
C i U i i Y

S H C S i I i

MS A C S i
60 C i

Command Line Interface to Generate
CI/CD Conigurations for Projects

Author
Miles B

Supervisor
Carl J

November 3, 2021

Abstract

CI/CD (Continuous Integration/Continuous Delivery) is an important aspect
of modern software development. A limiting factor when it comes to imple-
mentation of CI/CD worklows is the coniguration overhead. Often, very
similar conigurations are used for multiple projects, thus duplicating work.
Notwithstanding the need for the base knowledge required for CI/CD deploy-
ments, this project proposes a solution to this problem. This project provides
tooling to automate the integration of source control, build systems, storage
systems, as well as deployment targets and databases.

1

Contents
1 Introduction 5

1.1 Aims . 5
1.2 Audience . 5
1.3 Scope . 5
1.4 Assumptions . 6
1.5 Summary of Important Outcomes 7

2 Planning 7
2.1 Issues Surrounding the Nature of the Project 7
2.2 Methodology . 8

2.2.1 Lean . 8
2.2.2 Kanban Board . 9

3 Background 9
3.1 Why Use CI/CD . 9
3.2 Existing Solutions . 10

3.2.1 GitLab . 10
3.2.2 OpenShift . 11
3.2.3 Azure . 11
3.2.4 Project Type Detection 11

3.3 Problem Areas . 12

4 Speciication and Design 12
4.1 Requirements . 12

4.1.1 Functional . 13
4.1.2 Non-Functional . 14

4.2 Architecture Overview . 14
4.3 Architecture Development Process 15
4.4 Modules . 15
4.5 Code Stores, Builders, Image Stores, and Consumers 16
4.6 Choice of Tools . 18

4.6.1 Language . 18
4.6.2 Libraries . 19
4.6.3 Deployment . 20

5 Implementation 20
5.1 Choice of Integrations . 20

5.1.1 Code Stores . 20
5.1.2 Builders . 21
5.1.3 Image Stores . 21
5.1.4 Deploy Targets . 21
5.1.5 Databases . 22

2

5.2 Project Coniguration and Storage 23
5.3 Core Application and Module System 23
5.4 GitHub Actions . 24

5.4.1 CodeQL . 24
5.4.2 Docs . 24
5.4.3 Testing . 25

5.5 Git Hooks . 25
5.5.1 Pre-commit-hooks . 25
5.5.2 Flake8 . 25
5.5.3 MyPy . 26
5.5.4 Black . 26
5.5.5 Isort . 26

5.6 GitLab . 26
5.6.1 Initialisation . 26
5.6.2 CI Pipelines . 27
5.6.3 Dockeriles . 27
5.6.4 API . 28

5.7 OpenShift . 28
5.7.1 Interfacing . 28
5.7.2 Application Deployment 28
5.7.3 Database Deployment 30

5.8 Azure . 30
5.8.1 Interfacing . 30
5.8.2 Registry Creation . 31
5.8.3 Application Deployment 32
5.8.4 Database Deployment 32

5.9 Detection of Project Type 33
5.10 Wizard . 33
5.11 Documentation . 33

6 Results and Evaluation 34
6.1 Requirements . 34

6.1.1 Functional . 34
6.1.2 Non-Functional . 36

6.2 Development Retrospective 38
6.2.1 Positives . 38
6.2.2 Negatives . 39

7 Future Work 40

8 Conclusion 41

9 Relection 41

3

10 Appendix 42
10.1 Source Code . 42
10.2 Package Manager . 42
10.3 Installation . 43

10.3.1 Requirements . 43
10.3.2 Installation Steps . 43

10.4 Usage . 43
10.4.1 GitLab and Openshift Tutorial 43
10.4.2 GitLab and Azure Tutorial 45

References 48

List of Figures
1 The lean startup cycle [2]. 9
2 The plugin architecture. 15
3 Data low through the providers. 17

4

1 Introduction
1.1 Aims
The main aim of this project is to produce tooling that will to some degree,
reduce the amount of work required to set up CI/CD worklows such as those
that can be run by GitLab pipelines. In doing this, the beneits will be two-
fold: Those with experience of CI/CD will be able to deploy a CI/CD pipeline
faster and with more ease; Those with less DevOps (software development
and IT operations) experience will be able to use CI/CD tools where they
might have otherwise not been able to or severely struggled to.

In order to realise this overarching aim, I will need to aim towards several
other lesser goals. An important aspect of this project is to integrate with
several platforms in order to provide a choice for the developer. This would
help diferentiate this tool from other tools as for most platforms, there are
user-friendly scripts and tools to help with that platform in particular. We
will look further into this in Section 3.2.

As well as a choice of platform, it is important that the tool should
abstract away from the process as much as possible. This is to help with
the initial aim to reduce work needed by the developer. Although it can be
detrimental to user coniguration and choice at times to abstract to a too
greater level, at that point the tool proposed by this project would not be
the correct tool to use.

1.2 Audience
The audience for this tool is a broad one. Depending on past experience with
CI/CD tools, this tool will provide diferent helpful factors. Should the user
be someone with extensive CI/CD experience, then the tool will assist them
in boilerplating their CI/CD pipeline. Although their knowledge could be
extensive, the use of the tool will cut down on the amount of time required
for them to conigure the CI/CD pipeline.

On the opposite end of the spectrum, you have the user who has little to
no experience with CI/CD. This tool consequently allows them to implement
a basic CI/CD pipeline with sane defaults which will allow them, in turn,
to harness the power of CI/CD without the need to learn the coniguration
steps that are required.

1.3 Scope
The scope of this project must be clear to avoid infringing on the functional-
ity of existing tools (See section 3.2). There are tools that exist to conigure
coniguration iles, as well as tools to interact directly with the APIs provided
by the target platforms (see Section 5.1). In between these tools, however,

5

exists an area with little existing tooling. This area is the automatic conigu-
ration and deployment of CI/CD pipelines for many combinations of diferent
platforms.

This begins with the generation of the Dockerile. Although not a simple
process, a template Dockerile for the project can be generated which can then
be updated by the user in order to accurately match the speciic architecture
of the project. Once this Dockerile is generated, the code will be uploaded to
a code store. Once uploaded, a build process can begin which will generate
a Docker image from the Dockerile. This image can then be stored in a
registry. Once accessible from a registry, the deployment platform of choice
can then pull the image and deploy it. As well as an image, the deployment
platform should also be able to deploy a database and return the credentials
of the said database so that it can be connected to the project.

A clear end needs to be deined at this point as any more coniguration be-
yond this point is infringing on the functionality of the platform-speciic tools.
Although there is no legal or functional harm in implementing functionality
found in these tools, there is the issue of both time and user experience. As
the project has a inal deadline, time needs to be spent on providing new
functionality to the end-user instead of re-implementing existing tools. As
well as the time aspect, more functionality adds more complexity to the tool
which could reduce accessibility and usability for less experienced users. This
is an issue as one of the audiences speciied in Section 1.2 is the inexperienced
group, whom this additional functionality would impact.

1.4 Assumptions
The breadth of the audience of this project means that there are few assump-
tions that need to be made. The largest assumption is that the end-user
wishes to use one of the platforms developed for during this project. We can
overcome this assumption slightly by implementing a modular approach to
the project such that in a future use case where the platform of choice is not
supported, the platform can be added to the project with relative ease.

To help with the packaging and distribution of the project, we must make
the assumption that the user has, or has access to, the dependencies required
by the project. Although it could be possible in future for the project to be
packaged along with its dependencies, due to the relatively short time-frame
for the project, combined with the high rate of change of the project, it is
infeasible to repackage the project after each build without a relatively large
overhead that could be spent delivering greater functionality to the tool.

In order for the tool to successfully store, build, distribute, and deploy a
project, I assume that the user has access to the platforms that support those
aforementioned functionalities. Without these platforms, the project will not
function as it is considerably beyond the scope to provide those platforms to

6

support those actions.
This list of assumptions is not an exhaustive list as many of the assump-

tions made in this project are such common assumptions that they are not
worth examining, for example, does the user have access to a computer.

1.5 Summary of Important Outcomes
Due to the exploratory nature of this project, deining important outcomes
is diicult beyond a point. A minimum viable product (MVP), in the case
of this project, would take the form of a tool that allows the user to auto-
matically conigure deployment of their code to an endpoint. Within this
outcome, there are many avenues to explore, and from a planning point of
view, it is diicult to determine which of these are important. The overarch-
ing idea will be a system that takes a set of inputs and transforms them into
a more useful output. The input, in this case, is the code, and the output is
a deployment of the code.

Some examples of these avenues are automatic deployment triggers, inter-
mediary storage of built applications, as well as the automatic coniguration
of databases to accompany the application. Although potentially vague, I
would determine an important outcome to be some combination of these
features to produce a tool that provides real functionality and improvement
of the development process to all of its target audience. This improvement
would mostly come from a change of the application just running on the de-
veloper’s computer to an application that can be run on the service that the
developer chooses. Although not a precise and measurable outcome, it will
hopefully become obvious during and after the development process, whether
this tool is of any signiicant value to an end-user.

2 Planning
2.1 Issues Surrounding the Nature of the Project
Although appearing as a simple, linear project at irst glance, the nature
of the project is more complex than that. Much of this project consists of
research sections that were diicult to predict the length of. This is due
to the development methods used in this project. In order to reduce work
in progress (WIP), I opted for short phases each of a similar format. This
format consisted of a research phase, followed by an implementation phase.
Should the project have consisted entirely of development phases, based on
prior knowledge and research, then the time required would have been easier
to calculate.

This approach, however, helped to reduce WIP, which in turn, reduced
the risk of wasted efort should the deadline arrive and I have much invested

7

in an uninished WIP.

2.2 Methodology
My methodology for this project was developed in an organic way that loosely
followed agile principles. I initially planned for three phases, following three
diferent themes. The irst sprint focused on research and the generation of
ideas. This research included the platforms that I wished to target as well as
ways to structure the project. The second sprint was the main development
sprint which I aimed to have built the MVP by. The inal sprint was the
additional feature sprint. This was very open-ended in what I would be
doing for its duration as it depended entirely on how much I had achieved in
sprint two, as well as what I had discovered during sprint one.

Although I roughly stuck to the three sprint format for the duration
of the project, it proved lawed for several reasons. The main issue that I
encountered was information retention. Much of the research that I carried
out was about the underlying architecture of each of the target platforms.
This included the data low as well as the speciic quirks of each platform.
Expressing this information in a way that I could learn from in a more concise
manner than from the platforms documentation was challenging and was
adding signiicant overhead. In order to overcome this issue, I adapted to the
aforementioned short, multi-discipline sprint method. This meant that when
I had inished researching a new platform, I could implement it straight away
without having to make extensive notes. This allowed me to implement a
new platform most weeks as well as minimising WIP by researching topics I
would not have time to implement later on.

The second major advantage to this method was that I lined up well with
my weekly meetings. This meant that after each of these minor sprints, I
could look at the progress I had made in order to assess whether any further
work was needed as well as to determine the direction the project would
take for the next sprint. This allowed for more rapid changes in direction as
opposed to three, much longer sprints.

