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Abstract

Intelligent Ultrasound is a company that deals with a large variety of ultrasound related products,
aiming to make ultrasound simpler to use and easier to learn, while supporting clinicians in their
practice. This is done through the use of cutting edge Al image analysis software. Intelligent
Ultrasound have acquired a large dataset of labelled lung ultrasound images, and have allowed us
access to the dataset along with their GPU cluster on which to train a deep learning model. This
project will investigate the use of U-NET model architectures in performing a pixelwise image
segmentation in near real time.

This area of medical ultrasound has experienced extra interest after the Covid-19 pandemic, where
clinicians are more likely to encounter patients with lung issues. There are several solutions to similar
computer vision tasks, and this project will utilise U-NET. This is one of the most established
techniques in medical image segmentation, and we will focus on how this may be applied to lung
ultrasound images. This project will attempt to segment the image in near real time on modest
hardware in order to most effectively aid a clinician in identifying the critical ultrasound artefacts,
and making an accurate diagnosis to maximise learning in the case of training, and patient care in the
case of clinical support.

Through use of the provided dataset, several models were trained with the assistance of the
Intelligent Ultrasound GPU cluster, in an attempt to produce a good classification model. Additional
use of the Open Neural Network Exchange library ensured that any model could produce a
classification in sufficient time in order to be potentially applied in a clinical setting on modest
hardware.

The models trained showed an intersection over union value of over 0.8 across all classes on a
randomly selected validation dataset. In particular, Effusions and Consolidations were classified with
very high accuracy of over 0.95 in the best models. B-Lines and Pleura were segmented with
accuracy of around 0.85, while Ribs and A-Lines obtained results of between 0.7 and 0.75 on the best
performing models. However on a holdout set of selected patients, the model showed signs of
overfitting with a worse overall performance. | have also identified areas in which further research is
likely to yield to a better model performance, where | was not able to investigate during the course
of this project due to time constraints.

Overall this project has succeeded in showing that U-NET can be applied successfully to segmenting
lung ultrasound images by training on the Intelligent Ultrasound dataset. The inference time of the
model is expected to be low enough to segment images in near real time, allowing it to be deployed
in a clinical setting. However, the usefulness of the model to an experienced clinician or to one is
training is still unknown, and may require further adjustments. is an area for future research.
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Introduction

Image Segmentation

Image segmentation is one of the most complex areas within the field of computer vision, the
processes by which a machine can identify and interpret meaningful information from complex
images. Before the advent of deep learning techniques, this was almost an impossible task. The
introduction of neural networks however, has revolutionised the field. Semantic image segmentation
is the process of dividing a region into areas based on a predefined label, with each individual pixel
belonging to a specific class.

Within a medical context this could be different organs, types of tumours, or other relevant features
for patient diagnosis. These regions can then be considered for further analysis by a medical
practitioner, to confirm the correctness of the segmentation and aid in the overall diagnosis. Overall
this expediates the examination time, and reduces the risk of human error. Additionally,
segmentation techniques can act as a powerful training tool. By enabling inexperienced clinicians to
better understand anatomical structures and gain confidence in interpreting images, trainees
experience a quicker uptake of knowledge.

With the introduction of neural networks, segmentation is now easier than ever before. Several
different architectures offer promising results for segmenting a wide range of images. First proposed
in 2015, U-NET is one of the most long standing and successful models within the field of medical
image segmentation, and has been utilised across the field with great results. The structure consists
of a contracting path and expanding path, giving it the distinctive ‘U’ shape. In general, the
contracting path captures context in order to classify the image labels, whereas the expanding path
give the segmentation the correct localisation of the classes. One of the key features of U-NET is in its
skip connections, where different layers of the expanding and contracting paths are connected in
order to preserve the spatial information, resulting in a more accurate segmentation. Overall this
leaves U-NET as an excellent initial choice for segmenting lung ultrasounds.

Medical Practice

By making predictions and identifying risks, machine learning technologies have made a huge
contribution to medical care. The potential to mitigate or even remove human error from decision
making could vastly improve patient care. The most advanced medical diagnostic systems often
perform on par with or better than experienced professionals, and could bring the same level of care
to all patients, even those where medical expertise is not immediately available.

The medical field is currently experiencing a rapid transformation in delivering patient care, with the
Covid-19 pandemic initiating a radical adoption of digital technologies. Al is no different, with 83% of
healthcare leaders planning to invest in Al in the next three years, and 39% planning to directly invest
in Al to support clinical decision making.

We can conclude that the role of machine learning within healthcare is evolving, and there is a
significant increase in demand for tools to support medical analysis. In addition, there is a general
belief that the use of tools such as the one proposed will lead to better health outcomes within the
industry.



Motivation

Currently any lung ultrasounds must be manually interpreted by a trained medical professional. This
is based on ‘mastery learning’, and is heavily dependent on the skill of the operator, as well as the
level of training received. This skill level is not easily attainable, and there is no agreement on the
most effective training methods. Incorrectly identifying anatomy through a scan can lead to patient
misdiagnosis, and poorer health outcomes. A high quality model has the potential to reduce the
difference between patient outcomes for more and less skilled clinicians by acting as a co-pilot,
ensuring that a consistent standard of lung artefacts are identified by the machine for the clinician to
examine.

By improving patient diagnoses, we can optimise treatment plans and improve the health of those
with respiratory conditions. Overall this project could improve patient care for respiratory illnesses
by improving the ability of clinicians to make an accurate diagnosis. Furthermore, an accurate tool
would reduce the strain on the healthcare system by increasing the productivity of clinicians as well
as reducing the number of serious illnesses that could be caused by misdiagnosis. Another result
would be a reduction in the use of more invasive medical procedures such as MRI if we are able to
obtain a good segmentation of the lung via only ultrasound.

Ultrasound Artefacts

Ultrasound images aim to capture a range of features that are useful in aiding patient care. This is
done with the use of a small probe, which emits high frequency sound waves. When they encounter
parts of the human body, they bounce around creating a unique echo based on the object
encountered. This results in a greyscale image being produced, representing the internal bodily
structure.

Compared to other types of medical scans, ultrasound offers numerous advantages over other
medical imaging techniques. It is non-invasive and does not involve ionising radiation, making it safer
for repeated use. Ultrasound imaging is highly versatile, and can capture a range of images in real
time, providing an insight into dynamic bodily functions. Additionally, the portability of ultrasound
probes allows for bedside or point of care applications. This can be especially useful if the patient is
suffering from an infectious disease such as Covid-19, whereby moving them could increase potential
exposure. Furthermore, ultrasound is cost-effective compared to alternatives like MRI or CT scans,
making it an excellent choice for routine scans and diagnostics.

Lung ultrasounds is emerging as a powerful tool in respiratory medicine. With the onset of Covid-19,
patients are more likely to present with lung related illnesses that require quick and inexpensive care
in order to perform a diagnosis.

We must also understand what is most important to decision making. Although there are a range of
artefacts that are useful in lung ultrasound analysis, there are four critical features: A-lines, B-lines,
Pleura and Consolidations.

A-lines, B-lines and Pleura are identifiable as linear objects in lung ultrasound images. Consolidations
appear as spotted marks on the ultrasound. Once these are correctly identified a method such as the
BLUE protocol can be used to diagnose a range of respiratory conditions. Also identifiable are
Effusions, which are caused by the accumulation of fluid in the lungs, giving them a distinctive
appearance on the ultrasound scan. Other artefacts identifiable could be ribs, which cast a shadow
across portions of the ultrasound image, as well as organs such as the spleen. These are generally of
secondary importance to the clinician.



Objectives

The primary goal of this project is to produce a U-NET model that can be deployed in either a clinical
or training environment alongside an ultrasound probe to perform a near real time segmentation of
a patients lungs. The model will be trained on the Intelligent Ultrasound dataset, and as a secondary
goal we will suggest whether more work within the dataset has the potential to produce a better
model.

We must therefore achieve a good segmentation, successfully identifying image features at a high
level. This is of particular importance for the aforementioned critical artefacts used in medical
diagnosis.

The tool must have a high inference speed, so as to produce a segmentation in almost real time. A
sufficient time should be less than 0.2 seconds using the Nvidia CUDA execution provider, or less
than 0.5 seconds using the more classical CPU execution provider.

Due to a large variety of in image quality, patients, and ultrasound probes the model must be able to
accurately segment a large variety of input images. It must be robust enough to handle a range of
changes in input data, in order to effectively handle ultrasound images for all kinds of different
patient scans. A tool that is suitable only for a specific probe, or a specific demographic of patients is
not useful to a clinician within medical practice.

Questions

Within the field of Computer Vision, we can ask whether U-NET can be successfully applied to lung
ultrasounds in order to produce a high quality segmentation. To what accuracy can our tool segment
ultrasounds overall, and for each individual feature. We will also ask whether it is possible to produce
a sufficient segmentation in near real time to be deployed in a clinical setting.

In conclusion, this project presents an opportunity to apply machine learning to healthcare in a novel
way. It will provide a useful tool in building human experience in interpreting lung ultrasounds, and
become a valuable safety net for experts who might otherwise be subject to human error. By building
proficiency and supporting decision making, this project has the potential to significantly improve
care for patients with respiratory conditions.



;’U.!!'J!;l

L
L

Figure 1: An image alongside its segmentation in class labels. (Palac, B. 2020, licensed under CC-BY-
SA-4.0)



Existing Techniques

Algorithmic Approaches

An existing approach to the problem of segmenting lung ultrasound images has been the use of
various image transformation algorithms. A-lines, B-lines and Pleura all present as straight lines
within the image, and can be identified through a range of image transformation techniques. There
are a range of different reasons why this may or may not be more suitable than a data driven
approach.

