular meshes that make up the terrain will 

become larger and lesser as the increased distance between the terrain and 

the observer. In order to implement this method, we need to render the 

landscape with different levels of detail at different distances and glue these 

levels of landscape to form a multi-resolution model (Mark 1997).  

1.2 The goal of this article 

This article will introduce some of the difficulty faced by LOD which been 

solved by this article: 

1. How to construct terrain of different resolutions and realize the mutual 

conversion of these based on the given data of terrain. Since the 

observer is movable, we need to adjust the terrain resolution in real 

time according to the position of observer. Therefore, a real-time 

dynamic visualization of the levels of detail terrain is essential. 

2. How to greatly reduce the number of polygons to be rendered while 

maintaining the quality of terrain visualization. The reduction in the 

number of rendered polygons will lead to the loss of image quality of 

the surface mesh. It is necessary to pay attention to maintaining the 

high quality of the image in the observer's perspective while optimizing 

the rendering grid. 

3. How to smooth the joints between terrains of different resolutions. 



Since higher-resolution terrain blocks have more vertices than lower 

one, these extra vertices may cause cracks at the junctions due to 

different elevation values. The appearance of cracks is not allowed in 

the visualization of landscape. 

In this article, through the study and summary of previous research 

results, a quadtree algorithm that can solve the above problems is realized. 

Based on the rendering pipeline provided by OpenGL, this paper processes 

the terrain data, and realizes the visualization of the attributes such as the 

polygon mesh, texture, and basic lighting of the landscape. By storing the 

data of terrain in the quadtree algorithm, the conversion and determination of 

the terrain resolution are realized. At the same time, based on the location of 

the camera, the resolution levels of terrain at different distances are 

calculated in real time. In order to further improve the rendering efficiency, 

through the calculation of the view of camera, the rendering of all grids 

outside the angle of view is eliminated. In the end, it minimizes the impact on 

the image and releases a large amount of computing resources. 

  



2. Background 

2.1 Regular Square Grid (RSG) and Triangular Irregular 

Network (TIN) 

In the computer, due to the different encapsulation methods, the map 

data has a variety of storage methods and structures. Usually, the terrain 

model data contains the information of all the points in the model, including 

the position and elevation value of the point (Emanuele 2006). By observing 

the intervals between these data points, these terrain model data can be 

divided into two main categories. The first type is called Regular Square Grid 

(RSG). As the name implies, these data points are regularly spaced and 

finally merged into a square grid. The terrain data stored in this way can be 

visualized only by storing the elevation value due to its regular attributes. This 

method not only greatly reduces the size of its data, but also improves its data 

utilization efficiency. However, RSG has shortcomings that cannot be ignored. 

It is also because of the regular attribution of data points that the terrain 

undulations between two data points cannot be taken when sampling the 

actual terrain, which leads to the inability to accurately describe the actual 

shape of the terrain. For the same reason, the visualization of this data 

structure is usually stiff in the presentation of terrain details such as ridge lines 

and valley lines.  

In order to show the details of the terrain more realistically and finely, the 

Triangular Irregular Grid (TIN) was developed. In this type of data, all data 

points are connected by a set of continuous triangles, which are irregular in 

size and shape and do not overlap (Yih-ping 1989). In the problem of non-

stationary terrain surface visualization, the TIN data structure has a great 

performance. Because of its irregular nature, its disadvantage is that it needs 

to consider the rules of data point generation and the calculation method of 



processing data points. 

The data of terrain model used in this paper is RSG. The main reason for 

this choice is that this article does not give priority to the accurate visualization 

of terrain provided by TIN. On the other hand, the goal of this article is the 

generation of multi-resolution terrain. The RSG data type can greatly simplify 

the steps and calculations for generating terrain with different resolutions due 

to the advantages of the regular distribution of data points. 

2.2 Height Map 

The height map is a widely used landscape data set in the RSG data type. 

Compared with the traditional mesh-based data set, it can correctly represent 

the information while occupying a smaller storage (Paulo 2008). The height 

map is essentially an image that represents grayscale, and the value of pixel 

is between 0 and 255 to represent the grayscale of the pixel. In the use of 

landscape visualization, the gray values of pixel are regarded as the elevation 

values at the location of the pixel to record the specific information of the 

terrain. Due to the simple data structure, height maps become popular as an 

efficient terrain representation structure. However, each coin has two sides, 

this data structure is the advantage as well as the disadvantage of the height 

map. In practice, the real terrain is three-dimensional and complex. One 

height map with only one elevation value at a location is difficult to describe 

detailed information such as overhanging obstacles or multi-level terrain. 

When one location in the landscape has multiple heights, the height map can 

only select one of the heights (usually the highest one) as the elevation value 

of the point location. Therefore, the landscape visualized by one height map is 

actually only a 3D-like scene, which is called 2.5D scene. Nevertheless, the 

height map is not incapable of visualizing a true 3D scene. In order to use 

height maps to describe terrain information more accurately, Roberts et al. 

have used a method of creating multiple height maps for the same terrain to 



visualize complex 3D terrain models which including multi-level terrain 

(Roberts 2008). For this article, an efficient and simple terrain data structure is 

a suitable choice. A 2.5D scene can meet the requirements. In the next 

section, we will introduce how the computer processes the map data and 

visualizes it on the screen. 

2.3 Rendering 

Generally, the dynamic scenes on the computer screen are essentially 

presented by rapidly updating static pictures. The rate of such displayed 

images is generally in units of frames per second (fps). In practice, only when 

the fps of the dynamic picture exceeds 15, the users can feel the sense of 

interaction and focus on it (Akenine-Möller 2008). In the visualization of terrain, 

the user can move his position as an observer in the screen and look at the 

terrain in front of him. the job of computer at this time is to quickly process the 

received terrain data in real time, and at the same time draw the scene into 

pictures that the observer should watch according to the observer's position. 