2.2.1 Lean

Although the methodology developed organically, both from prior knowledge
and also from direct experiences from the project, the methodology closely
represented the lean methodology [1]. This methodology centres around the
idea of minimisation of WIP and hypothesis-driven development. Although
it is hard to apply this methodology at a macro scale to this project (due to
the nature of a ixed dissertation title), it is very applicable at the micro-scale.
The short sprints each tested a hypothesis surrounding a good new feature to
implement. For the majority of these sprints, the hypothesis was sound. This
meant that by the end of the sprint, no work was lost as there was deliberately

8

no WIP by the end of the sprint post the MVP implementation phase. In
the event that I still had WIP at the end of the sprint, I could evaluate
whether I had just misjudged the scope of the feature I was implementing
or whether the hypothesis that it was a good feature to implement was bad.
This is where my inal methodology inds its similarities to lean. With the
lean methodology, one of these failed sprints is equivalent to testing a startup
idea that was unsuccessful, as can be seen in Figure 1. Although there is some
lost work, the lost work is minimised by the minimisation of WIP and the
short, lean, evaluation period.

Figure 1: The lean startup cycle [2].

2.2.2 Kanban Board

In order to visualise and implement the minimisation of WIP, I decided to
use a Kanban-style board to manage the smaller aspects of the project. By
using three columns (to-do, doing, and done), I was able to clearly manage
the number of cards in the “doing” column. This allowed me to gain ei-
ciencies both in the lean sense by minimising WIP, but also by achieving
this minimisation, reduced overhead associated with context switching. This
project difered from Kanban as there was no formal backlog to pick from.
Instead, tasks were added directly to the to-do column. Due to the short
discovery-implementation cycle, there were few tasks to pick form at any one
time and therefore the board functioned more as a rich to-do list as opposed
to a Kanban board.

3 Background
3.1 Why Use CI/CD
The advantages to using CI/CD for a project are multifaceted. CI/CD au-
tomates several aspects of the development that would otherwise be slow,

9

error-prone tasks. This automation process, once implemented can improve
the build/release time of a project by 330× – 1110× [3].

As well as the build/release cycle, CI/CD can be applied to ticketing and
issue systems such as that implemented by GitHub. CI/CD implementations
to automatically test pull requests attached to issues have been shown to
signiicantly increase productivity without a decrease in quality [4]. This is
signiicant as it allows core developers to spend less time testing and checking
pull requests and more time writing code, thus improving project output.

Even teams that already have good metrics beneit greatly from CI/CD,
especially when it comes to incident recovery. Well performing teams still
recovered 2.604× faster from incidents as well as having a 7× lower failure
rate to begin with [5].

Within an enterprise context, the main barriers to CI/CD implementation
are training costs, technology costs, downtime when upgrading, consulting
services, as well as other expenses [6]. This tool helps reduce some of these
costs by lowering the barrier of entry, thus reducing possible costs. The ad-
dition of DevOps to an enterprise context results in some signiicant beneits
which include but are not limited to reduction in duplicated work, reduc-
tion in staf needed, added value from reinvestment in new features, time
recovery, and frequency of experiments.

As well as the beneits of CI/CD in industry, there are beneits to intro-
ducing students to this important concept in education. This tool aims to
lighten the learning curve of CI/CD and therefore provide a gentle start with
little prior knowledge required. This is a good example of spiral learning [7].
If students are exposed to the concept of CI/CD early on without requiring
much background information, it makes fully learning the concept and illing
in any gaps in their understanding further on much easier and with a greater
success rate.

3.2 Existing Solutions
In this section, I shall highlight some of the existing solutions to areas that
this tool covers. In order to count as existing solutions, I am only look-
ing at tools that are predominantly CLI, as well as simplifying or wrapping,
to some extent, the underlying API. This look into existing tools is also
non-exhaustive as there are so many tools that encompass some of the func-
tionality of this project that it would be infeasible to cover them all.

3.2.1 GitLab

Arguably, git itself could be included as a CLI tool to access GitLab. How-
ever, the tool this project seeks to implement interacts with the CI/CD
aspects of GitLab as well as the git aspects of it. Therefore, git would be
unable to fulil all of the required functionality of the tool. There does exist a

10

CLI wrapper around the GitLab API [8] that provides complete access to all
of the API endpoints that GitLab exposes. Although powerful, this means
that the user is faced with many more features than they are ever likely to
use, thus making the tool harder to use.

3.2.2 OpenShift

There is an in-house CLI for OpenShift that exposes all of its functionality
[9]. Similarly to the GitLab CLI, this tool exposes more functionality and
coniguration to the use than that which is needed. Therefore, additional
functionality complicates its usage and can therefore be improved by this
project. An example of this additional complexity is the deployment of a
Docker image. For example, in order to deploy an image from GitLab, the
OpenShift CLI requires 14 commands [10].

For more basic control over OpsnShift’s functionality, there is the Kuber-
netes (k8s) CLI: kubectl [11]. The OpenShift CLI is built on top of this,
extending its functionality to include the additional features that OpenShift
provides. Therefore, the same issues prevail with this tool.

3.2.3 Azure

Similarly to OpenShift, Azure provides an in-house CLI solution: az [12].
This tool provides rich functionality with all of Azure’s products. Although
useful for an expert, this functionality comes at a cost, both in learning
diiculty, as well as ile size1. This CLI is built using the Python bindings
for the API which provide an alternate interface into Azure.

3.2.4 Project Type Detection

Currently, there are few projects that a built with the sole purpose of de-
tecting project type. The best, currently maintained project is Netlify’s
framework-info [13]. This detects which JavaScript framework is being used
in a project. The two issues with using this project are, irstly, that it is
written in JavaScript. This would make it diicult to integrate into the cur-
rent code-base. Secondly, it is only able to detect JavaScript libraries. This
means that in order for it to be useful, it would need to be modiied to also
detect frameworks in other languages. These two issues are major enough
for the lowest friction path to be reimplementation. This is not a huge task,
however, as the core architecture of framework-detector can be used which
will remove the need for detailed planning and trial and error.

1The Azure CLI’s total installed size is over 1GB.

11

3.3 Problem Areas
The project can be broken down into a series of problems. Although these
problems may not line up directly with each phase, they can be used as a
measure of progress. Due to the nature of the project, more problems arose
during the development phase of the project.

The irst problem area to address was the architecture of the project.
This included ways to make the project modular, as well as specifying some
kind of consistent design between said modules. This had to be the irst
problem area addressed as it blocked the development of the other sections
until completed.

Once the core architecture was addressed, there was potential for all of
the other problem areas to be addressed with relative asynchronicity. As
mentioned in Section 2.2, a truly asynchronous approach to the following
problems was unfavourable. Each problem area from this point onward
revolved around a provider from the desired CI/CD tool-chain. For each
provider, a problem area arose around each of the services that I wished
to wrap. Each of these problem areas lasted roughly one of the one-week
phases ultimately decided upon. It was important that some aspects of the
project were implemented in parallel, however. For example, improvements
to the core architecture, as well as some documentation, were made over the
development process. It was important to balance which tasks were done in
parallel due to the aforementioned faults with parallel tasks. Building each
section in isolation would have made an implementation of a full end-to-end
solution diicult.

4 Speciication and Design
4.1 Requirements
In order to formally specify the requirements for this project, I shall break
them down into functional and non-functional requirements. Although there
was an approximate idea of requirements at the start of the project, I shall
also be listing new requirements decided upon during the development of the
project. Although perhaps an unorthodox approach, this approach meant
that I was able to adapt the direction of the project during its development
in order to react to new discoveries made along the development path.

Due to the heavy use of time-boxing during this project, as well as the
short duration of the time-boxes, I chose to use an approximation of the
MoSCoW method [14] for deining my requirements. Due to the short du-
ration, it was imperative that I prioritised certain requirements over others,
lest I waste my time on unimportant features.

There is scope here to deine the requirements as user stories and write

12

acceptance criteria for them. I have decided to not use this approach as these
user stories will either be too speciic to allow for discovery and addition of
new features upon said discovery, or they will have to be written so vaguely
that they will be diicult to deinitively test and be of little use to the project.

The requirements assume the pre-conditions laid out in Section 1.4.

4.1.1 Functional

• The user must be able to upload their code to a code store.

• The user must be able to trigger the CI/CD pipeline.

• The CI/CD build stage must result in a valid artefact.

• The artefact must be stored.

• The user must be able to specify how the artefact is deployed.

• The tool must be usable through a CLI.

• The user should be able to deploy a database.

• The user should have a choice over which services they use.

• The tool should guide the user through each stage of deployment.

• The tool should recommend reasonable defaults.

• The tool should expose an interface to allow the development of new
plugins.

• The tool could automatically conigure the project with the database’s
credentials.

• The tool could expose an interface to allow ease of script development
involving the tool.

• The tool won’t implement the full APIs exposed by the chosen service
integrations.

• The tool won’t ofer coniguration options post-deployment.

13

4.1.2 Non-Functional

• The tool must be usable by someone with only minor experience with
DevOps.

• The tool must fail cleanly when an error arises.

• The future operation of the tool should not be afected by any previous
errors that have occurred.

• The tool should be usable with only minimal interaction and without
the need for extensive menus.

• The user should be able to use the tool on their platform of choice.

• The tool should notify the user as to the cause of any error which may
occur.

• The user should be able to add support for more services.

• The tool could suggest ixes for any error that occurs.

• The tool could work on future versions of the services that it targets.

• The tool won’t afect the targeted service should an error arise.

4.2 Architecture Overview
In order to support the addition of new services, I decided to architect the
project in such as way as to accept the implementation of new services post-
development. I chose to implement this through a plugin system. A key
aspect of this plugin system was loose coupling such that there was little de-
pendence of one plugin on another. This architecture bore strong similarities
to Hexagonal Architecture [15]. The inal architecture resulted in moderately
loose coupling. This was because although each module was technically in-
dependent, there was still a core application that derived its functionality
from the plugins. This architecture is also beneicial to testing as it clearly
separates the functionality of the inal tool into separate spaces.

The plugin system allowed for the separation of service providers, each
into their own plugin. This approach proved useful from an implementation
aspect as it allowed each provider to be implemented separately from each
other in an isolated manner. Depending on the user, however, this approach
could be detrimental to the user experience as it may have made more sense
from an inexperienced user’s perspective to divide up the functionalities into
plugins, and not providers.

14

Figure 2: The plugin architecture.

4.3 Architecture Development Process
The use of plugins developed in relative isolation from each other meant that
they could be implemented in parallel with little interference between each
other. The irst step, however, is to implement the core project. This was
comprised of the overarching CLI, the plugin system itself, as well as the
CI/CD pipelines for the project. During this phase, I implemented a basic
interface with one of the providers such that the core project could be tested.

4.4 Modules
In order to implement a plugin system, I chose to implement the functionality
for each of the providers in separate modules. These modules were entirely
separate from the core project. Although ultimately, all of the code was
stored in a single mono-repo, the plugins were functionally separated from
the core project from Python’s perspective.

As can be seen in Figure 2, the tool revolves around a central application
core. This core then gains functionality from each of the plugins. In the
diagram, the plugins are represented by the circles, the core by the hexagon,
and features by rectangles. Although the core does implement some function-
ality, the majority of the functionality of the tool is derived from the plugins.
Another important aspect of the architecture to note is that there are no di-
rect connections between each of the plugins. They each only interface with
the core.

I chose to architect automatic plugin detection into the project. This

15

further decoupled the modules from the core project by removing any explicit
mention of them. The architecture I chose in order to achieve this was to use
a speciic naming convention for the plugins, install them as Python modules,
and then scan the Python namespace for matching modules.

There are two alternative architectures for implementing this method of
discovery. The irst architecture is the similarly named namespace packages
[16]. This is where each plugin implements features in the same namespace.
This has the advantage that discovery does not depend on the package name
but on the contents of the package. I chose not to implement this architecture
as it proved simpler to scan the global namespace instead of implicitly im-
porting everything in a namespace. The second alternative architecture is to
harness the metadata that can be included when packaging with setuptools
[17]. setuptools allows for the speciication of entry-points. These can then
be scanned for by the parent package using importtools in order to ind
all of the installed plugins. I chose not to use this architecture as irstly, I
was not explicitly using setuptools, but secondly, this seemed functionally
similar to scanning the global namespace for packages, except with the extra
steps of having to specify entry-points for each of the plugins.