One such advantage is in reducing the need to collect large amounts of personal medical data on
which to train a model. Suitable datasets are hard to acquire due to the resources needed to scan
patients, and medical expertise needed to label all the images which requires time and resources
that could otherwise be assigned towards patient care. Additionally, datasets must be meticulously
managed and maintained, and must ensure legal compliance with standards such as GDPR. Without
a such a dataset, there is no risk of data breaches or leaks. A good dataset must also be collected in
such a manner as to represent all subgroups within the population. Within medical imaging, this
means that a diverse selection of age, gender and ethnicity must be considered within the patients
who consent to providing us with their data, further complicating data collection.

Algorithmic segmentation benefits from additional transparency when attempting to understand
why a prediction has been made. Often we can follow the logic given by the algorithm to a
segmentation conclusion, and there is the opportunity to adjust this for a better result. Data driven
methods however tend to be a black box, where there are simply too many different parameters
interacting for us to fully understand why a prediction is made.

The resource cost for an algorithmic approach is also much lower than for a machine learning
counterpart. With no training cost, there is no requirement to access large computational resources
such as GPUs. Machine learning models must make sacrifices in terms of complexity in order to
reduce the inference time for a classification.

However, when the segmentation class has a complex structure or ill-defined boundaries, it is
difficult to develop an algorithm to accurately capture high level details. This is particularly the case
for our effusion and consolidation classes within lung ultrasounds.

There is also an extra risk of variation of results, as algorithmic approaches are more vulnerable to
changes in data. Different ultrasound probes, noise levels, and patient anatomy must be accounted
for in developing such a method.

One significant algorithmic contribution came from Moshavegh et al (2019). In this approach,
Moshavegh and colleagues developed a model-based method to identify specific lines, such as B-
lines, in Lung Ultrasound (LUS) images. They began by creating a normalized grayscale map of the
LUS image to distinguish different structures. The pleural line, a critical reference point, was located
using a random walk algorithm. Subsequently, they excluded the upper pleural region and applied a
series of filters to separate B-lines effectively. To precisely determine the position of B-lines, they
utilized Gaussian models and overlaid the results onto the original images. Notably, this method
offered an unsupervised framework for labelling LUS images when annotated data for machine
learning was unavailable.
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Another notable contribution was made by Anantrasirichai et al. (2017). Anantrasirichai and
collaborators introduced an innovative inverse problem formulation for detecting various lines in LUS
images. Their approach involved utilizing the Radon transform to convert LUS images into a space of
lines. Line detection was treated as an optimization problem, minimized using the Alternating
Direction Method of Multipliers (ADMM) algorithm. Initially, the focus was on identifying the pleural
line to locate the lung space. Local peaks of the Radon transform were then detected, and line types,
including B-, A-, and Z-lines, were successfully identified based on clinical definitions. An extension of
this method combined the Radon transform with the Point Spread Function (PSF) of the ultrasound
system, allowing simultaneous line detection and deconvolution. Additionally, penalty functions were
employed to promote sparsity in the Radon space, enhancing line detection performance. This
model-based approach holds promise for precise line artifact detection in LUS images, particularly in
clinical contexts, such as the evaluation of Covid-19 patients.

Overall these methods are interesting and relevant to the segmentation of lung ultrasounds,
however a data driven approach using the Intelligent Ultrasound dataset offers a range of different
benefits.

Neural Networks

The main alternative to algorithmic approaches is to use a neural network model. This is a
computational model, inspired by the structure of the human brain. It consists of many layers of
interconnected artificial neurons, each with their own adjustable parameters. Through training these
neurons we can process information in a manner similar to a human. By choosing the correct
network structure and optimising the weights of each individual neuron, we can make predictions
and interpretations using a range of complex patterns that humans are not able to comprehend.

The core components of a neural network are the input layer, output layer and hidden layers. The
input layer is designed to take in a certain kind of data, which in our case will be a lung ultrasound
image, and pass it to the hidden layers of the neural network. The hidden layers conduct a range of
calculations via activating different neurons in these layers in order to disseminate the information
from the input layer. Finally, once the hidden layers have processed the input it is transformed by the
output layer in such a way as to make a valid prediction. In our case this will again be an image, but a
classification map or mask for the inputted lung ultrasound.

Training a neural network consists of continually passing data forwards through the model, before
then assessing the predicted output against the known ground truth. This is a form of supervised
learning, whereby we adjust the models parameters in reference to the known correct prediction for
our data. Within the scope of training a machine learning model there are many different parameters
to consider, all of which could have an effect on the quality of its output once trained. It is therefore
necessary to carry out many different training runs, often varying each parameter one at a time in
order to accurately assess the affect that tuning a certain parameter has on the output.

Deep Learning Methods

Deep Learning is a machine learning technique that constructs artificial neural networks to
mimic the structure and function of the human brain. In practice, deep learning, also known
as deep structured learning or hierarchical learning, uses a large number hidden layers -
typically more than 6 but often much higher - of nonlinear processing to extract features
from data and transform the data into different levels of abstraction.

(DeepAl 2019, https://deepai.org/machine-learning-glossary-and-terms/deep-learning)
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There are a number of neural network models that exist to solve a range of image segmentation
problems. The basic method of neural networks trained on images with ground truth masks can
effectively solve many segmentation problems, which will be the basis for my approach to
segmenting lung ultrasound images.

Deep learning models have achieved great success in an array of medical image segmentation
problems, with the best results outperforming expert human analysis. The sheer volume of neurons
in such a model allows for the capture of details and connections that could otherwise elude a more
conventional understanding, allowing it to outperform algorithmic models for complex imagery.
Features can be learnt automatically as part of training, without having to be specified by the user.
This allows a model to perform very well without much guidance.

The main drawback of this approach is the dependency on high quality data. The data must be
labelled correctly, and represent an accurate section of the population it is drawn from. Otherwise
any model trained from this data would be as limited as the data. In a medical context this is
especially worrying, as it could prevent all patients from receiving the same level of care if a
particular patient is not well represented in the training data.

Another risk is overfitting of the given dataset. A model must learn to distinguish features sufficiently
in order to make a good classification. However if the model is trained for too long on too small a
dataset, it simply learns what the dataset contains. Thus it performs poorly on any unseen data. This
can be mitigated by ensuring the dataset is large and varied, as well as performing data
augmentation to further diversify the dataset.

Training any model is computationally expensive, and must be performed over a long period of time
on high performance computers. Intelligent Ultrasound have agreed to the use of their GPU cluster
in order to support training a model using their lung ultrasound dataset.

One final danger is the lack of interpretability of these models. Due to the sheer complexity, any
classification decision can be hard to interpret. In a medical setting this can cause complications by
introducing uncertainty into the decision process, where understanding why a classification has been
made can be important in diagnosis. Any tool produced should therefore not be seen as a
replacement for an experienced clinician, only as an aid to assist with ultrasound interpretation.

In the field of automated lung ultrasound analysis, recent advancements have highlighted the
potential of machine learning in order to improve the accuracy and efficiency of medical image
interpretation. These data-driven methods have demonstrated their ability to capture complex
patterns in lung ultrasound images, and proved their potential to form effective tools within medical
analysis. Recent research has focused on fully supervised and weakly supervised learning
approaches, where neural networks are trained to identify and classify lung abnormalities, including
consolidations and B-lines, with high sensitivity and specificity. Moreover, these methods show
promise in the context of Covid-19 diagnosis, where quantitative and automatic LUS scoring systems
have been developed to aid in pneumonia evaluation. Despite challenges related to data availability
and labelling, machine learning approaches are increasingly contributing to developing a more
precise automated lung ultrasound analysis.

A comprehensive and strong segmentation of lung ultrasound images represents a significant step in
this field, and a unique contribution to the field of computer vision. Previous approaches have
generally focused on specific artefacts, leading to an ultimately limited or binary segmentation and
analysis. This is generally of limited use to a clinician, whose analysis must identify many different
artefacts in order to be effective. Several approaches have also focused on classification of artefacts,
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such as the number of B-lines present and their severity. These have produced good results showing
the potential for a full segmentation model to be developed. The use of Intelligent Ultrasound’s large
dataset could significantly progress these approaches in order to further assist clinicians in patient
diagnosis.

CNNs

Convolutional neural networks (CNN'’s) are a type of deep learning neural network that specialises in
image processing and classification. A digital image can be represented as a series of pixels in grid
format, with each pixel possessing a value determining its own colour and brightness. In a biological
vision system, each neuron works by responding to stimuli in its own restricted field of vision,
identifying simple shapes and patterns within a small area. Then by connecting to other neurons in
the system in the nearby field of vision, we can begin to recognise more complex structures in our
overall sight. CNN’s work similarly, with each pixel being connected only to those geographically
nearby through the neural network. The neurons can then be trained to activate when certain
patterns appear. Through the use of multiple network layers, a computer can pick up first on simple
structures, which increase in complexity further along in the network. This is the starting point for
allowing computers to see, and is the research field of computer vision.

The architecture of a CNN typically consists of three layers: a convolutional layer, a pooling layer, and
a fully connected layer. Additionally, there must be a layer to input data and an output layer to
provide a classification.

The convolutional layer is the core building block of a CNN, and carries the main computational load.
This is the part of the model that is designed to extract the relevant features from an image. The
main method of capturing image is by using a kernel. This is simply a matrix of shape n X n, which
slides across the height and width of our image to produce a new feature map. This is done by
calculating the dot product of the kernel with the extracted image section.