The area that the observer can see in the scene is called the view frustum, as 

shown in the figure 1a. The image presented by the computer is the result of 

the projection of the object, which position between camera and the far clip 

plane, to the near clip plane in the figure1. Therefore, objects outside the 

visual vertebral body will not appear on the screen as shown in Figure 1. But 

these objects have not disappeared, the GPU is still rendering them 

continuously. Only part of the objects in the visual frustum will be cropped, 

and only the part inside the view frustum will be displayed on the screen. In 

addition, when the observer's perspective rotates or moves, the view frustum 

will rotate or move with it, and the computer will update the picture by 

calculating the coordinates and the cone. 



 

Figure 1. View Frustum 

The procession of computer from receiving data to drawing pictures to 

the screen is called the graphics rendering pipeline. Tomas et al. divided the 

rendering pipeline into four stages in Real Time Rendering (Akenine-Möller 

2008): application, geometry processing, rasterization, and pixel processing. 

Based on the terrain visualization in this article, we will introduce the work of 

the computer in these four stages. 

Application: Generally, at this time, all data is in the CPU, and we will 

process the data to achieve our expected results such as frustum culling and 

the application of the LOD method. Frustum culling is a way of rendering 

optimization, which reduces the burden on the GPU by pre-determining the 

object outside the view frustum and temporarily discarding its data so that the 

GPU does not need to render the object. 



 

Figure 2. Three Coordinate Systems 

Geometry processing: The GPU receives the data which has been 

processed in the application stage input from the CPU in this stage. After GPU 

stores the data, it transforms the vertices position data into the world 

coordinates (The coordinate system with the computer's world origin), the 

camera coordinate (The coordinate system with the observer position 

coordinates as the origin) and the image coordinates (the position coordinates 

of the target vertex in the image) as shown in the figure 2. Finally, after cutting 

the part outside the frustum, the GPU will get the vertex data needed for 

picture drawing. Based on these data, the GPU will draw the grid for the 

landscape. 

Rasterization: As shown in Figure 3, the image content presented by the 

computer is an approximate shape formed by the coloring of individual pixels. 

In this stage, the computer selects all the pixels to be colored and inputs 

these data to the next stage. 



 

Figure 3. Rasterization 

 Pixel coloring: At this time, the computer uses the vertex shading 

information input from the CPU to the GPU to color the corresponding pixels. 

It should be noted that the depth test will be performed here at the same time, 

and the pixel will give priority to the shading information of the vertices that 

are not occluded. 

 These steps are the basic process of drawing a picture from the scene. 

When the computer rendering system is immature, all these steps need to be 

built from scratch. Fortunately, these rendering steps are similar, and the 

same rendering framework can be shared to a certain extent. Therefore, a 

variety of graphic tools gradually appeared in people’s vision. 

2.4 Game Engine and API 

 At present, developers have created and developed game engines such 

as Unity, Unreal 4, and application programming interfaces (API) similar to 

Open Graphics Library (OpenGL) in this field. This not only improves the 

efficiency of people's development in this field, but also reduces the barriers 

for people to understand and enter this field. Generally, game engines provide 

developers with a variety of well-packaged systems such as rendering 

engines, physics engines, and collision detection. Therefore, developers can 

focus on developing the game's gameplay and features without having to re-



develop the basic functions required by games. 

 The tool used in this article is OpenGL. Unlike game engines, OpenGL 

only provides APIs for part of the rendering pipeline, and other required 

functions such as lighting systems need to be created and implemented by 

users. Although it does not provide powerful functions like a game engine, in 

OpenGL we can build the desired LOD algorithm while creating a rendering 

engine. On the other hand, using the existing rendering pipeline process in 

OpenGL, we can focus on the processing of map data and the selection of 

rendering methods without spending too much time processing data 

transmission between computer hardware. The main work of this paper 

focuses on the realization of the LOD method in the application stage as 

referred. The next section of this article will introduce common LOD 

algorithms. 

2.5 The Algorithms for Levels of Detail  

The most critical part of the LOD algorithm is the conversion of high and 

low resolution terrain. The resolution of the terrain is mainly determined by the 

grid. The number of triangles in the grid determines the resolution of the 

terrain block and the realism of the displayed effect. Therefore, the processing 

of triangles in the grid has become the research goal of developers. 

Hoppe et al. proposed the Progressive Meshes algorithm to achieve the 

fusion and splitting between triangle meshes. This algorithm achieves the 

reduction or grown of the number of vertices and triangles as shown in Figure 

4 by traversing the target mesh space and applying the mesh transformations, 

edge collapse or edge split (Hoppe 1996). Because this method is reversible 

for the processing of vertices and triangles, it can be used to process the real-

time conversion of terrain between different resolutions. Because the 

Progressive Meshes algorithm model focuses on the microscopic processing 

of each triangle, it can adapt to the processing of irregular vertex data. 



Therefore, this method performs very well when visualizing TIN type map data. 

On the contrary, when facing RSG-type terrain data, the model conversion of 

this algorithm is complicated and cumbersome compared to other algorithms, 

and it will take up a lot of computing resources. 

 

Figure 4. The transformation of edge collapse (Hoppe 1996) 

 Duchaineau et al. proposed the Real-time Optimally Adapting Meshes 

(ROAM) algorithm to implement the application of the LOD method 

(Duchaineau 1997). The algorithm divides the terrain into multiple right-

isosceles triangles by constructing a Triangle Bintree, and gradually forms a 

complete grid space by continuously dividing these triangles. The method of 

dividing a triangle is to separate the two triangles by connecting the midpoint 

of the hypotenuse of the right-isosceles triangle and the vertex of the right 

angle. This method achieves the conversion of different resolution terrains by 

adjusting the segmentation level. The segmentation process is shown in 

Figure 5. 