4.5 Code Stores, Builders, Image Stores, and Con-
sumers

In order to allow interoperability between plugins, the project requires an
intermediary format to use between providers. One method could be the
source code of the project. This has the advantage that the size of transfer
between providers will always be small. The disadvantage to this approach is
that it introduces many more variables to the mix. These variables are to do
with the environment that the code shall be run in. With this approach, the
dependencies are determined by the provider and not by the author. As well
as this, as this tool is language agnostic, languages that need compilation
must also need to be supported. This means that a compilation step is
needed and the artefact from the compilation process is required instead of
the source code.

An alternative to the transmission of the source code is to use containers.
These are snapshots of an operating system that can be deployed in a repro-
ducible way. These can be deployed to a compatible run-time in which the
author can specify all of the dependencies in a reproducible manner. This
run-time difers from a virtual machine in that a virtual machine virtualises
an entire machine from the ground up, whereas a container run-time utilises
features in the Linux kernel to isolate the container from the host without
the need for virtualisation. The implementation of this format has been stan-
dardised across providers [18]. This standardisation speciies both the image
format [19], as well as how the image should be run [20].

16

The use of containers, therefore, works as a good intermediary format to
use between providers as the dependencies can be guaranteed, as well as the
format being universal. This means that the chance of a provider being able
to accept the container with few extra steps to deploy it is higher.

In order to use the containers, a low of data through the proposed system
is needed. As can be seen in Figure 3, this low can be broken down into
four distinct phases: code storage, building, storing the building artefact,
and deployment. In between these phases are lows of data.

Figure 3: Data low through the providers.

The irst phase occurs when the user submits their code. This uploads the
source code for the project to the code store. From the code store, the source
code lows to the build process. This process takes the source code, builds
it and runs the speciied tests. The output from this phase is then checked.
If the project built successfully and the tests passed, then the container

17

image produced by the build service is sent to the container registry. The
registry is responsible for storing the images produced by the build process
and providing them to the deployment service when required. The deploy
service pulls the container image from the container registry and deploys it
using the aforementioned standardised run-time. This deploy service is also
required to set up the routes, DNS, and storage to allow the application to
function and be accessed.

Through the combination of all of these phases the tool, and consequently
the user, is able to deploy the source code through a CI/CD pipeline con-
sisting of multiple providers. Each of these providers uses an interoperable
format to facilitate modularity of service providers, and thus an overall mod-
ular system.

4.6 Choice of Tools
An important aspect when starting this project was the choice of tools that
I would use to develop it. These tools include but are not limited to: which
langauge/s, framework/s, and how the tool shall be deployed/distributed.

4.6.1 Language

An important aspect of the project, which was speciied from an early stage
was that it should be multi-platform. Although most modern languages
support this to some extent, higher-level languages such as Python and Java
support this to a greater extent as they run on their own VM, thus separating
them from the base operating system. Due to the tight time constraints,
requirements, and scope of the project, it was important that I picked a
language that I could develop in with good productivity. I have extensive
experience writing Python in many contexts, such as web development, data
science, as well as CLI applications. This made Python a perfectly suited
language for this project. Although there are many other languages that
could have worked well for this project, my prior experience with Python
was such an overwhelming advantage versus any other language that it was
the obvious choice.

Once I had chosen Python, I needed to choose which version to use. This
choice was a trade-of between compatibility and feature set. The older the
Python version I chose to use, the greater compatibility I could achieve as
each Python 3 version is backwards compatible with all previous versions. On
the other hand, the newer the Python version I picked to target, the more
features I had as well as the longer security patch support. After weighing
up the feature/compatibility trade-ofs, I chose to target Python 3.9. At the
time of development, this was the latest full release of Python which ofered
typing built directly into the language [21]. This meant that, due to the
time pressures of the project, although I would have relatively little time to

18

unit test each element of the project, I could avoid the most common type of
programming error: “a certain kind of value was used where a diferent kind
of value was expected” [22]. Similarly to the advantages TypeScript bring
to JavaScript, Python 3.9 types combined with appropriate error checking
tooling negate this kind of error.

4.6.2 Libraries

The main area of this project that could be accelerated by the use of a library
was the CLI interface. There are many ways to implement CLIs in Python
although there are a handful of popular libraries to do so. One of the most
popular is click [23]. This provides tooling to create a comprehensive CLI
including auto-generated docs, auto-completion, and argument parsing. In
order to make the most of the typing advantage brought about by Python
3.9, I chose to use a library built on top of click called typer [24]. This
library wraps click but utilises the type hinting introduced by Python 3.9,
thus helping to eliminate bugs introduced through incorrect typing.

In order to interact with GitLab in Python, the most popular library is
python-gitlab [25]. This wraps all of the endpoints of the GitLab API,
allowing for easier use than manually using the REST API. As well as the
GitLab API, this project needs to be able to interact with the target project’s
git data. For this, GitPython [26] is a popular library. This library is able
to emulate most of git’s features through its Python API.

Azure has multiple options when it comes to libraries. As its main CLI
is written in Python [27], it doubles as the Python library. This resulted in
an interesting development cycle. The initial implementation was done by
calling the Azure CLI. Although this has several issues including potential
security ones, it meant that the implementation phase could closely follow
what had been documented during the discovery phase. This use of the raw
CLI could then, in future, be upgraded to the use of the Azure CLI’s internal
CLI parser, and ultimately, using the actual Python API.

OpenShift exposed several methods of interaction. The irst was the oc
CLI. This, similarly to the Azure CLI, could be called in Python and could
therefore minimise the jump between discovery and implementation. As
OpenShift is built on top of k8s, the Python k8s library could be used for
basic interaction with the service.

A inal library that I chose to use was rich [28]. This provides styling of
output into a terminal. Although this is not strictly required, it results in a
more user friendly, and speciically, beginner friendly output.

Although this list of libraries is non-exhaustive, it covers the main libraries
used to structure the project. Where other libraries are used, they play a
minimal role in the project.

19

4.6.3 Deployment

I chose to deploy this project as a Python package, installable with pip. I
chose this method as irstly, as Python was already a dependency, the user
was almost guaranteed to have pip installed as well. This means that the
project can be easily installed with one command. This command installs
all dependencies as well as the project its self. The alternatives to this were
to either distribute the source code or to compile the application. The irst
method would have been more diicult than distributing using pip because
even when the user downloads the source, they will still have to use pip
to install the dependencies, thus negating any beneits found by directly
downloading the project. The second alternative would have been to compile
the project. Although potentially easier for the end-user to run, it produced
several cons. These being irstly the development time required to get the
project to compile. Python is an interpreted language irst, with compilation
being retro-itted by third-party libraries. This introduces scope for new
errors and issues surrounding the unoicial method of running the code. The
second issue is that of distribution. Several diferent builds would have to be
maintained in order to target all of the possible platforms and architectures
that the end-user could be using.

5 Implementation
In this section, I shall outline how I went about implementing diferent sec-
tions of the project. Although technical aspects shall be addressed, this
section is not a substitute for the full code listings. Details of these listings
can be found in the Section 10.1.

5.1 Choice of Integrations
Although the ideal outcome of this project is a tool that has modular support
for all common services associated with a CI/CD pipeline, due to the time
constraints I targeted a subsection of the possible services. This allowed me
to focus on a full implementation of each service.

5.1.1 Code Stores

The irst store of the data low in this project was the code store. This is
where the user submitted their code to, in order to trigger the pipeline. For
this service, I chose to implement tooling for GitLab. This was because it is
Cardif University’s primary service for source code storage. The alternative
to this would have been GitHub which ofers similar services. The modular
nature of this project, however, means that in future, GitHub support can
be easily implemented.

20

Another advantage to choosing GitLab is that it has a mature service for
running CI/CD pipelines integrated into the GitLab instance. This reduces
the amount of research required for building these two parts of the pipeline
as they share a common API. This did, however, introduce the challenge
of maintaining the hexagonal architecture. As both stages of the pipeline
use the same service ultimately, I shared some code between the two stages.
This resulted in coupling between the two services. This choice resulted in
the plugin architecture that modularised service providers instead of services.

5.1.2 Builders

In order to take advantage of the services provided by GitLab, I chose to
implement an integration with GitLab Pipelines: GitLab’s CI/CD runner
service. The GitLab pipelines service provided all of the features required to
build Docker images from source code with only minimal coniguration.

5.1.3 Image Stores

Due to the service-module architecture that I chose to implement, as well as
the fact that several of the services I chose to implement contained container
stores, I implemented two diferent container stores, each with their own
advantages and disadvantages. The irst store that I implemented was the
GitLab container registry. As with GitLab Pipelines, implementation of a
further GitLab service was made easier by the use of existing procedures for
authentication with, and access to, GitLab. As well as this, GitLab Pipelines
requires very little coniguration to push images to the GitLab container
registry as they both reside within the same service. A major disadvantage I
encountered later on with this container registry was that for the university’s
deployment of GitLab, the container registry was only accessible from within
the university’s network. This meant that only deployment targets within
the network would be able to pull images from this registry.

The other container registry I chose to implement was the Azure Con-
tainer Registry (ACR). This had the advantage that it could be conigured to
be accessible from anywhere. There was, however, signiicantly more conig-
uration required, both from the pipeline’s perspective as well as from ACR’s
perspective. Creating an ACR instance required the setup of authentication,
which then had to be passed to the build stage so that it could upload built
images. This then created more complexity for the CI/CD coniguration as
it had to accept these dynamic values from ACR.

5.1.4 Deploy Targets

I chose to implement two targets that the user could deploy against: Open-
Shift, and Azure Web App Service (AWAS). OpenShift was in important

21

target if the GitLab container registry was going to be used as there was an
OpenShift instance hosted on the same network. As OpenShift is a wrap-
per for k8s, the process to deploying from a container registry to it was well
documented as k8s is a very common service. OpenShift also manages rout-
ing, which once conigured, allowed the container to be accessible from the
outside world.

The second target I chose was AWAS. This is a managed container service
provided by Azure. This, given the requirements of the project, was the best
ofering provided by Azure. It takes a Docker image and deploys it with
routing, DNS, SSL, and monitoring with little coniguration. This made it
ideal for this project as the small amount of coniguration made it more
approachable for beginners.

5.1.5 Databases

An important aspect of containerised applications is persistence. This is
usually achieved by storing the deployment’s state in a database, instead
of the container it is housed in. This reliance on the database means that
speed and latency are important factors. These considerations mean that
the database is usually housed, topologically speaking, close to the container.
Therefore, I chose to target the same services as the deploy targets for the
database integrations.

OpenShift has a concept of templates which made coniguration of a
database on the platform easier than building a database coniguration from
scratch. These templates take a set of variables and deploy a service on
the platform in accordance with the coniguration those variables described.
OpenShift, by default, has a template to deploy a MariaDB database with
persistence. Therefore, the user can be prompted for the important variables
and the tool can use reasonable defaults for the less important variables.

The oicial guidance from Azure when it comes to deploying databases is
not to use containers to do so, contrary to OpenShift’s documentation. The
recommendation is to use a managed database service run by Azure. One of
the database services that they provide is a managed MariaDB service which
takes similar coniguration variables to OpenShift’s MariaDB template. This
sentiment is common amongst the DevOps community [29]. The reasoning
for this is that the most common methods to deploy containerised applica-
tions such as k8s assume that the containers that they are deploying are
stateless. Therefore, using this assumption, most management services will
spin up and tear down containers with no regards to persistence. In a pro-
duction setting, hosting databases in containers adds unnecessary complexity
for little added value.