The formula for the dimension of the new feature map is given below for a kernel size of length n,
and an image of length [.

Dim=1l-n+1

An image may be padded out, with columns or rows added at the edge of the image in order to
manipulate its shape. We call this padding, and the number of extra rows or columns added can be
represented by an integer p.

We can move the kernel across an image with a varying step size. For example, assume our kernel
captures the image indices i to i 4+ k for some constant k. If the subsequent kernel captures the
indicesi + 1toi + k + 1, we can say that the kernel has moved by 1, or that it is of stride 1. In
general we can say that if a kernel captures the indices i to i + k, then the subsequent kernel will
capture the indices i + s to i + k + s for a stride of length s.

If we generalise the given feature map formula to include an image with padding p and stride s, we
obtain the following equation.

) l—n+2p
Dzm=f+1
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Figure 2: The construction of an image activation map

This structure allows us to reduce the interaction between disparate parts of the image by ensuring
that only neighbouring pixels are directly interacting with each other. Trivial neural networks often
have every input unit interacting with every output unit, which would be impossible in high
resolution images due to the sheer computational complexity required. It also allows for the sharing
of parameters, as we can logically conclude if we are trying to identify an image feature, its precise
location is irrelevant and we can apply the same analytical methods to each individual image region.
We also gain the property of equivariance to translation. This means that if we transform the input
image in some way, the output will be similarly changed.

The next step is to process our new feature map through a pooling layer. This is done by applying a
function to replace the output at certain locations in the image by deriving a summary statistic of
nearby outputs. Similarly to the convolutional layer, this uses a kernel of size n X n. There are several
possible pooling functions, however the most popular is max pooling. This returns the maximum
value in the kernel, and has the benefit of reducing noise within the image, focusing on the strongest
features. Average pooling for example can suffer from this effect. An example max pooling operation
is given below.
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Figure 3: A max pooling operation with 2x2 filters and a stride of 2

These layers have the drawback that they are so far only able to capture linear relationships in the
image, therefore a solution is to place a non-linear layer after every convolutional one. The rectified
linear unit (ReLU) activation function is one method for this. The mathematical function is relatively
simple, allowing it to be efficiently applied to every element in our feature map.

f(x) = max (x,0)

The final layer is a fully connected one where all neurons are connected to the preceding and
succeeding layer. This is a traditional neural network layer, and can be used to make final predictions
by summarising all the information in the model.

A final convolutional neural network could take the following form:

[ INPUT LAYER ]

-> [ CONV1]->[ BATCH NORM ] -> [ ReLU ACTIVATION ] -> [ MAX POOL 1]
-> [ CONV2] -> [ BATCH NORM ] -> [ ReLU ACTIVATION ] -> [ MAX POOL 2 ]
-> [ FULLY CONNECTED LAYER ]

> [ OUTPUT LAYER ]
U-NET

In 2015 Ronneberger 0., Fischer P. and Brox T. proposed a revolutionary new method for image
segmentation. Previous methods had been limited by requiring the collection of large datasets.
Furthermore these models were large, while U-NET could produce a segmentation in less than a
second on their hardware. With training data often lacking for medical image segmentation, along
with a quick classification time and good accuracy, this made it a big step forwards in medical image
segmentation. It also produces a pixelwise segmentation of any image, the ideal result for a clinician
to be able to quickly identify relevant features. Although initially used as a binary classification
method to identify one class within an image, it can be easily generalised in order to produce a
segmentation with any number of possible labels.
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Figure 4: Architecture of a U-NET neural network (TheThinkingMan 2022, licensed under CC-BY-SA-
4.0)

The underlying structure of U-NET uses many of the same features as CNNs, including convolutional
layers. There is a contracting path which reduces the size of the image into smaller feature maps in
order to capture detail in the images. Simultaneously, the number of feature channels are increased
in order to capture a wider range of different patterns from the data. At the bottom of the
contracting path, there exists a bottleneck layer which routes the input to the expanding path. This
increases the feature map size, while decreasing the number of feature channels in the model. The
final layer produces a classification for each pixel in the model, which can then be transformed into a
full multilabel segmentation. A distinctive feature of U-NET is the presence of skip connections
between the contracting and expanding path. At a high level these links help the model preserve the
correct location of any features that are being segmented.

The contracting path acts similarly to how a typical CNN architecture would classify an image. It is a
repeated application of two 3 X 3 convolutions, each followed by a ReLU activation. This is then
followed by a 2 X 2 max pooling operation with a stride of 2, halving the size of the feature map.
Each time this occurs, we double the number of feature channels in our network.

The expanding path starts with an up-convolution, working similarly to the convolutional layers in
reverse. A kernel is repeatedly applied to sections of the image, with the output being a higher
dimension matrix. Typically this is a 2 X 2 convolution in order to double the feature map’s spatial
dimension. Additionally the number of feature channels is halved at this stage. This is then followed
by the same two 3 X 3 convolutions and ReLU activation functions as in the contracting path. The
result of all this is concatenated with the feature map from the corresponding layer of the
contracting path, resulting in our skip connections. The contracting feature map must however be
cropped in order to account for any changes in dimensions from the various layers.
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The final part of the modelis a 1 X 1 convolution in order to map each component feature vector to
the desired number of classes. The output will be a pixelwise probability distribution per class from
which we can easily construct our predicted segmentation.

Part of training such a U-NET model is making use of data augmentation techniques. In order to
ensure the network is robust, and when only a few training samples are available, we can increase
the variety of our training data by performing various transformations on our images and masks
respectively. Examples could include random cropping, vertical and horizontal reflection, rotations to
varying degrees and varying brightness. By performing these operations randomly on our dataset we
can ensure our model is taught to be sufficiently invariant.

The initial results of U-NET architectures were extremely good. On two separate cell tracking dataset
segmentation challenges, U-NET’s IOU was 0.09 and 0.31 higher than the second best models for the
respective datasets, representing a significant step forward in computer vision.

U-NET++

As good as the original U-NET proved to be, it was still limited in some ways. In a medical setting,
even small segmentation errors can lead to a poor user experience. The question then is how much
can we improve upon the U-NET model in order to meet the demands of medical segmentation, and
reduce any errors in computer generated or assisted diagnosis. U-NET++ addresses this through the
use of improved skip connections and deep supervision. By increasing the effectiveness of the
transfer of information from the contracting path to the expanding path, we will achieve a more
accurate segmentation. Deep supervision works to ensure that the model learns hierarchical features
at multiple scales, by introducing additional classifiers at intermediate layers of the network. These
can be used to provide feedback during training, allowing the model to learn more fine-grained
details in images. This multi-scale approach helps the model capture intricate structures and
nuances, enhancing its ability to produce precise and reliable segmentations.

In U-NET the feature maps of the contracting path are directly received in the expanding path.
However in U-NET++ they undergo a series of intermediate steps. The main idea is that information
will be better preserved if the concatenated feature maps in the expanding path are semantically
similar to each other. We can see below the original U-NET in black, and the addition of dense skip
connections in green and blue.
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Figure 5: An architectural overview of U-NET++ (Liang, J. et al. 2018)

Each intermediate skip connection block can be expressed as X%/, with i representing the down
sampling layer, and j representing the convolution layer of the block along the pathway. Each block is
calculated through a convolution layer, followed by an activation function of the concatenation of all
blocks at the same down-sampling layer, plus the up sampled block directly below it. For example,
block X123 is produced by a convolution and activation of the concatenated blocks X0, X1, X12 and
the up sampled X?%2.

Formally we can express the skip pathways as follows. Let H(*) represent a convolution operation
followed by an activation function, U(-) represent an up sampling layer, and [] represent a
concatenation layer. Therefore, the output x*/ of any node X%/ is computed as follows:

x ={ H(x=1), forj=0
H(| [xi'k]{;}), U(x*H=1)]), forj>0

Figure 5 part b further clarifies this equation by showing the transfer of feature maps across the top
skip pathway of the model. This method means that all prior feature maps will accumulate before
arriving at the current node, ensuring a higher transfer of information through the model.

Due to the modified architecture within the skip connections, U-NET++ produces a full feature map
at multiple different points ( x%/,j € {1,2,3,4} ). Each of these points is a possible prediction for the
model, and each offers a chance for us to use a supervised approach. This is displayed in red on our
diagram. A typical loss function such as cross-entropy or focal loss can be used at each of these levels
to ensure our model is fully trained throughout.

Overall U-NET++ proved to be a noticeable improvement. Experiments on several medical
segmentation datasets showed an averaged I0U gain of 3.9 points over U-NET, showing the
importance of improved skip connections and deep supervision to the model.
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U-NET 3+

In an attempt to further improve upon U-NET, a third version was proposed by Huang, H. et al. They
acknowledged that U-NET was being widely used in medical image segmentation, however it was
continuously experiencing the same flaws. U-NET++ had enhanced the sharing of information
between different scales of the model, however this was still insufficient in many medical
applications. Particularly in settings where organs could appear at varying scales, previous techniques
fell short, and produced insufficient segmentations by failing to combine both high level and low
level features effectively, limiting the network’s ability to segment an image along its correct
boundary. Furthermore there was an increased demand for computational efficiency in order to
produce a good segmentation in near real time.