 

Figure 5. Levels 0–5 of a triangle bintree (Duchaineau 1997) 

 Lindstrom et al. proposed a quadtree method to achieve LOD method 

(Linstrom 1996). The algorithm constructs a quad-tree, treats the terrain as a 

rectangle, uses the middle point of the rectangle to divide it into four small 

rectangles evenly, and repeats this way to finally form a satisfactory terrain 

grid. This method realizes the conversion of terrain resolution by controlling 

the segmentation level as well as the ROAM method. The segmentation 

process is shown in Figure 6. 

 



Figure 6. Levels 0–2 of a quadtree (Linstrom 1996) 

 Both the ROAM algorithm and the quadtree algorithm are expert in 

processing RSG type terrain data. In theory, the ROAM algorithm can more 

accurately determine the distance between the terrain block and the observer 

so as to draw a satisfactory grid with fewer triangles. But there are more 

complicated calculation methods with this accuracy. On the other hand, 

although the quadtree algorithm has low control accuracy on the grid, it only 

needs simple calculations to divide the grid. Therefore, this article uses the 

quadtree algorithm to achieve the goal. 

  



3. Visualizing landscapes with a quadtree 

3.1. Overview over the whole systems 

In this section, we will briefly introduce the work done in this article. 

In the field of computer graphics, a complete rendering framework is the 

foundation of all work. Based on the API provided by OpenGL, this article 

achieves the movement and direction control of the user as an observer in the 

world. In the same way, the simulated real lighting display based on Phong 

shading model is realized. These functions, together with the predetermined 

processing of data such as vertex position coordinates, texture coordinates, 

and normal vectors, constitute a basic rendering framework. The work done 

by the rendering framework is mainly focused on the geometric processing 

and pixel shading stages in the rendering pipeline as mentioned above. 

Generally, in this framework, all terrain data can be input to the GPU through 

the API provided by OpenGL to achieve a complete single-resolution terrain 

visualization. Therefore, in the next step this article will build a quad-tree data 

structure to store and process all terrain data. At the same time, this article will 

measure the undulation degree in each terrain block and determine the level 

of this quadtree branch according to both the value and the distance from the 

observer. In this process, this article will introduce the elimination method to 

avoid the appearance of cracks in the rendering process. Finally, before 

transmitting the processed terrain data, based on the position and direction of 

the visual frustum, this article will remove the data outside it in advance. 

3.2 Rendering 

3.2.1 Vertex Data Transfer 

Before explaining the work of this article, we will briefly introduce the 

interaction between OpenGL and hardware transmission. When we input the 

vertex data to GPU, usually GPU will open up a part of the memory space for 



storing these data. OpenGL provides us with an API - Vertex Buffer Object 

(VBO) that allows us to manage this data. Since the vertex data contains 

different vertex attributes such as position, texture, normal, etc., in order to 

reduce the re-retrieval and recall of the VBO when the GPU uses different 

attributes, we need to create a Vertex Array Object (VAO) to bind the current 

VBO information to simplify the communication between GPU and VBO. After 

creating the VBO and VAO, we can tell GPU the index value of the three 

vertices of each triangle in the triangle mesh to be drawn, so that GPU can 

draw triangles more efficiently. These index data we input is called Index 

Buffer Object (IBO) or Element Buffer Object (EBO). Under the synergy of 

these three objects, GPU can successfully visualize the vertex data to the 

screen. Each time the computer passes through this process, GPU can 

render an object. However, when the object has a huge amount of vertex data, 

GPU may not be able to open up a large enough storage space, causing 

rendering failure. It just happens that the quadtree algorithm of this article can 

avoid this situation.  

 

Figure 7. The crack between the blocks of leaf nodes  

This article binds all the vertices data to the leaf nodes of the quadtree. 

During rendering, all leaf nodes transfer their own data one by one into GPU. 

Therefore, the overall terrain visualized in this article is spliced by the squares 

formed by each leaf node. Accordingly, if these leaf nodes are not spliced well, 



the situation shown in the figure 7 will appear. We can clearly observe the 

edges of each terrain block, these terrain blocks are not well spliced into a 

whole landscape. This article will introduce how to avoid this situation by 

processing the data in EBO in the quadtree subsection. 

3.2.2 Camera 

 The camera is what we call the observer, and the scene it sees is the 

pictures presented to us by the computer after calculation. In fact, there is no 

concept of a camera in OpenGL, or in other words, it only provides us with a 

static camera. We can only make us believe that the camera is moving by 

moving all the objects in the scene. Therefore, it should be noted that the 

direction the objects move in the calculation is opposite to the direction 

perceived by the camera. 

 

Figure 8. The attributes of the camera  

 As shown in Figure 8, the camera has four basic attributes: position, 

facing direction vector, right vector and up vector. Using these four basic 

properties, we can get an observation coordinate system with the camera as 

the origin. Through the x, y, and z axes of the observation coordinate system, 

which are the three vector attributes, we can get a matrix that transforms the 

world coordinates of any object into observation coordinates. This matrix is 

called the LookAt matrix: 

�剣剣倦畦建 = [迎掴 迎槻�掴 �槻 迎佃 ど�佃 ど経掴 経槻ど ど 経佃 どど な] [な どど な ど −�掴ど −�槻ど どど ど な −�佃ど な ] 

 Where R is the right vector, U is the up vector, D is the direction vector, 



and P is the camera position vector. Because we need the world to move in 

the opposite direction, the P vector is negative. 