22

5.2 Project Coniguration and Storage
Diferent operating systems use diferent methods for storing coniguration
data for their applications. For example, commonly on UNIX systems, con-
iguration data is stored in the /.config/ folder. On Windows a common
place is in %APPDATA%. In order to get the path to the OS’s usual conig-
uration directory, I used the typer.get_app_dir(”ci-plumber”) method,
provided by typer. This returns a Python Path object which points to the
correct coniguration path for the OS.

At this location, I created a JSON coniguration ile which contained
a dictionary. Each key in the dictionary was a diferent git remote, and
each value was the coniguration information for that remote. I chose to
identify projects by their remote as this should be unique between projects.
A positive side efect of this was that should the user clone a repo twice, then
the coniguration of that project would persist between local versions of the
project.

In order to interact with this coniguration system easily, I wrote a wrap-
per on top of this typer method to reduce complexity. This wrapper consisted
of two helper functions: get_config and set_config. These two functions
had two arguments: the key/value to get/set, as well as the remote address
of the current repo in order up update the correct repo in the coniguration
ile.

5.3 Core Application and Module System
The structure of the project closely followed the structure of the end CLI. The
core of the project, and as per hexagonal architecture the only dependency,
was a typer project. This project acted as the CLI entry-point for the whole
project, as well as the coordinator in order to locate plugins. The actual
functionality for this part of the project was very little as far as the end user
experience went. As well as discovering plugins and providing an entry-point,
this core component housed code that was used by multiple plugins. I named
these helpers, and although not directly used by the core, this approach
helped reduce inter-plugin reliance. These helpers consisted on mostly plugin-
agnostic methods such as managing project coniguration, generating project
coniguration iles, interacting with git, and running commands.

After researching various methods of plugin detecting in Python, I decided
upon the namespace search method. This is performed in the initialisation
step of the CLI. Once a matching module is found, it is checked to see whether
it has matching top-level variables which contain the metadata about the
plugin, such as its name, as well as what stages in the CI/CD pipeline it can
provide. Once the plugin has been veriied, is is loaded into the main module.
Each of these plugins is a separate Python module that exposes a typer CLI.
The main module utilises the sub-command feature of typer which allows a

23

main typer instance to contain other sub-instances which are made accessible
through sub-commands. Each of these sub-commands represents one plugin
and therefore one service which the project integrates with.

In order for this tool to bridge the gap between the diferent stages of the
CI/CD pipeline, there were several approaches that could have been taken.
The main approach I implemented was manipulating of the default values
for the CLI parameters based of previous commands. For example, if the
user created a Docker registry using ACR, then when they ran the deploy
command, the default value for the container registry address would be the
address returned in the previous step. This approach meant that the tool
could maximise its usefulness for both experienced and inexperienced users.
For the experienced users, there was still an option to overwrite the defaults
with their own custom values. For the inexperienced users, it meant that
they did not need to worry about understanding, recording, and reusing the
results from the previous steps, the tool could do that automatically for them.

One potential issue when a user installs the module is that their pip bin
folder is not on their system path. For an inexperienced user, this could be
diicult to ix. In order to reduce dependency on the system path, I made the
tool accessible from the Python executable. By including a __main__.py ile
in the root of the module, it allows the tool to be called from the command-
line using python -m ci_plumber instead of directly. Another advantage of
this approach is if the user accidentally installed two versions of the tool in
two diferent versions of Python. This feature means that they can call the
tool for a speciic version of Python, for example: python39 -m ci_plumber.

5.4 GitHub Actions
During the development of this project, there were several tasks that had to
be carried out each time I committed code. I automated these using GitHub
Actions.

5.4.1 CodeQL

CodeQL is a tool recently acquired by GitHub that allows for automatic
scanning of code. It scans for bugs, errors, but most importantly security
vulnerabilities. Running this after each commit meant that I was always
alerted if I had written any erroneous or potentially vulnerable code.

5.4.2 Docs

An important aspect of this project was the documentation available to the
end user. This is because even though the project provided documentation
on the command-line, less experienced users may require the help of tutorials

24

or more visually appealing documentation. I chose to write the documen-
tation for this project using MKDocs. This is a tool that allows you to
write markdown documentation which can then be compiled into a static
website. This compilation step needed to be run every time I edited the
documentation. Therefore, I used GitHub actions to automatically compile
the documentation and then deploy it to GitHub pages in order to be viewed
by the users.

5.4.3 Testing

Due to all of the external calls made by the tool, unit testing was of very little
use for most of the functionality of the project. Integration was useful but
could be largely carried out by hand during the development process. There-
fore, the main type of testing that I could automate was checking that the
code-base contained no Python speciic errors. I automated this by creating
a GitHub action that could take the project and attempt to run commands
on each commit.

5.5 Git Hooks
Although it is easier to automate many long running actions on the remote
side using GitHub actions, many tasks can be automated locally using git
hooks. These are commands that are automatically run when a commit is
made. If there are any errors, then the commit is not made.

5.5.1 Pre-commit-hooks

In order to automate the installation, updating, and integration of these
hooks, I used a Python package called pre-commit-hooks. This package takes
a coniguration ile of all of the hooks you wish to add to the project and
registers them with git. As the hooks are speciied by pointing pre-commit-
hooks at a remote repository containing the hook, it is also able to update
the hooks to newer versions.

5.5.2 Flake8

Flake8 is a Python linter. Its purpose is to lag any style errors in a Python
code base. Python has a style guide called PEP8 which provides details on
how you should format your Python. For example, how many spaces you
should indent by and what maximum line length should be. If the code base
is not lake8 compliant, then lake8 will return an error and the commit will
not go through.

25

5.5.3 MyPy

One of the main reasons I chose to target Python 3.9 was for its new type
syntax. Although types are now fully supported in Python 3.9, you don’t
have to use them. Mypy enforces typing on all variables used throughout the
project, thus forcing the developer to make use of the new typing features
present in Python 3.9. If any variables are used without explicitly declaring
their types in the project, mypy will return an error and the commit will fail.

5.5.4 Black

Black is a formatter that works in tandem with lake8. Black works through
the whole project and formats the project in accordance with lake8. Al-
though it changes the code, it never changes the logical structure of the
code. Although black does not typically fail and does not typically block
committing, it helps reduce the number of times lake8 prevents committing
by formatting the code in compliance with lake8.

5.5.5 Isort

Much like black, isort does not typically block committing. Its purpose is to
sort imports in a Python program into a logical order. By default, it splits im-
ports into three sections: standard library, third party, and absolute imports.
In each of these sections, the imports are ordered alphabetically. Although
PEP8 does not specify an order to import, and there is little performance
diference, it helps to make the code base more readable and logical.

5.6 GitLab
I chose to implement most of the GitLab functionality into one initialisation
function. The reason I chose to do this was that the code store functionality
that GitLab ofers would usually already have been conigured by the user.
This is an assumption that the project makes throughout the development
process. For example, the coniguration mechanism assumes that the user’s
project resides in a folder that is a git repository and has a remote set.
Therefore, due to this assumption, the initialisation step of the GitLab plugin
largely revolves around setting up the CI/CD coniguration as opposed to the
git coniguration.

5.6.1 Initialisation

The initialisation starts by determining which folder the tool is being run
from, and then determines whether that folder is a get repository. Finally
it checks to see whether there is a remote for the repository. Should any of
these stages fail, then the tool will report the error.

26

Once the tool has determined the remote address, it authenticates the
user with GitLab. This is done either by an access token and URL passed as
arguments, or prompted for interactively. Once the user has been authen-
ticated against GitLab, a list of the repositories that they have access to is
retrieved. This list of repositories is checked against the remote for the local
repository. If a match is found, the ID of the remote repository is stored. If
no match is found, an error is raised, informing the user that the remote for
their local repository does not match any of the repositories on the GitLab
instance that they have authenticated with.

5.6.2 CI Pipelines

The penultimate step of the GitLab initialisation is to generate the requi-
site iles for the CI/CD pipeline. The irst step of this is to generate the
.gitlab-ci.yml ile. This contains the steps required to build the project.
In the case of this project, to build a Docker image of the project and push
it to the correct registry. The default .gitlab-ci.yml ile uses a tool called
Kaniko [30], which builds a Docker image using a Dockerile. As the Git-
Lab CI runners use Docker themselves, it is considered bad practice to use
Docker again in a build ile. This results in a scenario called Docker-in-Docker
(DinD) [31]. Although this does work, it requires the runner to be running
in a privileged mode, which can cause security issues. Kaniko behaves in a
similar manner to the Docker build system but runs entirely in user space
without the privileges needed by Docker. Once Kaniko has built the image,
it uploads it the the GitLab container registry. It can retrieve the details
of this without further coniguration by the user as these are accessible as
environment variables as standard in all CI runners.

5.6.3 Dockeriles

The inal stage is to generate a Dockerile that can build the project. This is
a diicult stage to complete automatically as each project can be architected
very diferently and therefore require a very diferent Dockerile. In order
to solve this problem, I created a Python package called framework-detector
which, given a folder, attempts to work out what the project type is. I detail
how this sub-project works in Section 5.9.

Once the Dockerile is generated, the user can push all of their changes the
the remote server. To prevent the build and deploy pipeline running for every
commit, by default, the CI runner is only triggered when a new tag is pushed
to the remote. This allows the user to control exactly when their project is
deployed. The beneit to using a tag as opposed to a manually triggered
runner is that a tag can be created and pushed from the local command line
using vanilla git commands whereas a manually triggered event must either
be done through the GitLab web interface or through the API.

27

5.6.4 API

I interacted with GitLab through channels: git, and the API. In order to
fulil the code store aspect of GitLab, all of the functionality is available
through the vanilla git interface. Through git, the user is able to upload
their code, push tags, and trigger builds. The only aspect as far as storing
code is concerned that cannot be done using the git binary is the creation of
a repository on the GitLab instance.

All other actions to do with GitLab are done through the API using
python-gitlab. This includes determining which repos the user has access to,
as well as editing CI variables when pushing the image to an external repos-
itory. The main drawback to using the API is authentication. Although an
OAuth application can be created and the user authenticated through that
[32], this feature was disabled on the university’s GitLab instance. Therefore
the only way to authenticate the user was to get them to generate a token
using the GitLab web UI. This added unneeded complexity to the authenti-
cation process.

5.7 OpenShift
I chose to divide the OpenShift plugin up into several commands. These were
deploy, list projects, create a database, and create a database coniguration.
These commands provided all of the most basic functionality needed to deploy
a project to OpenShift.

5.7.1 Interfacing

I used two approaches for interfacing with OpenShift: the CLI, and the
Python k8s module. The CLI was useful for issuing coniguration commands
as the documentation largely used these commands for examples. The k8s
API was useful for retrieving complex data as this data was returned in a
native Python format and therefore did not require parsing. Overall though,
the CLI proved more useful as this closely followed the documentation. The
k8s API also did not allow for interaction with the more advanced features of
OpenShift which are not available in vanilla k8s. In order to interface with
the CLI, I used a method previously mentioned in Section 5.3 which took a
command and ran it in a relatively secure manner. Any errors were handled
and the result of the command returned.