The first improvement introduced in U-NET 3+ is the use of full scale skip connections. Similarly to U-
NET, the feature map from the same scale is directly received in the expanding path through a
convolutional layer. In contrast, a set of interconnected skip connections delivers low level detailed
information from the smaller scale contracting path layers by applying a non-overlapping max
pooling operation. The higher level contracting path is put through a bilinear up-sampling layer in
order to increase its spatial dimension. The feature maps are then merged via a convolutional layer,
batch normalisation layer and ReLU activation.

The result is a set of feature maps that incorporate information from different scales, allowing the
network to capture fine grained details from smaller scales, and high level semantics across the
entire range of scales. It is also worth noting that these skip connections are more efficient with
fewer parameters than a U-NET++ structure.

This process can be seen on the figure below, showing the process of constructing the full-scale
aggregated feature map of the third layer of the expanding path.
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Figure 6: Construction of the full-scale aggregated feature map of third decoder layer X3, (Huang, H.
et al. 2020)

These skip connections can be formally expressed as follows. Let i index the layer of the contracting
path and let N represent the total number of layers in the network. Let H(+) be the feature
aggregation mechanism with a convolution followed by a batch normalisation and activation, and

C () denotes a convolution operation. U(*) and D(*) are up sampling and down sampling functions
respectively, and [-] is the concatenation function. The stack of feature maps represented by X,i)e is
then given by the below equation:
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The second improvement is the use of full scale deep supervision. The last layer of each decoder
stage is fed into a plain convolutional layer, followed by a bilinear up-sampling and sigmoid function.
This produces a valid segmentation prediction at each stage, which is supervised by the true
segmentation mask.

To further improve the class boundaries, U-NET 3+ uses a hybrid loss function. This is made up of the
MS-SSIM value, focal loss and intersection over union loss.

lseg = lfl + lps—ssim + liou

This forces our model to learn a range of structural boundaries by optimising multiple metrics,
resulting in a better overall segmentation.

The final improvement is the introduction of a classification guided module. In most medical image
problems, false positives are an inevitable consequence of automated segmentation. In order to
further clarify the presence of a label class in an image, a new module is created at the bottom of the
model, Xgn. Benefiting from the richest information in the contracting path, this then outputs a 2
dimensional tensor, denoting with or without the class labels. Subsequently, we multiply the single
classification output with the side segmentation outputs in order to reduce erroneous
segmentations, and prevent segmentation of absent classes. However the work of the authors has
only focused on binary segmentation, and it is currently unclear whether this can be successfully
applied to our dataset of multiclass lung ultrasound images.
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Figure 7: Architecture of a class guided module used in U-NET 3+ (Huang, H. et al. 2020)

The initial model was tested on two datasets of abdominal CT scans, segmenting for the liver and
spleen. Overall the results were an improvement, with a Dice score of 0.9552 compared to a score of
0.9352 from U-NET++. The best results were all obtained using the full combination of hybrid loss
function, class guided modules, and deep supervision. It is also worth noting that U-NET 3+ used
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approximately two thirds of the parameters that U-NET++ used in its segmentation model,
significantly improving the models performance time.

Conclusions

In conclusion, this section has provided a comprehensive overview of existing methods of image
segmentation and their limitations. While numerous approaches have been developed over the
years, it is evident that the U-Net architecture represents a significant advancement in the field of
semantic segmentation. With its innovative design, skip connections, and robust feature extraction
capabilities, U-Net has demonstrated superior performance in a wide range of medical image
segmentation tasks.

However, it is crucial to recognize that no single segmentation method is universally superior, as the
choice of approach often depends on the specific requirements and characteristics of the image data
at hand. Therefore, it is essential for researchers and practitioners in the field to carefully consider
the nuances of their segmentation task and select the most suitable method accordingly.

Moving forward, the integration of deep learning techniques, such as U-Net, with other advanced
technologies like transfer learning, attention mechanisms, and multi-modal data fusion, holds great
promise for further improving the accuracy and efficiency of image segmentation tasks. This ever-
evolving landscape of image segmentation methods underscores the importance of ongoing research
and development in the pursuit of more accurate and versatile solutions for various applications in
computer vision and medical imaging.
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Methods

Software

The choice of different programming languages and software libraries is a key part in developing a
machine learning application. For this project | chose to work in python, specifically using the

PyTorch library.

Python is a very natural choice, as the simplicity and readability of the language allows the developer
to more easily focus on the machine learning approach, rather than coding. Additionally there is
already a large and established community of Python developers creating and improving upon
existing machine learning frameworks, some of which directly contributed to this project.

Using PyTorch was a more difficult decision, as it is roughly equivalent to other libraries such as
TensorFlow in terms of support and standards. The final choice was determined by the expertise of
my academic colleagues as well as those of Intelligent Ultrasound, all of whom preferred PyTorch.
Any code produced will likely be maintained by another developer going forwards, so developing
within a distinct library would dramatically reduce the maintainability of my project in the future.

Throughout the development process, | have focused on providing clear and concise comments in
addition to focusing on readable Python code. The machine learning engineers at Intelligent
Ultrasound also provided a basic template, intended to best make use of their distributed GPU
cluster. This has provided the basis of my development in order to maximise the use of all available
resources, while keeping a familiar structure for any other future developers.

Dataset

The first step in deciding how to approach the segmentation task was to conduct a thorough data
analysis of the dataset. Intelligent Ultrasound provided some initial information about the class
labels and features. These were specified as below, with an RGB colour value:

Class Feature Red Value Green Value Blue Value
Pleura 255 0 255
A-Lines 0 255 255
B-Lines 255 255 0
Confluent B-Lines 255 100 0
Consolidations 0 255 0

Ribs 255 0 0

However, this was quickly shown to be false. The following distinct RGB colour values appear within
the dataset, and must be accounted for when loading data.

Red Value Green Value Blue Value
0 255 255

255 0 0

255 1 1

1 0 1
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1 1 0
255 100 1
255 1 0
255 0 255
0 1 255
1 255 1
100 50 0

0 0 0

0 255 0

1 0 0
150 0 75
255 100 0
150 0 255
255 101 1
101 51 0

0 150 255
0 1 1
255 0 1

1 255 0
100 51 1
255 1 255
0 0 255

Clearly some of these colours can be successfully merged into their obvious classes, such as the RGB
(1, 0, 1) being part of the background class (0, 0, 0). Several colours needed a further investigation to
decide which class they are part of, including (0, 150, 255), (0, 0, 255), (150, 0, 75), (150, 0, 255),
(100, 50, 0). After sending several examples to medical professionals for confirmation, the following
additional labels were decided.

RGB Colour Code Anatomical Feature

(0, 0, 255) Effusion

(0, 150, 255) Liver

(100, 50, 0) Effusion (also)

(150, 075) Consolidation (additional to existing class)
(150, 0,255) Spleen

Effusions are useful anatomical features, and we should capture them in any model that we build,
and Consolidations can be added to the existing class. The liver and spleen however are entirely
separate from the respiratory system and it makes the most sense to merge them into the
background class.

It should be noted that there are no labelled B-Lines in the dataset. Despite the Intelligent
Ultrasound segmentation instructions specifying that B-Lines and Confluent B-Lines should be
segmented separately, it appears that this is not the case and the two classes are essentially merged
in the dataset. Due to the sheer number of images, separating these classes is likely to be a large
undertaking, however could be considered if it is of significant use for a medical practitioner. When
loading the images into the model, these values were corrected into the following classes.
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Class Count
Ribs 13466
Pleura 15598
A-Lines 7422
Confluent B-Lines 5570
Consolidations 1944
Effusions 407
Total 16052

This dataset is extremely large, a rarity for most medical image datasets, however the class size is
relatively imbalanced. Although the most useful features in lung ultrasounds are well represented,
with a high presence of Pleura, A-Lines and B-Lines.

Despite this, deeper analysis reveals that the number of distinct patients examined is only 73. From
each patient, at least one video has been recorded, with at least one image. In total there are 168
different videos recorded, with 16052 images produced. This could potentially lead to a lack of
variety in the training data, due to the risk of recording similar structural patterns in the limited
number of lungs being viewed. However the number of images will likely lead us to be able to
recognise these structures from different angles. This leads us to conclude that we must be careful
with overfitting our model and making assumptions about the true diversity of the dataset.

Finally, by checking the dimensions of the scanned images we find we have a large variety of sizes.

Dimension Count
1048 x 656 424
1538 x 846 1370
1016 x 708 94
640 x 480 49
960 x 720 8275
736 x 1080 504
720 x 1080 233
1366 x 651 1855
1199 x 840 3127
1900 x 830 96
590 x 651 25

As there is no consensus between image dimensions or ratios, we must decide how to resize the
images for processing. Image size is one of the main contributors to the time taken to produce a
segmentation, however it is important to be able to decide on a shape ratio. Due to the vast array of
dimensions, | decided to resize all images to a square shape before feeding them into any model for
processing. This would ensure that a fair amount of information is captured from each image,
however it is possible that the various ratios will interfere and lead to less information being
captured from those images with higher height than width. It is also unclear without a very thorough
examination of the data whether the images with a higher pixel count are a higher resolution, or
whether they simply contain extra dead space with no class maps. A more detailed analysis and
subsequent preprocessing may be required in order to capture a fair amount of information from
each image for training.
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Models

The next step in developing my tool was choosing an appropriate model architecture. Any model that
| used had to produce an appropriate pixelwise classification of an image. Ideally the classification
could be produced on a modern GPU in less than 0.1 seconds, in order to segment an input in near
real time. A high accuracy segmentation was also needed due to the intended use of the tool in a
clinical setting, where a suboptimal tool could lead to poorer patient outcomes.

| chose to explore the dataset with the use of a U-NET model, due to its impressive historical
application to medical image segmentation problems. Other architectures were more often applied
to different types of segmentation problems, whereas upon reading the existing literature | was
extremely confident that | could produce a good segmentation model with U-NET. As discussed in
detail in the previous chapter, U-NET and its variants are often state of the art models that perform
at the highest level in segmentation tasks.