 Our first step is to achieve the control of camera displacement. Set the 

vector F as the camera's forward direction. After obtaining the corresponding 

keys from the keyboard, set the camera's movement speed to v or -v (set the 

speed to 0 when no input is detected). Multiply the current speed v by the F, R 

and U vectors in real time. Finally, the result obtained is added to the position 

of the camera to control the movement of the camera. The formula is as 

follows. This article assumes that ‘W’ is forward, ‘S’ is backward, ‘A’ is left, ‘D’ 

is right, ‘Q’ is upward, and ‘E’ is downward. �剣嫌件建件剣券 +=  � ∗ 懸� + 迎 ∗ 懸� + � ∗ 懸� 

The second step is to implement the control the visual frustum. The 

rotation of the visual frustum is equivalent to the head-turning action of a 

character in the real world. We use Euler angle as the recording method of 

rotation angle, as shown in the figure 9. Generally, for a camera, the use of 

pitch and yaw is sufficient to record the rotation angle of the lens. 

 

Figure 9. The Euler angles 

We get the displacement of the mouse in real time to calculate the real-

time pitch and yaw values. Finally, the direction the camera faces is calculated 

by the following formula: 経件堅結潔建件剣券. 捲 = cos岫喧件建潔ℎ岻 ∗ cos岫検欠拳岻 経件堅結潔建件剣券. 検 = sin岫喧件建潔ℎ岻                        経件堅結潔建件剣券. 権 = cos岫喧件建潔ℎ岻 ∗ sin岫検欠拳岻 



3.2.3 Illumination 

 In practice, lighting is a virtual light source created by a computer. The 

light source can be invisible, and the computer will simulate the influence of 

the light source on the brightness of the object surface. The implementation 

method is to mix or multiply the color vector of the vertex texture with the color 

vector of the light source. There are already many ideal lighting models to 

choose from. This article will briefly introduce two lighting models: Lambert 

and Phong Shading. 

 The lighting phenomenon simulated by the Lambert model is diffuse 

reflection. Diffuse reflection is mainly formed by the light reflected on the 

rough surface of the object from the light source. The final brightness is 

related to the angle between the incident light and the normal of the point, as 

shown in Figure 10. The calculation method of the model light is: �鳥 = 系 ∗ max 岫ど, cos(健̂, 券̂)岻 

Where 健̂ represents the incident light, 券̂ represents the normal vector of 

the point, C represents the intensity and color of the light. 

 

Figure 10. Diffuse reflection 

Phong Shading model adds a specular reflection to the Lambert model. 

This model allows the observer to see the light source on the surface of the 

object, just like the reflection of a mirror. Therefore, the brightness of the 

specular reflection is affected by the observer's position. As shown in the 

figure 11, the brightness and the reflected light R are related to the angle of 



the observer's line of sight.  

 

Figure 11. Specular reflection 

The calculation formula is: �鎚�勅頂���追 = 系 ∗ 喧剣拳岫max岫ど, cos岫堅, 懸岻岻 , 喧岻 

Where r represents the reflected light, v represents the line of sight, C 

represents the intensity and color of the light, p is a constant. 

Since the target of visualization in this article is landscape, its surface is 

rough and generally does not appear specular reflection. Therefore, this 

article only uses the simulation of diffuse light and ambient light in Phong 

Shading model. Ambient light generally refers to the brightness caused by the 

reflected light without light source. For instance, a shadow that is not directly 

illuminated by a light source in real life but can still have a certain brightness 

is caused by ambient light. The calculation formula is: 欠兼決系剣健剣堅 = 欠兼決鯨建堅結券訣建ℎ ∗ 健件訣ℎ建系剣健剣堅 ∗ 剣決倹結潔建系剣健剣堅 

Where, ambStrength is the ambient light constant, generally set to 0.1; 

lightColor is the ambient light color; objectColor is the color of the object at 

that point. 

For the calculation of diffuse reflection, the angle �  between the light 

direction and the normal vector shown in the figure 10 can be obtained by the 

dot product of the incident light direction vector and the normal vector. The 

final calculation formula for diffuse reflection is: 穴件血血系剣健剣堅 = 兼欠捲岫穴剣建岫健, 券岻, ど岻 ∗ 健件訣ℎ建系剣健剣堅 



Finally, in the shader, the result of adding the brightness of the two lights 

is multiplied by the model color which obtained from the texture data of the 

position: 堅結嫌憲健建系剣健剣堅 = 岫穴件血血系剣健剣堅 + 欠兼決系剣健剣堅岻 ∗ 剣決倹結潔建系剣健剣堅 

3.3 Quadtree data structure 

Quadtree is proposed to solve the problem of the storage and access for 

discrete data. The earliest quadtree was a point quadtree invented by Finkel 

and Bentley (Samet 2006). This quadtree is formed by building a two-

dimensional binary search tree. It saves all point data in the node. As shown 

in Figure 12, take the appropriate point data position as the root node, select 

the appropriate point data in the four quadrants as the child nodes, and repeat 

this step until all the point data have corresponding nodes. Eventually a 

complete quadtree is formed. 

  

Figure 12. Application and structure of point quadtree 

 Unfortunately, using a point quadtree to process terrain data is 

inappropriate. We found a structure called Matrix Quad-prefix Tree (Samet 

2006). As shown in Figure 13, this kind of quadtree stores all data information 

only in the leaf nodes. The selection of the center point of the node is regular, 

and the position in the middle is selected as the center of the next node. In the 

MX quadtree, each leaf node corresponds to a 1*1 matrix and contains a point 



data. 

 

Figure 13. Application and structure of MX quadtree 

We found that these two quadtree structures are applied to discrete data. 

Therefore, to apply the quadtree to terrain data, we need to adjust the 

structure of the MX quadtree. In each leaf node, we need it to contain 9 data 

points including the center point. As shown in Figure 14 and 15, each leaf 

node can contain point data information that can form a rectangle. 