5.7.2 Application Deployment

The deployment process in OpenShift is at irst glance needlessly long. Upon
further inspection, however, this is due to the level of customisation and
diversity of authentication provided. Although this project is in a working
state, the OpenShift implementation is not at its ideal state of completion

28

due to the coupling still implemented in this module to the GitLab module.
This is because at the time of implementation, GitLab was the only source
of Docker images as well as implementing a non-standard method of authen-
tication for getting those images. Therefore, the OpenShift implementation
implements these non-standard methods, thus creating a dependency on the
image store being one provided by a GitLab instance.

The irst step to my method of deployment was to irst authenticate with
GitLab and OpenShift. Once authenticated with GitLab, the project ID
could be found. This was important as it was needed to determine the
path to the image on the GitLab image store. In hindsight, it would have
been better for the user to specify the path, but this method required less
coniguration on the part of the user and therefore made sense at the time
of implementation. I improved upon my method of specifying image paths
when I implemented the ACR integration.

After authentication with GitLab and OpenShift, the GitLab authenti-
cation secrets needed to be inputted into OpenShift. The irst step of this
was to create a new OpenShift project. Once created, two sets of secrets
needed to be created. Usually only one needs to be created but due to the
quirks of GitLab, the authentication URL and the image store URL were
diferent and therefore needed to be authenticated against independently.
Although OpenShift supports this method of delegated authentication [33],
it is non-standard. For each endpoint, the username, password, and email
needed to be speciied. Once these were inputted, they needed to be linked
to actions within OpenShift in order to let OpenShift know which secrets
it needed to use for which actions. These action being build, deploy, and
default. Although it is likely that the secrets only needed to be tied to either
default or deploy, I chose to bind them to all three should the user choose to
continue using the GitLab project in future for more advanced deployments
but wished to continue using GitLab as the image store.

Once the secrets have been created, a new image stream can be created.
It is important that an image stream is used instead of directly importing an
image. This is because an image stream can point towards an external image
and when that external image updates, the image stream pulls the most
recent version of the image and can trigger a redeployment of an application
with the most up to date version of the image. This is an important aspect of
the CI/CD pipeline this tools aims to create as without this automatic step,
it becomes less of a pipeline and more of a series of steps that the developer
must step through each time they wish to deploy. This image steam can
be used by diferent apps within the project, although without additional
coniguration, cannot be used outside of the project.

An app is then created using this image stream as the base image. The
app is then exposed externally. This process of exposing the app only works
if the Dockerile and consequently the Docker image specify the default ports

29

using the EXPOSE directive. Once the application is exposed, the routes gen-
erated can then be displayed to the user. The project should be ready or
close to ready at this point.

5.7.3 Database Deployment

I chose to divide the deployment of a database on OpenShift into two steps:
creating the coniguration ile, and deploying the database using the conig-
uration ile. I chose this method as the MariaDB template required a lot of
variables. Therefore, in order to make the tool accessible to less experienced
users, I had to choose a lot of the defaults myself. By splitting the process
into two steps, it allows for more experienced developers to look at the con-
iguration ile and make any changes they with to make before deploying the
database.

The command to create the database coniguration takes lots of argu-
ments, but most of them have defaults and are therefore not required. If the
user does not specify any of the required variables then they will be prompted
for them when they attempt to run the command. The command then checks
to see if there is already a ile called maria.env. If there isn’t, a conigura-
tion ile of that name is created with the coniguration data inputted into
the command. An entry into the project’s .gitignore is also created so that
the coniguration ile containing the password is not committed into source
control. The second command creates the database using this ile. The ile
is already in the correct format of OpenShift and can therefore be directly
uploaded along with the name of the template it is the variable set for; In
this case it is openshift/mariadb-persistent.

5.8 Azure
Azure was the inal integration I developed for this project and therefore
most resemblant of its full implementation. I applied what I had learned
developing the other plugins to the development of this one. Therefore, I
was able to avoid some of my previous pitfalls such as dependencies between
plugins, structure, and targeting the plugin architecture from the start of
development as opposed to refactoring code into the plugin system as with
the GitLab and OpenShift implementations.

5.8.1 Interfacing

In order to interface with Azure, I created a three step implementation plan.
Unfortunately, due to time constrains, I was only able to implement the irst
step of this plan. The three steps I identiied were:

1. Wrap the CLI.

30

2. Use the command parsing part of the Python library to parse the com-
mands without using the commandline.

3. Directly use the APIs provided by the Python library.

The only advantage to each of these steps were and increase in security, speed,
and package size. As none of these steps impacted the actual functionality,
they were of less importance that implementing further features. Given a
greater amount of time, I would have implemented this plugin using the
Python API. The main drawback to using the CLI, besides security, was the
number of dependencies that the Python Azure CLI library required. As it
is able to interact will all of the services that Azure provides, it requires the
Python library for every service, therefore severely bloating the install size
of this project. The ideal inal state would be to only require the Python
libraries for the services used by this tool and to interact with them directly
instead of with the CLI.

5.8.2 Registry Creation

Due to the limitation that the university’s GitLab instance’s container reg-
istry is only accessible from the university’s network, it was vital that the
Azure plugin should contain functionality to create a container registry so
that Azure could be used in the deploy stage of the pipeline.

The ACR functionality was implemented as a single command that took
coniguration information for the registry and created it. As with most other
commands in the project, reasonable defaults were chosen for each of the
coniguration values and the user prompted should they not specify any of
the required variables.

I broke the task of creating an ACR down into a series of steps. The
irst of these was to manage the current resource group. Resource groups are
how Azure groups a set of resources together so that they can be managed
as a group [34]. When the request is made to create a new resource group, a
success will be reported whether it already existed or not. Therefore, I always
try to create the resource group whenever one is speciied in the command.

Once the resource group is created, the registry can be created within
it. At this point the SKU for the resource group also needs to be speciied.
For most of the projects using this tool, the most basic SKU is good enough
and is therefore the default. Once the ACR is created, an admin needs to be
created on the registry for authentication. Once the admin has been created,
their credentials can be returned.

At this point, the tool has the URL of the ACR as well as the credentials.
Therefore, these need to be sent to the build process in order for it to be able
to upload the artefact it creates during the build. In this case, the creden-
tials are set as environment variables. This is another case of a dependency

31

where there shouldn’t be one. The tool, at this point, communicates directly
with GitLab. In future, a generic interface should be exposed by the core
application for communicating the each stage in the pipeline. The core would
then be able to direct the message to the correct plugin as opposed to hard
coding one of the plugins in.

As well as the environment variables, the .gitlab-ci.yml needs to be
updated as well to relect the names of these new environment variables.
This new CI ile then needs to be committed to GitLab before a new build
can take place so that the new build sends the images to ACR instead of the
GitLab package registry.

5.8.3 Application Deployment

Once an image has been deployed to ACR, an application can be created
from it. Similarly to the “creating the ACR command”, this command has
several good defaults as well as required arguments that will get prompted
for should they not be speciied. The irst step to the creation of the web
app is to create a service plan. This serves as a wrapper around the app and
deines how it should be run. For example, which OS should be used. Using
this service plan, a web app can be created. This app uses the service plan
as well as the path to the image uploaded to the previously created ACR. In
order to use this image, authentication needs to be set up. The irst step is
to create a managed identity for the web app. This serves as a user account
that can access ACR on behalf of the web app. This user can then be granted
pull access to the ACR so that they have permission to pull images from it.
Finally, the managed identity is tied to the web app so that the web app can
communicate with ACR through the identity.

Finally, the application can be deployed. The web app now has permission
to pull images from ACR and can therefore pull the image of the user’s
project. This deploy process automatically manages deploy stages such as
routing and management of SSL certiicates. Finally, the URL the project
has been deployed to can be displayed to the user.

5.8.4 Database Deployment

I implemented the database creation functionality for Azure into a single com-
mand. Due to the huge number of variables associated with the database,
I had to choose a lot of the defaults, however, they are all accessible as
arguments for the command. The process of creating the database is rela-
tively simple. A command is issues with all of the variables speciied in the
command. This then returns a set of credentials for the database.

In order to maintain similarity between the plugins, I chose to also gen-
erate a maria.env ile with the database details in as well as add it to the
.gitignore.

32

5.9 Detection of Project Type
An important aspect of the project was creating an appropriate Dockerile
for the project. Although it might not be fully set up for the project, it can
be useful to have a good tarting point when writing a Dockerile. The irst
stage of providing an appropriate Dockerile is to determine what kind of
project the Dockerile is being created for. Once the project type has been
determined, the corresponding Dockerile can be provided.

In order to detect the project type, I created a JSON ile for each type of
project that I wished to detect. Each ile speciied metadata to do with that
language or framework as well as information on how to identify a project
of that type. This information consisted of iles to look for in the project
as well as optionally the contents of those iles. For example, if the project
uses Spring Boot and Gradle, there will be a build.gradle ile in the root
of the project containing the string org.springframework.boot. Should this
criteria match with the speciied directory, then the default Spring Boot
Dockerile can be provided.

This method of determining what framework or language a project is
using allows for a modular and therefore easily extensible tool. Should a new
framework wished to be added, it would be as simple as adding the requisite
JSON ile as well as a corresponding Dockerile.

5.10 Wizard
Unfortunately, due to the time constraints of the project as well as the archi-
tecture I chose, I was unable to complete the wizard feature. The intended
purpose of this feature was to guide the user through the whole process of
creating the pipeline. The choice of dividing the targeted platforms into plu-
gins hidden behind typer meant that it was diicult to interface with them
beyond typer’s functionality from the core project.

In order to implement this feature in the time left, I created a one week
time box and a branch in which to attempt to create this feature. Therefore,
if I wasn’t successful, I could just delete the branch without leaving half
inished code in the project. Despite not inishing this feature, I chose to
keep some of the functionality I had built as it was not detrimental to the
project and would be a starting point if I wished to complete the wizard
functionality in future. The functionality created was each plugin exposing
to the core project what stages in the pipeline they provided. For example,
Azure exposed the image store, deployment, and database stages.

5.11 Documentation
Due to the requirement of this project being beginner friendly, I chose to
create online documentation [10]. This contains the usage documentation for

33

the tool as well as tutorials for the most common pipeline conigurations. The
documentation was written in markdown and then compiled using MKDocs.
As was mentioned in Section 5.4.2, this was done automatically using GitHub
actions. This action then published the docs to GitHub pages where is is
available to be viewed by the end user.

6 Results and Evaluation
Due to the open-ended nature of this project, it is diicult to determine a in-
ished state for it. Although each requirement can be checked to see whether
it has been met, signiicant scope for further development and scope still
exists. Therefore, I think it is important to relect and evaluate the success
of this project on not just the measurable, quantitative outcomes such as re-
quirements met, but also on qualitative outcomes such as my opinion on how
the project went. The requirements only measure features whereas a truely
positive outcome for this project should be measured in capability, where
capability relects on the whole process that the tool implements. Success
should therefore be ideally measured, for example, on whether a novice de-
veloper can implement a pipeline as opposed to a speciic feature within that
process.

6.1 Requirements
6.1.1 Functional

• The user must be able to upload their code to a code store.
This requirement was met as a requirement in the irst place to use the
tool is to have a code repository that code can be uploaded to. In the
case of this project, it was GitLab although there is scope to include
other stores such as GitHub.

• The user must be able to trigger the CI/CD pipeline.
This requirement was made by creating the gitlab-ci.yml ile in the
GitLab plugin. This ile created a trigger to start the CI pipeline by
creating and pushing a new tag to the source code repository.

• The CI/CD build stage must result in a valid artefact.
Although the deinition of a valid artefact is undeined for this require-
ment, it could be interpreted to mean an artefact that is compatible
with the other stages of the pipeline. In this case this artefact is an
OCI compatible container image. The inal result of the GitLab build
process is indeed such an artefact. Therefore this requirement can be
considered complete.