For this dataset in particular, | felt U-NET was a good choice. With 73 distinct patients in the dataset,
there was little to no risk of a lack of diverse data affecting the training, as U-NET models are often
trained on comparatively much smaller datasets than the 16052 present. By choosing an appropriate
means of data augmentation, | could be confident that my model would correctly segment any
unseen data.

Within the literature, U-NET is most often applied to binary segmentation problems or multiclass
datasets with a small number of classes. However a clinician must analyse many different pieces of
information in order to make a diagnosis, and a multiclass segmentation is a necessity for medical
practice. Although U-NET can be easily generalised to produce a multiclass segmentation of any size,
this is uncommon and could end up producing unexpected results from a model.

In general, due to the necessity of sharing spatial information at varying levels of the image to
classify a lung ultrasound, U-NET is a good choice due to the built in skip connections. In lung
ultrasounds the horizontal A-Lines appear as echoes of the pleural line. These are structurally similar,
however the Pleural Line is distinguished by its placement at the highest part of the image. This
requires a structure that can segment small features of an image to capture the horizontal artefacts,
as well as a higher level path that can classify these artefacts into the Pleural Line or A-Line.

Overall, U-NET tends to underperform when attempting to segment complex structures, and
struggles to effectively capture label boundaries. Lung ultrasounds produce mostly basic linear
artefacts, which means that a U-NET model is unlikely to suffer from being able to segment
complicated object boundaries effectively. Additionally within a medical context, a fine tuning of
class boundaries is largely redundant. As a human medical practitioner is expected to review the
results, this allows them to review the segmentation alongside the image in order to produce their
own conclusions in such a way that small errors along the boundary would not matter.

Class imbalances can also be a problem within U-NET models, which is a problem we are extremely
likely to encounter within this dataset. Ultimately, this can be minimised by the choice of an
appropriate loss function but not reduced entirely. For this reason we will experiment with the use of
focal loss functions in order to train our model.

Overall U-NET is a very natural choice for the first model produced to segment the lung ultrasound
data, with several different versions available in order to maximise the segmentation results. My
preferred model for this project is U-NET 3+, which achieved the best results on the dataset.
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However there are likely to be even further improvements to the U-NET architecture in future, and a
future exploration of the data could introduce different architectures in order to seek improvements.

Data Augmentation

Due to the potential lack of diversity in the dataset due to the limited number of distinct patients, it
was necessary to consider methods to extend the variety and scope of the data available.
Augmentation of image datasets is common practice for image classification and segmentation
problems, and many methods exist. These can generally be broken down into spatial
transformations, colour transformations, and noise transformations.

The spatial techniques | used were a random rotation of between 30 degrees either clockwise or
counter clockwise, alongside a random reflection in the image’s y axis. It was important to preserve
the vertical structure of the image, due to the necessary sharing of information in the model to
classify certain features. A-lines appear as horizontal lines, and B-lines appear as vertical lines, so a
rotation of 90 degrees or more could significantly affect the model’s ability to classify these
structures. Furthermore A-lines often appear as echoes of the Pleura, presenting below the Pleural
line. This means that a reflection in the image’s x axis was not possible in order to effectively share
the ability to classify these structures. Although | considered investigating a random cropping, |
decided that this was too likely to have a negative effect, as the segmentation relies on whole scale
details of the image.

The colour transformations | used were contrast and brightness variations. While brightness refers to
the overall lightness of the image, contrast is the difference between light and dark parts of an
image. When increasing brightness every image pixel as a whole gets lighter or darker, whereas upon
increasing contrast the light parts of an image get lighter, and the dark parts get darker. Due to the
greyscale nature of ultrasound images, available pixel colour augmentations are limited. It is unlikely
for there to be many useful additional augmentations in this area.

When an image is taken, there are often imperfections in the capture resulting in distortions and
defects in the picture. These can be caused by anything from sensor inaccuracies to random errors,
and are to be expected in real world captured images. We can simulate this in our dataset in various
ways, by randomly changing pixels to simulate this external interference. Gaussian noise is a noise
added to the original image which has a normal (or Gaussian) probability distribution. For an image
pixel with coordinates x and y, the pixel can be expressed as the sum of the original pixel s(x,y) and
the noise n(x, y).

w(x,y) = s(x,y) + n(x,y)
The probability distribution of the added noise p;(2) is then given by the following formula.
1 _@Ew
pe(2) = 0\/2—9 207

T

This makes our model more robust to interference, and should enable us to produce a more accurate
segmentation on real world data.

Inference Time

Producing a classification in a suitable time was not a worry while using a U-NET model due to its
simple structure. The production of a model with a sufficiently low segmentation time was done with
the assistance of the ONNX runtime python library, allowing us to produce a runtime for any model
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that was independent from the machine it was run on. This also allowed for testing the model
runtime without the use of a GPU. It was agreed with Intelligent Ultrasound that aiming for an
average runtime of less than 0.5 seconds with the ONNX runtime CPU provider would suffice, as this
would speed up appropriately when applied to a modern GPU device.

Evaluation

Although there are many different metrics for assessing the effectiveness of an image segmentation
model, for this project | will use intersection over union (I0U). This is one of the most widely used
evaluation methods, and makes it easy to quickly assess the usefulness of a potential prediction and
to compare between similar models. Without a strong evaluation metric we cannot be certain how
our model will perform on any unseen data, and whether improvements are being made to our
model throughout the training process.

The number of pixels correctly classified (or accuracy) is generally a poor performance metric within
image segmentation. This is due to the fact that it cannot capture any spatial information, where
certain pixels may affect the usefulness of an image segmentation more than others. A large class
imbalance could also skew the model. Consider for example a binary classification where 95% of the
image is the background. A prediction of purely background pixels would produce a high accuracy
score of 0.95, with absolutely zero segmentation. This will likely be an issue within our lung
ultrasound images, and must therefore be avoided.

Intersection over union is calculated as the sum of the area of the correct predictions divided by the
total area of the prediction and ground truth. Referencing figure 8, the true segmentation is
displayed by the green circle, and the prediction by the red circle. The intersection over union is
therefore calculated by the area in yellow divided by the area in green plus the area in red.

True Positive
10U =

False Negative + False Positive + True Positive

We can clearly see that 0 < IOU < 1, and the better the segmentation the larger the value. Within
this project we will measure the binary IOU for each individual class in order to analyse and compare
the segmentation accuracy for each label.

False Negative
False Positive

True Negative

Figure 8: A binary image segmentation to represent intersection over union
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Model Optimisation

Once our model architecture is decided, its parameters must be optimized to maximise the value of
its output. Through effective training we can adjust the value of each neuron in the network to
produce a continuously better model until we are happy with the overall output. The main method
for this process is backpropagation.

The first step is to load a batch of data ready for processing. This can be of any size, although may be
constrained by memory limitations. The most commonly used value is 2™ for the highest n that
machine memory can take. This is then passed through the entirety of the model in order to obtain a
prediction. Each neuron therefore performs a weighted sum and activation function in order to
produce the final output.

This output is then compared to the true prediction via a loss function in order to produce an error
value. There are a large number of choices for different losses depending on what is being optimised
and the dataset available. Once an error is calculated, this is passed backwards through the network,
producing a gradient for each parameter. Starting at the output layer, the model weights are adjusted
through the use of this gradient in order to minimise the final loss function error so that it is as low
as possible. Once this is completed for a batch of data, it is then repeated until the entire dataset has
been passed through the model. Finally, the entire dataset is passed through the model again in
order to optimise it further. Each pass of the dataset is referred to as an epoch. Finally once the
model is sufficiently optimised, the training is stopped and the model can be used for predictions.

Loss Functions

The choice of an appropriate loss function is critical to fully optimising a model, and different
functions exist for all manner of different problems. It ultimately guides the model during training
and has the potential to emphasise certain classes, characteristics and anomalies that the model may
come across. Additionally, it can influence the sensitivity of a model to outliers, the handling of noisy
data and the speed of convergence when training.

Within image segmentation, an intersection over union loss attempts to maximise the overlap
between the predicted class label and the true class label for each class. It measures the similarity by
computing the ratio of the overlap between the predicted class label and the ground truth plus the
predicted class labels. For any given class, the IOU is given as described in the evaluation section. The
I0U loss is therefore given as follows, for all classes c in the set of classes C. Let |C| be the number of
classes.

(ZC True Positive(c) )
G - — —
10U loss = False Negative(c) + False Positive(c) + True Positive(c) /|C|

Cross entropy loss is another function to minimise the prediction error of a machine learning model.
It penalises incorrect predictions with high confidence more heavily, encouraging them to assign
higher probabilities to the correct classes. For example, assuming the class is present, a prediction of
0.05 would have a much higher loss than 0.7. Assume we have C classes, a binary prediction of value
{0,1} y, . as well as a probability p, . in the range (0,1) for class ¢ and observation 0. Then the
formula for a multilabel cross entropy loss function can be expressed as follows.

C
CE loss = — Z Yo,c 1n(po,c)

c=0
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Focal loss is designed to address class imbalances when training machine learning models. It works
by reducing the contribution of easy to classify examples in a similar manner to cross entropy loss.
However it has the additional option of adjusting how much the model focuses on hard to classify
examples (y), and a class specific weighting factor to determine how much the model focuses on
each class (). Let p; be the predicted probability of the correct class. Then we define the focal loss
for each p; as follows.