 

Figure 14. The rectangle corresponding to the quadtree and the structure 

 

Figure 15. Vertices data of a quadtree node 



 Through the application of the vertex index data, which we mentioned 

above, the index data of the vertices can be stored in the leaf nodes. Finally, 

by adjusting the segmentation level of the leaf nodes, we can control the 

resolution of the terrain block. 

 In this way, we can achieve the goal of this article: use a quadtree to 

achieve an adaptive real-time variable resolution grid to optimize the 

occupation of computing resources for terrain rendering. 

The flow chart for constructing a quadtree in this article as shown in Figure 16: 

 

Figure 16. The flow chart for constructing a quadtree 



3.4 Refinements  

This article will introduce the completed work in the sequence of the flowchart. 

3.4.1 Generation and storage of terrain data 

Due to the rules of quadtree segmentation, we need to limit the resolution 

of the height map. The aspect ratio of the height map must be 1:1, and its 

resolution must meet the requirements of (2n+1) * (2n+1). The height map that 

cannot meet the requirements will be abnormal in the position of the node 

when it is split. The resolution of the height map used in this article is 

1025*1025, which can meet the restriction requirements. 

 The terrain vertices data in this paper has three attributes: position, 

texture and normal vector. These three attributes correspond to the 

coordinates of the vertices, shading data, and lighting data. 

 Vertex position generation and storage: This article uses a two-

dimensional array to store the data which obtained from the height map. The 

gray value of each pixel in the height map is stored in the corresponding array 

position. Based on this array, we will generate the corresponding coordinates 

for each pixel, in other words, we will supplement them with the x-axis and z-

axis coordinates. Finally, we use VBO to input these coordinate values into 

GPU. 

 Generation and storage of texture attributes: The texture data is similar to 

the height map data and needs to be obtained from a texture picture. The 

difference is that the texture data is a two-dimensional coordinate value, and 

its corresponding position is the coordinate of the pixel on the texture image. 

In addition, each pixel of the texture image has three values, corresponding to 

the Red, Green and Blue (RGB) values. Based on the coordinates in the 

texture data, the GPU inputs the corresponding RGB values on the texture 

image to the rendering pipeline for pixel shading. The values of texture 

coordinates are as shown in the figure 17. Generally, their value ranges are 



between 0-1, and the coordinates of the out-of-range range can be taken by 

splicing the same pictures. 

 

Figure 17. Texture coordinate system 

 Normal vector generation and storage: Due to the importance of vertex 

normal to the lighting model, researchers have developed many methods for 

calculating vertex normal. The accuracy of vertex normal has a great 

influence on the realism of lighting. However, this article does not have high 

requirements for the lighting model. Therefore, the most basic vertex normal 

calculation method is selected in this article. We refer to the Mean Weight 

Equally (MWE) algorithm introduced by Henri Gouraud (Jin 2005). The 

algorithm takes the average of the normal vectors of the patches around the 

vertex to get the normal of the point. In this paper, the normal vectors of the 

surrounding four patches are obtained by calculating the cross product of the 

vectors between the vertex and the points of up, down, left and right of the 

vertex. We average these four normal vectors to get the result. Finally, all the 

vertex normal data are input to the GPU to wait for the use of the lighting 

model. 

3.4.2 Elimination of objects outside the view frustum 

 We have briefly introduced the frustum and its imaging principles in the 

background chapter. At the same time, we can obtain the real-time 



coordinates of the object in the observation coordinate system by multiplying 

the world coordinates of the object with the LookAt matrix of the camera. In 

the observation coordinate system, we can calculate the normals of the six 

faces of the view frustum. Through the product of the coordinates of the object 

in the observation coordinate system and the normals of the six faces of the 

frustum, we can determine whether the object is in the frustum.  

However, the objects have their own volume. We need to calculate the 

outline of the object in case it is inside the frustum but not rendered. We need 

to calculate the most extreme coordinates of the object in six different 

directions. Each coordinate will be judged in turn, and we will reject the object 

when all the extreme positions of the object are outside the frustum. 

3.4.3 Segmentation of Quadtree Nodes 

 This section will introduce the conditions used in this article to determine 

whether a quadtree node can be divided. Below we will call it the node 

evaluation system. Generally, the node evaluation system is composed of 

multiple factors. The most important factor is the distance between the terrain 

block and the observer. Therefore, we need to calculate this distance 健 
through a formula. In fact, we can get the result with the commonly used 

Euclidean distance: 健 =  √岫潔掴 − 決掴岻2 + 岫潔槻 − 決槻岻2 + 岫潔佃 − 決佃岻2 

Where 岫潔掴, 潔槻 , 潔佃岻  represents the location of the camera, 岫決掴, 決槻, 決佃岻 
represents the location of the center point of the terrain block. 

For the node evaluation system, only one element of distance is not a 

good representation of the obvious features of the terrain. Stefan et al. 

proposed a node evaluation system with three factors (Röttger 1998). Of 

these three factors, one is the distance 健, one is the side length 穴 of the terrain 

block, and the other is the slope change proposed by Peter Linstrom et al. 

(Linstrom 1996), which can also be called roughness. Distance and side 

length are relatively intuitive data. We will briefly introduce the principle of 



slope change and its calculation method. 

Since the change of the vertices in a terrain block is irregular, we need to 

adapt to the slope change to indicate the degree of change in the height of the 

vertices in the terrain block. As shown in Figure 18, ��，��  and �� are the 

expressions of slope changes. The calculation method is �� = |稽佃 − 畦佃 + 系佃に | 
The calculation method of ��  and  ��  is similar to that of �� . Generally, a 

terrain block can calculate four slope changes, and we generally choose the 

largest value among them as the value for the slope change of the terrain 

block: 迎 = max 岫��, �� , ��, ��岻 

 

Figure 18. Roughness of the block (Linstrom 1996) 

In the node evaluation system proposed by Stefan et al., they combined 

these three factors into the following formula: 血 =  健迎 × 穴 < 系 

Where 系  is a constant, as the threshold for segmentation. When the 

value of 血 is less than 系, the node is split, otherwise it will not be split and 

input to the rendering queue. 