34

• The artefact must be stored.
This requirement is met by two of the plugins. Firstly the GitLab
plugin fulils this requirement by providing an integration with the
GitLab container registry. This is conigured automatically by the tool
as the upload destination of the build artefact. The second plugin that
fulils this requirement is the Azure plugin. The tooling for ACR means
that ACR can be conigured to be the upload destination for the image
outputted by the build stage.

• The user must be able to specify how the artefact is deployed.
The user is provided with choice at two levels when it comes to de-
ploying the application. The irst level of choice is the platform that
the artefact is deployed on. Both the OpenShift and Azure plugins
support deployment. The second level at which the user has choice
is with the coniguration of their chosen service. Both OpenShift and
Azure allow for customisation to some extent the way that deployment
in conigured.

• The tool must be usable through a CLI.
The tool is installable and usable through a CLI. The tool can be
installed using pip entirely through the command line. It can then be
called using either ci-plumber or python -m ci_plumber.

• The user should be able to deploy a database.
This requirement is met in two plugins. In both the OpenShift and
Azure plugins, the user is able to conigure and deploy a MariaDB
database that supports persistence and external connections.

• The user should have a choice over which services they use.
This requirement is partially met in the current stage of implementa-
tion although can be fully met once more plugins are creating using
the existing plugin interface. There is choice of service for each stage
of the CI pipeline except for code storage and the build stage. In fu-
ture, services such as GitHub and Jenkins could be added so that this
requirement can be fully met.

• The tool should guide the user through each stage of deployment.
This requirement was not met. The aim of the wizard implementation
was meant to fulil this requirement but due to issues presented in
Section 5.10, this section of the project was left uncompleted.

• The tool should recommend reasonable defaults.
This requirement was met irstly by the defaults included in the tool.
These provided reasonable defaults for all of the services the tool pro-
vided. Secondly, the defaults were automatically updated to relect the

35

outputs of previous commands. This meant that the defaults were not
only reasonable, they were also relevant.

• The tool should expose an interface to allow the development of new
plugins.
The plugin system as discussed in Section 5.3 allows for new plugins to
be developed, installed, and then automatically discovered by the tool
with no change to the tool’s central code-base.

• The tool could automatically conigure the project with the database’s
credentials.
This requirement was partially met. Providing that the project used
environment variables to store the database credentials and that these
environment variables matched the naming standard used by the
maria.env ile, then the database could be automatically used by the
user with little to no extra coniguration.

• The tool could expose an interface to allow ease of script development
involving the tool.
The tool allows for easy scripting by exposing every coniguration value
used as arguments for each of its commands. This means that the full
functionality of the tool can be extracted through the use of scripting
with no user interaction.

• The tool won’t implement the full APIs exposed by the chosen service
integrations.
Due to the complex nature of the services interfaced with for the
project, the full APIs of each of them were not implemented. This
allowed for a much more streamlined interface for the user and only
provided the tools that they absolutely needed with little complica-
tion.

• The tool won’t ofer coniguration options post-deployment.
Coniguration of services post deployment was beyond the scope of this
project and therefore not implemented, thus fulilling this requirement.

6.1.2 Non-Functional

• The tool must be usable by someone with only minor experience with
DevOps.
This requirement cannot be tested as no user testing was conducted
during this project.

36

• The tool must fail cleanly when error arises.
When error occurs, it is caught and displayed in a readable manner to
the user thus fulilling this requirement.

• The future operation of the tool should not be afected by any previous
errors that have occurred.
Although this requirement is not explicitly handled, the main risk for
errors occurs is when calls are made to external services. These calls
can either succeed and therefore change the state of the service and
therefore future running of the tool, or they can error. In the event of
an error, the state of the external service will not change and therefore
the future running of the tool will not be afected.

• The tool should be usable with only minimal interaction and without
the need for extensive menus.
The user can either enter all of their inputs in one go as command
line arguments or they can be prompted for them. Either way, the
minimum amount of interaction possible is made, thus fulilling this
requirement.

• The user should be able to use the tool on their platform of choice.
As the tool is written in Python, distributed in an uncompiled format,
and uses platform agnostic methods when using the ile system, it can
be used on most platforms.

• The tool should notify the user as to the cause of any error which may
occur.
Should any error occur, the error and stack trace are presented to the
user to analyse and act upon.

• The user should be able to add support for more services.
The plugin system allows for the user to implement extra services as
they see it.

• The tool could suggest ixes for any error that occurs.
Although the errors are descriptive and could potentially suggest a ix
by their verbose nature, there is no explicit functionality to suggest
ixes to errors.

• The tool could work on future versions of the services that it targets.
The backwards compatibility of the APIs of the services that the tool
target is beyond the control of the project. Should the future versions
of the services maintain backwards compatibility of their APIs, then
the project will remain compatible.

37

• The tool won’t afect the targeted service should an error arise.
This requirement is fulilled for the same reason the requirement “The
future operation of the tool should not be afected by any previous errors
that have occurred” was fulilled as the future operation of the tool is
dependant on the state of the target service.

6.2 Development Retrospective
Overall, I think the development process was a positive experience, both
for the project and for my personal development. The tool met most of its
requirements and those that it did not meet were met to some extent. There
are many positive and negatives to do with the actual development process
of this project so I will only address the major ones in this section.

6.2.1 Positives

One of the my proudest achievements and one of the most signiicant features
of this project is the plugin system. This was not a feature that I had
previously implemented in a Python project and was therefore apprehensive
about. Due to the time constraints and the cost of implementing the plugin
system meant that I only had one attempt at implementation. If this had
of failed I would have to have reset the project back to a previous state as
there wouldn’t have been time to implement another module system as well
as inish the integrations I wished to complete. Therefore, I think it is a big
positive that the plugin system worked and I could therefore include it in the
end-tool.

A key aspect of this project was that is was friendly towards less experi-
enced developers. Therefore, the simpliied interface that was implemented
for the complex services that the tool wrapped was a positive. This aspect
of the project required a signiicant amount of research and was therefore
another higher risk area of the project as the research required a large in-
vestment of time without any return in terms of requirements met. Although
this outcome should be tested user research and testing, I am treating any
simpliication of the standard interfaces of the target services as a success
due to the complex and opinionated nature of them.

The most obvious positive outcome of this project to the end user is
the CLI experience when using the tool. I am pleased with my choice of
libraries used to display the user interface as well as my implementation of
them. Typer allowed me to rapidly build a fully featured CLI including
docs, autocomplete, and command arguments. The use of rich to display
the output allowed me to display informative, live outputs to the greatest
extent that can be displayed in a standard terminal and to do that in a cross
platform way.

38

6.2.2 Negatives

Despite the overarching success of this project, there are a signiicant amount
of negatives associated with the development process of this project.

The lack of testing, speciically user, unit, and integration tests resulted
in a tool that is not as reliable as it could be. Although the majority of bugs
are associated with type issues and were therefore addressed using strict type
checking for the whole project, all other types of bugs such as those caused
by logic errors or faulty interfaces with other services. These issues could
have been solved using the aforementioned methods of testing. Although
lack of testing was not a conscious decision during the development process,
I chose to implement further features and integrations instead of reducing the
technical dept that had been accrued. This did, however, have the beneit
of more of the requirements being met. Perhaps a better way to address
this problem in future would be to make testing a requirement and therefore
it could be implemented during the development process without impacting
velocity. An alternative perspective for this negative is to in fact question the
eicacy and purpose of testing. Although testing is important for increasing
conidence in stakeholders, it was a greater priority to deliver functionality.
[35] talks about “shifting testing left”. This does not mean testing earlier, but
instead improving on all of the dimensions of quality that are not relected in
testing, such as compliance and accessibility from early on on the life-cycle of
the project. This stage of software development can be called the discovery
phase and does not warrant thorough testing as many aspects of the project
are still likely to change [36].

Due to the process of developing my technical skills as well as the ar-
chitecture in parallel with the development of the tool, small mistakes were
made in the implementation of features of the integrations that became vital
components. The most common and potentially most serious mistake that
I made in the start of the project was reliance of one plugin on another.
This resulted on deviation away from the ideal hexagonal architecture and
to something needlessly more complex.

Similarly to the last point, due to the less formal nature of the planning
implemented in this project, the early project lacked structure. This was due
to my irst implementation being little more than scratchpad code. Although
not a bad thing in its own right, the inal implementation should have been
built from the ground up as opposed to modifying existing code. The scratch-
pad implementation was an important stage in learning the services involved
in this project and how they behaved. This code was refactored to an extent
but the core structure remained the same. Therefore, in its current state, the
code base has a lot of large iles that contain code that performs a variety of
functions instead of more segmented, organised code. Although this can be
ixed with relative ease, the time constraints and few drawbacks to this issue

39

mean that it has yet to be ixed and could lead to maintainability issues in
future.

When I was coming to the end of the project, I encountered diiculties
to do with managing the documentation. As I have previously mentioned, I
spent the majority of time developing new features instead of solidifying what
I had already built. Although this had the beneit of increasing the number
of requirements I fulilled, it meant that I had disregarded some of the other
important aspects of software development with documentation being one of
them. Although I had left enough time to write the documentation at the
end of the project, the process was more diicult that if I had been writing
it as I had been developing the tool.

7 Future Work
The most important aspect that needs changing in future is to add an ap-
propriate open source license to the project so that it can be used by a wider
audience that just those in the faculty. Wider use would be good reason and
motivation to improve upon this project further. The use of a permissive li-
cence would allow other developers to use the tool without fear of infringing
on the license but would allow correct attribution to still be made for the
tool.

In order to continue development on the project in a sustainable man-
ner, signiicant refactoring will need to be done on the existing code base
to address issues previously mentioned. This is an important irst step as
the sooner the refactoring is done, the sooner that the refactoring is done,
the less code will need to be refactored. This is because all new code added
will build upon the existing problematic code. The refactoring will also help
speed up future development as it will make the code base more readable
and logical and will therefore be able to be built upon more easily.

A shortcut that I used throughout the project to reduce the diferences
between my implementation steps and discovery steps was to wrap the CLI
instead of using the API provided by the service. This had the advantage
that I could implement features faster but at the cost of speed, security,
and reliability. Therefore, once the refactoring has been completed, it would
be a good idea to change the CLI based implementations for API based
implementations.

As well as solidifying existing integrations, the addition of more integra-
tions in the form of plugins would beneit the project. Due to the limited
choice of existing integrations, the tool could not provide the functionality
in terms of features or platforms that a user could require. This addition of
more integrations would increase the potential audience of the tool as well
as improve the feature set for existing users.

The wizard was the largest planned feature that was not implemented in

40

the inal submission. Therefore, it would be a good future task to complete
the implementation. The groundwork in the plugins has already been made
and therefore only major changes to the core would have to be made and not
to the existing plugins.

A potentially confusing aspect of the tool to a new user could be that
depending on the image store, the CI ile changes. This stage could be
simpliied by using a standard set of CI variables amongst providers of image
stores, thus negating the need for diferent CI iles for each provider.

8 Conclusion
In conclusion, I am pleased with the overall outcome of the project. The
product of this project was a tool that provides beneit to both experienced
and inexperienced developers. It has taught me much about planning, project
management, as well as software development and architecture. The tool ills
a gap that there are few tools for and therefore delivers value, despite the
improvements that can be made.