FL= —a,(1—p.)" In(p,)

Typically y is set between 2 and 5 depending on how fast the model should converge. The list of a
values is generally set to be between 0 and 1, depending on the prevalence and the classification
difficulty for each respective class. Multiple runs are often needed to fine tune these parameters for
an optimal loss function.

Multi scale structural similarity index (MS-SSIM) is another loss function useful for processing
images. The value of this metric, is that it measures the similarity between two images at multiple
different scales. Whereas other loss functions assign a similar weighting to the boundary pixels
between class labels, MS-SSIM weights it higher. This means that by measuring the loss between the
true mask and the predicted mask of an image at smaller scales, we can encourage our model to
more accurately segment the boundaries of our classes. Depending on what we are trying to
segment, correctly identifying the class edges could be of high importance.

Letustake x = {x;|i = 1,2,..., N}and y = {y;|i = 1,2, ..., N} as the pixel values in two image
distributions. We then further define p, and u,, as the respective means of x and y respectively,
along with g, and o,, as their variance. Then the single scale structural similarity index is given by the
following formula.

Cpxpy + C1)(20yy + C3)

SSIM (x, =
®Y) = T 2T e + 024 6)

The final MS-SSIM is derived from a weighted average of this formula, for continuously cropped
sections of the segmentation and ground truth mask.

Optimisation Function

When it comes to algorithms for updating the weights of a machine learning model, there are several
choices. For this project | have chosen to employ the Adam optimisation function, which is short for
adaptive moment estimation. This is a common choice in many machine learning problems, including
image segmentation. The main benefit is that Adam adapts learning rates individually for each
parameter weight, leading to a faster convergence than other algorithms.

Learning Rate

A learning rate is one of the most important parameters within machine learning, and determines
the step size at which the model updates its parameters during training. The choice of an appropriate
learning rate directly affects the convergence and stability of a model. If the rate is too high it can
cause the model to overshoot an optimal solution, while if it is too low the convergence may not
happen quickly enough leading to a subpar solution. Therefore, finding the right learning rate is
essential to ensure that a machine learning model converges efficiently and effectively learns from
the training data, ultimately leading to better performance on unseen data.
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To determine the most effective learning rate, | will be using the OneCycleLR PyTorch function. This
takes in several parameters, and produces a dynamic learning rate to use during training in a single
cycle, initially increasing followed by a consistent reduction. This allows for faster convergence to an
optimal solution, meaning less training time and a lower use of computational resources.

Logging Runs

For this project | will be making use of the wandb (Weights & Biases) platform, which allows for easy
logging of results and creates graphs for each metric from each run. The main metrics to be
measured will be the total loss for each subsequent forwards and backwards pass, alongside
intersection over union for each full pass for both the training and validation set. This will allow for a
quick and easy comparison between runs, and a quick identification of any issues in the training of
my models.
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Results

During the course of this project | attempted many different training runs in order to fully optimise
my model. This included changing many different variables which | will discuss in this chapter. While
changing one parameter, it was critical to keep all other variables the same so as not to introduce
other influences. The main metrics to measure were the intersection over union values for each
class, and the overall average value in accordance with our evaluation metrics.

Inference Time

The time taken to produce a segmentation of a given ultrasound image must be close enough to real
time to run alongside an ultrasound scanner on modest hardware. Although deploying this
application was beyond the scope of the project, a projected target was a runtime of under 0.5
seconds using the open neural network exchange library and the CPU execution provider. The
following runs were all measured to the nearest millisecond for the average timings, on models with
7 output channels to mirror the number of classes

Using the model code for the U-NET 3+ introductory paper, we obtain the following results with a
RGB channel input image of size 256 by 256 pixels. Each run was done 1000 times to ensure an
accurate measurement.

Model Mean Milliseconds Per Standard Deviation
Segmentation
U-NET 838 277
U-NET 3+ 1917 562
U-NET 3+ Deep Supervision 2056 159
U-NET 3+ Deep Supervision 1944 201
Class Guided Module

Even with accounting for the unpredictable nature of running a program on a multipurpose device,
these versions proved to be consistently too slow to be useful. Therefore it was necessary to make
modifications to the model class.

Each model contains a preset variable to determine the number of filters for each layer in the U-NET
model. These are essentially channels in the network, and extract features from the ultrasound scan
by sliding over each part of the image. Reducing these will significantly reduce the number of
calculations involved in the model and will therefore lower the run time. It will also reduce the
amount of memory needed, which could be important depending on the specifications of the device
itis runon.

Reducing the number of filters was a very natural choice to improve model performance. The
features we are extracting are in general geometrically simple, and therefore fewer filters would be
needed to capture enough information for a good segmentation. However, it is important to note
that such a change may decrease the accuracy of our model. Once the filters were reduced by half at
each level of the U-NET model, we obtained the following timing results.
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Model with reduced filter Mean Milliseconds Per Standard Deviation
sizes Segmentation
U-NET 141 12
U-NET 3+ 441 47
U-NET 3+ Deep Supervision 474 28
U-NET 3+ Deep Supervision 513 32
Class Guided Module

These results were generally satisfactory, showing an average performance under the goal of 0.5
seconds or 500 milliseconds. However, these results were generated using an input for RGB images.
This means that each pixel is represented by a tuple of three distinct values in the range 0-255.
Ultrasound images being entirely greyscale, this seemed unnecessary. The following results were
generated with a single input channel, versus a model with three input channels.

Model with reduced filter Mean Milliseconds Per Standard Deviation
sizes and grayscale input Segmentation
U-NET 120 15
U-NET 3+ 408 37
U-NET 3+ Deep Supervision 419 38
U-NET 3+ Deep Supervision 478 24
Class Guided Module

| believe this is the ideal format of a U-NET 3+ model for attempting near real time segmentation of
lung ultrasound images, with the best results consistently under 0.5 seconds on a CPU execution
provider.

U-NET Versions

One of the largest components of each training run is the model architecture. In order to fully
explore different structures, | tested several different models trained on different U-NET versions in
order to assess the segmentation accuracy. All runs were done using the halved filter architecture
and the same loss function.

Class Intersection Over Union
Model A-Lines | B-Lines | Consolidations | Effusions | Pleura Ribs Average
U-NET 0.538 0.669 0.881 0.976 0.03 0.156 0.542
U-NET 3+ 0.537 0.654 0.881 0.976 0.699 0.676 0.737
U-NET 3+ 0.808 0.828 0.961 0.976 0.733 0.705 0.835
Deep Sup

There is a very clear difference between the different U-NET version, with each model improvement
carrying an overall improvement in IOU. Although U-NET 3+ has a slight dip in A-Lines and B-Lines
IOU, the increased segmentation of both the Pleura and Ribs more than make up for this. This could
be explained by the necessity of knowing the other image features in order to correctly classify a
pixel as Pleura and Ribs, and the improved skip connections in U-NET 3+ could be providing this.
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The deeply supervised approach shows improvements across all classes, suggesting that it has
worked well and is a useful addition to the model. This seems to have the greatest effect on the
classes that need the least amount of whole image information to make a classification. Considering
that the deeply supervised approach works by updating model weights further down the model path
where more fine grained features are present, this is working as expected.

Loss Functions

The next logical test is to ask which loss function will produce the best results. Choosing the correct
loss function determines how the model evaluates its own performance, and which features it learns
best. Huang, H. et al proposed that U-NET 3+ should be trained on a hybrid loss function, consisting
of intersection over union loss, focal loss and MS-SSIM loss. | felt it necessary to explore this during
my project.

Class Intersection Over Union
Loss A- B- Consolidations | Effusions | Pleura Ribs Average
Lines | Lines

Intersection Over | 0.538 | 0.788 0.859 0.975 0.03 0.162 0.559
Union (10U)

Cross Entropy (CE) | 0.538 | 0.794 0.881 0.976 0.03 0.156 0.505
Multi Scale 0.796 | 0.824 0.957 0.976 0.734 0.703 0.831
Structural

Similarity (MS-
SIM)
Jaccard 0.788 | 0.784 0.961 0.987 0.682 0.656 0.795
Focal 0.769 | 0.784 0.965 0.978 0.659 0.657 0.788
a=(0.1,05..)
y =2
Focal 0.786 | 0.781 0.965 0.977 0.662 0.651 0.789
a=(0.1,05..)
y =3
Focal 0.792 | 0.781 0.963 0.984 0.657 0.652 0.804
a =(0.1,05..)
y=4
Focal 0.796 | 0.768 0.964 0.974 0.622 0.619 0.790
a =(0.1,0.8,0.8,
0.7,0.7,0.5,0.5,)
y =2
Focal 0.786 | 0.782 0.964 0.984 0.681 0.657 0.809
a =(0.1,0.3,0.3,
0.5,0.5,0.7,0.7)
y =2
IOU, CEand MS- | 0.761 | 0.812 0.881 0.976 0.711 0.706 0.793
SSIM
10U, Focal, and 0.805 | 0.831 0.957 0.976 0.734 0.709 0.835
MS-SSIM
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Jaccard, Focal and | 0.809 | 0.825 0.967 0.985 0.728 0.705 0.837
MS-SSIM

From looking at the results, clearly IOU and Cross Entropy loss are subpar functions, and completely
fail to learn the Ribs and Pleura classes. Although Jaccard loss is theoretically calculated by the same
method as I0U, we can see that the implementation by Silva, J. is much improved. This produces a
sufficient, but not optimised result by itself. Multi scale structural similarity loss however produces
an extremely good result, strongly justifying its place as a component of a hybrid loss function.