This article adjusts this method, removes the factor of terrain block side 

length 穴 , and uses only terrain roughness and distance as the node 

evaluation system. The formula is: 



血 =  健迎 < 系 

On the other hand, due to the crack elimination method in this article, 

besides these two factors, there is another factor that needs to be taken into 

consideration. Because this factor is independent of this node evaluation 

system, we will introduce it in detail in the next section. 

3.4.4 Crack elimination 

In the above, we mentioned that the terrain drawn in this article is 

composed of many small rectangular blocks. Therefore, we need to pay 

special attention to the treatment of the common edges of adjacent 

rectangular blocks. After setting the quadtree node evaluation system, we will 

render terrain with different resolutions. Cracks will appear at the junction of 

terrain blocks of different resolutions. The reason for the cracks is that 

different nodes have different heights at the same coordinate position. As 

shown in Figure 19, the two sides of the crack are nodes with different division 

levels. The node A with a higher division level will have more vertices on the 

same edge than the other node B. At this point, if the height of the extra vertex 

is not consistent with the height of the edge rendered by node B, cracks will 

appear. 

 

Figure 19. The appearance of cracks 

 There are many ways to deal with cracks. For example, the filling method 

(Wu 2010) is to render a plane at the crack with the point where the crack is 



generated to fill the crack. This method needs to locate the position of the 

crack after constructing all the leaf nodes of the quadtree, and then render the 

plane to fill the crack. 

 This article uses the elimination method. Compared with the filling method, 

this method has the advantage that the crack can be eliminated without 

locating the position of the crack (Linstrom 2002). Through the above content, 

we know how the cracks are produced, and the elimination method directly 

eliminates the causes. By judging the division levels of two adjacent nodes, 

the extra vertices in the high-resolution node are removed during rendering, 

as shown in Figure 20. The number of vertices on this adjacent side remains 

unchanged, thus eliminating the occurrence of cracks. 

 

Figure 20. Crack elimination  

The only limitation of this method is that the division level of adjacent 

nodes cannot be greater than 1. Once this limit is exceeded, a situation as 

shown in Figure 21 will appear. It is impossible to eliminate nodes only by 

eliminating the nodes in the middle. Therefore, we need to add an array to 

indicate the division of each node. 

 



 

Figure 21. Unmanageable crack 

 In order to implement this method, we need to implement a way to record 

the division status of adjacent nodes. There is a condition that needs attention: 

when we split a node, we need to judge the split state of neighboring nodes. If 

the depth-first algorithm is used for segmentation, the priority of adjacent node 

segmentation may be lower than that of the child nodes of the current node, 

causing the child node to fail to detect the children of the adjacent node. 

Therefore, we use the breadth first algorithm when segmenting. Next, we 

create a two-dimensional array to record the segmentation status of each 

node, where the recorded data represents the segmentation status of the 

node centered on the current position. In the process of recording the 

segmentation status of the array, we found that we only need to record 

whether the current node will continue to be segmented. The reason is that 

once a node does not continue to split, neighboring nodes around it will also 

stop splitting. Therefore, when recording the array, it is only necessary to 

determine whether the target node will continue to be split, if the split is no 

longer continued, then its four child nodes will be recorded as 0; otherwise, it 

will be recorded as 1. As shown in Figure 22 



 

Figure 22. Assignment of flag array 

3.4.5 Grid visualization 

 OpenGL provides developers with three methods as shown in Figure C 

when drawing triangles: GL_TRIANGLES, GL_TRIANGLE_STRIP and 

GL_TRIANGLE_FAN. The first method is to draw the vertex data transmitted 

into the GPU in groups of three. As shown in figure 22.a, when we input 6 

vertex indexes, the computer will draw 2 triangles based on these six vertices. 

This method is the most basic and most used drawing method. The STRIP 

method draws the first triangle from the vertices V0, V1, and V2 shown in 

Figure 22.b. When processing V3, the V0 will be discarded, and the second 

triangle is drawn with V1, V2, and V3 as the vertices, and so on. Through the 

description, we find that this method improves the usage rate of index of 

vertex data. As shown in Figure 22.b, four triangles are drawn when only 6 

vertex indexes are input. This method can greatly reduce the input vertex 

index data when drawing special graphics. The FAN method will draw a 

triangle as shown in Figure 22.c. Take the first input data V0 as the fixed 

vertex and draw the first triangle after receiving V1 and V2. When V3 appears, 

it will discard V1 and draw the next triangle with V0, V2, V3 as the vertices, and 

so on. Finally, a fan-shaped grid is drawn. Compared with the first method, the 

number of input vertex indexes can also be reduced. 



 

a       b             c   

Figure 23. Three methods to draw triangles 

 In addition, because of the need to draw each leaf node of the quadtree in 

this article, the FAN method performs very well for the rendered terrain blocks. 

As shown in Figure 23, when rendering each node, we only need to enter 10 

vertex indexes to render the 8 triangles required by the node. If we render 

such a terrain block grid in the first way, we need to input 24 vertex indexes. 

 

Figure 23. Vertex input order when rendering terrain blocks 

 After choosing the rendering method, we also need to deal with the cracks 

when rendering. In the above, we have recorded the segmentation status of 

all nodes through a two-dimensional array. When rendering a node, we need 

to use this data to determine the segmentation state of surrounding nodes, as 



shown in Figure 24. The current drawing node detects that the record value of 

the right node is 0, and the input vertex index will ignore the corresponding 

edge vertex - the 5th vertex, as shown in Figure 24.a and 24.b. Finally, the 

grid shown in Figure 24.c can be drawn, which successfully eliminates the 

effect of cracks. 