9 Relection
The greatest positive that I can take away is the personal development gained
from completing this project. This is the largest solo project I have built and
therefore I encountered and had to overcome issues that I had not in previous
project. The main challenge that I encountered and had to improve upon was
time management with regards to task estimation. I consistently marginally
underestimated every task that I undertook which resulted in a lack of time
to work on non-core features such as tests and documentation. Were I to
do the project again, I would explicitly factor in time to write tests and
documentation.

This time spent on implementation instead of testing was not wholly
bad, however. It allowed me to ensure that the architecture was correct
and implemented properly opposed to rushed. It also allowed me to develop
my own skills further instead of using the limited time I had to write tests
and polish what I had already built. Furthermore, it could be argued that
through the time spent of making sure that the architecture was correct, I
built the project in a more testable, modular way that may not have been
possible should I have spent the development time elsewhere.

I am pleased with the approach that I took with the project with regards
to methodology. Although it took some time to develop a structure, my
approach of one week time-boxed periods in which I attempted to produce
a pre-decided set of features worked well. The weekly evaluations allowed
me to work in a lexible way and to react quickly to any hindrances which I

41

encountered during my research.
In hindsight, my approach was potentially too ambitious for the time-

frame. Although there are few tools that meet the criteria that this tool
meets, there are tools that bridge the gap between services in a highly con-
igurable way. An example of this is Terraform. Although the initial learning
curve is steep, Terraform is an extremely powerful and robust tool for dein-
ing infrastructure as code. Everything that this project achieves is possible in
Terraform. Therefore, it might have been a better decision to take the time
to research tools like Terraform more deeply, both to understand why they
work in the way that they do and whether there is anything to be learned
from that, as well as to look into possibilities of integrating those projects
into my own. Although an avenue unexplored to its full potential, I think
that a better approach to this project would have been to wrap Terraform
instead of the individual platforms. This could have potentially lowered the
barrier of entry to use Terraform, allowing less experienced developers to
use it. The main advantage to this is breadth of platform support. With
my chosen approach, I have to manually integrate each new platform into
the tool. With the Terraform wrapping approach, I could have utilised the
existing the existing integrations it provides and written a generic wrapper
around it.

10 Appendix
10.1 Source Code
The source code for the project is available in the following locations:

• https://github.com/pbexe/ci-plumber
The main project repository.

• https://github.com/pbexe/framework-detector
The framework-detector source code.

• https://git.cardif.ac.uk/c1769331/ci-plumber
A mirror of the main repository on the university’s GitLab.

• https://doi.org/10.5281/zenodo.5545987
A snapshot of the project in a citable format.

10.2 Package Manager
The project is published on PyPI and is available at the following links:

• https://pypi.org/project/ci-plumber/

• https://pypi.org/project/ci-plumber-openshift/

42

• https://pypi.org/project/ci-plumber-gitlab/

• https://pypi.org/project/ci-plumber-azure/

• https://pypi.org/project/framework-detector/

10.3 Installation
10.3.1 Requirements

• Python 3.9+

• Azure CLI

• Openshift CLI

• Windows/Mac/Linux. Others may work but are untested.

• A supported project type. Currently supported:

– Spring Boot
– Flask
– Or just a Dockerile

10.3.2 Installation Steps

// Install CI Plumber as well as all of the modules:
$ pip install ci-plumber[all]

// You can also install individual modules instead of the entire package:
$ pip install ci-plumber
$ pip install ci-plumber-azure

// Once installed, you can add tab completion:
$ ci-plumber --install-completion

10.4 Usage
10.4.1 GitLab and Openshift Tutorial

First we need to initialise the project. All of the commands can either be
run interactively or using the CLI options. For this tutorial we shall be using
the interactive mode.

$ ci-plumber gitlab init
Gitlab url [git.cardiff.ac.uk]: <The URL to your gitlab instance>

43

Username: <Your username>
Email: <Your email>
Access token: <Your access token>
Docker registry url [registry.git.cf.ac.uk]: <The URL to your Docker registry>
Getting remote
[12:41:23] Logging in to Gitlab

Getting projects
[12:41:24] Matching remote with Gitlab projects

Found project: Flask Demo
Generating .gitlab-ci.yml
Generating Dockerfile
Gitlab configured!

This command will do several things:

1. It will ask you for the gitlab url, username, email and access token.
These will be stored in order to authenticate against GitLab.

2. It will also ask you for the Docker registry url. This is the url that
other plugins such as Openshift will be able to pull images from.

3. It will then try to ind the project that you are working on on GitLab.

4. It will then Genrate the .gitlab-ci.yml ile and the Dockerile if appro-
prate for the project.

We next need to push our changes to GitLab so that GitLab CI will run
the new coniguration:

// Stage the changes
$ git add .

// Commit the changes
$ git commit -m ”Add .gitlab-ci.yml and Dockerfile”

// Create a new tag to trigger the pipeline
$ git tag -a v0.0.1 -m ”Release v0.0.1”

// Push the changes to GitLab
$ git push --follow-tags

Once GitLab is set up, we can set up the Openshift project. Openshift
should pick up on the credentials left by ci-plumber gitlab init. We can
deploy the app to Openshift using the following command:

44

$ ci-plumber openshift deploy
Project: <A name unique to your project>
Username [c1769331]: <Your username. The default should be yours>
Password: <You won't be able to see what you're typing here. It's not broken.>
Repeat for confirmation:
[13:08:46] Logginginto GitLab

Getting the Gitlab project
[13:08:47] Loggin in to Openshift
[13:08:49] Creating a new project
[13:08:52] Creating secrets
[13:09:11] Importing image-stream
[13:09:13] Creating a new app
[13:09:16] Exposing the service
[13:09:18] Here are the details
[13:09:20] <The details as well as the URL will be written here>

To deploy a database as well, you can use the following command:

$ ci-plumber openshift create-db
Mysql password:
Mysql root password:
[13:19:28] Creating database config

Creating MariaDB pod from openshift/mariadb-persistent template
[13:19:31] Exposing DB
[13:19:33] Getting DNS
[13:19:36] Writing config to maria.env

// You can now find the credentials in maria.env
$ cat maria.env
ADMIN_PASSWORD=<Your password>
USER=maria_user
PASSWORD=<Your password>
NAME=mariadb
HOST=<The database DNS>

10.4.2 GitLab and Azure Tutorial

To deploy to Azure, we shall use a diferent architecture for the project. We
will begin in a similar manner to the GitLab + Openshift section:

$ ci-plumber gitlab init
Gitlab url [git.cardiff.ac.uk]: <The URL to your gitlab instance>
Username: <Your username>
Email: <Your email>

45

Access token: <Your access token>
Docker registry url [registry.git.cf.ac.uk]: <The URL to your Docker registry>
Getting remote
[12:41:23] Logging in to Gitlab

Getting projects
[12:41:24] Matching remote with Gitlab projects

Found project: Flask Demo
Generating .gitlab-ci.yml
Generating Dockerfile
Gitlab configured!

This will create GitLab credentials similarly to before. However, we will
now be using Azure instead of GitLab to store the images. We must begin
by creating a new Azure container registry:

$ ci-plumber azure create-registry
Registry name [registry887130626]:
Resource group name [myResourceGroup]: sub1
[16:00:16] Creating resource group sub1
[16:00:24] Creating registry registry887130626
[16:00:40] Enabling admin user
[16:00:43] Getting admin credentials
[16:00:46] Logging in to Gitlab

Gettingthe Gitlab project
Creating Azure access keys in CI
Azure access keys already exist in Gitlab CI for c1769331/flask-demo

[16:00:47] Creating .gitlab-ci.yml

// Stage the changes
$ git add .

// Commit the changes
$ git commit -m ”Add .gitlab-ci.yml and Dockerfile”

// Create a new tag to trigger the pipeline
$ git tag -a v0.0.1 -m ”Release v0.0.1”

// Push the changes to Gitlab
$ git push

We have now instantiated a new Azure container registry, pointed GitLab
CI to push new images to the registry, and triggered a build which should
push the new image to the registry.

Next, we need to deploy the app to Azure. We will use the following
command:

46

$ ci-plumber azure deploy
Service plan [myServicePlan]:
App name [myApp-159731108]:
[16:08:33] Creating app service plan
[16:08:43] Creating web app. This may take a while...
[16:09:20] Assigning managed identity
[16:09:28] Retrieving subscription ID
[16:09:31] Granting permission to access container registry
[16:09:42] Configuring app to use managed identity
[16:09:47] Deploying
[16:09:56] Deployed to https://myapp-159731108.azurewebsites.net

It may take a moment to come online

As can be seen, the app is now deployed to Azure. We might also want
to deploy a database for the project. We can use the following command:

$ ci-plumber azure create-db
Name [my-database-779171168]:
Admin username [myadmin]:
Admin password:
Repeat for confirmation:
[16:12:32] Initialising Server. This may take a while...
[16:15:41] Created Database

The credentials have been written to maria.env

Similarly to the Openshift example, the details of the database are written
to maria.env. This ile uses standard syntax for environment variables, so it
can be easily loaded using whatever method you prefer. For example, dotenv
in Python.

47

References
[1] D. L. Frederiksen and A. Brem, “How do entrepreneurs think they cre-

ate value? a scientiic relection of eric ries’ lean startup approach,” In-
ternational Entrepreneurship and Management Journal, vol. 13, no. 1,
pp. 169–189, Mar. 1, 2017, i : 1555-1938. i: 10.1007/s11365-
016-0411-x. [Online]. Available: https://doi.org/10.1007/s11365-
016-0411-x (visited on 09/02/2021).

[2] R. F. Bortolini, M. Nogueira Cortimiglia, A. d. M. F. Danilevicz, and
A. Ghezzi, “Lean startup: A comprehensive historical review,” Manage-
ment Decision, vol. 59, no. 8, pp. 1765–1783, Jan. 1, 2018, Publisher:
Emerald Publishing Limited, i : 0025-1747. i: 10.1108/MD-07-
2017-0663. [Online]. Available: https://doi.org/10.1108/MD-07-
2017-0663 (visited on 09/19/2021).

[3] V. Debroy, S. Miller, and L. Brimble, “Building lean continuous inte-
gration and delivery pipelines by applying DevOps principles: A case
study at varidesk,” in Proceedings of the 2018 26th ACM Joint Meet-
ing on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, Lake Buena Vista FL USA:
ACM, Oct. 26, 2018, pp. 851–856, i : 978-1-4503-5573-5. i: 10.
1145/3236024.3275528. [Online]. Available: https://dl.acm.org/
doi/10.1145/3236024.3275528 (visited on 09/19/2021).

[4] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality and
productivity outcomes relating to continuous integration in GitHub,”
in Proceedings of the 2015 10th Joint Meeting on Foundations of Soft-
ware Engineering, ser. ESEC/FSE 2015, New York, NY, USA: Associa-
tion for Computing Machinery, Aug. 30, 2015, pp. 805–816, i : 978-
1-4503-3675-8. i: 10.1145/2786805.2786850. [Online]. Available:
https://doi.org/10.1145/2786805.2786850 (visited on 09/19/2021).

[5] (2021). “What is DevOps? research and solutions,” Google Cloud, [On-
line]. Available: https : / / cloud . google . com / devops (visited on
09/19/2021).

[6] N. Forsgren, J. Humble, G. Kim, B. Washington, N. Kaul, and D.
Smith, “ROI of DevOps transformation: How to quantify the impact
of your modernization initiatives,” Google, Whitepaper, 2020. [Online].
Available: https://cloud.google.com/resources/roi-of-devops-
transformation-whitepaper (visited on 09/19/2021).