More interesting results come from the Focal loss runs. We can see that the variation of the gamma
variable has very little effect on the overall IOU values. This suggests that the majority of images can
be classified easily, and our model is already performing generally well. However we can see some
minute overall improvement for a higher gamma value of 4.

Changing the alpha variable also leads to a minimal change in evaluation. From our results so far, we
can generally say that the models are struggling to segment the Ribs and Pleura classes the most,
while the Consolidations and Effusions are the easiest, with A-Lines and B-Lines somewhere in
between. However, there are the most examples by far of the Ribs and Pleura classes, followed by A-
Lines and B-Lines, and the fewest examples of Consolidations and Effusions. The difficulty of
classifying the more common classes seems to be roughly balanced out by their prevalence in the
dataset, at least within the focal loss function. The best results were with an alpha value of (0.1, 0.3,
0.3,0.5,0.5,0.7,0.7), which aims to underemphasise the more common examples in the dataset.
However, this was only a marginal improvement of 0.02.

Within the tested hybrid loss functions, the lowest scoring was the combination of cross entropy,
intersection over union and multi scale structural similarity. This is unsurprising as focal loss is in
almost all cases an improved version of cross entropy loss. The proposed hybrid function for U-NET
3+ of focal, intersection over union and MS-SSIM works better. However the best results are achieved
with Jaccard, focal and MS-SSIM. Although this is only a 0.002 increase, it suggests that there is
further optimisation possible by improving upon the IOU loss function. There are several alternatives
within the literature, and this is an interesting point of investigation for future research.

Colour and Grayscale

With an improved processing time for grayscale images over colour images, it is necessary to confirm
whether there is a difference between grayscale and colour segmentation results.

Class Intersection Over Union

Colour A- B- Consolidations | Effusions | Pleura Ribs Average
Lines | Lines
Grayscale 0.791 | 0.812 0.958 0.971 0.730 0.714 0.829
RGB Colour 0.805 | 0.831 0.957 0.976 0.734 0.709 0.835

The RGB colour scale has a very small average improvement of 0.006 I0U. Individually each class is
segmented to a similar quality, and can be concluded that there is little to no change in overall
segmentation results.

34



Data Augmentations

| experimented with several different data augmentations, with the goal of improving the robustness
of the model once trained.

Reflection was done only along the vertical y axis, in order to preserve the relationship between the
Pleural Line and the A-Lines, and rotation was applied to a maximum of 35 degrees in each direction,
in order to further preserve the vertical relationship between lung artefacts.

Contrast and brightness is applied with a probability of 1 to all pixels. Both have factor limits of 0.2 in
order to preserve the image information.

The Gaussian noise added has a mean of 0, and a variance limit of 20 for a pixel brightness value.
This is applied with probability 1 to all pixels.

Class Intersection Over Union
Augmentations A- B- Consolidations | Effusions | Pleura Ribs Average
Lines | Lines
None 0.891 | 0.865 0.983 0.976 0.860 0.867 0.907
Rotation and 0.795 | 0.823 0.957 0.976 0.731 0.707 0.837
Vertical Reflection
Rotation, Vertical | 0.732 | 0.734 0.880 0.976 0.580 0.564 0.762
Reflection,
Brightness and
Contrast
Rotation, Vertical | 0.640 | 0.659 0.881 0.976 0.327 0.323 0.634
Reflection,
Brightness,
Contrast and
Gaussian Noise

Overall, we can see that the model performs significantly worse depending on the augmentations
applied. While Consolidations are still easily identified after all data augmentations, the average
suffers greatly. Rotation and reflection are failing to improve the model’s performance, although are
mainly causing harm to the identification of the Ribs, Pleura and A-Lines. As these are all generally
vertical artefacts, it would be logical to suggest that this is caused by over rotation rather than
reflection.

Additionally brightness and contrast affects all classes other than effusions, reducing the 10U value
by around 0.1 each. This seems to show that the images lose too much information by reducing the
brightness and contrast, and therefore the model struggles to learn a good segmentation.

Gaussian noise again has no effect on the effusion class, and even slightly improves the consolidation
segmentation. However, this is easily counteracted by the significant IOU reduction in all the
remaining segmentation labels. The improvement of the Consolidations class is a promising sign
however, being the only direct improvement in segmentation results from my applied
augmentations.
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Image Size

Due to the possibility of increasing or reducing the image size during preprocessing, it is important to
examine the direct impact of changing the size of the image fed into the network in order to
determine whether any potential improvements can be made. It is also possible during testing that
we may see either a higher or lower inference time than expected. If higher, then the simplest fix
may be to simply reduce this image size, and if lower we may be able to increase the image
dimensions in order to improve the segmentation.

Class Intersection Over Union
Number of Image A- B- Consolidations | Effusions | Pleura Ribs Average
Pixels (Height and | Lines | Lines
Width)
128 by 128 0.633 | 0.717 0.899 0.909 0.518 0.443 0.635
256 by 256 0.795 | 0.823 0.957 0.976 0.731 0.707 0.837
384 by 384 0.647 | 0.768 0.905 0.976 0.509 0.383 0.698
512 by 512 0.517 | 0.515 0.877 0.976 0.449 0.156 0.582

These results suggest that the previously proposed 256 by 256 dimension image is close to the
optimal. The lower model trained on a 128 square pixel image does not appear to capture enough
details from the source image, producing a worse segmentation. Conversely the increase in image
size does not appear to increase the segmentation significantly.

Class Guided Module

| also experimented with an implementation of the class guided module model for multi label
segmentation, and compared it against the same model with no such module.

Class Intersection Over Union

Model Type A- B- Consolidations | Effusions | Pleura Ribs Average
Lines | Lines
Deep Supervision | 0.798 | 0.822 0.947 0.976 0.735 0.705 0.831
Deep Supervision | 0.509 | 0.710 0.894 0.980 0.716 0.557 0.728
and Class-Guided
Module

These results were very interesting. On average, the segmentation results dropped by 0.103 IOU.
However, the Effusions class received a boost, with the Pleura and Consolidations class remaining
roughly equivalent. However A-Lines and Ribs saw very significant decreases.

Train Test Split

During this work | used a randomised split function on my dataset to separate them into a training
and validation set. Therefore the validation data would likely have some instances of very similar
images within the training data due to the same patients and videos being present in each dataset.
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To test for the model overfitting, | selected several patients to be removed entirely from the training
dataset. These patients were selected to provide coverage of all different lung ultrasound artefacts,
in order to provide a measured estimate of the models ability to segment each class on a completely
unseen patient.

The patients chosen were segPatient00000, segPatient00004, segPatient00006, segPatient00008 and
segPatient00051.

Class Intersection Over Union
Dataset A- B- Consolidations | Effusions | Pleura Ribs Average
Lines | Lines
Training 0.839 | 0.821 0.955 0.973 0.733 0.715 0.839
Randomised 0.830 | 0.815 0.954 0.971 0.728 0.711 0.835
Validation
Selected Holdout | 0.392 | 0.847 0.978 0.986 0.475 0.320 0.666

The training set and randomised validation set have a very similar accuracy, different only by 0.004
IOU. The differences in the selected holdout set are drastically different, with the Consolidation, B-
Lines and Effusions classes performing similarly well to the randomised validation and training sets.
The A-Lines, Pleura and Ribs however drastically underperform, with an average difference between
the three classes of 0.361 IOU compared to the randomised validation set.
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Conclusion

Final Evaluation

Overall the models | have trained over the course of this project have performed well, although show
signs for possible improvements. The best models were trained with the U-NET 3+ Deeply Supervised
model, without the use of the class-guided module. The model took in a grayscale input, and resized
the input images to 256 by 256 pixels before processing. This made use of a loss function comprising
of focal loss, Jaccard loss and multi scale structural similarity loss, all with equal weighting. The focal
loss parameters had a gamma value of 2, and an alpha value of 0.1 for the background class, with 0.3
for Ribs and Pleura, 0.5 for A-Lines and B-Lines, and 0.7 for Effusions and Consolidations. The best
results were obtained with no augmentations, and were trained using a batch size of 4 images
through 25 epochs. Due to time and resource constraints on the Intelligent Ultrasound GPU cluster,
such a model could not be trained for this project. However, from the results gathered such a model
could be expected to have an average IOU segmentation of close to 0.9 over all classes on a
randomised validation dataset. The evaluations for the Consolidation and Effusion classes are
consistently over 0.95, while the results for the B-Lines and Pleura are consistently over 0.8 on such a
model. While the Ribs and A-Lines classes are more difficult for the model to segment, they still show
over 0.7 and 0.75 consistently on the best trained models.

One large question is how such a model will extend to a completely unseen patient. The tests run
show that we can be confident in the segmentation of the Consolidation, Effusion and B-Lines classes
still, however the Ribs, Pleura and A-Lines show significantly worse results with signs of the model
overfitting the dataset. There is still significant work to be done in ensuring that good results are
possible on unseen data, and a smart approach to data augmentation is necessary keeping in mind
the preservation of information necessary to segment these classes in the original image. The
developer should also be willing to sacrifice some overall 10U results in order to ensure a better fit to
unseen data. The patient specific holdout dataset mentioned in the test section should also be
checked and expanded in order to ensure that it represents the overall dataset well, and does not
contain any unusual patterns or data points that may affect the segmentation results.