 

Figure 24. Crack elimination 

  



4. Results and Analysis. 

4.1 Crack 

In the process of cracks, we can find that the crack elimination method 

used in this article solves the problem of cracks by comparing the pictures (a) 

and (b) of Figure 25. 

        

(a)                                                                    (b) 

Figure 25. The result before and after the crack elimination 

 We can observe the results of crack treatment through the display of the 

grid. In the figure 26, we can see four consecutive levels of quadtree leaf 

nodes and visually see the results of each node's drawing. In the four levels of 

nodes from right to left, none of the vertices that will cause cracks on the right 

are drawn. In the node with the highest segmentation level, we can also see 

the appearance of nodes with more vertices that have not been rendered. 

 

Figure 26. The polygon mode after removing cracks 



 On the contrary, the crack elimination algorithm in this paper has certain 

flaw. The luminous and darker wireframes or scene in the Figure 27 are 

affected by the light in this article. We can find that there is no occlusion of 

light (there is no height change) in some of the luminous places and dark 

places. This is because the vertex normal data in this article is calculated 

based on the full-resolution height map data. When the segmentation level of 

the node is not enough to render the feature of terrain in it, the lighting display 

will be wrong. Besides the problem of the lighting model, there is also the 

problem of crack elimination algorithms. Since the gap of splitting level of 

adjacent nodes cannot be more than one level, the nodes that should be 

rendered with significant feature cannot continue to be split. In the end, it was 

inevitable that this situation occurred. 

  

(a)                                                                (b) 

Figure 27. Abnormal light in the scene 

4.2 Display of rendering results 

This article mainly uses height map data with a resolution of 1025*1025. 

After applying the quadtree algorithm of this article, the final grid drawing 

result is shown in Figure 28. We can find that the terrain block closer to the 

camera is drawn with a smaller terrain grid, and the terrain block farther from 

the camera is drawn with a larger terrain grid. Similarly, the rugged terrain also 

uses a higher resolution grid.  



 

Figure 28. The polygon mode of the landscape 

In addition, according to the terrain effect shown in the figure 29, we find 

that the edges of the terrain in the vicinity are smoother than the edges of the 

terrain far away from the camera. This result achieved the goal of this article. 

 

Figure 29. The result of the terrain visualization 

4.3 Simplification efficiency of terrain grid 

In addition, we need to calculate the simplification efficiency of the quad-

tree structure of this article on the terrain grid. In order to show the simplified 

efficiency of the drawn multi-resolution terrain model more intuitively, this 

paper tests the optimization of the number of triangles drawn based on height 

maps of different resolutions in table 1. 



The 

resolution 

of height 

map  

Without 

quadtree 

With quadtree but 

Without clip 

With quadtree and clip 

Number of 

Triangles 

Number of 

Triangles 

Rendering 

rate 

Number of 

Triangles 

Rendering 

rate 

513 * 513 524288 10216 1.95% 8922 1.70% 

1025 * 

1025 

2097152 35552 1.69% 23584 1.12% 

2049 * 

2049 

8388608 52637 0.63% 26442 0.32% 

Table 1. The simplified efficiency of quadtree 

Since this article is rendering a real-time variable resolution terrain grid, 

the above data will change with the location of the camera and the 

ruggedness of the terrain data of the selected height map. Even so, the data 

still has considerable reference value. We can find that after using the 

quadtree algorithm in this article, the number of triangles during rendering is 

greatly reduced, and the rendering efficiency of the computer is greatly 

optimized. 

4.4 Compare the terrain with full details 

This section will compare the variable multi-resolution model rendered in 

this article with the highest resolution single model of the original height map. 

In order to control the influence of the number of triangles in the field of view 

on the rendering frame rate, this article chooses the same scene as much as 

possible when comparing. 

In the following four sets of pictures, (a) are all pictures rendered using 

the highest resolution model. The pictures (b) are rendered in the same 

position through the variable multi-resolution model established in this article. 

The pictures (c) are rendered after adjusting the segmentation threshold 

based on the pictures (b). The number on the left of each picture records the 

FPS at the current moment. 



  

(a)                                                           (b) 

 
(c) 

Figure 30. Results of different resolutions and thresholds 

  

(a)                                                               (b) 

 

(c) 

Figure 31. Grid results with different resolutions and thresholds 



  

(a)                                                                      (b) 

 

c  

Figure 32. Results of different resolutions and thresholds 

  

(a)                                                                         (b) 

 
(c) 

Figure 33. Grid results of different resolutions and thresholds 



We can intuitively feel that the terrain shown in (a) are real and detailed, 

but the frame rate in Figures above is only 2 frames per second. This is an 

unacceptable visual effect for users since there is no sense of interaction. 

On the other hand, the difference between (b) and (a) is more obvious 

where the terrain roughness is smaller, and there are many details that are 

not rendered which shown in Figure 30 and 31. Even though, the performance 

effect of (b) in Figures 32 and 33 is slightly different from that in Figures (a). In 

addition, the frame rate of pictures (b) in the four groups of pictures can be 

maintained above 30 frames per second, which greatly optimizes the 

rendering efficiency of the GPU. 

Finally, if we want to improve the accuracy of rendering, we can adjust 

the threshold of node segmentation to get the result shown in Figures (c). We 

can find that there is a significant improvement in places with less roughness, 

but the frame rate is reduced. 

4.5 Compare different scenes 

 The terrain displayed in this article has different performances in different 

scenes. Since this article uses the function of removing nodes outside the 

frustum, the frame rate will fluctuate to a certain extent when the observer is 

looking at different scenes. 