[7] R. M. Harden, “What is a spiral curriculum?” Medical teacher, vol. 21,
no. 2, pp. 141–143, 1999, Publisher: Taylor & Francis, i : 0142-159X.

i: 10.1080/01421599979752. [Online]. Available: https://doi.org/
10.1080/01421599979752.

48

https://doi.org/10.1007/s11365-016-0411-x
https://doi.org/10.1007/s11365-016-0411-x
https://doi.org/10.1007/s11365-016-0411-x
https://doi.org/10.1007/s11365-016-0411-x
https://doi.org/10.1108/MD-07-2017-0663
https://doi.org/10.1108/MD-07-2017-0663
https://doi.org/10.1108/MD-07-2017-0663
https://doi.org/10.1108/MD-07-2017-0663
https://doi.org/10.1145/3236024.3275528
https://doi.org/10.1145/3236024.3275528
https://dl.acm.org/doi/10.1145/3236024.3275528
https://dl.acm.org/doi/10.1145/3236024.3275528
https://doi.org/10.1145/2786805.2786850
https://doi.org/10.1145/2786805.2786850
https://cloud.google.com/devops
https://cloud.google.com/resources/roi-of-devops-transformation-whitepaper
https://cloud.google.com/resources/roi-of-devops-transformation-whitepaper
https://doi.org/10.1080/01421599979752
https://doi.org/10.1080/01421599979752
https://doi.org/10.1080/01421599979752

[8] G. Pocentek and M. Mäenpää. (2018). “GitLab CLI usage,” python-
gitlab 2.10.1 documentation, [Online]. Available: https://python-
gitlab.readthedocs.io/en/stable/cli- usage.html (visited on
10/03/2021).

[9] Red Hat. (2021). “Get started with the CLI,” CLI Reference | OpenShift
Container Platform 3.9, [Online]. Available: https://docs.openshift.
com/container-platform/3.9/cli_reference/get_started_cli.
html (visited on 10/03/2021).

[10] M. Budden. (2021). “CI plumber,” [Online]. Available: https : / /
milesbudden.com/ci-plumber/ (visited on 10/24/2021).

[11] (Aug. 9, 2021). “Overview of kubectl,” Kubernetes. Section: docs, [On-
line]. Available: https://kubernetes.io/docs/reference/kubectl/
overview/ (visited on 10/03/2021).

[12] Microsoft Azure, Microsoft azure CLI, original-date: 2016-02-
04T00:21:51Z, Oct. 16, 2021. [Online]. Available: https://github.
com/Azure/azure-cli (visited on 10/16/2021).

[13] Netlify, Framework-info, original-date: 2020-07-29T12:13:10Z, Oct. 15,
2021. [Online]. Available: https://github.com/netlify/framework-
info (visited on 10/16/2021).

[14] K. Waters, “Prioritization using MoSCoW,” Agile Planning, vol. 12,
p. 31, 2009.

[15] A. Cockburn. (Sep. 11, 2013). “Hexagonal architecture,” Alistair Cock-
burn, [Online]. Available: https : / / alistair . cockburn . us /
hexagonal-architecture/ (visited on 10/03/2021).

[16] Python Packaging Authority. (2020). “Packaging namespace pack-
ages,” Python Packaging User Guide, [Online]. Available: https://
packaging.python.org/guides/packaging- namespace- packages/
(visited on 10/10/2021).

[17] Python Packaging Authority. (2021). “Entry points,” setuptools 58.2.0
documentation, [Online]. Available: https://setuptools.pypa.io/
en/latest/userguide/entry_point.html (visited on 10/10/2021).

[18] The Linux Foundation. (2020). “Open container initiative,” [Online].
Available: https://opencontainers.org/ (visited on 10/10/2021).

[19] Oci-image-tool, original-date: 2016-09-08T20:19:15Z, Sep. 19, 2021.
[Online]. Available: https://github.com/opencontainers/image-
tools (visited on 10/10/2021).

[20] Oci-runtime-tool, original-date: 2016-01-13T20:10:21Z, Oct. 3, 2021.
[Online]. Available: https://github.com/opencontainers/runtime-
tools (visited on 10/10/2021).

49

https://python-gitlab.readthedocs.io/en/stable/cli-usage.html
https://python-gitlab.readthedocs.io/en/stable/cli-usage.html
https://docs.openshift.com/container-platform/3.9/cli_reference/get_started_cli.html
https://docs.openshift.com/container-platform/3.9/cli_reference/get_started_cli.html
https://docs.openshift.com/container-platform/3.9/cli_reference/get_started_cli.html
https://milesbudden.com/ci-plumber/
https://milesbudden.com/ci-plumber/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://github.com/Azure/azure-cli
https://github.com/Azure/azure-cli
https://github.com/netlify/framework-info
https://github.com/netlify/framework-info
https://alistair.cockburn.us/hexagonal-architecture/
https://alistair.cockburn.us/hexagonal-architecture/
https://packaging.python.org/guides/packaging-namespace-packages/
https://packaging.python.org/guides/packaging-namespace-packages/
https://setuptools.pypa.io/en/latest/userguide/entry_point.html
https://setuptools.pypa.io/en/latest/userguide/entry_point.html
https://opencontainers.org/
https://github.com/opencontainers/image-tools
https://github.com/opencontainers/image-tools
https://github.com/opencontainers/runtime-tools
https://github.com/opencontainers/runtime-tools

[21] (Oct. 5, 2020). “Python release python 3.9.0,” Python.org, [Online].
Available: https://www.python.org/downloads/release/python-
390/ (visited on 10/10/2021).

[22] (Oct. 8, 2021). “Handbook,” The TypeScript Handbook. in collab. with
O. Therox, S. Sarker, T. Jiuding, and A. Savath, [Online]. Available:
https : / / www . typescriptlang . org / docs / handbook / intro . html
(visited on 10/10/2021).

[23] $ click_, original-date: 2014-04-24T09:52:19Z, Oct. 10, 2021. [On-
line]. Available: https : / / github . com / pallets / click (visited on
10/10/2021).

[24] S. Ramírez, Tiangolo/typer, original-date: 2019-12-24T12:24:11Z,
Oct. 10, 2021. [Online]. Available: https://github.com/tiangolo/
typer (visited on 10/10/2021).

[25] Python-gitlab/python-gitlab, original-date: 2013-02-07T17:23:16Z,
Oct. 15, 2021. [Online]. Available: https : / / github . com / python -
gitlab/python-gitlab (visited on 10/16/2021).

[26] Gitpython-developers/GitPython, original-date: 2010-11-30T17:34:03Z,
Oct. 16, 2021. [Online]. Available: https://github.com/gitpython-
developers/GitPython (visited on 10/16/2021).

[27] D. Taylor. (2019). “Building an open-source and cross-platform azure
CLI with python,” Python.org, [Online]. Available: https : / / www .
python.org/success- stories/building- an- open- source- and-
cross-platform-azure-cli-with-python/ (visited on 10/16/2021).

[28] W. McGugan, Rich library, original-date: 2019-11-10T15:28:09Z,
Oct. 16, 2021. [Online]. Available: https://github.com/willmcgugan/
rich (visited on 10/16/2021).

[29] V. Supalov. (Apr. 26, 2018). “Should you run your database in docker?”
vsupalov.com, [Online]. Available: https://vsupalov.com/database-
in-docker/ (visited on 11/02/2021).

[30] Kaniko - build images in kubernetes, original-date: 2018-01-
29T17:53:54Z, Nov. 3, 2021. [Online]. Available: https : / / github .
com/GoogleContainerTools/kaniko (visited on 11/03/2021).

[31] S. Selhorn and M. Amirault. (Oct. 20, 2021). “Use docker to build
docker images,” GitLab Docs, [Online]. Available: https : / / docs .
gitlab.com/ee/ci/docker/using_docker_build.html (visited on
11/03/2021).

[32] S. Selhorn. (Oct. 13, 2021). “Conigure GitLab as an OAuth 2.0 authen-
tication identity provider,” GitLab Docs, [Online]. Available: https:
//docs.gitlab.com/ee/integration/oauth_provider.html (visited
on 11/03/2021).

50

https://www.python.org/downloads/release/python-390/
https://www.python.org/downloads/release/python-390/
https://www.typescriptlang.org/docs/handbook/intro.html
https://github.com/pallets/click
https://github.com/tiangolo/typer
https://github.com/tiangolo/typer
https://github.com/python-gitlab/python-gitlab
https://github.com/python-gitlab/python-gitlab
https://github.com/gitpython-developers/GitPython
https://github.com/gitpython-developers/GitPython
https://www.python.org/success-stories/building-an-open-source-and-cross-platform-azure-cli-with-python/
https://www.python.org/success-stories/building-an-open-source-and-cross-platform-azure-cli-with-python/
https://www.python.org/success-stories/building-an-open-source-and-cross-platform-azure-cli-with-python/
https://github.com/willmcgugan/rich
https://github.com/willmcgugan/rich
https://vsupalov.com/database-in-docker/
https://vsupalov.com/database-in-docker/
https://github.com/GoogleContainerTools/kaniko
https://github.com/GoogleContainerTools/kaniko
https://docs.gitlab.com/ee/ci/docker/using_docker_build.html
https://docs.gitlab.com/ee/ci/docker/using_docker_build.html
https://docs.gitlab.com/ee/integration/oauth_provider.html
https://docs.gitlab.com/ee/integration/oauth_provider.html

[33] Red Hat. (Aug. 26, 2021). “Using image pull secrets - managing im-
ages,” OpenShift Container Platform 4.6, [Online]. Available: https://
docs.openshift.com/container-platform/4.6/openshift_images/
managing _ images / using - image - pull - secrets . html # images -
pulling- from- private- registries_using- image- pull- secrets
(visited on 11/03/2021).

[34] (Jun. 10, 2021). “Manage resource groups - azure resource manager,”
Azure portal. in collab. with J. Gao, K. Sharkey, R. Lyon, D. Coul-
ter, M. Singletary, M. Sahbi, and T. FitzMacken, [Online]. Available:
https : / / docs . microsoft . com / en - us / azure / azure - resource -
manager/management/manage-resource-groups-portal (visited on
11/03/2021).

[35] D. North. (Jul. 26, 2021). “We need to talk about testing,” DAN
NORTH & ASSOCIATES LTD. Section: blog, [Online]. Available:
https://dannorth.net/2021/07/26/we- need- to- talk- about-
testing/ (visited on 11/02/2021).

[36] D. North, “MiXiT - talk the three ages of innovation,” May 15, 2015,
[Online]. Available: https://mixitconf.org/2015/dan-north-the-
three-ages-of-innovation (visited on 11/03/2021).

51

https://docs.openshift.com/container-platform/4.6/openshift_images/managing_images/using-image-pull-secrets.html#images-pulling-from-private-registries_using-image-pull-secrets
https://docs.openshift.com/container-platform/4.6/openshift_images/managing_images/using-image-pull-secrets.html#images-pulling-from-private-registries_using-image-pull-secrets
https://docs.openshift.com/container-platform/4.6/openshift_images/managing_images/using-image-pull-secrets.html#images-pulling-from-private-registries_using-image-pull-secrets
https://docs.openshift.com/container-platform/4.6/openshift_images/managing_images/using-image-pull-secrets.html#images-pulling-from-private-registries_using-image-pull-secrets
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/manage-resource-groups-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/manage-resource-groups-portal
https://dannorth.net/2021/07/26/we-need-to-talk-about-testing/
https://dannorth.net/2021/07/26/we-need-to-talk-about-testing/
https://mixitconf.org/2015/dan-north-the-three-ages-of-innovation
https://mixitconf.org/2015/dan-north-the-three-ages-of-innovation