The final model using U-NET 3+ Deeply Supervised architecture, with a single channel input and
seven channel output can be expected to segment images in near real time on modest hardware.
Confirmation of this must be acquired through more thorough testing of a deployed model, which is
beyond the scope of this project.

This project also makes no assumptions about the medical value of each class label that is being
segmented for. Moreover, the value of each lung ultrasound artefact may even change depending on
prior medical information extracted by a non-ultrasound medical assessment. For example, a
clinician will in most cases be able to identify the patient’s ribs through an external inspection of the
torso, without necessitating seeing them on the ultrasound scan. Through the use of loss function
adjustments and merging unnecessary classes into the background, the proposed model can be
easily modified with professional medical feedback.

Another unfortunate loss of a static image approach to lung ultrasound segmentation is the loss of a
dynamic view of the lungs in motion. As the dataset and trained models only lend themselves to
individual image segmentations, there is little to no information gained from the continuous
processing of consecutive lung images. The clinicians view of the dynamic motion may be enhanced
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by viewing an ultrasound scan with real time segmentation, but this is also another avenue for
further exploration.

Ultimately, however effective the model may be it should be further stressed that it cannot replace a
trained medical practitioner. Such a tool does not possess the ability to diagnose medical conditions,
which must be made by a professional. This tool will however be able to aid a clinician in making
such decisions, easing training and improving decision making, leading to better patient care.

Future Work

Throughout the course of this project, | was able to identify a range of potential areas of
investigation for my work that due to time constraints was unable to be completed. There are likely
to be methods that would further increase the accuracy of my final segmentation, as well as make it
more useful for medical practitioners in potentially everyday use. Additionally there are some
research questions that are unanswered, and warrant investigation.

The Intelligent Ultrasound dataset contains a very large selection of images, however not all of these
are labelled with an approved mask. It may be possible to use an unsupervised machine learning
approach that does not rely on labelled data in order to develop a segmentation model. Through the
combination of my supervised approach and an unsupervised method, a further improved semi
supervised deep learning model could make use of all the data available and has the potential to
improve upon my results.

Additionally, further expert approved image segmentation masks could be created for the unlabelled
data. | expect incorporating new data would further improve my model, however this is likely to be a
case of diminishing returns. The dataset is already quite large, and to see a significant improvement
in segmentation accuracy it is likely that the dataset would have to be greatly expanded. If this was
to be done, priority should be given to a select number of images from different patients and videos.
This would increase the data diversity at the lowest effort to segment the data, having the greatest
potential effect on the model.

A further improvement of the dataset could be an effort to discern between Confluent B-Lines and B-
Lines as distinct classes. It is unclear the amount of effort versus the potential clinical reward for this
task, which should be put to healthcare professionals before being decided upon. Investigating the
images with a greater height than width could also improve the dataset if they can be modified into a
roughly uniform proportion with the rest of the data. This would allow us to train the model in a
more uniform fashion, and extract the same amount of information from each image by warping the
original scan less. Further to this point, identifying how to get the maximum amount of information
from images with great variations in pixel numbers is an important task within such a varied dataset.
There exist a range of augmentations to adjust image quality which could be useful. however if the
absolute number of pixels dedicated to displaying the lungs in these images are all similar, then a
more sophisticated approach may be required for cropping out certain sections of the background
class.

The use of the Jaccard function in place of intersection over union in the hybrid loss function
suggests that there could be a more optimal loss function. A quick search of the literature offers
some similar IOU based alternatives, similar to the improvement of using focal loss over cross
entropy loss. Furthermore, the standalone loss functions in the hybrid loss produce very dissimilar
accuracies. This suggests that a weighted hybrid loss function could produce even better
segmentations. Using some values a, 8,y say we could define our hybrid loss as below, giving more
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weight to seemingly better loss functions. This would require a large number of runs in order to find
the optimal ratios and best results.

lhybrid = aljpy + .Blfocal + Ylns—ssim

Additionally, there may be further optimisations achievable by configuring the alpha and gamma
parameters of the focal loss function. However it may be required to emphasise certain classes for
practical reasons, including how critical to patient care misclassifying a certain feature could be.

The class guided module showed an improvement for some classes, and may still be useful at a
further point in the project. In general, the module aim to solve the problem of more aggressive
segmentation that incorrectly classifies the images. However, the results suggest that most classes
are experiencing the opposite under segmentation problem. If the model was improved to such an
extent that it was over segmenting images, then this could be a useful tool in improving results. In
the meantime, it may be possible to adjust the model architecture to only provide the classification
module for the classes where results are shown to have been improved by reducing the false positive
classification rate.

A wide range of additional data augmentations are available and suitable to use for lung ultrasound,
and those used within this project could be expanded and improved upon. There are various avenues
to explore within the transforms used in this project, and expanding this to include other
augmentation techniques.

The maximum rotation values and the probabilities of applying our existing transforms could be
optimised. It seems that a maximum rotation of 35 degrees is too high, and is leading to reduced
segmentation results. Brightness and contrast changes showed no improvement, however reducing
the probability and magnitude of these changes is still worth investigating for improvements.
Introducing Gaussian noise into the image shows the potential to increase the model’s robustness,
however the amount of noise likely needs reducing. There are also other methods available to add
noise into an image, which are worth experimenting with.

There are also many other augmentation techniques which exist in the literature for lung image
structures and ultrasounds which should be more thoroughly investigated to expand the available
data. A random cropping technique could allow us to further expand our dataset for example.
However this would necessitate that the entire segmentation mask is preserved in the new image to
allow for full scale information, which is required in order to properly classify parts of the image. In
general we can conclude that for our dataset we must be very careful to preserve all the necessary
information needed to segment the image.

As U-NET is only one model within a broad field of image segmentation, it is important to consider a
wide range of possible neural network structures for our model. U-NET itself has many different
variants, and a thorough exploration of the literature may show other improvements that can be
incorporated into the model. Further enhancements to the U-NET architecture could come from
improved skip connections and a faster processing time. The dataset should also be examined with
respect to models other than U-NET in order to fully understand the advantages and disadvantages
of using different architectures by comparing results, and U-NET should not be assumed to be the
model type best suited to lung ultrasound segmentation without a full exploration of different
architectures on the dataset.

When it comes to assessing the model’s performance, intersection over union is a good but limited
metric. Using other methods of evaluation can expose deficiencies in segmentation predictions, and
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a combination of functions such as dice coefficient and precision can provide a more comprehensive
overview of the evaluation, and any future work should investigate this alongside I0U.

The practical purpose of this project must also be kept in mind. In order to fully measure the success
of the project, it should be deployed alongside a standard ultrasound probe in order to properly
assess the inference time of the model. If it is performing more quickly than expected, it may be
possible to make the model more complex by increasing the image size or number of filters. Likewise,
if it is underperforming then the model must be made simpler by reducing these features.

Once an appropriate model with a sufficient inference time is deployed, then the next step is to
examine its usefulness in medical practice. By assessing the tool in clinical diagnosis and training, this
could provide useful directions about how the model may be optimised for practical use by clinicians
of varying experience. Within patient care, we may decide to emphasise a class with more critical
care implications, while sacrificing others to improve patient diagnosis. Similarly, a training model
may choose to focus on more commonly seen classes in order to guide the trainee’s learning. This
could be done by merging certain classes into the background if they are deemed not useful, or by
training our model to focus on certain areas more via the use of focal loss parameters. Expert
feedback and practice should be sought for these decisions in order to ensure that any changes have
a positive overall effect.

Once a good tool is available and approved by medical professionals, it must then be more
thoroughly tested in patient care. For example, we should seek to answer whether the tool can
successfully segment certain classes in practical clinical settings. We should also ask whether the tool
segments all patients to a similar level, or whether it falls short for certain gender, ethnic or age
demographics to name a few. If the model is not confirmed to perform well across all societal groups,
then certain patients will receive a different level of care when using the tool. Clinical testing will also
be helpful for providing feedback as to whether the model fails to segment any common scenarios,
and could provide insights of potentially common misclassifications or gaps in the dataset. The
overall robustness of the model to new and unseen data could be very confidently evaluated by high
quality clinical feedback.

Research Contribution

This project has shown that it is possible to create a good deep learning model in order to segment
lung ultrasound images using U-NET. We show a high 10U result for each class simultaneously, with
the potential to segment in near real time.

Additionally this project has built upon the results proposed for U-NET 3+, showing the a class guided
module has limitations, and must be applied smartly to a suitable segmentation problem.

This project has also provided a first exploration of the labelled portion of the lung ultrasound
dataset. Due to the sheer number of image samples, this is a unique collection of images and
evaluating the dataset critically is important in order to extract maximum value from it. Over the
course of the project, | have sought to critically examine the data in order to identify both its
strengths and weaknesses. Any future users of this dataset should be able to examine this work in
order to build upon my progress, and gain a better insight into how to use the data in order to train
machine learning models.

As there are no publicly available datasets of lung ultrasound images, there is an absence of data
driven approaches for segmenting these images in the literature. This work has shown that such an
approach is possible, and furthermore can segment such an image in close to real time. The

41



development of machine learning approaches for segmenting a lung ultrasound is therefore a novel
step forwards in the literature, and my project suggests that there is even further progress to be
made in producing an optimal segmentation. In addition, this approach has focused on segmenting
multiple different image features, where prior work has focused on a minimal number of distinct
features. Certainly the Intelligent Ultrasound dataset is worth exploring further in order to develop
an unsupervised or semi supervised approach. This underscores the transformative nature of
artificial intelligence tools and the potential of this project to directly transform patient care, by
increasing the effectiveness and accuracy of diagnosis via lung ultrasounds.
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