Figures (a) and (b) show insignificant frame rate changes. But in Figure 

(c). When the observer looks at the nearby terrain block, the frame rate 

increases from 35 to 103. This shows that the frustum culling method in this 

paper has successfully improved the rendering speed. However, it does not 

always increase the frame rate by a large margin when looking at the near 

terrain. The frame rate of the picture shown in Figure (d) has only increased to 

41. This is due to the imperfection of the frustum algorithm in this paper. In 

general, the frustum algorithm also needs to eliminate the rendering of 

occluded objects, but this article does not implement it.  



  

(a)                                                                      (b) 

  

(c)                                                                       (d) 

Figure 34. Results of different scenes 

5. Conclusions and future work  

 Through the display of the results of the previous section, this article 

basically solves the problems raised in the first chapter. Based on greatly 

reducing the number of rendered triangles, the quality of the visualized terrain 

is guaranteed. Established a real-time variable resolution terrain model and 

smoothed the connection of its different resolutions to eliminate the cracks 

and realized the basic LOD model through the quad-tree algorithm. 

Although the algorithm used in this article has achieved the goal, there are still 

many areas that need to be optimized and improved. 

Terrain feature detection and display: In the result figure of the previous 

section, we found that there are still many obvious features of the terrain will 

only be displayed when the camera is close enough, which will give the 

observer a sense of abruptness. At the same time, when observing 



unrendered features from a distance, the light reflection at that position will be 

abnormal, that is, shadows will appear without obstructions. For this 

improvement, this article believes that it is necessary to improve the record 

array for terrain ruggedness in this article and use more accurate algorithms 

to evaluate and record the data. More than that, the factors and calculations 

of the node evaluation system need to be improved as well. 

The utilization efficiency of GPU and CPU: In the process of testing in this 

article, we found that the GPU and CPU occupancy is low, but the displayed 

frame rate can only reach about 100 frames per second or even lower. 

Therefore, the rendering pipeline used in this article needs to be improved in 

the future, so that it can make full use of the capabilities of the GPU and CPU 

to achieve higher frame rates. 

The realism of the scene: This article only considers the texture map and 

lighting of the terrain, and the details of the terrain are not satisfactory. In this 

regard, the application of tessellation and more different types of texture maps 

can be considered. 

 Normal calculation: All the vertices normals in this article are calculated 

based on the highest resolution vertex data. Therefore, in the rendered scene, 

there will be lighting effects that do not match the terrain. In the future, if we 

want to improve this aspect, we need to recalculate the vertex normal for each 

leaf node. We can get the lighting effect that matches the actual rendered 

terrain. 

Optimization of crack elimination algorithm: Although the crack elimination 

algorithm in this article does not need to find the location of each crack, its 

limitation still makes the rendering effect unsatisfactory. In the future, we can 

try to use the crack filling algorithm to seek further optimization. 



6. Reflection 

 In this project, I was exposed to the field of terrain visualization for the first 

time. At the beginning of the project, the first thing I faced was the choice of 

rendering platform or API. I chose Unity for the first time to start research, 

because it is more complete and easier to use, and more importantly, it is 

more attractive to me. But after I have studied the basic operations and 

content of Unity in depth, I found that it is more suitable for research on 

projects like game network structure or collision detection. Because it already 

has a complete rendering engine, you need to have a deep understanding of 

the structure of the Unity rendering engine if you want to access the vertex 

data in the terrain.  

In the end, I chose OpenGL based rendering engine as the starting line. 

Fortunately, I have learned the basics of OpenGL and computer graphics in 

the course. But in actual operation, I found that I did not really understand this 

knowledge. For example, I know the calculation formulas for the six planes of 

the view frustum, but I don't know how to use these formulas to exclude 

objects outside the frustum. I achieved it only after reading various articles. 

Therefore, I understand that the theory in the computer field is only the basis 

for ensuring the success of practice. The real result is obtained after countless 

executions and adjustments. Just switching from rendering a complete terrain 

to using a quadtree to render the terrain, I read various articles and 

experienced countless times of practice to succeed. 

 When building the quadtree algorithm, I learned how to use the breakpoint 

debugging in Visual Studio more efficiently. This is very beneficial to me, 

because this function is also a skill that must be mastered in most 

programming language environments. When I only used the quadtree 

structure to successfully render the terrain (without using the LOD algorithm), 

I was already thanking Goddess of Luck for her favor.  



 For the implementation of the LOD algorithm, I only used distance as the 

criterion for node division at the beginning. However, apart from the cracks, 

the disappearance of the distant landscape also made me unacceptable. At 

this time, we need to thank the researchers for their selfless dedication, 

providing a large number of papers and studies to provide people with 

multiple choices when encountering difficulties. I am very fortunate to use 

roughness as another criterion for node segmentation. Because the use of 

roughness provides great convenience for the crack elimination algorithm I 

choose. Due to my crack elimination algorithm, the division of nodes will be 

restricted by neighboring nodes. If there is no roughness as the division 

criterion, the terrain I finally draw will become a plane composed of only a few 

nodes (the largest node will limit the further division of other nodes). At this 

stage, I also understood the advantages of common algorithms, such as 

recursive algorithms, the use of queues, depth-first and breadth-first 

algorithms, etc. If I do not have this knowledge, it will be difficult for me to 

achieve my goal. 

 The last and most important thing is the ability to read literature. When I 

am going to do a new project, I will not read the contents of the literature in 

depth at the beginning. I will extract the basic content that I should know. After 

understanding the principles and mastering enough practical experience, I will 

go to a deeper understanding of the problems described in the article. When I 

read the literature on quadtrees at the beginning, I didn't even know what the 

cracks were. After I actually practiced and cracks appeared, I understood the 

meaning of cracks described in the literature. 
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